Operating Systems Design and Implementation, Third Edition
By Andrew S. Tanenbaum - Vrije Universiteit Amsterdam, The
Netherlands, Albert S. Woodhull - Ambherst, Massachusetts
Publisher: Prentice Hall
Pub Date: January 04, 2006

Print
: 0-13-142938-8
TASBN10

ContdiHNt. g7¢ (. 13.142938-3
&"87%" class="v1" ISBN-13

height="17">Index eText o . .
ISBN.10° 0-13-185991-9
eText
[SBN.13: 978-0-13-185991-3

Pages: 1080

Revised to address the latest version of MINIX (MINIX 3), this
streamlined, simplified new edition remains the only operating systems
text to first explain relevant principles, then demonstrate their
applications using a Unix-like operating system as a detailed example. It
has been especially designed for high reliability, for use in embedded
systems, and for ease of teaching.

For the latest version of MINIX and simulators for running MINIX on
other systems visit: www.minix3.org

&"87%" class="v1"
height="17">Index

Copyright

Preface

Chapter

1.

Introduction
Section
1.1.
What
Is
an
Operating
System?
Section
1.2.
History
of
Operating
Systems
Section
1.3.
Operating
System
Concepts
Section
1.4.
System
Calls
Section
1.5.
Operating
System
Structure
Section
1.6.
Outline

Operating Systems Design and Implementation, Third Edition
By Andrew S. Tanenbaum - Vrije Universiteit Amsterdam, The
Netherlands, Albert S. Woodhull - Ambherst, Massachusetts
Publisher: Prentice Hall

Pub Date: January 04, 2006

Print
: 0-13-142938-8
TASBN10

ContdhFint, 012, :
ISBN-13' 978-0-13-142938-3

eText

ISBN-10° 0-13-185991-9
eText

ISBN-13° 978-0-13-185991-3

Pages: 1080

of

the

Rest

of

This
Book
Section
1.7.
Summary
Problems

Chapter

2.

Processes
Section
2.1.
Introduction
to
Processes
Section
2.2.
Interprocess
Communication
Section
2.3.
Classical
IPC
Problems
Section
2.4.
Scheduling
Section
2.5.
Overview
of
Processes
in
MINIX
3
Section
2.6.
Implementation
of
Processes
in
MINIX
3
Section
2.7.

The
System
Task

in
MINIX
3

Section
2.8.
The
Clock
Task
in
MINIX
3
Section
2.9.
Summary
Problems
Chapter
3.
Input/Output
Section
3.1.
Principles
of
1/0
Hardware
Section
3.2.
Principles
of
1/0
Software
Section
3.3.
Deadlocks
Section
3.4,
Overview
of
1/0
in
MINIX
3
Section
3.5.
Block
Devices
in
MINIX
3
Section
3.6.
RAM
Disks
Section
3.7.
Disks
Section
3.8.

Terminals
Section
3.9.
Summary
Problems
Chapter
4.
Memory
Management
Section
4.1.
Basic
Memory
Management
Section
4.2.
Swapping
Section
4.3.
Virtual
Memory
Section
44.
Page
Replacement
Algorithms
Section
45.
Design
Issues
for
Paging
Systems
Section
4.6.
Segmentation
Section
4.7.
Overview
of
the
MINIX
3
Process
Manager
Section
4.8.
Implementation
of
the
MINIX
3
Process
Manager

Section
4.9.
Summary
Problems
Chapter
5.
File
Systems
Section
5.1.
Files
Section
5.2.
Directories
Section
5.3.
File
System
Implementation
Section
5.4.
Security
Section
5.5.
Protection
Mechanisms
Section
5.6.
Overview
of
the
MINIX
3
File
System
Section
5.7.
Implementation
of
the
MINIX
3
File
System
Section
5.8.
Summary
Problems
Chapter
6.
Reading
List
and
Bibliography

Section
6.1.
Suggestions
for
Further
Reading
Section
6.2.
Alphabetical
Bibliography

Appendix

A.

Installing

MINIX

3
Section
A.l.
Preparation
Section
A2.
Booting
Section
A3.
Installing
to
the
Hard
Disk
Section
AA4.
Testing
Section
AS.
Using
a
Simulator

Appendix

B.

The

MINIX

Source

Code

Appendix

C.

Index

to

Files

About

the

Authors

About

the

MINIX

3

CD
System
Requirements
Hardware
Software
Installation
Product
Support

Index

Copyright

[Page iv]
Library of Congress Cataloging in Publication Data
Tanenbaum, Andrew S.
Operating Systems: Design and Implementation / Andrew S. Tanenbaum, Albert S. Woodhull. -- 3rd ed.

ISBN: 0-13-142938-8
1. Operating systems (Computers) I. Woodhull, Albert S. II. Title

QA76.76.063T36 2006
005.4'3--dc22
Vice President and Editorial Director, ECS: Marcia J. Horton
Executive Editor: Tracy Dunkelberger
Editorial Assistant: Christianna Lee
Executive Managing Editor: Vince O'Brien
Managing Editor: Camille Trentacoste
Director of Creative Services: Paul Belfanti
Art Director and Cover Manager: Heather Scott
Cover Design and Illutsration: Tamara Newnam
Managing Editor, AV Management and Production: Patricia Burns
Art Editor: Gregory Dulles
Manufacturing Manager, ESM: Alexis Heydt-Long
Manufacturing Buyer: Lisa McDowell
Executive Marketing Manager: Robin O'Brien
Marketing Assistant: Barrie Reinhold
© 2006, 1997, 1987 by Pearson Education, Inc.
Pearson Prentice Hall
Pearson Education, Inc.

Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without permission
in writing from the publisher.

2

Pearson Prentice Hall® is a trademark of Pearson Education, Inc.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their effectiveness.
The authors and publisher make no warranty of any kind, expressed or implied, with regard to these programs
or to the documentation contained in this book. The authors and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use
of these programs.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission
in writing from the publisher.

Printed in the United States of America

10987654321

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Educaciéon de Mexico, S.A. de C.V.

Pearson Education-Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

Dedication
To Suzanne, Barbara, Marvin, and the memory of Sweetie T and Bram
AST
To Barbara and Gordon
ASW
Sum
<®
The MINIX 3 Mascot
Other operating systems have an animal mascot, so we felt MINIX 3 ought to have one too. We chose the

raccoon because raccoons are small, cute, clever, agile, eat bugs, and are user-friendlyat least if you keep your
garbage can well locked.

[Page xv]

Preface

Most books on operating systems are strong on theory and weak on practice. This one aims to provide a better
balance between the two. It covers all the fundamental principles in great detail, including processes,
interprocess communication, semaphores, monitors, message passing, scheduling algorithms, input/output,
deadlocks, device drivers, memory management, paging algorithms, file system design, security, and
protection mechanisms. But it also discusses one particular systemMINIX 3a UNIX-compatible operating
system in detail, and even provides a source code listing for study. This arrangement allows the reader not
only to learn the principles, but also to see how they are applied in a real operating system.

When the first edition of this book appeared in 1987, it caused something of a small revolution in the way
operating systems courses were taught. Until then, most courses just covered theory. With the appearance of
MINIX, many schools began to have laboratory courses in which students examined a real operating system
to see how it worked inside. We consider this trend highly desirable and hope it continues.

It its first 10 years, MINIX underwent many changes. The original code was designed for a 256K 8088-based
IBM PC with two diskette drives and no hard disk. It was also based on UNIX Version 7 As time went on,
MINIX evolved in many ways: it supported 32-bit protected mode machines with large memories and hard
disks. It also changed from being based on Version 7, to being based on the international POSIX standard
(IEEE 1003.1 and ISO 9945-1). Finally, many new features were added, perhaps too many in our view, but
too few in the view of some other people, which led to the creation of Linux. In addition, MINIX was ported
to many other platforms, including the Macintosh, Amiga, Atari, and SPARC. A second edition of the book,
covering this system, was published in 1997 and was widely used at universities.

[Page xvi]

The popularity of MINIX has continued, as can be observed by examining the number of hits for MINIX
found by Google.

This third edition of the book has many changes throughout. Nearly all of the material on principles has been
revised, and considerable new material has been added. However, the main change is the discussion of the
new version of the system, called MINIX 3. and the inclusion of the new code in this book. Although loosely
based on MINIX 2, MINIX 3 is fundamentally different in many key ways.

The design of MINIX 3 was inspired by the observation that operating systems are becoming bloated, slow,
and unreliable. They crash far more often than other electronic devices such as televisions, cell phones, and
DVD players and have so many features and options that practically nobody can understand them fully or
manage them well. And of course, computer viruses, worms, spyware, spam, and other forms of malware have
become epidemic.

To a large extent, many of these problems are caused by a fundamental design flaw in current operating
systems: their lack of modularity. The entire operatng system is typically millions of lines of C/C++ code
compiled into a single massive executable program run in kernel mode. A bug in any one of those millions of
lines of code can cause the system to malfunction. Getting all this code correct is impossible, especially when
about 70% consists of device drivers, written by third parties, and outside the purview of the people
maintaining the operating system.

With MINIX 3, we demonstrate that this monolithic design is not the only possibility. The MINIX 3 kernel is
only about 4000 lines of executable code, not the millions found in Windows, Linux, Mac OSX, or FreeBSD.

2

The rest of the system, including all the device drivers (except the clock driver), is a collection of small,
modular, user-mode processes, each of which is tightly restricted in what it can do and with which other
processes it may communicate.

While MINIX 3 is a work in progress, we believe that this model of building an operating system as a
collection of highly-encapsulated user-mode processes holds promise for building more reliable systems in the
future. MINIX 3 is especially focused on smaller PCs (such as those commonly found in Third-World
countries and on embedded systems, which are always resource constrained). In any event, this design makes
it much easier for students to learn how an operating system works than attempting to study a huge monolithic
system.

The CD-ROM that is included in this book is a live CD. You can put it in your CD-ROM drive, reboot the
computer, and MINIX 3 will give a login prompt within a few seconds. You can log in as root and give the
system a try without first having to install it on your hard disk. Of course, it can also be installed on the hard
disk. Detailed installation instructions are given in Appendix A.

[Page xvii]

As suggested above, MINIX 3 is rapidly evolving, with new versions being issued frequently. To download
the current CD-ROM image file for burning, please go to the official Website: www.minix3.org. This site also
contains a large amount of new software, documentation, and news about MINIX 3 development. For
discussions about MINIX 3, or to ask questions, there is a USENET newsgroup: comp.os.minix. People
without newsreaders can follow discussions on the Web at http://groups.google.com/group/comp.os.minix.

As an alternative to installing MINIX 3 on your hard disk, it is possible to run it on any one of several PC
simulators now available. Some of these are listed on the main page of the Website.

Instructors who are using the book as the text for a university course can get the problem solutions from their
local Prentice Hall representative. The book has its own Website. It can be found by going to
www.prenhall.com/tanenbaum and selecting this title.

We have been extremely fortunate in having the help of many people during the course of this project. First
and foremost, Ben Gras and Jorrit Herder have done most of the programming of the new version. They did a
great job under tight time constraints, including responding to e-mail well after midnight on many occasions.
They also read the manuscript and made many useful comments. Our deepest appreciation to both of them.

Kees Bot also helped greatly with previous versions, giving us a good base to work with. Kees wrote large
chunks of code for versions up to 2.0.4, repaired bugs, and answered numerous questions. Philip Homburg
wrote most of the networking code as well as helping out in numerous other useful ways, especially providing
detailed feedback on the manuscript.

People too numerous to list contributed code to the very early versions, helping to get MINIX off the ground
in the first place. There were so many of them and their contributions have been so varied that we cannot even
begin to list them all here, so the best we can do is a generic thank you to all of them.

Several people read parts of the manuscript and made suggestions. We would like to give our special thanks to
Gojko Babic, Michael Crowley, Joseph M. Kizza, Sam Kohn Alexander Manov, and Du Zhang for their help.

Finally, we would like to thank our families. Suzanne has been through this 16 times now. Barbara has been
through it 15 times now. Marvin has been through it 14 times now. It's kind of getting to be routine, but the

love and support is still much appreciated. (AST)

Al's Barbara has been through this twice now. Her support, patience, and good humor were essential. Gordon

http://www.minix3.org
http://groups.google.com/group/comp.os.minix
http://www.prenhall.com/tanenbaum

has been a patient listener. It is still a delight to have a son who understands and cares about the things that
fascinate me. Finally, step-grandson Zain's first birthday coincides with the release of MINIX 3. Some day he
will appreciate this. (ASW)

Andrew S. Tanenbaum

Albert S. Woodhull

[Page 1]

1. Introduction

Without its software, a computer is basically a useless lump of metal. With its software, a computer can store,
process, and retrieve information; play music and videos; send e-mail, search the Internet; and engage in many
other valuable activities to earn its keep. Computer software can be divided roughly into two kinds: system
programs, which manage the operation of the computer itself, and application programs, which perform the
actual work the user wants. The most fundamental system program is the operating system, whose job is to
control all the computer's resources and provide a base upon which the application programs can be written.
Operating systems are the topic of this book. In particular, an operating system called MINIX 3 is used as a
model, to illustrate design principles and the realities of implementing a design.

A modern computer system consists of one or more processors, some main memory, disks, printers, a
keyboard, a display, network interfaces, and other input/output devices. All in all, a complex system. Writing
programs that keep track of all these components and use them correctly, let alone optimally, is an extremely
difficult job. If every programmer had to be concerned with how disk drives work, and with all the dozens of
things that could go wrong when reading a disk block, it is unlikely that many programs could be written at
all.

Many years ago it became abundantly clear that some way had to be found to shield programmers from the
complexity of the hardware. The way that has evolved gradually is to put a layer of software on top of the bare
hardware, to manage all parts of the system, and present the user with an interface or virtual machine that is
easier to understand and program. This layer of software is the operating system.

[Page 2]

The placement of the operating system is shown in Fig. 1-1. At the bottom is the hardware, which, in many
cases, is itself composed of two or more levels (or layers). The lowest level contains physical devices,
consisting of integrated circuit chips, wires, power supplies, cathode ray tubes, and similar physical devices.
How these are constructed and how they work is the province of the electrical engineer.

Figure 1-1. A computer system consists of hardware, system programs, and application programs.

Banking Airline Web ¢
system reservation | browser } Application programs
: : Command H
Compilers Editors interpreter | | System
programs
Operating system
Machine language
Microarchitecture > Hardware

Physical devices

2

Next comes the microarchitecture level, in which the physical devices are grouped together to form functional
units. Typically this level contains some registers internal to the CPU (Central Processing Unit) and a data
path containing an arithmetic logic unit. In each clock cycle, one or two operands are fetched from the
registers and combined in the arithmetic logic unit (for example, by addition or Boolean AND). The result is
stored in one or more registers. On some machines, the operation of the data path is controlled by software,
called the microprogram. On other machines, it is controlled directly by hardware circuits.

The purpose of the data path is to execute some set of instructions. Some of these can be carried out in one
data path cycle; others may require multiple data path cycles. These instructions may use registers or other
hardware facilities. Together, the hardware and instructions visible to an assembly language programmer form
the ISA (Instruction Set Architecture) This level is often called machine language.

The machine language typically has between 50 and 300 instructions, mostly for moving data around the
machine, doing arithmetic, and comparing values. In this level, the input/output devices are controlled by
loading values into special device registers. For example, a disk can be commanded to read by loading the
values of the disk address, main memory address, byte count, and direction (read or write) into its registers. In
practice, many more parameters are needed, and the status returned by the drive after an operation may be
complex. Furthermore, for many I/O (Input/Output) devices, timing plays an important role in the
programming.

[Page 3]

A major function of the operating system is to hide all this complexity and give the programmer a more
convenient set of instructions to work with. For example, read block from file is conceptually much
simpler than having to worry about the details of moving disk heads, waiting for them to settle down, and so
on.

On top of the operating system is the rest of the system software. Here we find the command interpreter
(shell), window systems, compilers, editors, and similar application-independent programs. It is important to
realize that these programs are definitely not part of the operating system, even though they are typically
supplied preinstalled by the computer manufacturer, or in a package with the operating system if it is installed
after purchase. This is a crucial, but subtle, point. The operating system is (usually) that portion of the
software that runs in kernel mode or supervisor mode. It is protected from user tampering by the hardware
(ignoring for the moment some older or low-end microprocessors that do not have hardware protection at all).
Compilers and editors run in user mode. If a user does not like a particular compiler, he!T1is free to write his
own if he so chooses; he is not free to write his own clock interrupt handler, which is part of the operating
system and is normally protected by hardware against attempts by users to modify it.

(71 "He" should be read as "he or she" throughout the book.

This distinction, however, is sometimes blurred in embedded systems (which may not have kernel mode) or
interpreted systems (such as Java-based systems that use interpretation, not hardware, to separate the
components). Still, for traditional computers, the operating system is what runs in kernel mode.

That said, in many systems there are programs that run in user mode but which help the operating system or
perform privileged functions. For example, there is often a program that allows users to change their
passwords. This program is not part of the operating system and does not run in kernel mode, but it clearly
carries out a sensitive function and has to be protected in a special way.

In some systems, including MINIX 3, this idea is carried to an extreme form, and pieces of what is
traditionally considered to be the operating system (such as the file system) run in user space. In such systems,
it is difficult to draw a clear boundary. Everything running in kernel mode is clearly part of the operating
system, but some programs running outside it are arguably also part of it, or at least closely associated with it.

For example, in MINIX 3, the file system is simply a big C program running in user-mode.

Finally, above the system programs come the application programs. These programs are purchased (or written
by) the users to solve their particular problems, such as word processing, spreadsheets, engineering
calculations, or storing information in a database.

[Page 4]
1.1. What Is an Operating System?

Most computer users have had some experience with an operating system, but it is difficult to pin down
precisely what an operating system is. Part of the problem is that operating systems perform two basically
unrelated functions, extending the machine and managing resources, and depending on who is doing the
talking, you hear mostly about one function or the other. Let us now look at both.

1.1.1. The Operating System as an Extended Machine

As mentioned earlier, the architecture (instruction set, memory organization, I/O, and bus structure) of most
computers at the machine language level is primitive and awkward to program, especially for input/output. To
make this point more concrete, let us briefly look at how floppy disk I/O is done using the NEC PD765
compatible controller chips used on many Intel-based personal computers. (Throughout this book we will use
the terms "floppy disk" and "diskette" interchangeably.) The PD765 has 16 commands, each specified by
loading between 1 and 9 bytes into a device register. These commands are for reading and writing data,
moving the disk arm, and formatting tracks, as well as initializing, sensing, resetting, and recalibrating the
controller and the drives.

The most basic commands are read and write, each of which requires 13 parameters, packed into 9 bytes.
These parameters specify such items as the address of the disk block to be read, the number of sectors per
track, the recording mode used on the physical medium, the intersector gap spacing, and what to do with a
deleted-data-address-mark. If you do not understand this mumbo jumbo, do not worry; that is precisely the
pointit is rather esoteric. When the operation is completed, the controller chip returns 23 status and error fields
packed into 7 bytes. As if this were not enough, the floppy disk programmer must also be constantly aware of
whether the motor is on or off. If the motor is off, it must be turned on (with a long startup delay) before data
can be read or written. The motor cannot be left on too long, however, or the floppy disk will wear out. The
programmer is thus forced to deal with the trade-off between long startup delays versus wearing out floppy
disks (and losing the data on them).

Without going into the real details, it should be clear that the average programmer probably does not want to
get too intimately involved with the programming of floppy disks (or hard disks, which are just as complex
and quite different). Instead, what the programmer wants is a simple, high-level abstraction to deal with. In
the case of disks, a typical abstraction would be that the disk contains a collection of named files. Each file
can be opened for reading or writing, then read or written, and finally closed. Details such as whether or not
recording should use modified frequency modulation and what the current state of the motor is should not
appear in the abstraction presented to the user.

[Page 5]

The program that hides the truth about the hardware from the programmer and presents a nice, simple view of
named files that can be read and written is, of course, the operating system. Just as the operating system
shields the programmer from the disk hardware and presents a simple file-oriented interface, it also conceals a
lot of unpleasant business concerning interrupts, timers, memory management, and other low-level features.
In each case, the abstraction offered by the operating system is simpler and easier to use than that offered by
the underlying hardware.

In this view, the function of the operating system is to present the user with the equivalent of an extended
machine or virtual machine that is easier to program than the underlying hardware. How the operating system

2

achieves this goal is a long story, which we will study in detail throughout this book. To summarize it in a
nutshell, the operating system provides a variety of services that programs can obtain using special
instructions called system calls. We will examine some of the more common system calls later in this chapter.

1.1.2. The Operating System as a Resource Manager

The concept of the operating system as primarily providing its users with a convenient interface is a top-down
view. An alternative, bottom-up, view holds that the operating system is there to manage all the pieces of a
complex system. Modern computers consist of processors, memories, timers, disks, mice, network interfaces,
printers, and a wide variety of other devices. In the alternative view, the job of the operating system is to
provide for an orderly and controlled allocation of the processors, memories, and I/O devices among the
various programs competing for them.

Imagine what would happen if three programs running on some computer all tried to print their output
simultaneously on the same printer. The first few lines of printout might be from program 1, the next few
from program 2, then some from program 3, and so forth. The result would be chaos. The operating system
can bring order to the potential chaos by buffering all the output destined for the printer on the disk. When one
program is finished, the operating system can then copy its output from the disk file where it has been stored
to the printer, while at the same time the other program can continue generating more output, oblivious to the
fact that the output is not really going to the printer (yet).

