
• Table of
Contents

&"87%" class="v1"
height="17">Index

Operating Systems Design and Implementation, Third Edition
By Andrew S. Tanenbaum - Vrije Universiteit Amsterdam, The
Netherlands, Albert S. Woodhull - Amherst, Massachusetts
Publisher: Prentice Hall
Pub Date: January 04, 2006

Print
ISBN-10: 0-13-142938-8

Print
ISBN-13: 978-0-13-142938-3

eText
ISBN-10: 0-13-185991-9

eText
ISBN-13: 978-0-13-185991-3

Pages: 1080

Revised to address the latest version of MINIX (MINIX 3), this
streamlined, simplified new edition remains the only operating systems
text to first explain relevant principles, then demonstrate their
applications using a Unix-like operating system as a detailed example. It
has been especially designed for high reliability, for use in embedded
systems, and for ease of teaching.

For the latest version of MINIX and simulators for running MINIX on
other systems visit: www.minix3.org

1

1

2

2

• Table of
Contents

&"87%" class="v1"
height="17">Index

Operating Systems Design and Implementation, Third Edition
By Andrew S. Tanenbaum - Vrije Universiteit Amsterdam, The
Netherlands, Albert S. Woodhull - Amherst, Massachusetts
Publisher: Prentice Hall
Pub Date: January 04, 2006

Print
ISBN-10: 0-13-142938-8

Print
ISBN-13: 978-0-13-142938-3

eText
ISBN-10: 0-13-185991-9

eText
ISBN-13: 978-0-13-185991-3

Pages: 1080

Copyright
Preface
Chapter
1.
Introduction
Section
1.1.
What
Is
an
Operating
System?
Section
1.2.
History
of
Operating
Systems
Section
1.3.
Operating
System
Concepts
Section
1.4.
System
Calls
Section
1.5.
Operating
System
Structure
Section
1.6.
Outline

1

1

of
the
Rest
of
This
Book
Section
1.7.
Summary
Problems

Chapter
2.
Processes
Section
2.1.
Introduction
to
Processes
Section
2.2.
Interprocess
Communication
Section
2.3.
Classical
IPC
Problems
Section
2.4.
Scheduling
Section
2.5.
Overview
of
Processes
in
MINIX
3
Section
2.6.
Implementation
of
Processes
in
MINIX
3
Section
2.7.
The
System
Task
in
MINIX
3

2

2

Section
2.8.
The
Clock
Task
in
MINIX
3
Section
2.9.
Summary
Problems

Chapter
3.
Input/Output
Section
3.1.
Principles
of
I/O
Hardware
Section
3.2.
Principles
of
I/O
Software
Section
3.3.
Deadlocks
Section
3.4.
Overview
of
I/O
in
MINIX
3
Section
3.5.
Block
Devices
in
MINIX
3
Section
3.6.
RAM
Disks
Section
3.7.
Disks
Section
3.8.

3

3

Terminals
Section
3.9.
Summary
Problems

Chapter
4.
Memory
Management
Section
4.1.
Basic
Memory
Management
Section
4.2.
Swapping
Section
4.3.
Virtual
Memory
Section
4.4.
Page
Replacement
Algorithms
Section
4.5.
Design
Issues
for
Paging
Systems
Section
4.6.
Segmentation
Section
4.7.
Overview
of
the
MINIX
3
Process
Manager
Section
4.8.
Implementation
of
the
MINIX
3
Process
Manager

4

4

Section
4.9.
Summary
Problems

Chapter
5.
File
Systems
Section
5.1.
Files
Section
5.2.
Directories
Section
5.3.
File
System
Implementation
Section
5.4.
Security
Section
5.5.
Protection
Mechanisms
Section
5.6.
Overview
of
the
MINIX
3
File
System
Section
5.7.
Implementation
of
the
MINIX
3
File
System
Section
5.8.
Summary
Problems

Chapter
6.
Reading
List
and
Bibliography

5

5

Section
6.1.
Suggestions
for
Further
Reading
Section
6.2.
Alphabetical
Bibliography

Appendix
A.
Installing
MINIX
3
Section
A.1.
Preparation
Section
A.2.
Booting
Section
A.3.
Installing
to
the
Hard
Disk
Section
A.4.
Testing
Section
A.5.
Using
a
Simulator

Appendix
B.
The
MINIX
Source
Code
Appendix
C.
Index
to
Files
About
the
Authors
About
the
MINIX
3