When a computer (or network) has multiple users, the need for managing and protecting the memory, I/O
devices, and other resources is even greater, since the users might otherwise interfere with one another. In
addition, users often need to share not only hardware, but information (files, databases, etc.) as well. In short,
this view of the operating system holds that its primary task is to keep track of who is using which resource, to
grant resource requests, to account for usage, and to mediate conflicting requests from different programs and
users.

[Page 6]

Resource management includes multiplexing (sharing) resources in two ways: in time and in space. When a
resource is time multiplexed, different programs or users take turns using it. First one of them gets to use the
resource, then another, and so on. For example, with only one CPU and multiple programs that want to run on
it, the operating system first allocates the CPU to one program, then after it has run long enough, another one
gets to use the CPU, then another, and then eventually the first one again. Determining how the resource is
time multiplexedwho goes next and for how longis the task of the operating system. Another example of time
multiplexing is sharing the printer. When multiple print jobs are queued up for printing on a single printer, a
decision has to be made about which one is to be printed next.

The other kind of multiplexing is space multiplexing. Instead of the customers taking turns, each one gets part
of the resource. For example, main memory is normally divided up among several running programs, so each
one can be resident at the same time (for example, in order to take turns using the CPU). Assuming there is
enough memory to hold multiple programs, it is more efficient to hold several programs in memory at once
rather than give one of them all of it, especially if it only needs a small fraction of the total. Of course, this
raises issues of fairness, protection, and so on, and it is up to the operating system to solve them. Another
resource that is space multiplexed is the (hard) disk. In many systems a single disk can hold files from many
users at the same time. Allocating disk space and keeping track of who is using which disk blocks is a typical
operating system resource management task.

[Page 6 (continued)]

1.2. History of Operating Systems

Operating systems have been evolving through the years. In the following sections we will briefly look at a
few of the highlights. Since operating systems have historically been closely tied to the architecture of the
computers on which they run, we will look at successive generations of computers to see what their operating
systems were like. This mapping of operating system generations to computer generations is crude, but it does
provide some structure where there would otherwise be none.

The first true digital computer was designed by the English mathematician Charles Babbage (17921871).
Although Babbage spent most of his life and fortune trying to build his "analytical engine," he never got it
working properly because it was purely mechanical, and the technology of his day could not produce the
required wheels, gears, and cogs to the high precision that he needed. Needless to say, the analytical engine
did not have an operating system.

As an interesting historical aside, Babbage realized that he would need software for his analytical engine, so
he hired a young woman named Ada Lovelace, who was the daughter of the famed British poet Lord Byron,
as the world's first programmer. The programming language Ada% chOllev2sec3">

[Page 7]
1.2.1. The First Generation (194555) Vacuum Tubes and Plugboards

After Babbage's unsuccessful efforts, little progress was made in constructing digital computers until World
War II. Around the mid-1940s, Howard Aiken at Harvard University, John von Neumann at the Institute for
Advanced Study in Princeton, J. Presper Eckert and John Mauchley at the University of Pennsylvania, and
Konrad Zuse in Germany, among others, all succeeded in building calculating engines. The first ones used
mechanical relays but were very slow, with cycle times measured in seconds. Relays were later replaced by
vacuum tubes. These machines were enormous, filling up entire rooms with tens of thousands of vacuum
tubes, but they were still millions of times slower than even the cheapest personal computers available today.

In these early days, a single group of people designed, built, programmed, operated, and maintained each
machine. All programming was done in absolute machine language, often by wiring up plugboards to control
the machine's basic functions. Programming languages were unknown (even assembly language was
unknown). Operating systems were unheard of. The usual mode of operation was for the programmer to sign
up for a block of time on the signup sheet on the wall, then come down to the machine room, insert his or her
plugboard into the computer, and spend the next few hours hoping that none of the 20,000 or so vacuum tubes
would burn out during the run. Virtually all the problems were straightforward numerical calculations, such as
grinding out tables of sines, cosines, and logarithms.

By the early 1950s, the routine had improved somewhat with the introduction of punched cards. It was now
possible to write programs on cards and read them in instead of using plugboards; otherwise, the procedure
was the same.

1.2.2. The Second Generation (195565) Transistors and Batch Systems

The introduction of the transistor in the mid-1950s changed the picture radically. Computers became reliable
enough that they could be manufactured and sold to paying customers with the expectation that they would
continue to function long enough to get some useful work done. For the first time, there was a clear separation
between designers, builders, operators, programmers, and maintenance personnel.

2

These machines, now called mainframes, were locked away in specially airconditioned computer rooms, with
staffs of specially-trained professional operators to run them. Only big corporations or major government
agencies or universities could afford their multimillion dollar price tags. To run a job (i.e., a program or set of
programs), a programmer would first write the program on paper (in FORTRAN or possibly even in assembly
language), then punch it on cards. He would then bring the card deck down to the input room and hand it to
one of the operators and go drink coffee until the output was ready.

[Page 8]

When the computer finished whatever job it was currently running, an operator would go over to the printer
and tear off the output and carry it over to the output-room, so that the programmer could collect it later. Then
he would take one of the card decks that had been brought from the input room and read it in. If the
FORTRAN compiler was needed, the operator would have to get it from a file cabinet and read it in. Much
computer time was wasted while operators were walking around the machine room.

Given the high cost of the equipment, it is not surprising that people quickly looked for ways to reduce the
wasted time. The solution generally adopted was the batch system. The idea behind it was to collect a tray full
of jobs in the input room and then read them onto a magnetic tape using a small (relatively) inexpensive
computer, such as the IBM 1401, which was very good at reading cards, copying tapes, and printing output,
but not at all good at numerical calculations. Other, much more expensive machines, such as the IBM 7094,
were used for the real computing. This situation is shown in Fig. 1-2.

Figure 1-2. An early batch system. (a) Programmers bring cards to 1401. (b) 1401 reads batch of jobs onto tape.
(c) Operator carries input tape to 7094. (d) 7094 does computing. (e) Operator carries output tape to 1401. (f) 1401
prints output.

[View full size image]
Syslem
Input tape Output
(=) ape Lo
{ 7

=1

il Printer

&P
LT

(@) {b) (c) (d))] (f)

After about an hour of collecting a batch of jobs, the tape was rewound and brought into the machine room,
where it was mounted on a tape drive. The operator then loaded a special program (the ancestor of today's
operating system), which read the first job from tape and ran it. The output was written onto a second tape,
instead of being printed. After each job finished, the operating system automatically read the next job from the
tape and began running it. When the whole batch was done, the operator removed the input and output tapes,
replaced the input tape with the next batch, and brought the output tape to a 1401 for printing off line (i.e., not
connected to the main computer).

The structure of a typical input job is shown in Fig. 1-3. It started out with a $JOB card, specifying the
maximum run time in minutes, the account number to be charged, and the programmer's name. Then came a
$FORTRAN card, telling the operating system to load the FORTRAN compiler from the system tape. It was
followed by the program to be compiled, and then a SLOAD card, directing the operating system to load the
object program just compiled. (Compiled programs were often written on scratch tapes and had to be loaded
explicitly.) Next came the $RUN card, telling the operating system to run the program with the data following

it. Finally, the $END card marked the end of the job. These primitive control cards were the forerunners of
modern job control languages and command interpreters.

[Page 9]

Figure 1-3. Structure of a typical FMS job.

/ $END
/_; Data for program

]/
/$HUN
/SLGP-D

/ Fortran program —

[
/ $FORTRAN

$J0OB, 10,6610802, MARVIN TANENBALUM

Large second-generation computers were used mostly for scientific and engineering calculations, such as
solving the partial differential equations that often occur in physics and engineering. They were largely
programmed in FORTRAN and assembly language. Typical operating systems were FMS (the Fortran
Monitor System) and IBSYS, IBM's operating system for the 7094.

1.2.3. The Third Generation (19651980) ICs and Multiprogramming

By the early 1960s, most computer manufacturers had two distinct, and totally incompatible, product lines. On
the one hand there were the word-oriented, large-scale scientific computers, such as the 7094, which were
used for numerical calculations in science and engineering. On the other hand, there were the
character-oriented, commercial computers, such as the 1401, which were widely used for tape sorting and
printing by banks and insurance companies.

Developing, maintaining, and marketing two completely different product lines was an expensive proposition
for the computer manufacturers. In addition, many new computer customers initially needed a small machine
but later outgrew it and wanted a bigger machine that had the same architectures as their current one so it
could run all their old programs, but faster.

[Page 10]

IBM attempted to solve both of these problems at a single stroke by introducing the System/360. The 360 was
a series of software-compatible machines ranging from 1401-sized to much more powerful than the 7094. The
machines differed only in price and performance (maximum memory, processor speed, number of I/O devices
permitted, and so forth). Since all the machines had the same architecture and instruction set, programs

4

written for one machine could run on all the others, at least in theory. Furthermore, the 360 was designed to
handle both scientific (i.e., numerical) and commercial computing. Thus a single family of machines could
satisfy the needs of all customers. In subsequent years, IBM has come out with compatible successors to the
360 line, using more modern technology, known as the 370, 4300, 3080, 3090, and Z series.

The 360 was the first major computer line to use (small-scale) Integrated Circuits (ICs), thus providing a
major price/performance advantage over the second-generation machines, which were built up from
individual transistors. It was an immediate success, and the idea of a family of compatible computers was
soon adopted by all the other major manufacturers. The descendants of these machines are still in use at
computer centers today. Nowadays they are often used for managing huge databases (e.g., for airline
reservation systems) or as servers for World Wide Web sites that must process thousands of requests per
second.

The greatest strength of the "one family" idea was simultaneously its greatest weakness. The intention was
that all software, including the operating system, OS/360, had to work on all models. It had to run on small
systems, which often just replaced 1401s for copying cards to tape, and on very large systems, which often
replaced 7094s for doing weather forecasting and other heavy computing. It had to be good on systems with
few peripherals and on systems with many peripherals. It had to work in commercial environments and in
scientific environments. Above all, it had to be efficient for all of these different uses.

There was no way that IBM (or anybody else) could write a piece of software to meet all those conflicting
requirements. The result was an enormous and extraordinarily complex operating system, probably two to
three orders of magnitude larger than FMS. It consisted of millions of lines of assembly language written by
thousands of programmers, and contained thousands upon thousands of bugs, which necessitated a continuous
stream of new releases in an attempt to correct them. Each new release fixed some bugs and introduced new
ones, so the number of bugs probably remained constant in time.

One of the designers of OS/360, Fred Brooks, subsequently wrote a witty and incisive book describing his
experiences with OS/360 (Brooks, 1995). While it would be impossible to summarize the book here, suffice it
to say that the cover shows a herd of prehistoric beasts stuck in a tar pit. The cover of Silberschatz et al.
(2004) makes a similar point about operating systems being dinosaurs.

[Page 11]

Despite its enormous size and problems, OS/360 and the similar third-generation operating systems produced
by other computer manufacturers actually satisfied most of their customers reasonably well. They also
popularized several key techniques absent in second-generation operating systems. Probably the most
important of these was multiprogramming. On the 7094, when the current job paused to wait for a tape or
other I/0 operation to complete, the CPU simply sat idle until the I/O finished. With heavily CPU-bound
scientific calculations, I/O is infrequent, so this wasted time is not significant. With commercial data
processing, the I/O wait time can often be 80 or 90 percent of the total time, so something had to be done to
avoid having the (expensive) CPU be idle so much.

The solution that evolved was to partition memory into several pieces, with a different job in each partition, as
shown in Fig. 1-4. While one job was waiting for I/O to complete, another job could be using the CPU. If
enough jobs could be held in main memory at once, the CPU could be kept busy nearly 100 percent of the
time. Having multiple jobs safely in memory at once requires special hardware to protect each job against
snooping and mischief by the other ones, but the 360 and other third-generation systems were equipped with
this hardware.

Figure 1-4. A multiprogramming system with three jobs in memory.

Job 3
Job 2
Memaory
Job 1 partitions
Operating
system

Another major feature present in third-generation operating systems was the ability to read jobs from cards
onto the disk as soon as they were brought to the computer room. Then, whenever a running job finished, the
operating system could load a new job from the disk into the now-empty partition and run it. This technique is
called spooling (from Simultaneous Peripheral Operation On Line) and was also used for output. With
spooling, the 1401s were no longer needed, and much carrying of tapes disappeared.

Although third-generation operating systems were well suited for big scientific calculations and massive
commercial data processing runs, they were still basically batch systems. Many programmers pined for the
first-generation days when they had the machine all to themselves for a few hours, so they could debug their
programs quickly. With third-generation systems, the time between submitting a job and getting back the
output was often hours, so a single misplaced comma could cause a compilation to fail, and the programmer to
waste half a day.

This desire for quick response time paved the way for timesharing, a variant of multiprogramming, in which
each user has an online terminal. In a timesharing system, if 20 users are logged in and 17 of them are
thinking or talking or drinking coffee, the CPU can be allocated in turn to the three jobs that want service.
Since people debugging programs usually issue short commands (e.g., compile a five-page procedurem)
rather than long ones (e.g., sort a million-record file), the computer can provide fast, interactive service to a
number of users and perhaps also work on big batch jobs in the background when the CPU is otherwise idle.
The first serious timesharing system, CTSS (Compatible Time Sharing System), was developed at M.I.T. on a
specially modified 7094 (Corbaté et al., 1962). However, timesharing did not really become popular until the
necessary protection hardware became widespread during the third generation.

nn

[T1 We will use the terms "procedure,
book.

subroutine,"” and "function” interchangeably in this

[Page 12]

After the success of the CTSS system, MIT, Bell Labs, and General Electric (then a major computer
manufacturer) decided to embark on the development of a "computer utility," a machine that would support
hundreds of simultaneous timesharing users. Their model was the electricity distribution systemwhen you
need electric power, you just stick a plug in the wall, and within reason, as much power as you need will be
there. The designers of this system, known as MULTICS (MULTiplexed Information and Computing
Service), envisioned one huge machine providing computing power for everyone in the Boston area. The idea
that machines far more powerful than their GE-645 mainframe would be sold for under a thousand dollars by
the millions only 30 years later was pure science fiction, like the idea of supersonic trans-Atlantic underse a
trains would be now.

MULTICS was a mixed success. It was designed to support hundreds of users on a machine only slightly
more powerful than an Intel 80386-based PC, although it had much more I/O capacity. This is not quite as
crazy as it sounds, since people knew how to write small, efficient programs in those days, a skill that has

6

subsequently been lost. There were many reasons that MULTICS did not take over the world, not the least of
which is that it was written in PL/I, and the PL/I compiler was years late and barely worked at all when it
finally arrived. In addition, MULTICS was enormously ambitious for its time, much like Charles Babbage's
analytical engine in the nineteenth century.

MULTICS introduced many seminal ideas into the computer literature, but turning it into a serious product
and a commercial success was a lot harder than anyone had expected. Bell Labs dropped out of the project,
and General Electric quit the computer business altogether. However, M.L.T. persisted and eventually got
MULTICS working. It was ultimately sold as a commercial product by the company that bought GE's
computer business (Honeywell) and installed by about 80 major companies and universities worldwide. While
their numbers were small, MULTICS users were fiercely loyal. General Motors, Ford, and the U.S. National
Security Agency, for example, only shut down their MULTICS systems in the late 1990s. The last MULTICS
running, at the Canadian Department of National Defence, shut down in October 2000. Despite its lack of
commercial success, MULTICS had a huge influence on subsequent operating systems. A great deal of
information about it exists (Corbaté et al., 1972; Corbaté and Vyssotsky, 1965; Daley and Dennis, 1968;
Organick, 1972; and Saltzer, 1974). It also has a stillactive Web site, www.multicians.org, with a great deal of
information about the system, its designers, and its users.

[Page 13]

The phrase "computer utility" is no longer heard, but the idea has gained new life in recent years. In its
simplest form, PCs or workstations (high-end PCs) in a business or a classroom may be connected via a LAN
(Local Area Network) to a file server on which all programs and data are stored. An administrator then has to
install and protect only one set of programs and data, and can easily reinstall local software on a
malfunctioning PC or workstation without worrying about retrieving or preserving local data. In more
heterogeneous environments, a class of software called middleware has evolved to bridge the gap between
local users and the files, programs, and databases they use on remote servers. Middleware makes networked
computers look local to individual users' PCs or workstations and presents a consistent user interface even
though there may be a wide variety of different servers, PCs, and workstations in use. The World Wide Web
is an example. A web browser presents documents to a user in a uniform way, and a document as seen on a
user's browser can consist of text from one server and graphics from another server, presented in a format
determined by a style sheet on yet another server. Businesses and universities commonly use a web interface
to access databases and run programs on a computer in another building or even another city. Middleware
appears to be the operating system of a distributed system, but it is not really an operating system at all, and is
beyond the scope of this book. For more on distributed systems see Tanenbaum and Van Steen (2002).

Another major development during the third generation was the phenomenal growth of minicomputers,
starting with the Digital Equipment Company (DEC) PDP-1 in 1961. The PDP-1 had only 4K of 18-bit words,
but at $120,000 per machine (less than 5 percent of the price of a 7094), it sold like hotcakes. For certain
kinds of nonnumerical work, it was almost as fast as the 7094 and gave birth to a whole new industry. It was
quickly followed by a series of other PDPs (unlike IBM's family, all incompatible) culminating in the
PDP-11.

One of the computer scientists at Bell Labs who had worked on the MULTICS project, Ken Thompson,
subsequently found a small PDP-7 minicomputer that no one was using and set out to write a stripped-down,
one-user version of MULTICS. This work later developed into the UNIX operating system, which became
popular in the academic world, with government agencies, and with many companies.

The history of UNIX has been told elsewhere (e.g., Salus, 1994). Because the source code was widely
available, various organizations developed their own (incompatible) versions, which led to chaos. Two major
versions developed, System V, from AT&T, and BSD, (Berkeley Software Distribution) from the University
of California at Berkeley. These had minor variants as well, now including FreeBSD, OpenBSD, and
NetBSD. To make it possible to write programs that could run on any UNIX system, IEEE developed a

http://www.multicians.org

7

standard for UNIX, called POSIX, that most versions of UNIX now support. POSIX defines a minimal system
call interface that conformant UNIX systems must support. In fact, some other operating systems now also
support the POSIX interface. The information needed to write POSIX-compliant software is available in
books (IEEE, 1990; Lewine, 1991), and online as the Open Group's "Single UNIX Specification" at
www.unix.org. Later in this chapter, when we refer to UNIX, we mean all of these systems as well, unless
stated otherwise. While they differ internally, all of them support the POSI X standard, so to the programmer
they are quite similar.

[Page 14]

1.2.4. The Fourth Generation (1980Present) Personal Computers

With the development of LSI (Large Scale Integration) circuits, chips containing thousands of transistors on a
square centimeter of silicon, the age of the microprocessor-based personal computer dawned. In terms of
architecture, personal computers (initially called microcomputers) were not all that different from
minicomputers of the PDP-11 class, but in terms of price they certainly were different. The minicomputer
made it possible for a department in a company or university to have its own computer. The microcomputer
made it possible for an individual to have his or her own computer.

There were several families of microcomputers. Intel came out with the 8080, the first general-purpose 8-bit
microprocessor, in 1974. A number of companies produced complete systems using the 8080 (or the
compatible Zilog Z80) and the CP/M (Control Program for Microcomputers) operating system from a
company called Digital Research was widely used with these. Many application programs were written to run
on CP/M, and it dominated the personal computing world for about 5 years.

Motorola also produced an 8-bit microprocessor, the 6800. A group of Motorola engineers left to form MOS
Technology and manufacture the 6502 CPU after Motorola rejected their suggested improvements to the
6800. The 6502 was the CPU of several early systems. One of these, the Apple II, became a major competitor
for CP/M systems in the home and educational markets. But CP/M was so popular that many owners of Apple
IT computers purchased Z-80 coprocessor add-on cards to run CP/M, since the 6502 CPU was not compatible
with CP/M. The CP/M cards were sold by a little company called Microsoft, which also had a market niche
supplying BASIC interpreters used by a number of microcomputers running CP/M.

The next generation of microprocessors were 16-bit systems. Intel came out with the 8086, and in the early
1980s, IBM designed the IBM PC around Intel's 8088 (an 8086 on the inside, with an 8 bit external data path).
Microsoft offered IBM a package which included Microsoft's BASIC and an operating system, DOS (Disk
Operating System) originally developed by another companyMicrosoft bought the product and hired the
original author to improve it. The revised system was renamed MS-DOS (MicroSoft Disk Operating System)
and quickly came to dominate the IBM PC market.

[Page 15]

CP/M, MS-DOS, and the Apple DOS were all command-line systems: users typed commands at the keyboard.
Years earlier, Doug Engelbart at Stanford Research Institute had invented the GUI (Graphical User Interface),
pronounced "gooey," complete with windows, icons, menus, and mouse. Apple's Steve Jobs saw the
possibility of a truly user-friendly personal computer (for users who knew nothing about computers and did
not want to learn), and the Apple Macintosh was announced in early 1984. It used Motorola's 16-bit 68000
CPU, and had 64 KB of ROM (Read Only Memory), to support the GUIL The Macintosh has evolved over the
years. Subsequent Motorola CPUs were true 32-bit systems, and later still Apple moved to IBM PowerPC
CPUs, with RISC 32-bit (and later, 64-bit) architecture. In 2001 Apple made a major operating system
change, releasing Mac OS X, with a new version of the Macintosh GUI on top of Berkeley UNIX. And in

http://www.unix.org

8

2005 Apple announced that it would be switching to Intel processors.

To compete with the Macintosh, Microsoft invented Windows. Originally Windows was just a graphical
environment on top of 16-bit MS-DOS (i.e., it was more like a shell than a true operating system). However,
current versions of Windows are descendants of Windows NT, a full 32-bit system, rewritten from scratch.