6

6

CD
System
Requirements
Hardware
Software
Installation
Product
Support

Index

7

7

8

8

Copyright

[Page iv]

Library of Congress Cataloging in Publication Data

Tanenbaum, Andrew S.
 Operating Systems: Design and Implementation / Andrew S. Tanenbaum, Albert S. Woodhull. -- 3rd ed.
 ISBN: 0-13-142938-8
 1. Operating systems (Computers) I. Woodhull, Albert S. II. Title

QA76.76.O63T36 2006
005.4'3--dc22

Vice President and Editorial Director, ECS: Marcia J. Horton

Executive Editor: Tracy Dunkelberger

Editorial Assistant: Christianna Lee

Executive Managing Editor: Vince O'Brien

Managing Editor: Camille Trentacoste

Director of Creative Services: Paul Belfanti

Art Director and Cover Manager: Heather Scott

Cover Design and Illutsration: Tamara Newnam

Managing Editor, AV Management and Production: Patricia Burns

Art Editor: Gregory Dulles

Manufacturing Manager, ESM: Alexis Heydt-Long

Manufacturing Buyer: Lisa McDowell

Executive Marketing Manager: Robin O'Brien

Marketing Assistant: Barrie Reinhold

© 2006, 1997, 1987 by Pearson Education, Inc.
Pearson Prentice Hall
Pearson Education, Inc.
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without permission
in writing from the publisher.

1

1

Pearson Prentice Hall® is a trademark of Pearson Education, Inc.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their effectiveness.
The authors and publisher make no warranty of any kind, expressed or implied, with regard to these programs
or to the documentation contained in this book. The authors and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use
of these programs.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission
in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Pearson Education Ltd., London
Pearson Education Australia Pty. Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education-Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey

Dedication

To Suzanne, Barbara, Marvin, and the memory of Sweetie π and Bram

AST

To Barbara and Gordon

ASW

The MINIX 3 Mascot

Other operating systems have an animal mascot, so we felt MINIX 3 ought to have one too. We chose the
raccoon because raccoons are small, cute, clever, agile, eat bugs, and are user-friendlyat least if you keep your
garbage can well locked.

2

2

[Page xv]

Preface

Most books on operating systems are strong on theory and weak on practice. This one aims to provide a better
balance between the two. It covers all the fundamental principles in great detail, including processes,
interprocess communication, semaphores, monitors, message passing, scheduling algorithms, input/output,
deadlocks, device drivers, memory management, paging algorithms, file system design, security, and
protection mechanisms. But it also discusses one particular systemMINIX 3a UNIX-compatible operating
system in detail, and even provides a source code listing for study. This arrangement allows the reader not
only to learn the principles, but also to see how they are applied in a real operating system.

When the first edition of this book appeared in 1987, it caused something of a small revolution in the way
operating systems courses were taught. Until then, most courses just covered theory. With the appearance of
MINIX, many schools began to have laboratory courses in which students examined a real operating system
to see how it worked inside. We consider this trend highly desirable and hope it continues.

It its first 10 years, MINIX underwent many changes. The original code was designed for a 256K 8088-based
IBM PC with two diskette drives and no hard disk. It was also based on UNIX Version 7 As time went on,
MINIX evolved in many ways: it supported 32-bit protected mode machines with large memories and hard
disks. It also changed from being based on Version 7, to being based on the international POSIX standard
(IEEE 1003.1 and ISO 9945-1). Finally, many new features were added, perhaps too many in our view, but
too few in the view of some other people, which led to the creation of Linux. In addition, MINIX was ported
to many other platforms, including the Macintosh, Amiga, Atari, and SPARC. A second edition of the book,
covering this system, was published in 1997 and was widely used at universities.

[Page xvi]

The popularity of MINIX has continued, as can be observed by examining the number of hits for MINIX
found by Google.

This third edition of the book has many changes throughout. Nearly all of the material on principles has been
revised, and considerable new material has been added. However, the main change is the discussion of the
new version of the system, called MINIX 3. and the inclusion of the new code in this book. Although loosely
based on MINIX 2, MINIX 3 is fundamentally different in many key ways.

The design of MINIX 3 was inspired by the observation that operating systems are becoming bloated, slow,
and unreliable. They crash far more often than other electronic devices such as televisions, cell phones, and
DVD players and have so many features and options that practically nobody can understand them fully or
manage them well. And of course, computer viruses, worms, spyware, spam, and other forms of malware have
become epidemic.