The other major contender in the personal computer world is UNIX (and its various derivatives). UNIX is
strongest on workstations and other high-end computers, such as network servers. It is especially popular on
machines powered by high-performance RISC chips. On Pentium-based computers, Linux is becoming a
popular alternative to Windows for students and increasingly many corporate users. (Throughout this book we
will use the term "Pentium" to mean the entire Pentium family, including the low-end Celeron, the high end
Xeon, and compatible AMD microprocessors).

Although many UNIX users, especially experienced programmers, prefer a command-based interface to a
GUI, nearly all UNIX systems support a windowing system called the X Window system developed at M.LI.T.
This system handles the basic window management, allowing users to create, delete, move, and resize
windows using a mouse. Often a complete GUI, such as Motif, is available to run on top of the X Window
system giving UNIX a look and feel something like the Macintosh or Microsoft Windows for those UNIX
users who want such a thing.

An interesting development that began taking place during the mid-1980s is the growth of networks of
personal computers running network operating systems and distributed operating systems (Tanenbaum and
Van Steen, 2002). In a network operating system, the users are aware of the existence of multiple computers
and can log in to remote machines and copy files from one machine to another. Each machine runs its own
local operating system and has its own local user (or users). Basically, the machines are independent of one
another.

[Page 16]

Network operating systems are not fundamentally different from single-processor operating systems. They
obviously need a network interface controller and some low-level software to drive it, as well as programs to
achieve remote login and remote file access, but these additions do not change the essential structure of the
operating system.

A distributed operating system, in contrast, is one that appears to its users as a traditional uniprocessor system,
even though it is actually composed of multiple processors. The users should not be aware of where their
programs are being run or where their files are located; that should all be handled automatically and
efficiently by the operating system.

True distributed operating systems require more than just adding a little code to a uniprocessor operating
system, because distributed and centralized systems differ in critical ways. Distributed systems, for example,
often allow applications to run on several processors at the same time, thus requiring more complex processor
scheduling algorithms in order to optimize the amount of parallelism.

Communication delays within the network often mean that these (and other) algorithms must run with

incomplete, outdated, or even incorrect information. This situation is radically different from a
single-processor system in which the operating system has complete information about the system state.

1.2.5. History of MINIX 3

When UNIX was young (Version 6), the source code was widely available, under AT&T license, and
frequently studied. John Lions, of the University of New South Wales in Australia, even wrote a little booklet

describing its operation, line by line (Lions, 1996). This booklet was used (with permission of AT&T) as a
text in many university operating system courses.

When AT&T released Version 7, it dimly began to realize that UNIX was a valuable commercial product, so
it issued Version 7 with a license that prohibited the source code from being studied in courses, in order to
avoid endangering its status as a trade secret. Many universities complied by simply dropping the study of
UNIX and teaching only theory.

Unfortunately, teaching only theory leaves the student with a lopsided view of what an operating system is
really like. The theoretical topics that are usually covered in great detail in courses and books on operating
systems, such as scheduling algorithms, are in practice not really that important. Subjects that really are
important, such as I/O and file systems, are generally neglected because there is little theory about them.

To remedy this situation, one of the authors of this book (Tanenbaum) decided to write a new operating
system from scratch that would be compatible with UNIX from the user's point of view, but completely
different on the inside. By not using even one line of AT&T code, this system avoided the licensing
restrictions, so it could be used for class or individual study. In this manner, readers could dissect a real
operating system to see what is inside, just as biology students dissect frogs. It was called MINIX and was
released in 1987 with its complete source code for anyone to study or modify. The name MINIX stands for
mini-UNIX because it is small enough that even a nonguru can understand how it works.

[Page 17]

In addition to the advantage of eliminating the legal problems, MINIX had another advantage over UNIX. It
was written a decade after UNIX and was structured in a more modular way. For instance, from the very first
release of MINIX the file system and the memory manager were not part of the operating system at all but ran
as user programs. In the current release (MINIX 3) this modularization has been extended to the I/O device
drivers, which (with the exception of the clock driver) all run as user programs. Another difference is that
UNIX was designed to be efficient; MINIX was designed to be readable (inasmuch as one can speak of any
program hundreds of pages long as being readable). The MINIX code, for example, has thousands of
comments in it.

MINIX was originally designed for compatibility with Version 7 (V7) UNIX. Version 7 was used as the
model because of its simplicity and elegance. It is sometimes said that Version 7 was an improvement not
only over all its predecessors, but also over all its successors. With the advent of POSIX, MINIX began
evolving toward the new standard, while maintaining backward compatibility with existing programs. This
kind of evolution is common in the computer industry, as no vendor wants to introduce a new system that
none of its existing customers can use without great upheaval. The version of MINIX described in this book,
MINIX 3, is based on the POSIX standard.

Like UNIX, MINIX was written in the C programming language and was intended to be easy to port to
various computers. The initial implementation was for the IBM PC. MINIX was subsequently ported to
several other platforms. In keeping with the "Small is Beautiful" philosophy, MINIX originally did not even
require a hard disk to run (in the mid-1980s hard disks were still an expensive novelty). As MINIX grew in
functionality and size, it eventually got to the point that a hard disk was needed for PCs, but in keeping with
the MINIX philosophy, a 200-MB partition is sufficient (for embedded applications, no hard disk is required
though). In contrast, even small Linux systems require 500-MB of disk space, and several GB will be needed
to install common applications.

To the average user sitting at an IBM PC, running MINIX is similar to running UNIX. All of the basic
programs, such as cat, grep, Is, make, and the shell are present and perform the same functions as their UNIX
counterparts. Like the operating system itself, all these utility programs have been rewritten completely from
scratch by the author, his students, and some other dedicated people, with no AT&T or other proprietary code.

10

Many other freely-distributable programs now exist, and in many cases these have been successfully ported
(recompiled) on MINIX.

MINIX continued to develop for a decade and MINIX 2 was released in 1997, together with the second
edition of this book, which described the new release. The changes between versions 1 and 2 were substantial
(e.g., from 16-bit real mode on an 8088 using floppy disks to 32-bit protected mode on a 386 using a hard
disk) but evolutionary.

[Page 18]

Development continued slowly but systematically until 2004, when Tanenbaum became convinced that
software was getting too bloated and unreliable and decided to pick up the slightly-dormant MINIX thread
again. Together with his students and programmers at the Vrije Universiteit in Amsterdam, he produced
MINIX 3, a major redesign of the system, greatly restructuring the kernel, reducing its size, and emphasizing
modularity and reliability. The new version was intended both for PCs and embedded systems, where
compactness, modularity, and reliability are crucial. While some people in the group called for a completely
new name, it was eventually decided to call it MINIX 3 since the name MINIX was already well known. By
way of analogy, when Apple abandoned it own operating system, Mac OS 9 and replaced it with a variant of
Berkeley UNIX, the name chosen was Mac OS X rather than APPLIX or something like that. Similar
fundamental changes have happened in the Windows family while retaining the Windows name.

The MINIX 3 kernel is well under 4000 lines of executable code, compared to millions of executable lines of
code for Windows, Linux, FreeBSD, and other operating systems. Small kernel size is important because
kernel bugs are far more devastating than bugs in user-mode programs and more code means more bugs. One
careful study has shown that the number of detected bugs per 1000 executable lines of code varies from 6 to
16 (Basili and Perricone, 1984). The actual number of bugs is probably much higher since the researchers
could only count reported bugs, not unreported bugs. Yet another study (Ostrand et al., 2004) showed that
even after more than a dozen releases, on the average 6% of all files contained bugs that were later reported
and after a certain point the bug level tends to stabilize rather than go asymptotically to zero. This result is
supported by the fact that when a very simple, automated, model-checker was let loose on stable versions of
Linux and OpenBSD, it found hundreds of kernel bugs, overwhelmingly in device drivers (Chou et al., 2001;
and Engler et al., 2001). This is the reason the device drivers were moved out of the kernel in MINIX 3; they
can do less damage in user mode.

Throughout this book MINIX 3 will be used as an example. Most of the comments about the MINIX 3 system
calls, however (as opposed to comments about the actual code), also apply to other UNIX systems. This
remark should be kept in mind when reading the text.

A few words about Linux and its relationship to MINIX may possibly be of interest to some readers. Shortly
after MINIX was released, a USENET newsgroup, comp.os.minix, was formed to discuss it. Within weeks, it
had 40,000 subscribers, most of whom wanted to add vast numbers of new features to MINIX to make it
bigger and better (well, at least bigger). Every day, several hundred of them offered suggestions, ideas, and
frequently snippets of source code. The author of MINIX was able to successfully resist this onslaught for
several years, in order to keep MINIX clean enough for students to understand and small enough that it could
run on computers that students could afford. For people who thought little of MS-DOS, the existence of
MINIX (with source code) as an alternative was even a reason to finally go out and buy a PC.

[Page 19]
One of these people was a Finnish student named Linus Torvalds. Torvalds installed MINIX on his new PC

and studied the source code carefully. Torvalds wanted to read USENET newsgroups (such as comp.os.minix)
on his own PC rather than at his university, but some features he needed were lacking in MINIX, so he wrote

10

11

a program to do that, but soon discovered he needed a different terminal driver, so he wrote that too. Then he
wanted to download and save postings, so he wrote a disk driver, and then a file system. By Aug. 1991 he had
produced a primitive kernel. On Aug. 25, 1991, he announced it on comp.os.minix. This announcement
attracted other people to help him, and on March 13, 1994 Linux 1.0 was released. Thus was Linux born.

Linux has become one of the notable successes of the open source movement (which MINIX helped start).
Linux is challenging UNIX (and Windows) in many environments, partly because commodity PCs which
support Linux are now available with performance that rivals the proprietary RISC systems required by some
UNIX implementations. Other open source software, notably the Apache web server and the MySQL
database, work well with Linux in the commercial world. Linux, Apache, MySQL, and the open source Perl
and PHP programming languages are often used together on web servers and are sometimes referred to by the
acronym LAMP. For more on the history of Linux and open source software see DiBona et al. (1999), Moody
(2001), and Naughton (2000).

11

12

12

[Page 19 (continued)]

1.3. Operating System Concepts

The interface between the operating system and the user programs is defined by the set of "extended
instructions" that the operating system provides. These extended instructions have been traditionally known as
system calls, although they can be implemented in several ways. To really understand what operating systems
do, we must examine this interface closely. The calls available in the interface vary from operating system to
operating system (although the underlying concepts tend to be similar).

We are thus forced to make a choice between (1) vague generalities ("operating systems have system calls for
reading files") and (2) some specific system ("MINIX 3 has a read system call with three parameters: one to
specify the file, one to tell where the data are to be put, and one to tell how many bytes to read").

We have chosen the latter approach. It's more work that way, but it gives more insight into what operating
systems really do. In Sec. 1.4 we will look closely at the basic system calls present in UNIX (including the
various versions of BSD), Linux, and MINIX 3. For simplicity's sake, we will refer only to MINI 3, but the
corresponding UNIX and Linux system calls are based on POSIX in most cases. Before we look at the actual
system calls, however, it is worth taking a bird's-eye view of MINIX 3, to get a general feel for what an
operating system is all about. This overview applies equally well to UNIX and Linux, as mentioned above.

[Page 20]

The MINIX 3 system calls fall roughly in two broad categories: those dealing with processes and those
dealing with the file system. We will now examine each of these in turn.

1.3.1. Processes

A key concept in MINIX 3, and in all operating systems, is the process. A process is basically a program in
execution. Associated with each process is its address space, a list of memory locations from some minimum
(usually 0) to some maximum, which the process can read and write. The address space contains the
executable program, the program's data, and its stack. Also associated with each process is some set of
registers, including the program counter, stack pointer, and other hardware registers, and all the other
information needed to run the program.

We will come back to the process concept in much more detail in Chap. 2, but for the time being, the easiest
way to get a good intuitive feel for a process is to think about multiprogramming systems. Periodically, the
operating system decides to stop running one process and start running another, for example, because the first
one has had more than its share of CPU time in the past second.

When a process is suspended temporarily like this, it must later be restarted in exactly the same state it had
when it was stopped. This means that all information about the process must be explicitly saved somewhere
during the suspension. For example, the process may have several files open for reading at once. Associated
with each of these files is a pointer giving the current position (i.e., the number of the byte or record to be read
next). When a process is temporarily suspended, all these pointers must be saved so that a read call executed
after the process is restarted will read the proper data. In many operating systems, all the information about
each process, other than the contents of its own address space, is stored in an operating system table called the
process table, which is an array (or linked list) of structures, one for each process currently in existence.

2

Thus, a (suspended) process consists of its address space, usually called the core image (in honor of the
magnetic core memories used in days of yore), and its process table entry, which contains its registers, among
other things.

The key process management system calls are those dealing with the creation and termination of processes.
Consider a typical example. A process called the command interpreter or shell reads commands from a
terminal. The user has just typed a command requesting that a program be compiled. The shell must now
create a new process that will run the compiler. When that process has finished the compilation, it executes a
system call to terminate itself.

[Page 21]

On Windows and other operating systems that have a GUI, (double) clicking on a desktop icon launches a
program in much the same way as typing its name at the command prompt. Although we will not discuss
GUIs much, they are really simple command interpreters.

If a process can create one or more other processes (usually referred to as child processes) and these processes
in turn can create child processes, we quickly arrive at the process tree structure of Fig. 1-5. Related processes
that are cooperating to get some job done often need to communicate with one another and synchronize their
activities. This communication is called interprocess communication, and will be addressed in detail in Chap.
2.

Figure 1-5. A process tree. Process A created two child processes, B and C. Process B created three child
processes, D, E, and F.

Other process system calls are available to request more memory (or release unused memory), wait for a child
process to terminate, and overlay its program with a different one.

Occasionally, there is a need to convey information to a running process that is not sitting around waiting for
it. For example, a process that is communicating with another process on a different computer does so by
sending messages to the remote process over a network. To guard against the possibility that a message or its
reply is lost, the sender may request that its own operating system notify it after a specified number of
seconds, so that it can retransmit the message if no acknowledgement has been received yet. After setting this
timer, the program may continue doing other work.

When the specified number of seconds has elapsed, the operating system sends an alarm signal to the process.
The signal causes the process to temporarily suspend whatever it was doing, save its registers on the stack,
and start running a special signal handling procedure, for example, to retransmit a presumably lost message.
When the signal handler is done, the running process is restarted in the state it was in just before the signal.
Signals are the software analog of hardware interrupts. They are generated by a variety of causes in addition
to timers expiring. Many traps detected by hardware, such as executing an illegal instruction or using an
invalid address, are also converted into signals to the guilty process.

[Page 22]

Each person authorized to use a MINIX 3 system is assigned a UID (User IDentification) by the system
administrator. Every process started has the UID of the person who started it. A child process has the same
UID as its parent. Users can be members of groups, each of which has a GID (Group IDentification).

One UID, called the superuser (in UNIX), has special power and may violate many of the protection rules. In
large installations, only the system administrator knows the password needed to become superuser, but many
of the ordinary users (especially students) devote considerable effort to trying to find flaws in the system that
allow them to become superuser without the password.

We will study processes, interprocess communication, and related issues in Chap. 2.

1.3.2. Files

The other broad category of system calls relates to the file system. As noted before, a major function of the
operating system is to hide the peculiarities of the disks and other I/O devices and present the programmer
with a nice, clean abstract model of device-independent files. System calls are obviously needed to create
files, remove files, read files, and write files. Before a file can be read, it must be opened, and after it has been
read it should be closed, so calls are provided to do these things.

To provide a place to keep files, MINIX 3 has the concept of a directory as a way of grouping files together. A
student, for example, might have one directory for each course he is taking (for the programs needed for that
course), another directory for his electronic mail, and still another directory for his World Wide Web home
page. System calls are then needed to create and remove directories. Calls are also provided to put an existing
file into a directory, and to remove a file from a directory. Directory entries may be either files or other
directories. This model also gives rise to a hierarchythe file systemas shown in Fig. 1-6.

Figure 1-6. A file system for a university department. (This item is displayed on page 23 in the print version)

[View full size image]

Root directory
=
Studel'll/ Famlll'l
i -
o N
Robbert Matty | Leo Prof.Brown Prof.Green \Prm.ﬁrhne
1
| / F Y
f Fi | B
r 1 L
Courses Papers Granis Commitiees
i N N LY
= B B =

ARNYIY

S0EP COST-11

Files

4

The process and file hierarchies both are organized as trees, but the similarity stops there. Process hierarchies
usually are not very deep (more than three levels is unusual), whereas file hierarchies are commonly four,
five, or even more levels deep. Process hierarchies are typically short-lived, generally a few minutes at most,
whereas the directory hierarchy may exist for years. Ownership and protection also differ for processes and
files. Typically, only a parent process may control or even access a child process, but mechanisms nearly
always exist to allow files and directories to be read by a wider group than just the owner.

Every file within the directory hierarchy can be specified by giving its path name from the top of the directory
hierarchy, the root directory. Such absolute path names consist of the list of directories that must be traversed
from the root directory to get to the file, with slashes separating the components. In Fig. 1-6, the path for file
CS101 is /Faculty/Prof.Brown/Courses/CS101. The leading slash indicates that the path is absolute, that is,
starting at the root directory. As an aside, in Windows, the backslash (\) character is used as the separator
instead of the slash (/) character, so the file path given above would be written as
\Faculty\Prof.Brown\Courses\CS101. Throughout this book we will use the UNIX convention for paths.

[Page 23]

At every instant, each process has a current working directory, in which path names not beginning with a slash
are looked for. As an example, in Fig. 1-6, if /Faculty/Prof.Brown were the working directory, then use of the
path name Courses/CS101 would yield the same file as the absolute path name given above. Processes can
change their working directory by issuing a system call specifying the new working directory.

Files and directories in MINIX 3 are protected by assigning each one an 11-bit binary protection code. The
protection code consists of three 3-bit fields: one for the owner, one for other members of the owner's group
(users are divided into groups by the system administrator), one for everyone else, and 2 bits we will discuss
later. Each field has a bit for read access, a bit for write access, and a bit for execute access. These 3 bits are
known as the rwx bits. For example, the protection code rwxr-x--x means that the owner can read, write, or
execute the file, other group members can read or execute (but not write) the file, and everyone else can
execute (but not read or write) the file. For a directory (as opposed to a file), x indicates search permission. A
dash means that the corresponding permission is absent (the bit is zero).

[Page 24]

Before a file can be read or written, it must be opened, at which time the permissions are checked. If access is
permitted, the system returns a small integer called a file descriptor to use in subsequent operations. If the
access is prohibited, an error code (1) is returned.

Another important concept in MINIX 3 is the mounted file system. Nearly all personal computers have one or
more CD-ROM drives into which CD-ROMs can be inserted and removed. To provide a clean way to deal
with removable media (CD-ROMs, DVDs, floppies, Zip drives, etc.), MINIX 3 allows the file system on a
CD-ROM to be attached to the main tree. Consider the situation of Fig. 1-7(a). Before the mount call, the
root file system, on the hard disk, and a second file system, on a CD-ROM, are separate and unrelated.

Figure 1-7. (a) Before mounting, the files on drive 0 are not accessible. (b) After mounting, they are part of the file
hierarchy.

Root Floppy Root
/ /
a b X y a b
c ﬁ c d X ¥
(a) (b)

However, the file system on the CD-ROM cannot be used, because there is no way to specify path names on
it. MINIX 3 does not allow path names to be prefixed by a drive name or number; that is precisely the kind of
device dependence that operating systems ought to eliminate. Instead, the mount system call allows the file
system on the CD-ROM to be attached to the root file system wherever the program wants it to be. In Fig.
1-7(b) the file system on drive 0 has been mounted on directory b, thus allowing access to files /b/x and /b/y.
If directory b had originally contained any files they would not be accessible while the CD-ROM was
mounted, since /b would refer to the root directory of drive 0. (Not being able to access these files is not as
serious as it at first seems: file systems are nearly always mounted on empty directories.) If a system contains
multiple hard disks, they can all be mounted into a single tree as well.

Another important concept in MINIX 3 is the special file. Special files are provided in order to make /O
devices look like files. That way, they can be read and written using the same system calls as are used for
reading and writing files. Two kinds of special files exist: block special files and character special files. Block
special files are normally used to model devices that consist of a collection of randomly addressable blocks,
such as disks. By opening a block special file and reading, say, block 4, a program can directly access the
fourth block on the device, without regard to the structure of the file system contained on it. Similarly,
character special files are used to model printers, modems, and other devices that accept or output a character
stream. By convention, the special files are kept in the /dev directory. For example, /dev/lp might be the line
printer.

[Page 25]

The last feature we will discuss in this overview is one that relates to both processes and files: pipes. A pipe is
a sort of pseudofile that can be used to connect two processes, as shown in Fig. 1-8. If processes A and B wish
to talk using a pipe, they must set it up in advance. When process A wants to send data to process B, it writes
on the pipe as though it were an output file. Process B can read the data by reading from the pipe as though it
were an input file. Thus, communication between processes in MINIX 3 looks very much like ordinary file
reads and writes. Stronger yet, the only way a process can discover that the output file it is writing on is not
really a file, but a pipe, is by making a special system call.

Figure 1-8. Two processes connected by a pipe.

Process Process

=)

6
1.3.3. The Shell

The operating system is the code that carries out the system calls. Editors, compilers, assemblers, linkers, and
command interpreters definitely are not part of the operating system, even though they are important and
useful. At the risk of confusing things somewhat, in this section we will look briefly at the MINIX 3
command interpreter, called the shell. Although it is not part of the operating system, it makes heavy use of
many operating system features and thus serves as a good example of how the system calls can be used. It is
also the primary interface between a user sitting at his terminal and the operating system, unless the user is
using a graphical user interface. Many shells exist, including csh, ksh, zsh, and bash. All of them support the
functionality described below, which derives from the original shell (sh).

When any user logs in, a shell is started up. The shell has the terminal as standard input and standard output. It
starts out by typing the prompt, a character such as a dollar sign, which tells the user that the shell is waiting
to accept a command. If the user now types

date

[Page 26]
for example, the shell creates a child process and runs the date program as the child. While the child process is
running, the shell waits for it to terminate. When the child finishes, the shell types the prompt again and tries

to read the next input line.

The user can specify that standard output be redirected to a file, for example,

date >file

Similarly, standard input can be redirected, as in

sort <filel >file2

which invokes the sort program with input taken from filel and output sent to file2.

The output of one program can be used as the input for another program by connecting them with a pipe. Thus

cat filel file2 file3 | sort >/dev/lp

invokes the cat program to concatenate three files and send the output to sort to arrange all the lines in
alphabetical order. The output of sort is redirected to the file /dev/lp, typically the printer.

If a user puts an ampersand after a command, the shell does not wait for it to complete. Instead it just gives a
prompt immediately. Consequently,

cat filel file2 file3 | sort >/dev/lp &

7

starts up the sort as a background job, allowing the user to continue working normally while the sort is going
on. The shell has a number of other interesting features, which we do not have space to discuss here. Most
books for UNIX beginners are useful for MINIX 3 users who want to learn more about using the system.

Examples are Ray and Ray (2003) and Herborth (2005).

[Page 26 (continued)]

1.4. System Calls

Armed with our general knowledge of how MINIX 3 deals with
processes and files, we can now begin to look at the interface
between the operating system and its application programs, that is,
the set of system calls. Although this discussion specifically refers to
POSIX (International Standard 9945-1), hence also to MINI 3,
UNIX, and Linux, most other modern operating systems have
system calls that perform the same functions, even if the details
differ. Since the actual mechanics of issuing a system call are highly
machine dependent, and often must be expressed in assembly code,
a procedure library is provided to make it possible to make system
calls from C programs.

It is useful to keep the following in mind: any single-CPU computer
can execute only one instruction at a time. If a process is running a
user program in user mode and needs a system service, such as
reading data from a file, it has to execute a trap or system call
instruction to transfer control to the operating system. The operating
system then figures out what the calling process wants by inspecting
the parameters. Then it carries out the system call and returns
control to the instruction following the system call. In a sense,
making a system call is like making a special kind of procedure call,
only system calls enter the kernel or other privileged operating
system components and procedure calls do not.

[Page 27]

To make the system call mechanism clearer, let us take a quick look
at read. It has three parameters: the first one specifying the file, the
second one specifying the buffer, and the third one specifying the
number of bytes to read. A call to read from a C program might
look like this:

count = read(fd, buffer, nbytes);

The system call (and the library procedure) return the number of
bytes actually read in count. This value is normally the same as
nbytes, but may be smaller, if, for example, end-of-file is
encountered while reading.

If the system call cannot be carried out, either due to an invalid
parameter or a disk error, count is set to 1, and the error number is
put in a global variable, errno. Programs should always check the
results of a system call to see if an error occurred.

2

MINIX 3 has a total of 53 main system calls. These are listed in Fig.
1-9, grouped for convenience in six categories. A few other calls
exist, but they have very specialized uses so we will omit them here.
In the following sections we will briefly examine each of the calls of
Fig. 1-9 to see what it does. To a large extent, the services offered by
these calls determine most of what the operating system has to do,
since the resource management on personal computers is minimal (at
least compared to big machines with many users).

Figure 1-9. The main MINIX system calls. fd is a file descriptor; nis a
byte count. (This item is displayed on page 28 in the print version)

Process management

Signals

pid = fork()

pid = waitpid(pid,

&statloc, opts)

s = wait(&status)

s = execve(name, argv,

envp)

exit(status)

size = brk(addr)

pid = getpid()

pid = getpgrp()

pid = setsid()

| = ptrace(req, pid,

addr, data)

s = sigaction(sig,

&act, &oldact)

S =

sigreturn(&context)
s = sigprocmask(how,

&set, &old)

s = sigpending(set)

Create a child
process
identical to
the parent
Wait for a
child to
terminate

Old version of
waitpid
Replace a
process core
image
Terminate
process
execution and
return status
Set the size of
the data
segment
Return the
caller's
process id
Return the id
of the caller's
process group
Create a new
session and
return its proc.
group id
Used for
debugging
Define action
to take on
signals
Return from a
signal
Examine or
change the
signal mask
Get the set of
blocked
signals

File Management

S =
sigsuspend(sigmask)

s =kil1(pid, sig)
residual =

alarm(seconds)
s =pause()

Replace the
signal mask
and suspend
the process
Send a signal
to a process
Set the alarm
clock
Suspend the
caller until the
next signal

fd = creat(name, mode) Obsolete way

to create a
new file

fd = mknod(name, mode, Create a

addr)

fd = open(file, how, ...)

s=close(fd)

n = read(fd, buffer,
nbytes)

n = write(fd, buffer,
nbytes)

pos = 1seek(fd, offset,

whence)
s = stat(name, &buf)

s = fstat(fd, &buf)

fd = dup(fd)

s = pipe(&fd[0])
s = ioct1(fd, request,
argp)

S = access(name,
amode)
s = rename(old, new)

s=fcntl(fd, cmd, ...)

regular,
special, or
directory
i-node

Open a file for
reading,
writing or
both

Close an open
file

Read data
from a file
into a buffer
Write data
from a buffer
into a file
Move the file
pointer

Get a file's
status
information
Get a file's
status
information
Allocate a
new file
descriptor for
an open file
Create a pipe
Perform
special
operations on
a file

Check a file's
accessibility
Give afile a
new name
File locking
and other

Dir. & File System Mgt.

Protection

Time Management

s = mkdir(name, mode)

s = rmdir(name)

s = link(namel, name2)

s = unlink(name)
s = mount(special, name,
flag)

s = umount(special)

s =sync()

s = chdir(dirname)

s = chroot(dirname)

s = chmod(name, mode)
uid = getuid()
gid=getgid()

s = setuid(uid)
s=setgid(gid)

s = chown(name, owner,
group)

oldmask =

uma sk(complmode)
seconds =
time(&seconds)

s = stime(tp)

s = ut ime(file, timep)

s = t imes(buffer)

operations
Create a new
directory
Remove an
empty
directory
Create a new
entry, name2,
pointing to
namel
Remove a
directory entry
Mount a file
system
Unmount a
file system
Flush all
cached blocks
to the disk
Change the
working
directory
Change the
root directory
Change a file's
protection bits
Get the
caller's uid
Get the
caller's gid
Set the caller's
uid

Set the caller's
gid

Change a file's
owner and
group

Change the
mode mask
Get the
elapsed time
since Jan. 1,
1970

Set the
elapsed time
since Jan. 1,
1970

Set a file's
"last access"
time

Get the user
and system
times used so
far

This is a good place to point out that the mapping of POSIX procedure calls onto system calls is not
necessarily one-to-one. The POSIX standard specifies a number of procedures that a conformant system must
supply, but it does not specify whether they are system calls, library calls, or something else. In some cases,
the POSIX procedures are supported as library routines in MINIX 3. In others, several required procedures are
only minor variations of one another, and one system call handles all of them.

1.4.1. System Calls for Process Management

The first group of calls in Fig. 1-9 deals with process management. Fork is a good place to start the
discussion. Fork is the only way to create a new process in MINIX 3. It creates an exact duplicate of the
original process, including all the file descriptors, registerseverything. After the fork, the original process
and the copy (the parent and child) go their separate ways. All the variables have identical values at the time
of the fork, but since the parent's data are copied to create the child, subsequent changes in one of them do
not affect the other one. (The program text, which is unchangeable, is shared between parent and child.) The
fork call returns a value, which is zero in the child and equal to the child's process identifier or PID in the
parent. Using the returned PID, the two processes can see which one is the parent process and which one is the
child process.

[Page 29]

In most cases, after a fork, the child will need to execute different code from the parent. Consider the shell.
It reads a command from the terminal, forks off a child process, waits for the child to execute the command,
and then reads the next command when the child terminates. To wait for the child to finish, the parent
executes a waitpid system call, which just waits until the child terminates (any child if more than one
exists). Waitpid can wait for a specific child, or for any old child by setting the first parameter to 1. When
waitpid completes, the address pointed to by the second parameter, statloc, will be set to the child's exit
status (normal or abnormal termination and exit value). Various options are also provided, specified by the
third parameter. The waitpid call replaces the previous wait call, which is now obsolete but is provided
for reasons of backward compatibility.

Now consider how fork is used by the shell. When a command is typed, the shell forks off a new process.
This child process must execute the user command. It does this by using the execve system call, which
causes its entire core image to be replaced by the file named in its first parameter. (Actually, the system call
itself is exec, but several different library procedures call it with different parameters and slightly different
names. We will treat these as system calls here.)A highly simplified shell illustrating the use of fork,
waitpid, and execve is shown in Fig. 1-10.

Figure 1-10. A stripped-down shell. Throughout this book, TRUE is assumed to be defined as 1.

#define TRUE 1
while (TRUE) { /* repeat forever */
type_prompt () ; /* display prompt on the screen */
read_command (command, parameters); /* read input from terminal */
if (fork () != 0){ /* fork off child process */
/* Parent code. */
waitpid(l, &status, 0); /* wait for child to exit */
} else {
/* Child code. */
execve (command, parameters, 0); /* execute command */

In the most general case, execve has three parameters: the name of the file to be executed, a pointer to the
argument array, and a pointer to the environment array. These will be described shortly. Various library
routines, including execl, execv, execle, and execve, are provided to allow the parameters to be omitted or
specified in various ways. Throughout this book we will use the name exec to represent the system call
invoked by all of these.

[Page 30]
Let us consider the case of a command such as

cp filel file2

used to copy filel to file2. After the shell has forked, the child process locates and executes the file cp and
passes to it the names of the source and target files.

The main program of cp (and main program of most other C programs) contains the declaration

main (argc, argv, envp)

where argc is a count of the number of items on the command line, including the program name. For the
example above, argc is 3.

The second parameter, argv, is a pointer to an array. Element i of that array is a pointer to the i-th string on the
command line. In our example, argv[0] would point to the string "cp", argv[1] would point to the string
"filel", and argv[2] would point to the string "file2".

The third parameter of main, envp, is a pointer to the environment, an array of strings containing assignments
of the form name=value used to pass information such as the terminal type and home directory name to a
program. In Fig. 1-10, no environment is passed to the child, so the third parameter of execve is a zero.

If exec seems complicated, do not despair; it is (semantically) the most complex of all the POSIX system
calls. All the other ones are much simpler. As an example of a simple one, consider exit, which processes
should use when they are finished executing. It has one parameter, the exit status (0 to 255), which is returned
to the parent via statloc in the waitpid system call. The low-order byte of status contains the termination
status, with O being normal termination and the other values being various error conditions. The high-order
byte contains the child's exit status (0 to 255). For example, if a parent process executes the statement

n = waitpid(l, &statloc, options);

it will be suspended until some child process terminates. If the child exits with, say, 4 as the parameter to exit,
the parent will be awakened with n set to the child's PID and statloc set to 0x0400 (the C convention of
prefixing hexadecimal constants with Ox will be used throughout this book).

7

Processes in MINIX 3 have their memory divided up into three segments: the text segment (i.e., the program
code), the data segment (i.e., the variables), and the stack segment. The data segment grows upward and the
stack grows downward, as shown in Fig. 1-11. Between them is a gap of unused address space. The stack
grows into the gap automatically, as needed, but expansion of the data segment is done explicitly by using a
system call, brk, which specifies the new address where the data segment is to end. This address may be
more than the current value (data segment is growing) or less than the current value (data segment is
shrinking). The parameter must, of course, be less than the stack pointer or the data and stack segments would
overlap, which is forbidden.

[Page 31]

Figure 1-11. Processes have three segments: text, data, and stack. In this example, all three are in one address
space, but separate instruction and data space is also supported.

Address (hex)
FFFF

Stack |

%
7%

Data

N

Text

0000

As a convenience for programmers, a library routine sbrk is provided that also changes the size of the data
segment, only its parameter is the number of bytes to add to the data segment (negative parameters make the
data segment smaller). It works by keeping track of the current size of the data segment, which is the value
returned by brk, computing the new size, and making a call asking for that number of bytes. The brk and
sbrk calls, however, are not defined by the POSIX standard. Programmers are encouraged to use the malloc
library procedure for dynamically allocating storage, and the underlying implementation of malloc was not
thought to be a suitable subject for standardization since few programmers use it directly.

The next process system call is also the simplest, getpid. It just returns the caller's PID. Remember that in
fork, only the parent was given the child's PID. If the child wants to find out its own PID, it must use
getpid. The getpgrp call returns the PID of the caller's process group. set sid creates a new session and
sets the process group's PID to the caller's. Sessions are related to an optional feature of POSIX, job control,
which is not supported by MINIX 3 and which will not concern us further.

The last process management system call, pt race, is used by debugging programs to control the program
being debugged. It allows the debugger to read and write the controlled process' memory and manage it in
other ways.

1.4.2. System Calls for Signaling

Although most forms of interprocess communication are planned, situations exist in which unexpected
communication is needed. For example, if a user accidently tells a text editor to list the entire contents of a
very long file, and then realizes the error, some way is needed to interrupt the editor. In MINIX 3, the user can
hit the CTRL-C key on the keyboard, which sends a signal to the editor. The editor catches the signal and
stops the print-out. Signals can also be used to report certain traps detected by the hardware, such as illegal
instruction or floating point overflow. Timeouts are also implemented as signals.

[Page 32]

When a signal is sent to a process that has not announced its willingness to accept that signal, the process is
simply killed without further ado. To avoid this fate, a process can use the sigaction system call to
announce that it is prepared to accept some signal type, and to provide the address of the signal handling
procedure and a place to store the address of the current one. After a sigaction call, if a signal of the
relevant type is generated (e.g., by pressing CTRL-C), the state of the process is pushed onto its own stack,
and then the signal handler is called. It may run for as long as it wants to and perform any system calls it
wants to. In practice, though, signal handlers are usually fairly short. When the signal handling procedure is
done, it calls sigreturn to continue where it left off before the signal. The sigaction call replaces the
older signal call, which is now provided as a library procedure, however, for backward compatibility.

Signals can be blocked in MINIX 3. A blocked signal is held pending until it is unblocked. It is not delivered,
but also not lost. The sigprocmask call allows a process to define the set of blocked signals by presenting
the kernel with a bitmap. It is also possible for a process to ask for the set of signals currently pending but not
allowed to be delivered due to their being blocked. The sigpending call returns this set as a bitmap.
Finally, the sigsuspend call allows a process to atomically set the bitmap of blocked signals and suspend
itself.

Instead of providing a function to catch a signal, the program may also specify the constant SIG_IGN to have
all subsequent signals of the specified type ignored, or SIG_DFL to restore the default action of the signal
when it occurs. The default action is either to kill the process or ignore the signal, depending upon the signal.
As an example of how SIG_IGN is used, consider what happens when the shell forks off a background
process as a result of

command &

It would be undesirable for a SIGINT signal (generated by pressing CTRL-C) to affect the background
process, so after the fork but before the exec, the shell does

sigaction (SIGINT, SIG_IGN, NULL);

and

sigaction (SIGQUIT, SIG_IGN, NULL);

to disable the SIGINT and SIGQUIT signals. (SIGQUIT is generated by CTRL-\; it is the same as SIGINT
generated by CTRL-C except that if it is not caught or ignored it makes a core dump of the process killed.)
For foreground processes (no ampersand), these signals are not ignored.

[Page 33]

Hitting CTRL-C is not the only way to send a signal. The k111 system call allows a process to signal another
process (provided they have the same UID unrelated processes cannot signal each other). Getting back to the
example of background processes used above, suppose a background process is started up, but later it is
decided that the process should be terminated. SIGINT and SIGQUIT have been disabled, so something else
is needed. The solution is to use the kill program, which uses the ki11 system call to send a signal to any

8

process. By sending signal 9 (SIGKILL), to a background process, that process can be killed. SIGKILL
cannot be caught or ignored.

For many real-time applications, a process needs to be interrupted after a specific time interval to do
something, such as to retransmit a potentially lost packet over an unreliable communication line. To handle
this situation, the alarm system call has been provided. The parameter specifies an interval, in seconds, after
which a SIGALRM signal is sent to the process. A process may only have one alarm outstanding at any
instant. If an alarm call is made with a parameter of 10 seconds, and then 3 seconds later another alarm
call is made with a parameter of 20 seconds, only one signal will be generated, 20 seconds after the second
call. The first signal is canceled by the second call to alarm. If the parameter to alarm is zero, any pending
alarm signal is canceled. If an alarm signal is not caught, the default action is taken and the signaled process is
killed.

It sometimes occurs that a process has nothing to do until a signal arrives. For example, consider a
computer-aided-instruction program that is testing reading speed and comprehension. It displays some text on
the screen and then calls alarm to signal it after 30 seconds. While the student is reading the text, the
program has nothing to do. It could sit in a tight loop doing nothing, but that would waste CPU time that
another process or user might need. A better idea is to use pause, which tells MINIX 3 to suspend the
process until the next signal.

1.4.3. System Calls for File Management

Many system calls relate to the file system. In this section we will look at calls that operate on individual files;
in the next one we will examine those that involve directories or the file system as a whole. To create a new
file, the creat call is used (why the call is creat and not create has been lost in the mists of time). Its
parameters provide the name of the file and the protection mode. Thus

fd = creat ("abc", 0751);

creates a file called abc with mode 0751 octal (in C, a leading zero means that a constant is in octal). The
low-order 9 bits of 0751 specify the rwx bits for the owner (7 means read-write-execute permission), his
group (5 means read-execute), and others (1 means execute only).

Creat not only creates a new file but also opens it for writing, regardless of the file's mode. The file
descriptor returned, fd, can be used to write the file. If a creat is done on an existing file, that file is
truncated to length 0, provided, of course, that the permissions are all right. The creat call is obsolete, as
open can now create new files, but it has been included for backward compatibility.

[Page 34]
Special files are created using mknod rather than creat. A typical call is

fd = mknod("/dev/ttyc2", 020744, 0x0402);

which creates a file named /dev/ttyc2 (the usual name for console 2) and gives it mode 020744 octal (a
character special file with protection bits rwxr--r--). The third parameter contains the major device (4) in the
high-order byte and the minor device (2) in the low-order byte. The major device could have been anything,
but a file named /dev/ttyc2 ought to be minor device 2. Calls to mknod fail unless the caller is the superuser.

10

To read or write an existing file, the file must first be opened using open. This call specifies the file name to
be opened, either as an absolute path name or relative to the working directory, and a code of O_RDONLY,
O_WRONLY, or O_RDWR, meaning open for reading, writing, or both. The file descriptor returned can then
be used for reading or writing. Afterward, the file can be closed by c1ose, which makes the file descriptor
available for reuse on a subsequent creat or open.

The most heavily used calls are undoubtedly read and write. We saw read earlier; write has the same
parameters.

Although most programs read and write files sequentially, for some applications programs need to be able to
access any part of a file at random. Associated with each file is a pointer that indicates the current position in
the file. When reading (writing) sequentially, it normally points to the next byte to be read (written). The
1seek call changes the value of the position pointer, so that subsequent calls to read or write can begin
anywhere in the file, or even beyond the end.

1seek has three parameters: the first is the file descriptor for the file, the second is a file position, and the
third tells whether the file position is relative to the beginning of the file, the current position, or the end of the
file. The value returned by 1 seek is the absolute position in the file after changing the pointer.

For each file, MINIX 3 keeps track of the file mode (regular file, special file, directory, and so on), size, time
of last modification, and other information. Programs can ask to see this information via the stat and
fstat system calls. These differ only in that the former specifies the file by name, whereas the latter takes a
file descriptor, making it useful for open files, especially standard input and standard output, whose names
may not be known. Both calls provide as the second parameter a pointer to a structure where the information
is to be put. The structure is shown in Fig. 1-12.