To a large extent, many of these problems are caused by a fundamental design flaw in current operating
systems: their lack of modularity. The entire operatng system is typically millions of lines of C/C++ code
compiled into a single massive executable program run in kernel mode. A bug in any one of those millions of
lines of code can cause the system to malfunction. Getting all this code correct is impossible, especially when
about 70% consists of device drivers, written by third parties, and outside the purview of the people
maintaining the operating system.

With MINIX 3, we demonstrate that this monolithic design is not the only possibility. The MINIX 3 kernel is
only about 4000 lines of executable code, not the millions found in Windows, Linux, Mac OSX, or FreeBSD.

1

1

The rest of the system, including all the device drivers (except the clock driver), is a collection of small,
modular, user-mode processes, each of which is tightly restricted in what it can do and with which other
processes it may communicate.

While MINIX 3 is a work in progress, we believe that this model of building an operating system as a
collection of highly-encapsulated user-mode processes holds promise for building more reliable systems in the
future. MINIX 3 is especially focused on smaller PCs (such as those commonly found in Third-World
countries and on embedded systems, which are always resource constrained). In any event, this design makes
it much easier for students to learn how an operating system works than attempting to study a huge monolithic
system.

The CD-ROM that is included in this book is a live CD. You can put it in your CD-ROM drive, reboot the
computer, and MINIX 3 will give a login prompt within a few seconds. You can log in as root and give the
system a try without first having to install it on your hard disk. Of course, it can also be installed on the hard
disk. Detailed installation instructions are given in Appendix A.

[Page xvii]

As suggested above, MINIX 3 is rapidly evolving, with new versions being issued frequently. To download
the current CD-ROM image file for burning, please go to the official Website: www.minix3.org. This site also
contains a large amount of new software, documentation, and news about MINIX 3 development. For
discussions about MINIX 3, or to ask questions, there is a USENET newsgroup: comp.os.minix. People
without newsreaders can follow discussions on the Web at http://groups.google.com/group/comp.os.minix.

As an alternative to installing MINIX 3 on your hard disk, it is possible to run it on any one of several PC
simulators now available. Some of these are listed on the main page of the Website.

Instructors who are using the book as the text for a university course can get the problem solutions from their
local Prentice Hall representative. The book has its own Website. It can be found by going to
www.prenhall.com/tanenbaum and selecting this title.

We have been extremely fortunate in having the help of many people during the course of this project. First
and foremost, Ben Gras and Jorrit Herder have done most of the programming of the new version. They did a
great job under tight time constraints, including responding to e-mail well after midnight on many occasions.
They also read the manuscript and made many useful comments. Our deepest appreciation to both of them.

Kees Bot also helped greatly with previous versions, giving us a good base to work with. Kees wrote large
chunks of code for versions up to 2.0.4, repaired bugs, and answered numerous questions. Philip Homburg
wrote most of the networking code as well as helping out in numerous other useful ways, especially providing
detailed feedback on the manuscript.

People too numerous to list contributed code to the very early versions, helping to get MINIX off the ground
in the first place. There were so many of them and their contributions have been so varied that we cannot even
begin to list them all here, so the best we can do is a generic thank you to all of them.

Several people read parts of the manuscript and made suggestions. We would like to give our special thanks to
Gojko Babic, Michael Crowley, Joseph M. Kizza, Sam Kohn Alexander Manov, and Du Zhang for their help.

Finally, we would like to thank our families. Suzanne has been through this 16 times now. Barbara has been
through it 15 times now. Marvin has been through it 14 times now. It's kind of getting to be routine, but the
love and support is still much appreciated. (AST)

Al's Barbara has been through this twice now. Her support, patience, and good humor were essential. Gordon

2

2

http://www.minix3.org
http://groups.google.com/group/comp.os.minix
http://www.prenhall.com/tanenbaum

has been a patient listener. It is still a delight to have a son who understands and cares about the things that
fascinate me. Finally, step-grandson Zain's first birthday coincides with the release of MINIX 3. Some day he
will appreciate this. (ASW)

Andrew S. Tanenbaum

Albert S. Woodhull

3

3

4

4

[Page 1]

1. Introduction

Without its software, a computer is basically a useless lump of metal. With its software, a computer can store,
process, and retrieve information; play music and videos; send e-mail, search the Internet; and engage in many
other valuable activities to earn its keep. Computer software can be divided roughly into two kinds: system
programs, which manage the operation of the computer itself, and application programs, which perform the
actual work the user wants. The most fundamental system program is the operating system, whose job is to
control all the computer's resources and provide a base upon which the application programs can be written.
Operating systems are the topic of this book. In particular, an operating system called MINIX 3 is used as a
model, to illustrate design principles and the realities of implementing a design.