Figure 1-12. The structure used to return information for the stat and £stat system calls. In the actual code,
symbolic names are used for some of the types. (This item is displayed on page 35 in the print version)

struct stat{
short st_dev; /* device where i-node belongs */
unsigned short st_ino; /* i-node number */
unsigned short st_mode; /* mode word */
short st_nlink; /* number of links */
short st_uid; /* user id */
short st_gid; /* group id */
short st_rdev; /* major/minor device for special files */
long st_size; /* file size */
long st_atime; /* time of last access */
long st_mtime; /* time of last modification */
long st_ctime; /* time of last change to i-node */
bi

When manipulating file descriptors, the dup call is occasionally helpful. Consider, for example, a program
that needs to close standard output (file descriptor 1), substitute another file as standard output, call a function
that writes some output onto standard output, and then restore the original situation. Just closing file
descriptor 1 and then opening a new file will make the new file standard output (assuming standard input, file
descriptor 0, is in use), but it will be impossible to restore the original situation later.

[Page 35]
The solution is first to execute the statement
fd = dup(1l);

10

11

which uses the dup system call to allocate a new file descriptor, fd, and arrange for it to correspond to the
same file as standard output. Then standard output can be closed and a new file opened and used. When it is
time to restore the original situation, file descriptor 1 can be closed, and then

n = dup(fd);

executed to assign the lowest file descriptor, namely, 1, to the same file as fd. Finally, fd can be closed and we
are back where we started.

The dup call has a variant that allows an arbitrary unassigned file descriptor to be made to refer to a given
open file. It is called by

dup?2 (fd, £d2);

where fd refers to an open file and fd2 is the unassigned file descriptor that is to be made to refer to the same
file as fd. Thus if fd refers to standard input (file descriptor 0) and fd2 is 4, after the call, file descriptors O and
4 will both refer to standard input.

Interprocess communication in MINIX 3 uses pipes, as described earlier. When a user types

cat filel file2 | sort

the shell creates a pipe and arranges for standard output of the first process to write to the pipe, so standard
input of the second process can read from it. The pipe system call creates a pipe and returns two file
descriptors, one for writing and one for reading. The call is

[Page 36]

pipe (&£d[0]);

where fd is an array of two integers and fd[0] is the file descriptor for reading and fd[1] is the one for writing.
Typically, a fork comes next, and the parent closes the file descriptor for reading and the child closes the file
descriptor for writing (or vice versa), so when they are done, one process can read the pipe and the other can
write on it.

Figure 1-13 depicts a skeleton procedure that creates two processes, with the output of the first one piped into
the second one. (A more realistic example would do error checking and handle arguments.) First a pipe is
created, and then the procedure forks, with the parent eventually becoming the first process in the pipeline and
the child process becoming the second one. Since the files to be executed, process1 and process2, do not know
that they are part of a pipeline, it is essential that the file descriptors be manipulated so that the first process'
standard output be the pipe and the second one's standard input be the pipe. The parent first closes off the file
descriptor for reading from the pipe. Then it closes standard output and does a DUP call that allows file
descriptor 1 to write on the pipe. It is important to realize that dup always returns the lowest available file
descriptor, in this case, 1. Then the program closes the other pipe file descriptor.

11

12

Figure 1-13. A skeleton for setting up a two-process pipeline. (This item is displayed on page 37 in the print
version)

#define STD_INPUTO /* file descriptor for standard input */
#define STD_OUTPUTL /* file descriptor for standard output */
pipeline (processl, process2)
char *processl, *process2; /* pointers to program names */
{
int fd[2];
pipe (&£d[0]); /* create a pipe */
if (fork() != 0) {
/* The parent process executes these statements. */
close (£d4[01]) ; /* process 1 does not need to read from pipe */
close (STD_OUTPUT) ; /* prepare for new standard output */
dup (£d[11); /* set standard output to fd[1l] */
close (fd[1]); /* this file descriptor not needed any more */
execl (processl, processl, 0);
} else {
/* The child process executes these statements. */
close (£fd[11]); /* process 2 does not need to write to pipe */
close (STD_INPUT) ; /* prepare for new standard input */
dup (£d4[01) ; /* set standard input to £d[0] */
close (£d4[0]); /* this file descriptor not needed any more */
execl (process2, process2, 0);
}
}

After the exec call, the process started will have file descriptors 0 and 2 be unchanged, and file descriptor 1
for writing on the pipe. The child code is analogous. The parameter to execl is repeated because the first one is
the file to be executed and the second one is the first parameter, which most programs expect to be the file
name.

The next system call, ioct 1, is potentially applicable to all special files. It is, for instance, used by block
device drivers like the SCSI driver to control tape and CD-ROM devices. Its main use, however, is with
special character files, primarily terminals. POSIX defines a number of functions which the library translates
into ioct1 calls. The tcgetattr and tcsetattr library functions use ioct1 to change the characters used for
correcting typing errors on the terminal, changing the terminal mode, and so forth.

Traditionally, there are three terminal modes, cooked, raw, and cbreak. Cooked mode is the normal terminal
mode, in which the erase and kill characters work normally, CTRL-S and CTRL-Q can be used for stopping
and starting terminal output, CTRL-D means end of file, CTRL-C generates an interrupt signal, and CTRL-\
generates a quit signal to force a core dump.

In raw mode, all of these functions are disabled; consequently, every character is passed directly to the
program with no special processing. Furthermore, in raw mode, a read from the terminal will give the program
any characters that have been typed, even a partial line, rather than waiting for a complete line to be typed, as
in cooked mode. Screen editors often use this mode.

[Page 37]

Cbreak mode is in between. The erase and kill characters for editing are disabled, as is CTRL-D, but CTRL-S,
CTRL-Q, CTRL-C, and CTRL-\ are enabled. Like raw mode, partial lines can be returned to programs (if
intraline editing is turned off there is no need to wait until a whole line has been receivedthe user cannot
change his mind and delete it, as he can in cooked mode).

12

13

POSIX does not use the terms cooked, raw, and cbreak. In POSIX terminology canonical mode corresponds
to cooked mode. In this mode there are eleven special characters defined, and input is by lines. In
noncanonical mode a minimum number of characters to accept and a time, specified in units of 1/10th of a
second, determine how a read will be satisfied. Under POSIX there is a great deal of flexibility, and various
flags can be set to make noncanonical mode behave like either cbreak or raw mode. The older terms are more
descriptive, and we will continue to use them informally.

Toctl has three parameters, for example a call to tcsetattr to set terminal parameters will result in

ioctl (fd, TCSETS, &termios);

The first parameter specifies a file, the second one specifies an operation, and the third one is the address of
the POSIX structure that contains flags and the array of control characters. Other operation codes instruct the
system to postpone the changes until all output has been sent, cause unread input to be discarded, and return
the current values.

[Page 38]

The access system call is used to determine whether a certain file access is permitted by the protection
system. It is needed because some programs can run using a different user's UID. This SETUID mechanism
will be described later.

The rename system call is used to give a file a new name. The parameters specify the old and new names.

Finally, the fcnt1 call is used to control files, somewhat analogous to 1oct1 (i.e., both of them are horrible
hacks). It has several options, the most important of which is for advisory file locking. Using fcnt1, itis
possible for a process to lock and unlock parts of files and test part of a file to see if it is locked. The call does
not enforce any lock semantics. Programs must do this themselves.

1.4.4. System Calls for Directory Management

In this section we will look at some system calls that relate more to directories or the file system as a whole,
rather than just to one specific file as in the previous section. The first two calls, mkdir and rmdir, create
and remove empty directories, respectively. The next call is 1 ink. Its purpose is to allow the same file to
appear under two or more names, often in different directories. A typical use is to allow several members of
the same programming team to share a common file, with each of them having the file appear in his own
directory, possibly under different names. Sharing a file is not the same as giving every team member a
private copy, because having a shared file means that changes that any member of the team makes are
instantly visible to the other membersthere is only one file. When copies are made of a file, subsequent
changes made to one copy do not affect the other ones.

To see how 1ink works, consider the situation of Fig. 1-14(a). Here are two users, ast and jim, each having
their own directories with some files. If ast now executes a program containing the system call

link ("/usr/jim/memo", "/usr/ast/note");

the file memo in jim's directory is now entered into ast's directory under the name note. Thereafter,
/usr/jim/memo and /usr/ast/note refer to the same file.

13

14

Figure 1-14. (a) Two directories before linking /usr/jim/memo to ast's directory. (b) The same directories after
linking. (This item is displayed on page 39 in the print version)

fusriast fusr/fjim fusr/ast fusrfjim
16 | mail 31 | bin 16 | mail 31 | bin
81 | games 70 | memo 81 | games 70| memo
40 | test 59 | f.c. 40 | test 59 | f.c.
38 | progl 70 | note 38 | progt

(a) ib)

Understanding how 1ink works will probably make it clearer what it does. Every file in UNIX has a unique
number, its i-number, that identifies it. This inumber is an index into a table of i-nodes, one per file, telling
who owns the file, where its disk blocks are, and so on. A directory is simply a file containing a set of
(i-number, ASCII name) pairs. In the first versions of UNIX, each directory entry was 16 bytes2 bytes for the
i-number and 14 bytes for the name. A more complicated structure is needed to support long file names, but
conceptually a directory is still a set of (i-number, ASCII name) pairs. In Fig. 1-14, mail has inumber 16, and
so on. What 1ink does is simply create a new directory entry with a (possibly new) name, using the i-number
of an existing file. In Fig. 1-14(b), two entries have the same i-number (70) and thus refer to the same file. If
either one is later removed, using the un1link system call, the other one remains. If both are removed, UNIX
sees that no entries to the file exist (a field in the i-node keeps track of the number of directory entries
pointing to the file), so the file is removed from the disk.

[Page 39]

As we have mentioned earlier, the mount system call allows two file systems to be merged into one. A
common situation is to have the root file system containing the binary (executable) versions of the common
commands and other heavily used files, on a hard disk. The user can then insert a CD-ROM with files to be
read into the CD-ROM drive.

By executing the mount system call, the CD-ROM file system can be attached to the root file system, as
shown in Fig. 1-15. A typical statement in C to perform the mount is

mount ("/dev/cdrom0", "/mnt", 0);

where the first parameter is the name of a block special file for CD-ROM drive 0, the second parameter is the
place in the tree where it is to be mounted, and the third one tells whether the file system is to be mounted
read-write or read-only.

Figure 1-15. (a) File system before the mount. (b) File system after the mount.

7N

bin dev lib mnt usr

(a) (b)

14

15

After the mount call, a file on CD-ROM drive 0 can be accessed by just using its path from the root directory
or the working directory, without regard to which drive it is on. In fact, second, third, and fourth drives can
also be mounted anywhere in the tree. The mount call makes it possible to integrate removable media into a
single integrated file hierarchy, without having to worry about which device a file is on. Although this
example involves CD-ROMs, hard disks or portions of hard disks (often called partitions or minor devices)
can also be mounted this way. When a file system is no longer needed, it can be unmounted with the umount
system call.

[Page 40]

MINIX 3 maintains a block cache cache of recently used blocks in main memory to avoid having to read them
from the disk if they are used again quickly. If a block in the cache is modified (by a write on a file) and the
system crashes before the modified block is written out to disk, the file system will be damaged. To limit the
potential damage, it is important to flush the cache periodically, so that the amount of data lost by a crash will
be small. The system call sync tells MINIX 3 to write out all the cache blocks that have been modified since
being read in. When MINIX 3 is started up, a program called update is started as a background process to do a
sync every 30 seconds, to keep flushing the cache.

Two other calls that relate to directories are chdir and chroot. The former changes the working directory
and the latter changes the root directory. After the call

chdir ("/usr/ast/test");

an open on the file xyz will open /usr/ast/test/xyz. chroot works in an analogous way. Once a process has
told the system to change its root directory, all absolute path names (path names beginning with a "/") will
start at the new root. Why would you want to do that? For securityserver programs for protocols such as FTP
(File Transfer Protocol) and HTTP (HyperText Transfer Protocol) do this so remote users of these services
can access only the portions of a file system below the new root. Only superusers may execute chroot, and
even superusers do not do it very often.

1.4.5. System Calls for Protection

In MINIX 3 every file has an 11-bit mode used for protection. Nine of these bits are the read-write-execute
bits for the owner, group, and others. The chmod system call makes it possible to change the mode of a file.
For example, to make a file read-only by everyone except the owner, one could execute

chmod ("file", 0644);

The other two protection bits, 02000 and 04000, are the SETGID (set-group-id) and SETUID (set-user-id)
bits, respectively. When any user executes a program with the SETUID bit on, for the duration of that process
the user's effective UID is changed to that of the file's owner. This feature is heavily used to allow users to
execute programs that perform superuser only functions, such as creating directories. Creating a directory uses
mknod, which is for the superuser only. By arranging for the mkdir program to be owned by the superuser
and have mode 04755, ordinary users can be given the power to execute mknod but in a highly restricted
way.

15

16
[Page 41]

When a process executes a file that has the SETUID or SETGID bit on in its mode, it acquires an effective
UID or GID different from its real UID or GID. It is sometimes important for a process to find out what its
real and effective UID or GID is. The system calls getuid and getgid have been provided to supply this
information. Each call returns both the real and effective UID or GID, so four library routines are needed to
extract the proper information: getuid, getgid, geteuid, and getegid. The first two get the real UID/GID, and
the last two the effective ones.

Ordinary users cannot change their UID, except by executing programs with the SETUID bit on, but the
superuser has another possibility: the setuid system call, which sets both the effective and real UIDs.
setgid sets both GIDs. The superuser can also change the owner of a file with the chown system call. In
short, the superuser has plenty of opportunity for violating all the protection rules, which explains why so
many students devote so much of their time to trying to become superuser.

The last two system calls in this category can be executed by ordinary user processes. The first one, umask,
sets an internal bit mask within the system, which is used to mask off mode bits when a file is created. After
the call

umask (022) ;

the mode supplied by creat and mknod will have the 022 bits masked off before being used. Thus the call

creat ("file", 0777);

will set the mode to 0755 rather than 0777. Since the bit mask is inherited by child processes, if the shell does
a umask just after login, none of the user's processes in that session will accidently create files that other
people can write on.

When a program owned by the root has the SETUID bit on, it can access any file, because its effective UID is
the superuser. Frequently it is useful for the program to know if the person who called the program has
permission to access a given file. If the program just tries the access, it will always succeed, and thus learn
nothing.

What is needed is a way to see if the access is permitted for the real UID. The access system call provides a
way to find out. The mode parameter is 4 to check for read access, 2 for write access, and 1 for execute
access. Combinations of these values are also allowed. For example, with mode equal to 6, the call returns O if
both read and write access are allowed for the real ID; otherwisel is returned. With mode equal to O, a check
is made to see if the file exists and the directories leading up to it can be searched.

[Page 42]
Although the protection mechanisms of all UNIX-like operating systems are generally similar, there are some
differences and inconsistencies that lead to security vulnerabilities. See Chen et al. (2002) for a discussion.
1.4.6. System Calls for Time Management

MINIX 3 has four system calls that involve the time-of-day clock. Time just returns the current time in
seconds, with O corresponding to Jan. 1, 1970 at midnight (just as the day was starting, not ending). Of course,

16

17

the system clock must be set at some point in order to allow it to be read later, so st ime has been provided to
let the clock be set (by the superuser). The third time call is ut ime, which allows the owner of a file (or the
superuser) to change the time stored in a file's i-node. Application of this system call is fairly limited, but a
few programs need it, for example, touch, which sets the file's time to the current time.

Finally, we have t ime s, which returns the accounting information to a process, so it can see how much CPU

time it has used directly, and how much CPU time the system itself has expended on its behalf (handling its
system calls). The total user and system times used by all of its children combined are also returned.

17

18

18

[Page 42 (continued)]

1.5. Operating System Structure

Now that we have seen what operating systems look like on the outside (i.e, the
programmer's interface), it is time to take a look inside. In the following sections, we
will examine five different structures that have been tried, in order to get some idea of
the spectrum of possibilities. These are by no means exhaustive, but they give an idea of
some designs that have been tried in practice. The five designs are monolithic systems,
layered systems, virtual machines, exokernels, and client-server systems.

1.5.1. Monolithic Systems

By far the most common organization, this approach might well be subtitled "The Big
Mess." The structure is that there is no structure. The operating system is written as a
collection of procedures, each of which can call any of the other ones whenever it needs
to. When this technique is used, each procedure in the system has a well-defined
interface in terms of parameters and results, and each one is free to call any other one, if
the latter provides some useful computation that the former needs.

To construct the actual object program of the operating system when this approach is
used, one first compiles all the individual procedures, or files containing the procedures,
and then binds them all together into a single object file using the system linker. In terms
of information hiding, there is essentially noneevery procedure is visible to every other
procedure (as opposed to a structure containing modules or packages, in which much of
the information is hidden away inside modules, and only the officially designated entry
points can be called from outside the module).

[Page 43]

Even in monolithic systems, however, it is possible to have at least a little structure. The
services (system calls) provided by the operating system are requested by putting the
parameters in well-defined places, such as in registers or on the stack, and then
executing a special trap instruction known as a kernel call or supervisor call.

This instruction switches the machine from user mode to kernel mode and transfers
control to the operating system. (Most CPUs have two modes: kernel mode, for the
operating system, in which all instructions are allowed; and user mode, for user
programs, in which I/O and certain other instructions are not allowed.)

This is a good time to look at how system calls are performed. Recall that the read call
is used like this:

count = read(fd, buffer, nbytes);

[Page 44]

2

In preparation for calling the read library procedure, which actually makes the read
system call, the calling program first pushes the parameters onto the stack, as shown in
steps 13 in Fig. 1-16. C and C++ compilers push the parameters onto the stack in reverse
order for historical reasons (having to do with making the first parameter to printf, the
format string, appear on top of the stack). The first and third parameters are called by
value, but the second parameter is passed by reference, meaning that the address of the
buffer (indicated by &) is passed, not the contents of the buffer. Then comes the actual
call to the library procedure (step 4). This instruction is the normal procedure call
instruction used to call all procedures.

Figure 1-16. The 11 steps in making the system call read (fd, buffer, nbytes). (This
item is displayed on page 43 in the print version)

[View full size image]

Address
OxFFFFFFFF _
Retum to caller Libra
Trap to the kemel pro -:ergu -
5 Pul code for read in register read
1
A 0
User space
pase' Increment SP "
+ Call read
3| Pushid User program
2| Push &buffer calling read
1| Push nbytes
& 9
= i 4
Kemel space : 7 8| Syscal
(Operating system) Dispatch ﬁ%’ handler

The library procedure, possibly written in assembly language, typically puts the system
call number in a place where the operating system expects it, such as a register (step 5).
Then it executes a t rAP instruction to switch from user mode to kernel mode and start
execution at a fixed address within the kernel (step 6). The kernel code that starts
examines the system call number and then dispatches to the correct system call handler,
usually via a table of pointers to system call handlers indexed on system call number
(step 7). At that point the system call handler runs (step 8). Once the system call handler
has completed its work, control may be returned to the user-space library procedure at
the instruction following the t rAP instruction (step 9). This procedure then returns to
the user program in the usual way procedure calls return (step 10).

To finish the job, the user program has to clean up the stack, as it does after any
procedure call (step 11). Assuming the stack grows downward, as it often does, the
compiled code increments the stack pointer exactly enough to remove the parameters
pushed before the call to read. The program is now free to do whatever it wants to do
next.

2

In step 9 above, we said "may be returned to the user-space library procedure" for good
reason. The system call may block the caller, preventing it from continuing. For
example, if it is trying to read from the keyboard and nothing has been typed yet, the
caller has to be blocked. In this case, the operating system will look around to see if
some other process can be run next. Later, when the desired input is available, this
process will get the attention of the system and steps 911 will occur.

This organization suggests a basic structure for the operating system:

1. A main program that invokes the requested service procedure.
2. A set of service procedures that carry out the system calls.
3. A set of utility procedures that help the service procedures.

In this model, for each system call there is one service procedure that takes care of it.
The utility procedures do things that are needed by several service procedures, such as
fetching data from user programs. This division of the procedures into three layers is
shown in Fig. 1-17.

[Page 45]

Figure 1-17. A simple structuring model for a monolithic system.

Main
procedure

Service
procedures

LUtility
proceduras

1.5.2. Layered Systems

A generalization of the approach of Fig. 1-17 is to organize the operating system as a
hierarchy of layers, each one constructed upon the one below it. The first system
constructed in this way was the THE system built at the Technische Hogeschool
Eindhoven in the Netherlands by E. W. Dijkstra (1968) and his students. The THE
system was a simple batch system for a Dutch computer, the Electrologica X8, which
had 32K of 27-bit words (bits were expensive back then).

The system had 6 layers, as shown in Fig. 1-18. Layer 0 dealt with allocation of the
processor, switching between processes when interrupts occurred or timers expired.
Above layer 0, the system consisted of sequential processes, each of which could be
programmed without having to worry about the fact that multiple processes were
running on a single processor. In other words, layer O provided the basic
multiprogramming of the CPU.

4

Figure 1-18. Structure of the THE operating system.

Layer Function

5 The operator

4 User programs

3 Input/output
management

2 Operator—-process
communication

1 Memory and drum
management

0 Processor

allocation and
multiprogramming

Layer 1 did the memory management. It allocated space for processes in main memory and on a 512K word
drum used for holding parts of processes (pages) for which there was no room in main memory. Above layer
1, processes did not have to worry about whether they were in memory or on the drum; the layer 1 software
took care of making sure pages were brought into memory whenever they were needed.

[Page 46]

Layer 2 handled communication between each process and the operator console. Above this layer each
process effectively had its own operator console. Layer 3 took care of managing the I/O devices and buffering
the information streams to and from them. Above layer 3 each process could deal with abstract I/O devices
with nice properties, instead of real devices with many peculiarities. Layer 4 was where the user programs
were found. They did not have to worry about process, memory, console, or I/O management. The system
operator process was located in layer 5.

A further generalization of the layering concept was present in the MULTICS system. Instead of layers,
MULTICS was organized as a series of concentric rings, with the inner ones being more privileged than the
outer ones. When a procedure in an outer ring wanted to call a procedure in an inner ring, it had to make the
equivalent of a system call, that is, a TRAP instruction whose parameters were carefully checked for validity
before allowing the call to proceed. Although the entire operating system was part of the address space of
each user process in MULTICS, the hardware made it possible to designate individual procedures (memory
segments, actually) as protected against reading, writing, or executing.

Whereas the THE layering scheme was really only a design aid, because all the parts of the system were
ultimately linked together into a single object program, in MULTICS, the ring mechanism was very much
present at run time and enforced by the hardware. The advantage of the ring mechanism is that it can easily be
extended to structure user subsystems. For example, a professor could write a program to test and grade
student programs and run this program in ring n, with the student programs running in ring n + 1 so that they
could not change their grades. The Pentium hardware supports the MULTICS ring structure, but no major
operating system uses it at present.

1.5.3. Virtual Machines

The initial releases of OS/360 were strictly batch systems. Nevertheless, many 360 users wanted to have
timesharing, so various groups, both inside and outside IBM decided to write timesharing systems for it. The
official IBM timesharing system, TSS/360, was delivered late, and when it finally arrived it was so big and
slow that few sites converted over to it. It was eventually abandoned after its development had consumed
some $50 million (Graham, 1970). But a group at IBM's Scientific Center in Cambridge, Massachusetts,
produced a radically different system that IBM eventually accepted as a product, and which is now widely

4

used on its mainframes.

This system, originally called CP/CMS and later renamed VM/370 (Seawright and MacKinnon, 1979), was
based on a very astute observation: a timesharing system provides (1) multiprogramming and (2) an extended
machine with a more convenient interface than the bare hardware. The essence of VM/370 is to completely
separate these two functions.

[Page 47]

The heart of the system, known as the virtual machine monitor, runs on the bare hardware and does the
multiprogramming, providing not one, but several virtual machines to the next layer up, as shown in Fig.
1-19. However, unlike all other operating systems, these virtual machines are not extended machines, with
files and other nice features. Instead, they are exact copies of the bare hardware, including kernel/user mode,
I/O, interrupts, and everything else the real machine has.

Figure 1-19. The structure of VM/370 with CMS.

[View full size image]
Virtual 370s

e

o T T,

1=| System calls here
VO instructions here —f=¢ CMS cMS cMS Y=} Trap here
Trap here —f=1 VMI3TO

370 Bare hardware

Because each virtual machine is identical to the true hardware, each one can run any operating system that
will run directly on the bare hardware. Different virtual machines can, and frequently do, run different
operating systems. Some run one of the descendants of OS/360 for batch or transaction processing, while
others run a single-user, interactive system called CMS (Conversational Monitor System) for timesharing
users.

When a CMS program executes a system call, the call is trapped to the operating-system in its own virtual
machine, not to VM/370, just as it would if it were running on a real machine instead of a virtual one. CMS
then issues the normal hardware I/O instructions for reading its virtual disk or whatever is needed to carry out
the call. These I/O instructions are trapped by VM/370, which then performs them as part of its simulation of
the real hardware. By making a complete separation of the functions of multiprogramming and providing an
extended machine, each of the pieces can be much simpler, more flexible, and easier to maintain.

The idea of a virtual machine is used nowadays in a different context: running old MS-DOS programs on a
Pentium. When designing the Pentium and its software, both Intel and Microsoft realized that there would be
a big demand for running old software on new hardware. For this reason, Intel provided a virtual 8086 mode
on the Pentium. In this mode, the machine acts like an 8086 (which is identical to an 8088 from a software
point of view), including 16-bit addressing with a 1-MB limit.

This mode is used by Windows, and other operating systems for running old MS-DOS programs. These
programs are started up in virtual 8086 mode. As long as they execute normal instructions, they run on the
bare hardware. However, when a program tries to trap to the operating system to make a system call, or tries
to do protected I/O directly, a trap to the virtual machine monitor occurs.

[Page 48]

Two variants on this design are possible. In the first one, MS-DOS itself is loaded into the virtual 8086's
address space, so the virtual machine monitor just reflects the trap back to MS-DOS, just as would happen on
areal 8086. When MS-DOS later tries to do the I/O itself, that operation is caught and carried out by the
virtual machine monitor.

In the other variant, the virtual machine monitor just catches the first trap and does the I/O itself, since it
knows what all the MS-DOS system calls are and thus knows what each trap is supposed to do. This variant is
less pure than the first one, since it emulates only MS-DOS correctly, and not other operating systems, as the
first one does. On the other hand, it is much faster, since it saves the trouble of starting up MS-DOS to do the
I/O. A further disadvantage of actually running MS-DOS in virtual 8086 mode is that MS-DOS fiddles around
with the interrupt enable/disable bit quite a lot, all of which must be emulated at considerable cost.

It is worth noting that neither of these approaches are really the same as VM/370, since the machine being
emulated is not a full Pentium, but only an 8086. With the VM/370 system, it is possible to run VM/370,
itself, in the virtual machine. Even the earliest versions of Windows require at least a 286 and cannot be run
on a virtual 8086.

Several virtual machine implementations are marketed commercially. For companies that provide web-hosting
services, it can be more economical to run multiple virtual machines on a single fast server (perhaps one with
multiple CPUs) than to run many small computers, each hosting a single Web site. VMWare and Microsoft's
Virtual PC are marketed for such installations. These programs use large files on a host system as simulated
disks for their guest systems. To achieve efficiency they analyze guest system program binaries and allow safe
code to run directly on the host hardware, trapping instructions that make operating system calls. Such
systems are also useful in education. For instance, students working on MINIX 3 lab assignments can work
using MINIX 3 as a guest operating system on VMWare on a Windows, Linux or UNIX host with no risk of
damaging other software installed on the same PC. Most professors teaching other subjects would be very
nervous about sharing laboratory computers with an operating systems course where student mistakes could
corrupt or erase disk data.

Another are a where virtual machines are used, but in a somewhat different way, is for running Java programs.
When Sun Microsystems invented the Java programming language, it also invented a virtual machine (i.e., a
computer architecture) called the JVM (Java Virtual Machine). The Java compiler produces code for JVM,
which then typically is executed by a software JVM interpreter. The advantage of this approach is that the
JVM code can be shipped over the Internet to any computer that has a JVM interpreter and run there. If the
compiler had produced SPARC or Pentium binary programs, for example, they could not have been shipped
and run anywhere as easily. (Of course, Sun could have produced a compiler that produced SPARC binaries
and then distributed a SPARC interpreter, but JVM is a much simpler architecture to interpret.) Another
advantage of using JVM is that if the interpreter is implemented properly, which is not completely trivial,
incoming JVM programs can be checked for safety and then executed in a protected environment so they
cannot steal data or do any damage.

[Page 49]

1.5.4. Exokernels

With VM/370, each user process gets an exact copy of the actual computer. With virtual 8086 mode on the
Pentium, each user process gets an exact copy of a different computer. Going one step further, researchers at
M.LT. built a system that gives each user a clone of the actual computer, but with a subset of the resources
(Engler et al., 1995; and Leschke, 2004). Thus one virtual machine might get disk blocks 0 to 1023, the next

one might get blocks 1024 to 2047, and so on.

At the bottom layer, running in kernel mode, is a program called the exokernel. Its job is to allocate resources
to virtual machines and then check attempts to use them to make sure no machine is trying to use somebody
else's resources. Each user-level virtual machine can run its own operating system, as on VM/370 and the
Pentium virtual 8086s, except that each one is restricted to using only the resources it has asked for and been
allocated.

The advantage of the exokernel scheme is that it saves a layer of mapping. In the other designs, each virtual
machine thinks it has its own disk, with blocks running from 0 to some maximum, so the virtual machine
monitor must maintain tables to remap disk addresses (and all other resources). With the exokernel, this
remapping is not needed. The exokernel need only keep track of which virtual machine has been assigned
which resource. This method still has the advantage of separating the multiprogramming (in the exokernel)
from the user operating system code (in user space), but with less overhead, since all the exokernel has to do
is keep the virtual machines out of each other's hair.

1.5.5. Client-Server Model

VM/370 gains much in simplicity by moving a large part of the traditional operating system code
(implementing the extended machine) into a higher layer, CMS. Nevertheless, VM/370 itself is still a complex
program because simulating a number of virtual 370s is not that simple (especially if you want to do it
reasonably efficiently).

A trend in modern operating systems is to take this idea of moving code up into higher layers even further and
remove as much as possible from the operating system, leaving a minimal kernel. The usual approach is to
implement most of the operating system functions in user processes. To request a service, such as reading a
block of a file, a user process (now known as the client process) sends the request to a server process, which
then does the work and sends back the answer.

[Page 50]

In this model, shown in Fig. 1-20, all the kernel does is handle the communication between clients and
servers. By splitting the operating system up into parts, each of which only handles one facet of the system,
such as file service, process service, terminal service, or memory service, each part becomes small and
manageable. Furthermore, because all the servers run as user-mode processes, and not in kernel mode, they do
not have direct access to the hardware. As a consequence, if a bug in the file server is triggered, the file
service may crash, but this will not usually bring the whole machine down.

Figure 1-20. The client-server model.

[View full size image]

Client Client Process | Tenminal o File Memory
process | process servar sarver s SEIVEr server } User moda
1\- . '/“ Kamel made
Microkemel \\ J’

L

Client obtains
senice by

sending messages
o server processes

8

Another advantage of the client-server model is its adaptability to use in distributed systems (see Fig. 1-21). If
a client communicates with a server by sending it messages, the client need not know whether the message is
handled locally in its own machine, or whether it was sent across a network to a server on a remote machine.
As far as the client is concerned, the same thing happens in both cases: a request was sent and a reply came
back.

Figure 1-21. The client-server model in a distributed system.

[View full size image]

Machine 1 Machine 2 Machine 3 Machina 4
Client File server Process server Terminal server
= Kemel Kemel Kemel Kernel L
Metwork

Message from
client to server

The picture painted above of a kernel that handles only the transport of messages from clients to servers and
back is not completely realistic. Some operating system functions (such as loading commands into the
physical I/O device registers) are difficult, if not impossible, to do from user-space programs. There are two
ways of dealing with this problem. One way is to have some critical server processes (e.g., I/O device drivers)
actually run in kernel mode, with complete access to all the hardware, but still communicate with other
processes using the normal message mechanism. A variant of this mechanism was used in earlier versions of
MINIX where drivers were compiled into the kernel but ran as separate processes.

[Page 51]

The other way is to build a minimal amount of mechanism into the kernel but leave the policy decisions up to
servers in user space. For example, the kernel might recognize that a message sent to a certain special address
means to take the contents of that message and load it into the I/O device registers for some disk, to start a
disk read. In this example, the kernel would not even inspect the bytes in the message to see if they were valid
or meaningful; it would just blindly copy them into the disk's device registers. (Obviously, some scheme for
limiting such messages to authorized processes only must be used.) This is how MINIX 3 works, drivers are
in user space and use special kernel calls to request reads and writes of I/O registers or to access kernel
information. The split between mechanism and policy is an important concept; it occurs again and again in
operating systems in various contexts.

[Page 51 (continued)]

1.6. Outline of the Rest of This Book

Operating systems typically have four major components: process management, I/O device management,
memory management, and file management. MINIX 3 is also divided into these four parts. The next four
chapters deal with these four topics, one topic per chapter. Chapter 6 is a list of suggested readings and a
bibliography.

The chapters on processes, I/O, memory management, and file systems have the same general structure. First
the general principles of the subject are laid out. Then comes an overview of the corresponding area of
MINIX 3 (which also applies to UNIX). Finally, the MINIX 3 implementation is discussed in detail. The
implementation section may be skimmed or skipped without loss of continuity by readers just interested in the
principles of operating systems and not interested in the MINIX 3 code. Readers who are interested in finding
out how a real operating system (MINIX 3) works should read all the sections.

[Page 51 (continued)]

1.7. Summary

Operating systems can be viewed from two viewpoints: resource managers and extended machines. In the
resource manager view, the operating system's job is to efficiently manage the different parts of the system. In
the extended machine view, the job of the system is to provide the users with a virtual machine that is more
convenient to use than the actual machine.

[Page 52]

Operating systems have a long history, starting from the days when they replaced the operator, to modern
multiprogramming systems.

The heart of any operating system is the set of system calls that it can handle. These tell what the operating
system really does. For MINIX 3, these calls can be divided into six groups. The first group of system calls
relates to process creation and termination. The second group handles signals. The third group is for reading
and writing files. A fourth group is for directory management. The fifth group protects information, and the
sixth group is about keeping track of time.

Operating systems can be structured in several ways. The most common ones are as a monolithic system, as a
hierarchy of layers, as a virtual machine system, using an exokernel, and using the client-server model.

[Page 52 (continued)]
Problems

1. What are the two main functions of an operating system?

2. What is the difference between kernel mode and user mode? Why is the difference important to an
operating system?

3. What is multiprogramming?

4. What is spooling? Do you think that advanced personal computers will have spooling as a standard
feature in the future?

5. On early computers, every byte of data read or written was directly handled by the CPU (i.e., there
was no DMADirect Memory Access). What implications does this organization have for
multiprogramming?

6. Why was timesharing not widespread on second-generation computers?

7. Which of the following instructions should be allowed only in kernel mode?

(a) Disable all interrupts.

(b) Read the time-of-day clock.
(c) Set the time-of-day clock.
(d) Change the memory map.

8. List some differences between personal computer operating systems and mainframe operating
systems.

9. Give one reason why a closed-source proprietary operating system like Windows should have
better quality than an open-source operating system like Linux. Now give one reason why an
open-source operating system like Linux should have better quality than a closed-source
proprietary operating system like Windows.

10. A MINIX file whose owner has UID = 12 and GID = 1 has mode rwxr-x---. Another user with UID
=6, GID =1 tries to execute the file. What will happen?

[Page 53]

11. In view of the fact that the mere existence of a superuser can lead to all kinds of security problems,
why does such a concept exist?

12. All versions of UNIX support file naming using both absolute paths (relative to the root) and
relative paths (relative to the working directory). Would it be possible to dispose of one of these
and just use the other? If so, which would you suggest keeping?

13. Why is the process table needed in a timesharing system? Is it also needed in personal computer

systems in which only one process exists, that process taking over the entire machine until it is
finished?

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

What is the essential difference between a block special file and a character special file?

In MINIX 3 if user 2 links to a file owned by user 1, then user 1 removes the file, what happens
when user 2 tries to read the file?

Are pipes an essential facility? Would major functionality be lost if they were not available?

Modern consumer appliances such as stereos and digital cameras often have a display where
commands can be entered and the results of entering those commands can be viewed. These
devices often have a primitive operating system inside. To what part of a personal computer
software is the command processing via the stereo or camera's display similar to?

Windows does not have a fork system call, yet it is able to create new processes. Make an
educated guess about the semantics of the system call Windows uses to create new processes.

Why is the chroot system call limited to the superuser?(Hint: Think about protection problems.)

Examine the list of system calls in Fig. 1-9. Which call do you think is likely to execute most
quickly. Explain your answer.

Suppose that a computer can execute 1 billion instructions/sec and that a system call takes 1000
instructions, including the trap and all the context switching. How many system calls can the
computer execute per second and still have half the CPU capacity for running application code?

There is a mknod system call in Fig. 1-16 but there is no rmnod call. Does this mean that you
have to be very, very careful about making nodes this way because there is no way to every remove
them?

Why does MINIX 3 have the program update running in the background all the time?
Does it ever make any sense to ignore the SIGALRM signal?

The client-server model is popular in distributed systems. Can it also be used in a single-computer
system?

The initial versions of the Pentium could not support a virtual machine monitor. What essential
characteristic is needed to allow a machine to be virtualizable?

Write a program (or series of programs) to test all the MINIX 3 system calls. For each call, try
various sets of parameters, including some incorrect ones, to see if they are detected.

[Page 54]

Write a shell that is similar to Fig. 1-10 but contains enough code that it actually works so you can
test it. You might also add some features such as redirection of input and output, pipes, and
background jobs.

[Page 55]

2. Processes

We are now about to embark on a detailed study of how operating systems, in general, and MINIX 3, in
particular, are designed and constructed. The most central concept in any operating system is the process: an
abstraction of a running program. Everything else hinges on this concept, and it is important that the operating
system designer (and student) understand this concept well.

[Page 55 (continued)]

2.1. Introduction to Processes

All modern computers can do several things at the same time. While running a user
program, a computer can also be reading from a disk and outputting text to a screen or
printer. In a multiprogramming system, the CPU also switches from program to
program, running each for tens or hundreds of milliseconds. While, strictly speaking, at
any instant of time, the CPU is running only one program, in the course of 1 second, it
may work on several programs, thus giving the users the illusion of parallelism.
Sometimes people speak of pseudoparallelism in this context, to contrast it with the true
hardware parallelism of multiprocessor systems (which have two or more CPUs sharing
the same physical memory). Keeping track of multiple, parallel activities is hard for
people to do. Therefore, operating system designers over the years have evolved a
conceptual model (sequential processes) that makes parallelism easier to deal with. That
model, its uses, and some of its consequences form the subject of this chapter.

[Page 56]
2.1.1. The Process Model

In this model, all the runnable software on the computer, sometimes including the
operating system, is organized into a number of sequential processes, or just processes
for short. A process is just an executing program, including the current values of the
program counter, registers, and variables. Conceptually, each process has its own virtual
CPU. In reality, of course, the real CPU switches back and forth from process to process,
but to understand the system, it is much easier to think about a collection of processes
running in (pseudo) parallel, than to try to keep track of how the CPU switches from
program to program. This rapid switching back and forth is called multiprogramming, as
we saw in Chap. 1.

In Fig. 2-1(a) we see a computer multiprogramming four programs in memory. In Fig.
2-1(b) we see four processes, each with its own flow of control (i.e., its own program
counter), and each one running independently of the other ones. Of course, there is only
one physical program counter, so when each process runs, its logical program counter is
loaded into the real program counter. When it is finished for the time being, the physical
program counter is saved in the process' logical program counter in memory. In Fig.
2-1(c) we see that viewed over a long enough time interval, all the processes have made
progress, but at any given instant only one process is actually running.

Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual model of four
independent, sequential processes. (c) Only one program is active at any instant.

[View full size image]

One program couniar

S Four program counters
a | Process Py

& switch Fal e @ D = =
-"']- B L J.r" N, H‘\x\ -

q V- . T T L I
\l G A 1 B Y c* ot B — s

= AT i
H} D Time -

(a) (b) (ch

With the CPU switching back and forth among the processes, the rate at which a process
performs its computation will not be uniform, and probably not even reproducible if the
same processes are run again. Thus, processes must not be programmed with built-in
assumptions about timing. Consider, for example, an I/O process that starts a streamer
tape to restore backed up files, executes an idle loop 10,000 times to let it get up to
speed, and then issues a command to read the first record. If the CPU decides to switch
to another process during the idle loop, the tape process might not run again until after
the first record was already past the read head. When a process has critical real-time
requirements like this, that is, particular events must occur within a specified number of
milliseconds, special measures must be taken to ensure that they do occur. Normally,
however, most processes are not affected by the underlying multiprogramming of the
CPU or the relative speeds of different processes.

[Page 57]

The difference between a process and a program is subtle, but crucial. An analogy may
help make this point clearer. Consider a culinary-minded computer scientist who is
baking a birthday cake for his daughter. He has a birthday cake recipe and a kitchen well
stocked with the necessary input: flour, eggs, sugar, extract of vanilla, and so on. In this
analogy, the recipe is the program (i.e., an algorithm expressed in some suitable
notation), the computer scientist is the processor (CPU), and the cake ingredients are the
input data. The process is the activity consisting of our baker reading the recipe, fetching
the ingredients, and baking the cake.

Now imagine that the computer scientist's son comes running in crying, saying that he
has been stung by a bee. The computer scientist records where he was in the recipe (the
state of the current process is saved), gets out a first aid book, and begins following the
directions in it. Here we see the processor being switched from one process (baking) to a
higher priority process (administering medical care), each having a different program
(recipe vs. first aid book). When the bee sting has been taken care of, the computer
scientist goes back to his cake, continuing at the point where he left off.

The key idea here is that a process is an activity of some kind. It has a program, input,
output, and a state. A single processor may be shared among several processes, with

some scheduling algorithm being used to determine when to stop work on one process
and service a different one.

2.1.2. Process Creation

Operating systems need some way to make sure all the necessary processes exist. In very
simple systems, or in systems designed for running only a single application (e.g.,

2

controlling a device in real time), it may be possible to have all the processes that will
ever be needed be present when the system comes up. In general-purpose systems,
however, some way is needed to create and terminate processes as needed during
operation. We will now look at some of the issues.

There are four principal events that cause processes to be created:

1. System initialization.
2. Execution of a process creation system call by a running process.
3. A user request to create a new process.

4. [Initiation of a batch job.