A modern computer system consists of one or more processors, some main memory, disks, printers, a
keyboard, a display, network interfaces, and other input/output devices. All in all, a complex system. Writing
programs that keep track of all these components and use them correctly, let alone optimally, is an extremely
difficult job. If every programmer had to be concerned with how disk drives work, and with all the dozens of
things that could go wrong when reading a disk block, it is unlikely that many programs could be written at
all.

Many years ago it became abundantly clear that some way had to be found to shield programmers from the
complexity of the hardware. The way that has evolved gradually is to put a layer of software on top of the bare
hardware, to manage all parts of the system, and present the user with an interface or virtual machine that is
easier to understand and program. This layer of software is the operating system.

[Page 2]

The placement of the operating system is shown in Fig. 1-1. At the bottom is the hardware, which, in many
cases, is itself composed of two or more levels (or layers). The lowest level contains physical devices,
consisting of integrated circuit chips, wires, power supplies, cathode ray tubes, and similar physical devices.
How these are constructed and how they work is the province of the electrical engineer.

Figure 1-1. A computer system consists of hardware, system programs, and application programs.

1

1

Next comes the microarchitecture level, in which the physical devices are grouped together to form functional
units. Typically this level contains some registers internal to the CPU (Central Processing Unit) and a data
path containing an arithmetic logic unit. In each clock cycle, one or two operands are fetched from the
registers and combined in the arithmetic logic unit (for example, by addition or Boolean AND). The result is
stored in one or more registers. On some machines, the operation of the data path is controlled by software,
called the microprogram. On other machines, it is controlled directly by hardware circuits.

The purpose of the data path is to execute some set of instructions. Some of these can be carried out in one
data path cycle; others may require multiple data path cycles. These instructions may use registers or other
hardware facilities. Together, the hardware and instructions visible to an assembly language programmer form
the ISA (Instruction Set Architecture) This level is often called machine language.

The machine language typically has between 50 and 300 instructions, mostly for moving data around the
machine, doing arithmetic, and comparing values. In this level, the input/output devices are controlled by
loading values into special device registers. For example, a disk can be commanded to read by loading the
values of the disk address, main memory address, byte count, and direction (read or write) into its registers. In
practice, many more parameters are needed, and the status returned by the drive after an operation may be
complex. Furthermore, for many I/O (Input/Output) devices, timing plays an important role in the
programming.

[Page 3]

A major function of the operating system is to hide all this complexity and give the programmer a more
convenient set of instructions to work with. For example, read block from file is conceptually much
simpler than having to worry about the details of moving disk heads, waiting for them to settle down, and so
on.

On top of the operating system is the rest of the system software. Here we find the command interpreter
(shell), window systems, compilers, editors, and similar application-independent programs. It is important to
realize that these programs are definitely not part of the operating system, even though they are typically
supplied preinstalled by the computer manufacturer, or in a package with the operating system if it is installed
after purchase. This is a crucial, but subtle, point. The operating system is (usually) that portion of the
software that runs in kernel mode or supervisor mode. It is protected from user tampering by the hardware
(ignoring for the moment some older or low-end microprocessors that do not have hardware protection at all).
Compilers and editors run in user mode. If a user does not like a particular compiler, he[] is free to write his
own if he so chooses; he is not free to write his own clock interrupt handler, which is part of the operating
system and is normally protected by hardware against attempts by users to modify it.

[] "He" should be read as "he or she" throughout the book.

This distinction, however, is sometimes blurred in embedded systems (which may not have kernel mode) or
interpreted systems (such as Java-based systems that use interpretation, not hardware, to separate the
components). Still, for traditional computers, the operating system is what runs in kernel mode.

That said, in many systems there are programs that run in user mode but which help the operating system or
perform privileged functions. For example, there is often a program that allows users to change their
passwords. This program is not part of the operating system and does not run in kernel mode, but it clearly
carries out a sensitive function and has to be protected in a special way.

In some systems, including MINIX 3, this idea is carried to an extreme form, and pieces of what is
traditionally considered to be the operating system (such as the file system) run in user space. In such systems,
it is difficult to draw a clear boundary. Everything running in kernel mode is clearly part of the operating
system, but some programs running outside it are arguably also part of it, or at least closely associated with it.