[Page 58]

When an operating system is booted, often several processes are created. Some of these
are foreground processes, that is, processes that interact with (human) users and perform
work for them. Others are background processes, which are not associated with
particular users, but instead have some specific function. For example, a background
process may be designed to accept incoming requests for web pages hosted on that
machine, waking up when a request arrives to service the request. Processes that stay in
the background to handle some activity such as web pages, printing, and so on are called
daemons. Large systems commonly have dozens of them. In MINIX 3, the ps program
can be used to list the running processes.

In addition to the processes created at boot time, new processes can be created afterward
as well. Often a running process will issue system calls to create one or more new
processes to help it do its job. Creating new processes is particularly useful when the
work to be done can easily be formulated in terms of several related, but otherwise
independent interacting processes. For example, when compiling a large program, the
make program invokes the C compiler to convert source files to object code, and then it
invokes the install program to copy the program to its destination, set ownership and
permissions, etc. In MINIX 3, the C compiler itself is actually several different
programs, which work together. These include a preprocessor, a C language parser, an
assembly language code generator, an assembler, and a linker.

In interactive systems, users can start a program by typing a command. In MINIX 3,

virtual consoles allow a user to start a program, say a compiler, and then switch to an
alternate console and start another program, perhaps to edit documentation while the

compiler is running.

The last situation in which processes are created applies only to the batch systems found
on large mainframes. Here users can submit batch jobs to the system (possibly
remotely). When the operating system decides that it has the resources to run another
job, it creates a new process and runs the next job from the input queue in it.

Technically, in all these cases, a new process is created by having an existing process
execute a process creation system call. That process may be a running user process, a
system process invoked from the keyboard or mouse, or a batch manager process. What

4

that process does is execute a system call to create the new process. This system call
tells the operating system to create a new process and indicates, directly or indirectly,
which program to run in it.

In MINIX 3, there is only one system call to create a new process: fork. This call
creates an exact clone of the calling process. After the fork, the two processes, the
parent and the child, have the same memory image, the same environment strings, and
the same open files. That is all there is. Usually, the child process then executes
execve or a similar system call to change its memory image and run a new program.
For example, when a user types a command, say, sort, to the shell, the shell forks off a
child process and the child executes sort. The reason for this two-step process is to allow
the child to manipulate its file descriptors after the fork but before the execve to
accomplish redirection of standard input, standard output, and standard error.

[Page 59]

In both MINIX 3 and UNIX, after a process is created both the parent and child have
their own distinct address spaces. If either process changes a word in its address space,
the change is not visible to the other process. The child's initial address space is a copy
of the parent's, but there are two distinct address spaces involved; no writable memory is
shared (like some UNIX implementations, MINIX 3 can share the program text between
the two since that cannot be modified). It is, however, possible for a newly created
process to share some of its creator's other resources, such as open files.

2.1.3. Process Termination

After a process has been created, it starts running and does whatever its job is. However,
nothing lasts forever, not even processes. Sooner or later the new process will terminate,
usually due to one of the following conditions:

1. Normal exit (voluntary).
2. Error exit (voluntary).
3. Fatal error (involuntary).

4. Killed by another process
(involuntary).

Most processes terminate because they have done their work. When a compiler has
compiled the program given to it, the compiler executes a system call to tell the
operating system that it is finished. This call is exit in MINIX 3. Screen-oriented
programs also support voluntary termination. For instance, editors always have a key
combination that the user can invoke to tell the process to save the working file, remove
any temporary files that are open and terminate.

The second reason for termination is that the process discovers a fatal error. For
example, if a user types the command

cc foo.c

to compile the program foo.c and no such file exists, the compiler simply exits.

The third reason for termination is an error caused by the process, perhaps due to a
program bug. Examples include executing an illegal instruction, referencing nonexistent
memory, or dividing by zero. In MINIX 3, a process can tell the operating system that it
wishes to handle certain errors itself, in which case the process is signaled (interrupted)
instead of terminated when one of the errors occurs.

The fourth reason a process might terminate is that one process executes a system call
telling the operating system to kill some other process. In MINIX 3, this call is ki11l.
Of course, the killer must have the necessary authorization to do in the killee. In some
systems, when a process terminates, either voluntarily or otherwise, all processes it
created are immediately killed as well. MINIX 3 does not work this way, however.

[Page 60]

2.1.4. Process Hierarchies

In some systems, when a process creates another process, the parent and child continue
to be associated in certain ways. The child can itself create more processes, forming a
process hierarchy. Unlike plants and animals that use sexual reproduction, a process has
only one parent (but zero, one, two, or more children).

In MINIX 3, a process, its children, and further descendants together may form a process
group. When a user sends a signal from the keyboard, the signal may be delivered to all
members of the process group currently associated with the keyboard (usually all
processes that were created in the current window). This is signal-dependent. If a signal
is sent to a group, each process can catch the signal, ignore the signal, or take the default
action, which is to be killed by the signal.

As a simple example of how process trees are used, let us look at how MINIX 3
initializes itself. Two special processes, the reincarnation server and init are present in
the boot image. The reincarnation server's job is to (re)start drivers and servers. It begins
by blocking, waiting for a message telling it what to create.

In contrast, init executes the /etc/rc script that causes it to issue commands to the
reincarnation server to start the drivers and servers not present in the boot image. This
procedure makes the drivers and servers so started children of the reincarnation server,
so if any of them ever terminate, the reincarnation server will be informed and can
restart (i.e., reincarnate) them again. This mechanism is intended to allow MINIX 3 to
tolerate a driver or server crash because a new one will be started automatically. In
practice, replacing a driver is much easier than replacing a server, however, since there
fewer repercussions elsewhere in the system. (And, we do not say this always works
perfectly; it is still work in progress.)

When init has finished this, it reads a configuration file /etc/ttytab) to see which
terminals and virtual terminals exist. Init forks a getty process for each one, displays a
login prompt on it, and then waits for input. When a name is typed, getty execs a login
process with the name as its argument. If the user succeeds in logging in, login will
exec the user's shell. So the shell is a child of init. User commands create children of

6

the shell, which are grandchildren of init. This sequence of events is an example of how
process trees are used. As an aside, the code for the reincarnation server and init is not
listed in this book; neither is the shell. The line had to be drawn somewhere. But now
you have the basic idea.

2.1.5. Process States

Although each process is an independent entity, with its own program counter registers,
stack, open files, alarms, and other internal state, processes often need to interact,
communicate, and synchronize with other processes. One process may generate some
output that another process uses as input, for example. In that case, the data needs to be
moved between processes. In the shell command

[Page 61]

cat chapterl chapter2 chapter3 | grep tree

the first process, running cat, concatenates and outputs three files. The second process,
running grep, selects all lines containing the word "tree." Depending on the relative
speeds of the two processes (which depends on both the relative complexity of the
programs and how much CPU time each one has had), it may happen that grep is ready
to run, but there is no input waiting for it. It must then block until some input is
available.

When a process blocks, it does so because logically it cannot continue, typically because
it is waiting for input that is not yet available. It is also possible for a process that is
conceptually ready and able to run to be stopped because the operating system has
decided to allocate the CPU to another process for a while. These two conditions are
completely different. In the first case, the suspension is inherent in the problem (you
cannot process the user's command line until it has been typed). In the second case, it is
a technicality of the system (not enough CPUs to give each process its own private
processor). In Fig. 2-2 we see a state diagram showing the three states a process may be
in:

1. Running (actually using the CPU at that instant).

2. Ready (runnable; temporarily stopped to let another
process run).

3. Blocked (unable to run until some external event happens).

Figure 2-2. A process can be in running, blocked, or ready state. Transitions between these
states are as shown.

@ 1. Process blocks for input
2. Scheduler picks another process
Blocked

3. Scheduler picks this process
4. Input becomes available

Logically, the first two states are similar. In both cases the process is willing to run, only
in the second one, there is temporarily no CPU available for it. The third state is
different from the first two in that the process cannot run, even if the CPU has nothing
else to do.

Four transitions are possible among these three states, as shown. Transition 1 occurs
when a process discovers that it cannot continue. In some systems the process must
execute a system call, block or pause to get into blocked state. In other systems,
including MINIX 3, when a process reads from a pipe or special file (e.g., a terminal)
and there is no input available, the process is automatically moved from the running
state to the blocked state.

[Page 62]

Transitions 2 and 3 are caused by the process scheduler, a part of the operating-system,
without the process even knowing about them. Transition 2 occurs when the scheduler
decides that the running process has run long enough, and it is time to let another
process have some CPU time. Transition 3 occurs when all the other processes have had
their fair share and it is time for the first process to get the CPU to run again. The subject
of schedulingdeciding which process should run when and for how longis an important
one. Many algorithms have been devised to try to balance the competing demands of
efficiency for the system as a whole and fairness to individual processes. We will look at
scheduling and study some of these algorithms later in this chapter.

Transition 4 occurs when the external event for which a process was waiting (e.g., the
arrival of some input) happens. If no other process is running then, transition 3 will be
triggered immediately, and the process will start running. Otherwise it may have to wait
in ready state for a little while until the CPU is available.

Using the process model, it becomes much easier to think about what is going on inside
the system. Some of the processes run programs that carry out commands typed in by a
user. Other processes are part of the system and handle tasks such as carrying out
requests for file services or managing the details of running a disk or a tape drive. When
a disk interrupt occurs, the system may make a decision to stop running the current
process and run the disk process, which was blocked waiting for that interrupt. We say
"may" because it depends upon relative priorities of the running process and the disk
driver process. But the point is that instead of thinking about interrupts, we can think
about user processes, disk processes, terminal processes, and so on, which block when
they are waiting for something to happen. When the disk block has been read or the
character typed, the process waiting for it is unblocked and is eligible to run again.

This view gives rise to the model shown in Fig. 2-3. Here the lowest level of the
operating system is the scheduler, with a variety of processes on top of it. All the
interrupt handling and details of actually starting and stopping processes are hidden

8

away in the scheduler, which is actually quite small. The rest of the operating system is
nicely structured in process form. The model of Fig. 2-3 is used in MINIX 3. Of course,
the "scheduler” is not the only thing in the lowest layer, there is also support for interrupt
handling and interprocess communication. Nevertheless, to a first approximation, it does
show the basic structure.

Figure 2-3. The lowest layer of a process-structured operating system handles interrupts
and scheduling. Above that layer are sequential processes. (This item is displayed on page
63 in the print version)

Processes

Scheduler

2.1.6. Implementation of Processes

To implement the process model, the operating system maintains a table (an array of
structures), called the process table, with one entry per process. (Some authors call these
entries process control blocks.) This entry contains information about the process' state,
its program counter, stack pointer, memory allocation, the status of its open files, its
accounting and scheduling information, alarms and other signals, and everything else
about the process that must be saved when the process is switched from running to ready
state so that it can be restarted later as if it had never been stopped.

[Page 63]

In MINIX 3, interprocess communication, memory management, and file management
are each handled by separate modules within the system, so the process table is
partitioned, with each module maintaining the fields that it needs. Figure 2-4 shows
some of the more important fields. The fields in the first column are the only ones
relevant to this chapter. The other two columns are provided just to give an idea of what
information is needed elsewhere in the system.

Figure 2-4. Some of the fields of the MINIX 3 process table. The fields are distributed over
the kernel, the process manager, and the file system.

Kernel

Registers

Program counter
Program status word

Stack pointer

Process File
management management
Pointerto = UMASK
text segment mask
Pointer to Root

data segment directory

Pointer to bssWorking

segment directory

Exit status File
descriptors

9

Process state Signal status Real id
Current scheduling priority Process ID Effective
UID
Maximum scheduling priority Parent Real GID
process
Scheduling ticks left Process Effective
group GID
Quantum size Children's Controlling
CPU time tty
CPU time used Real UID Save area for
read/write
Message queue pointers Effective System call
UID parameters
Pending signal bits Real GID Various flag
bits
Various flag bits Effective
GID
Process name File info for

sharing text
Bitmaps for
signals
Various flag
bits

Process
name

[Page 64]

Now that we have looked at the process table, it is possible to explain a little more about how the illusion of
multiple sequential processes is maintained on a machine with one CPU and many I/O devices. What follows
is technically a description of how the "scheduler" of Fig. 2-3 works in MINIX 3 but most modern operating
systems work essentially the same way. Associated with each 1/0 device class (e.g., floppy disks, hard disks,
timers, terminals) is a data structure in a table called the interrupt descriptor table. The most important part of
each entry in this table is called the interrupt vector. It contains the address of the interrupt service procedure.
Suppose that user process 23 is running when a disk interrupt occurs. The program counter, program status
word, and possibly one or more registers are pushed onto the (current) stack by the interrupt hardware. The
computer then jumps to the address specified in the disk interrupt vector. That is all the hardware does. From
here on, it is up to the software.

The interrupt service procedure starts out by saving all the registers in the process table entry for the current
process. The current process number and a pointer to its entry are kept in global variables so they can be
found quickly. Then the information deposited by the interrupt is removed from the stack, and the stack
pointer is set to a temporary stack used by the process handler. Actions such as saving the registers and setting
the stack pointer cannot even be expressed in high-level languages such as C, so they are performed by a
small assembly language routine. When this routine is finished, it calls a C procedure to do the rest of the
work for this specific interrupt type.

Interprocess communication in MINIX 3 is via messages, so the next step is to build a message to be sent to
the disk process, which will be blocked waiting for it. The message says that an interrupt occurred, to
distinguish it from messages from user processes requesting disk blocks to be read and things like that. The
state of the disk process is now changed from blocked to ready and the scheduler is called. In MINIX 3,
different processes have different priorities, to give better service to I/O device handlers than to user

10

processes, for example. If the disk process is now the highest priority runnable process, it will be scheduled to
run. If the process that was interrupted is just as important or more so, then it will be scheduled to run again,
and the disk process will have to wait a little while.

Either way, the C procedure called by the assembly language interrupt code now returns, and the assembly
language code loads up the registers and memory map for the now-current process and starts it running.
Interrupt handling and scheduling are summarized in Fig. 2-5. It is worth noting that the details vary slightly
from system to system.

Figure 2-5. Skeleton of what the lowest level of the operating system does when an interrupt occurs. (This item is
displayed on page 65 in the print version)

. Hardware stacks program counter, etc.

. Hardware loads new program counter from interrupt vector.

. Assembly language procedure saves registers.

. Assembly language procedure sets up new stack.

. C interrupt service constructs and sends message.

. Message passing code marks waiting message recipient ready.
. Scheduler decides which process is to run next.

. C procedure returns to the assembly code.

. Assembly language procedure starts up new current process.

O 00 1N N B~ WIN K~

2.1.7. Threads

In traditional operating systems, each process has an address space and a single thread of control. In fact, that
is almost the definition of a process. Nevertheless, there are often situations in which it is desirable to have
multiple threads of control in the same address space running in quasi-parallel, as though they were separate
processes (except for the shared address space). These threads of control are usually just called threads,
although some people call them lightweight processes.

[Page 65]

One way of looking at a process is that it is a way to group related resources together. A process has an
address space containing program text and data, as well as other resources. These resources may include open
files, child processes, pending alarms, signal handlers, accounting information, and more. By putting them
together in the form of a process, they can be managed more easily.

The other concept a process has is a thread of execution, usually shortened to just thread. The thread has a
program counter that keeps track of which instruction to execute next. It has registers, which hold its current
working variables. It has a stack, which contains the execution history, with one frame for each procedure
called but not yet returned from. Although a thread must execute in some process, the thread and its process
are different concepts and can be treated separately. Processes are used to group resources together; threads
are the entities scheduled for execution on the CPU.

What threads add to the process model is to allow multiple executions to take place in the same process
environment, to a large degree independent of one another. In Fig. 2-6(a) we see three traditional processes.
Each process has its own address space and a single thread of control. In contrast, in Fig. 2-6(b) we see a
single process with three threads of control. Although in both cases we have three threads, in Fig. 2-6(a) each
of them operates in a different address space, whereas in Fig. 2-6(b) all three of them share the same address
space.

10

11

Figure 2-6. (a) Three processes each with one thread. (b) One process with three threads. (This item is displayed
on page 66 in the print version)

[View full size image]
Frocess 1 Process 1 Process 1 Process

l | |

i |

User
space

Thread Thread
Kamel J’
space l Keamal Kemel
(al (b}

As an example of where multiple threads might be used, consider a web browser process. Many web pages
contain multiple small images. For each image on a web page, the browser must set up a separate connection
to the page's home site and request the image. A great deal of time is spent establishing and releasing all these
connections. By having multiple threads within the browser, many images can be requested at the same time,
greatly speeding up performance in most cases since with small images, the set-up time is the limiting factor,
not the speed of the transmission line.

[Page 66]
When multiple threads are present in the same address space, a few of the fields of Fig. 2-4 are not per
process, but per thread, so a separate thread table is needed, with one entry per thread. Among the per-thread
items are the program counter, registers, and state. The program counter is needed because threads, like
processes, can be suspended and resumed. The registers are needed because when threads are suspended, their

registers must be saved. Finally, threads, like processes, can be in running, ready, or blocked state. Fig. 2-7
lists some per-process and per-thread items.

Figure 2-7. The first column lists some items shared by all threads in a process. The second one lists some items
private to each thread.

Per process items
Per thread items
Address space
Program counter
Global variables
Registers

Open files

Stack

11

12

Child processes
State

Pending alarms

Signals and signal handlers

Accounting information

In some systems, the operating system is not aware of the threads. In other words, they are managed entirely
in user space. When a thread is about to block, for example, it chooses and starts its successor before stopping.
Several userlevel threads packages are in common use, including the POSIX P-threads and Mach C-threads
packages.

[Page 67]

In other systems, the operating system is aware of the existence of multiple threads per process, so when a
thread blocks, the operating system chooses the next one to run, either from the same process or a different
one. To do scheduling, the kernel must have a thread table that lists all the threads in the system, analogous to
the process table.

Although these two alternatives may seem equivalent, they differ considerably in performance. Switching
threads is much faster when thread management is done in user space than when a system call is needed. This
fact argues strongly for doing thread management in user space. On the other hand, when threads are managed
entirely in user space and one thread blocks (e.g., waiting for I/O or a page fault to be handled), the kernel
blocks the entire process, since it is not even aware that other threads exist. This fact as well as others argue
for doing thread management in the kernel (Boehm, 2005). As a consequence, both systems are in use, and
various hybrid schemes have been proposed as well (Anderson et al., 1992).

No matter whether threads are managed by the kernel or in user space, they introduce a raft of problems that
must be solved and which change the programming model appreciably. To start with, consider the effects of
the fork system call. If the parent process has multiple threads, should the child also have them? If not, the
process may not function properly, since all of them may be essential.

However, if the child process gets as many threads as the parent, what happens if a thread was blocked on a

read call, say, from the keyboard? Are two threads now blocked on the keyboard? When a line is typed, do
both threads get a copy of it? Only the parent? Only the child? The same problem exists with open network

connections.

Another class of problems is related to the fact that threads share many data structures. What happens if one
thread closes a file while another one is still reading from it? Suppose that one thread notices that there is too
little memory and starts allocating more memory. Then, part way through, a thread switch occurs, and the new
thread also notices that there is too little memory and also starts allocating more memory. Does the allocation
happen once or twice? In nearly all systems that were not designed with threads in mind, the libraries (such as
the memory allocation procedure) are not reentrant, and will crash if a second call is made while the first one
is still active.

12

13

Another problem relates to error reporting. In UNIX, after a system call, the status of the call is put into a
global variable, errno. What happens if a thread makes a system call, and before it is able to read errno,
another thread makes a system call, wiping out the original value?

Next, consider signals. Some signals are logically thread specific; others are not. For example, if a thread calls
alarm, it makes sense for the resulting signal to go to the thread that made the call. When the kernel is aware
of threads, it can usually make sure the right thread gets the signal. When the kernel is not aware of threads,
the threads package must keep track of alarms by itself. An additional complication for user-level threads
exists when (as in UNIX) a process may only have one alarm at a time pending and several threads call
alarm independently.

[Page 68]

Other signals, such as a keyboard-initiated SIGINT, are not thread specific. Who should catch them? One
designated thread? All the threads? A newly created thread? Each of these solutions has problems.
Furthermore, what happens if one thread changes the signal handlers without telling other threads?

One last problem introduced by threads is stack management. In many systems, when stack overflow occurs,
the kernel just provides more stack, automatically. When a process has multiple threads, it must also have
multiple stacks. If the kernel is not aware of all these stacks, it cannot grow them automatically upon stack
fault. In fact, it may not even realize that a memory fault is related to stack growth.

These problems are certainly not insurmountable, but they do show that just introducing threads into an
existing system without a fairly substantial system redesign is not going to work at all. The semantics of
system calls have to be redefined and libraries have to be rewritten, at the very least. And all of these things
must be done in such a way as to remain backward compatible with existing programs for the limiting case of
a process with only one thread. For additional information about threads, see Hauser et al. (1993) and Marsh
etal. (1991).

13

14

14

[Page 68 (continued)]

2.2. Interprocess Communication

Processes frequently need to communicate with other processes. For example, in a shell pipeline, the output of the
first process must be passed to the second process, and so on down the line. Thus there is a need for communication
between processes, preferably in a well-structured way not using interrupts. In the following sections we will look
at some of the issues related to this InterProcess Communication or IPC.

There are three issues here. The first was alluded to above: how one process can pass information to another. The
second has to do with making sure two or more processes do not get into each other's way when engaging in critical
activities (suppose two processes each try to grab the last I MB of memory). The third concerns proper sequencing
when dependencies are present: if process A produces data and process B prints it, B has to wait until A has
produced some data before starting to print. We will examine all three of these issues in some detail in this section.

It is also important to mention that two of these issues apply equally well to threads. The first onepassing
informationis easy for threads since they share a common address space (threads in different address spaces that
need to communicate fall under the heading of communicating processes). However, the other twokeeping out of
each other's hair and proper sequencingapply as well to threads. The same problems exist and the same solutions
apply. Below we will discuss the problem in the context of processes, but please keep in mind that the same
problems and solutions also apply to threads.

[Page 69]

2.2.1. Race Conditions

In some operating systems, processes that are working together may share some common storage that each one can
read and write. The shared storage may be in main memory (possibly in a kernel data structure) or it may be a
shared file; the location of the shared memory does not change the nature of the communication or the problems
that arise. To see how interprocess communication works in practice, let us consider a simple but common example,
a print spooler. When a process wants to print a file, it enters the file name in a special spooler directory. Another
process, the printer daemon, periodically checks to see if so are any files to be printed, and if so removes their
names from the directory.

Imagine that our spooler directory has a large number of slots, numbered 0, 1, 2, ..., each one capable of holding a
file name. Also imagine that there are two shared variables, out, which points to the next file to be printed, and in,
which points to the next free slot in the directory. These two variables might well be kept in a two-word file
available to all processes. At a certain instant, slots O to 3 are empty (the files have already been printed) and slots 4
to 6 are full (with the names of files to be printed). More or less simultaneously, processes A and B decide they
want to queue a file for printing. This situation is shown in Fig. 2-8.

Figure 2-8. Two processes want to access shared memory at the same time.

Spooler
directory
L]
4 abe out =4
6| prog.n
7 in=7

:

In jurisdictions where Murphy's law!T1is applicable, the following might well happen. Process A reads in and
stores the value, 7, in a local variable called next_free_slot. Just then a clock interrupt occurs and the CPU decides
that process A has run long enough, so it switches to process B. Process B also reads in, and also gets a 7, so it
stores the name of its file in slot 7 and updates in to be an 8. Then it goes off and does other things.

(11 something can go wrong, it will.

[Page 70]

Eventually, process A runs again, starting from the place it left off last time. It looks at next_free_slot, finds a 7
there, and writes its file name in slot 7, erasing the name that process B just put there. Then it computes
next_free_slot + 1, which is 8, and sets in to 8. The spooler directory is now internally consistent, so the printer
daemon will not notice anything wrong, but process B will never receive any output. User B will hang around the
printer room for years, wistfully hoping for output that never comes. Situations like this, where two or more
processes are reading or writing some shared data and the final result depends on who runs precisely when, are
called race conditions. Debugging programs containing race conditions is no fun at all. The results of most test runs
are fine, but once in a blue moon something weird and unexplained happens.

2.2.2. Critical Sections

How do we avoid race conditions? The key to preventing trouble here and in many other situations involving shared
memory, shared files, and shared everything else is to find some way to prohibit more than one process from
reading and writing the shared data at the same time. Put in other words, what we need is mutual exclusionsome
way of making sure that if one process is using a shared variable or file, the other processes will be excluded from
doing the same thing. The difficulty above occurred because process B started using one of the shared variables
before process A was finished with it. The choice of appropriate primitive operations for achieving mutual
exclusion is a major design issue in any operating system, and a subject that we will now examine in great detail.

The problem of avoiding race conditions can also be formulated in an abstract way. Part of the time, a process is
busy doing internal computations and other things that do not lead to race conditions. However, sometimes a
process may be accessing shared memory or files. That part of the program where the shared memory is accessed is
called the critical region or critical section. If we could arrange matters such that no two processes were ever in
their critical regions at the same time, we could avoid race conditions.

3

Although this requirement avoids race conditions, this is not sufficient for having parallel processes cooperate
correctly and efficiently using shared data. We need four conditions to hold to have a good solution:

1. No two processes may be simultaneously inside their critical regions.
2. No assumptions may be made about speeds or the number of CPUs.
3. No process running outside its critical region may block other processes.

4. No process should have to wait forever to enter its critical region.

[Page 71]

The behavior that we want is shown in Fig. 2-9. Here process A enters its critical region at time T,. A little later, at
time T, process B attempts to enter its critical region but fails because another process is already in its critical
region and we allow only one at a time. Consequently, B is temporarily suspended until time T; when A leaves its
critical region, allowing B to enter immediately. Eventually B leaves (at T,) and we are back to the original
situation with no processes in their critical regions.

Figure 2-9. Mutual exclusion using critical regions.

[View full size image]

A enters critical i Lo
IR GIICAL regraf A lgaves critical region

Process A ————

—_—— o —

I
|
: B attemnpis to B enters B leaves
enter critical critical region critical region
; region
| | I
[y/
Process B : : l%}'/
'\—.‘V‘_,—p'
| | | |
1 ! B blocked 1 1
T\ T? T."I Td

2.2.3. Mutual Exclusion with Busy Waiting

In this section we will examine various proposals for achieving mutual exclusion, so that while one process is busy
updating shared memory in its critical region, no other process will enter its critical region and cause trouble.

Disabling Interrupts

The simplest solution is to have each process disable all interrupts just after entering its critical region and reenable
them just before leaving it. With interrupts disabled, no clock interrupts can occur. The CPU is only switched from
process to process as a result of clock or other interrupts, after all, and with interrupts turned off the CPU will not
be switched to another process. Thus, once a process has disabled interrupts, it can examine and update the shared

3

4

memory without fear that any other process will intervene.

This approach is generally unattractive because it is unwise to give user processes the power to turn off interrupts.
Suppose that one of them did, and then never turned them on again? That could be the end of the system.
Furthermore, if the system is a multiprocessor, with two or more CPUs, disabling interrupts affects only the CPU
that executed the disable instruction. The other ones will continue running and can access the shared memory.

[Page 72]

On the other hand, it is frequently convenient for the kernel itself to disable interrupts for a few instructions while it
is updating variables or lists. If an interrupt occurred while the list of ready processes, for example, was in an
inconsistent state, race conditions could occur. The conclusion is: disabling interrupts is often a useful technique
within the operating system itself but is not appropriate as a general mutual exclusion mechanism for user
processes.

Lock Variables

As a second attempt, let us look for a software solution. Consider having a single, shared, (lock) variable, initially O.
When a process wants to enter its critical region, it first tests the lock. If the lock is 0, the process sets it to 1 and
enters the critical region. If the lock is already 1, the process just waits until it becomes 0. Thus, a 0 means that no
process is in its critical region, and a 1 means that some process is in its critical region.

Unfortunately, this idea contains exactly the same fatal flaw that we saw in the spooler directory. Suppose that one
process reads the lock and sees that it is 0. Before it can set the lock to 1, another process is scheduled, runs, and
sets the lock to 1. When the first process runs again, it will also set the lock to 1, and two processes will be in their
critical regions at the same time.

Now you might think that we could get around this problem by first reading out the lock value, then checking it
again just before storing into it, but that really does not help. The race now occurs if the second process modifies
the lock just after the first process has finished its second check.

Strict Alternation

A third approach to the mutual exclusion problem is shown in Fig. 2-10. This program fragment, like most others in
this book, is written in C. C was chosen here because real operating systems are commonly written in C (or
occasionally C++), but hardly ever in languages like Java. C is powerful, efficient, and predictable, characteristics
critical for writing operating systems. Java, for example, is not predictable because it might run out of storage at a
critical moment and need to invoke the garbage collector at a most inopportune time. This cannot happen in C
because there is no garbage collection in C. A quantitative comparison of C, C++, Java, and four other languages is
given by Prechelt (2000).

Figure 2-10. A proposed solution to the critical region problem. (a) Process 0. (b) Process 1. In both cases, be sure to
note the semicolons terminating the while statements. (This item is displayed on page 73 in the print version)

while (TRUE) { while (TRUE) {
while (turn != 0) /* loop* /; while (turn != 1) /* loop* /;
critical_region(); critical_region();
turn = 1; turn = 0;
noncritical_region(); noncritical_region();
} }
(a) (b)

In Fig. 2-10, the integer variable turn, initially O, keeps track of whose turn it is to enter the critical region and
examine or update the shared memory. Initially, process 0 inspects turn, finds it to be 0, and enters its critical
region. Process 1 also finds it to be 0 and therefore sits in a tight loop continually testing turn to see when it
becomes 1. Continuously testing a variable until some value appears is called busy waiting. It should usually be
avoided, since it wastes CPU time. Only when there is a reasonable expectation that the wait will be short is busy
waiting used. A lock that uses busy waiting is called a spin lock.

[Page 73]

When process 0 leaves the critical region, it sets turn to 1, to allow process 1 to enter its critical region. Suppose
that process 1 finishes its critical region quickly, so both processes are in their noncritical regions, with turn set to 0.
Now process 0 executes its whole loop quickly, exiting its critical region and setting turn to 1. At this point turn is 1
and both processes are executing in their noncritical regions.

Suddenly, process O finishes its noncritical region and goes back to the top of its loop. Unfortunately, it is not
permitted to enter its critical region now, because turn is 1 and process 1 is busy with its noncritical region. It hangs
in its while loop until process 1 sets turn to 0. Put differently, taking turns is not a good idea when one of the
processes is much slower than the other.

This situation violates condition 3 set out above: process 0 is being blocked by a process not in its critical region.
Going back to the spooler directory discussed above, if we now associate the critical region with reading and
writing the spooler directory, process 0 would not be allowed to print another file because process 1 was doing
something else.

In fact, this solution requires that the two processes strictly alternate in entering their critical regions, for example,
in spooling files. Neither one would be permitted to spool two in a row. While this algorithm does avoid all races, it
is not really a serious candidate as a solution because it violates condition 3.

Peterson's Solution

By combining the idea of taking turns with the idea of lock variables and warning variables, a Dutch
mathematician, T. Dekker, was the first one to devise a software solution to the mutual exclusion problem that does
not require strict alternation. For a discussion of Dekker's algorithm, see Dijkstra (1965).

[Page 74]

In 1981, G.L. Peterson discovered a much simpler way to achieve mutual exclusion, thus rendering Dekker's
solution obsolete. Peterson's algorithm is shown in Fig. 2-11. This algorithm consists of two procedures written in
ANSI C, which means that function prototypes should be supplied for all the functions defined and used. However,
to save space, we will not show the prototypes in this or subsequent examples.

Figure 2-11. Peterson's solution for achieving mutual exclusion.

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processes */

int turn; /* whose turn is it? */

int interested[N]; /* all values initially 0 (FALSE)*/
void enter_region (int process) /* process is 0 or 1 */

{
int other; /* number of the other process */
other = 1 - process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /* set flag */
while (turn == process && interested[other] == TRUE) /* null statement */;
}
void leave_region (int process) /* process: who is leaving */
{
interested[process] = FALSE; /* indicate departure from critical region */
}

Before using the shared variables (i.e., before entering its critical region), each process calls enter_region with its
own process number, O or 1, as the parameter. This call will cause it to wait, if need be, until it is safe to enter. After
it has finished with the shared variables, the process calls leave_region to indicate that it is done and to allow the
other process to enter, if it so desires.

Let us see how this solution works. Initially, neither process is in its critical region. Now process 0 calls
enter_region. It indicates its interest by setting its array element and sets turn to 0. Since process 1 is not interested,
enter_region returns immediately. If process 1 now calls enter_region, it will hang there until interested[0] goes to
FALSE, an event that only happens when process 0 calls leave_region to exit the critical region.

Now consider the case that both processes call enter_region almost simultaneously. Both will store their process
number in turn. Whichever store is done last is the one that counts; the first one is lost. Suppose that process 1
stores last, so turn is 1. When both processes come to the while statement, process 0 executes it zero times and
enters its critical region. Process 1 loops and does not enter its critical region.

[Page 75]

The TSL Instruction

Now let us look at a proposal that requires a little help from the hardware. Many computers, especially those
designed with multiple processors in mind, have an instruction

TSL RX, LOCK

(Test and Set Lock) that works as follows: it reads the contents of the memory word LOCK into register RX and
then stores a nonzero value at the memory address LOCK. The operations of reading the word and storing into it are
guaranteed to be indivisibleno other processor can access the memory word until the instruction is finished. The
CPU executing the TSL instruction locks the memory bus to prohibit other CPUs from accessing memory until it is
done.

To use the TSL instruction, we will use a shared variable, LOCK, to coordinate access to shared memory. When
LOCK is 0, any process may set it to 1 using the TSL instruction and then read or write the shared memory. When
it is done, the process sets LOCK back to 0 using an ordinary move instruction.

How can this instruction be used to prevent two processes from simultaneously entering their critical regions? The
solution is given in Fig. 2-12. There a four-instruction subroutine in a fictitious (but typical) assembly language is
shown. The first instruction copies the old value of LOCK to the register and then sets LOCK to 1. Then the old

value is compared with 0. If it is nonzero, the lock was already set, so the program just goes back to the beginning
and tests it again. Sooner or later it will become 0 (when the process currently in its critical region is done with its

7

critical region), and the subroutine returns, with the lock set. Clearing the lock is simple. The program just stores a
0 in LOCK. No special instructions are needed.

Figure 2-12. Entering and leaving a critical region using the TSL instruction.

enter_region:

TSL REGISTER, LOCK |copy LOCK to register and set LOCK to 1
CMP REGISTER, #0 |was LOCK zero?

JNE ENTER_REGION |if it was non zero, LOCK was set, so loop
RET |return to caller; critical region entered

leave_region:

MOVE LOCK, #0 |store a 0 in LOCK
RET |return to caller
[Page 76]

One solution to the critical region problem is now straightforward. Before entering its critical region, a process calls
enter_region, which does busy waiting until the lock is free; then it acquires the lock and returns. After the critical
region the process calls leave_region, which stores a 0 in LOCK. As with all solutions based on critical regions, the
processes must call enter_region and leave_region at the correct times for the method to work. If a process cheats,
the mutual exclusion will fail.

2.2.4. Sleep and Wakeup

Both Peterson's solution and the solution using TSL are correct, but both have the defect of requiring busy waiting.
In essence, what these solutions do is this: when a process wants to enter its critical region, it checks to see if the
entry is allowed. If it is not, the process just sits in a tight loop waiting until it is.

Not only does this approach waste CPU time, but it can also have unexpected effects. Consider a computer with two
processes, H, with high priority and L, with low priority, which share a critical region. The scheduling rules are
such that H is run whenever it is in ready state. At a certain moment, with L in its critical region, H becomes ready
to run (e.g., an I/O operation completes). H now begins busy waiting, but since L is never scheduled while H is
running, L never gets the chance to leave its critical region, so H loops forever. This situation is sometimes referred
to as the priority inversion problem.

Now let us look at some interprocess communication primitives that block instead of wasting CPU time when they
are not allowed to enter their critical regions. One of the simplest is the pair sleep and wakeup. sleepisa
system call that causes the caller to block, that is, be suspended until another process wakes it up. The wakeup call
has one parameter, the process to be awakened. Alternatively, both sleep and wakeup each have one parameter,
a memory address used to match up sleeps with wakeups.

The Producer-Consumer Problem

As an example of how these primitives can be used in practice, let us consider the producer-consumer problem (also
known as the bounded buffer problem). Two processes share a common, fixed-size buffer. One of them, the
producer, puts information into the buffer, and the other one, the consumer, takes it out. (It is also possible to
generalize the problem to have m producers and n consumers, but we will only consider the case of one producer
and one consumer because this assumption simplifies the solutions).

8

Trouble arises when the producer wants to put a new item in the buffer, but it is already full. The solution is for the
producer to go to sleep, to be awakened when the consumer has removed one or more items. Similarly, if the
consumer wants to remove an item from the buffer and sees that the buffer is empty, it goes to sleep until the
producer puts something in the buffer and wakes it up.

[Page 77]

This approach sounds simple enough, but it leads to the same kinds of race conditions we saw earlier with the
spooler directory. To keep track of the number of items in the buffer, we will need a variable, count. If the
maximum number of items the buffer can hold is N, the producer's code will first test to see if count is N. If it is, the
producer will go to sleep; if it is not, the producer will add an item and increment count.

The consumer's code is similar: first test count to see if it is 0. If it is, go to sleep; if it is nonzero, remove an item

and decrement the counter. Each of the processes also tests to see if the other should be sleeping, and if not, wakes
it up. The code for both producer and consumer is shown in Fig. 2-13.

Figure 2-13. The producer-consumer problem with a fatal race condition.

[View full width]
#define N 100 /* number of slots in the buffer */
int count = 0; /* number of items in the buffer */

void producer (void)

{

int item;

while (TRUE) { /* repeat forever */
item = produce_item(); /* generate next item */
if (count == N) sleep(); /* if buffer is full, go to sleep */
insert_item(item) ; /* put item in buffer */
count = count + 1; /* increment count of items in buffer */
if (count == 1) wakeup (consumer) ; /* was buffer empty? */

volid consumer (void)

int item;

while (TRUE) { /* repeat forever */
if (count == 0) sleep(); /* if buffer is empty, got to sleep */
item = remove_item(); /* take item out of buffer */
count = count 1; /* decrement count of items in
buffer */
if (count ==N 1) wakeup (producer) ; /* was buffer full? */
consume_item (item) ; /* print item */

To express system calls such as sleep and wakeup in C, we will show them as calls to library routines. They are
not part of the standard C library but presumably would be available on any system that actually had these system
calls. The procedures enter_item and remove_item, which are not shown, handle the bookkeeping of putting items
into the buffer and taking items out of the buffer.

[Page 78]

Now let us get back to the race condition. It can occur because access to count is unconstrained. The following
situation could possibly occur. The buffer is empty and the consumer has just read count to see if it is 0. At that
instant, the scheduler decides to stop running the consumer temporarily and start running the producer. The
producer enters an item in the buffer, increments count, and notices that it is now 1. Reasoning that count was just
0, and thus the consumer must be sleeping, the producer calls wakeup to wake the consumer up.

Unfortunately, the consumer is not yet logically asleep, so the wakeup signal is lost. When the consumer next runs,
it will test the value of count it previously read, find it to be 0, and go to sleep. Sooner or later the producer will fill
up the buffer and also go to sleep. Both will sleep forever.

The essence of the problem here is that a wakeup sent to a process that is not (yet) sleeping is lost. If it were not
lost, everything would work. A quick fix is to modify the rules to add a wakeup waiting bit to the picture. When a
wakeup is sent to a process that is still awake, this bit is set. Later, when the process tries to go to sleep, if the
wakeup waiting bit is on, it will be turned off, but the process will stay awake. The wakeup waiting bit is a piggy
bank for wakeup signals.

While the wakeup waiting bit saves the day in this simple example, it is easy to construct examples with three or
more processes in which one wakeup waiting bit is insufficient. We could make another patch, and add a second
wakeup waiting bit, or maybe 8 or 32 of them, but in principle the problem is still there.

2.2.5. Semaphores

This was the situation until E. W. Dijkstra (1965) suggested using an integer variable to count the number of
wakeups saved for future use. In his proposal, a new variable type, called a semaphore, was introduced. A
semaphore could have the value 0, indicating that no wakeups were saved, or some positive value if one or more
wakeups were pending.

Dijkstra proposed having two operations, down and up (which are generalizations of sleep and wakeup,
respectively). The down operation on a semaphore checks to see if the value is greater than 0. If so, it decrements
the value (i.e., uses up one stored wakeup) and just continues. If the value is 0, the process is put to sleep without
completing the down for the moment. Checking the value, changing it, and possibly going to sleep is all done as a
single, indivisible, atomic action. It is guaranteed that once a semaphore operation has started, no other process can
access the semaphore until the operation has completed or blocked. This atomicity is absolutely essential to solving
synchronization problems and avoiding race conditions.

The up operation increments the value of the semaphore addressed. If one or more processes were sleeping on that
semaphore, unable to complete an earlier down operation, one of them is chosen by the system (e.g., at random)
and is allowed to complete its down. Thus, after an up on a semaphore with processes sleeping on it, the
semaphore will still be 0, but there will be one fewer process sleeping on it. The operation of incrementing the
semaphore and waking up one process is also indivisible. No process ever blocks doing an up, just as no process
ever blocks doing a wakeup in the earlier model.

[Page 79]

As an aside, in Dijkstra's original paper, he used the names p and v instead of down and up, respectively, but since
these have no mnemonic significance to people who do not speak Dutch (and only marginal significance to those
who do), we will use the terms down and up instead. These were first introduced in Algol 68.

10

Solving the Producer-Consumer Problem using Semaphores

Semaphores solve the lost-wakeup problem, as shown in Fig. 2-14. It is essential that they be implemented in an
indivisible way. The normal way is to implement up and down as system calls, with the operating system briefly
disabling all interrupts while it is testing the semaphore, updating it, and putting the process to sleep, if necessary.
As all of these actions take only a few instructions, no harm is done in disabling interrupts. If multiple CPUs are
being used, each semaphore should be protected by a lock variable, with the TSL instruction used to make sure that
only one CPU at a time examines the semaphore. Be sure you understand that using TSL to prevent several CPUs
from accessing the semaphore at the same time is quite different from busy waiting by the producer or consumer
waiting for the other to empty or fill the buffer. The semaphore operation will only take a few microseconds,
whereas the producer or consumer might take arbitrarily long.

Figure 2-14. The producer-consumer problem using semaphores. (This item is displayed on page 80 in the print
version)

#define N 100 /* number of