2

2

For example, in MINIX 3, the file system is simply a big C program running in user-mode.

Finally, above the system programs come the application programs. These programs are purchased (or written
by) the users to solve their particular problems, such as word processing, spreadsheets, engineering
calculations, or storing information in a database.

3

3

4

4

[Page 4]

1.1. What Is an Operating System?

Most computer users have had some experience with an operating system, but it is difficult to pin down
precisely what an operating system is. Part of the problem is that operating systems perform two basically
unrelated functions, extending the machine and managing resources, and depending on who is doing the
talking, you hear mostly about one function or the other. Let us now look at both.

1.1.1. The Operating System as an Extended Machine

As mentioned earlier, the architecture (instruction set, memory organization, I/O, and bus structure) of most
computers at the machine language level is primitive and awkward to program, especially for input/output. To
make this point more concrete, let us briefly look at how floppy disk I/O is done using the NEC PD765
compatible controller chips used on many Intel-based personal computers. (Throughout this book we will use
the terms "floppy disk" and "diskette" interchangeably.) The PD765 has 16 commands, each specified by
loading between 1 and 9 bytes into a device register. These commands are for reading and writing data,
moving the disk arm, and formatting tracks, as well as initializing, sensing, resetting, and recalibrating the
controller and the drives.

The most basic commands are read and write, each of which requires 13 parameters, packed into 9 bytes.
These parameters specify such items as the address of the disk block to be read, the number of sectors per
track, the recording mode used on the physical medium, the intersector gap spacing, and what to do with a
deleted-data-address-mark. If you do not understand this mumbo jumbo, do not worry; that is precisely the
pointit is rather esoteric. When the operation is completed, the controller chip returns 23 status and error fields
packed into 7 bytes. As if this were not enough, the floppy disk programmer must also be constantly aware of
whether the motor is on or off. If the motor is off, it must be turned on (with a long startup delay) before data
can be read or written. The motor cannot be left on too long, however, or the floppy disk will wear out. The
programmer is thus forced to deal with the trade-off between long startup delays versus wearing out floppy
disks (and losing the data on them).

Without going into the real details, it should be clear that the average programmer probably does not want to
get too intimately involved with the programming of floppy disks (or hard disks, which are just as complex
and quite different). Instead, what the programmer wants is a simple, high-level abstraction to deal with. In
the case of disks, a typical abstraction would be that the disk contains a collection of named files. Each file
can be opened for reading or writing, then read or written, and finally closed. Details such as whether or not
recording should use modified frequency modulation and what the current state of the motor is should not
appear in the abstraction presented to the user.

[Page 5]

The program that hides the truth about the hardware from the programmer and presents a nice, simple view of
named files that can be read and written is, of course, the operating system. Just as the operating system
shields the programmer from the disk hardware and presents a simple file-oriented interface, it also conceals a
lot of unpleasant business concerning interrupts, timers, memory management, and other low-level features.
In each case, the abstraction offered by the operating system is simpler and easier to use than that offered by
the underlying hardware.

In this view, the function of the operating system is to present the user with the equivalent of an extended
machine or virtual machine that is easier to program than the underlying hardware. How the operating system

1

1

achieves this goal is a long story, which we will study in detail throughout this book. To summarize it in a
nutshell, the operating system provides a variety of services that programs can obtain using special
instructions called system calls. We will examine some of the more common system calls later in this chapter.

1.1.2. The Operating System as a Resource Manager

The concept of the operating system as primarily providing its users with a convenient interface is a top-down
view. An alternative, bottom-up, view holds that the operating system is there to manage all the pieces of a
complex system. Modern computers consist of processors, memories, timers, disks, mice, network interfaces,
printers, and a wide variety of other devices. In the alternative view, the job of the operating system is to
provide for an orderly and controlled allocation of the processors, memories, and I/O devices among the
various programs competing for them.

Imagine what would happen if three programs running on some computer all tried to print their output
simultaneously on the same printer. The first few lines of printout might be from program 1, the next few
from program 2, then some from program 3, and so forth. The result would be chaos. The operating system
can bring order to the potential chaos by buffering all the output destined for the printer on the disk. When one
program is finished, the operating system can then copy its output from the disk file where it has been stored
to the printer, while at the same time the other program can continue generating more output, oblivious to the
fact that the output is not really going to the printer (yet).

When a computer (or network) has multiple users, the need for managing and protecting the memory, I/O
devices, and other resources is even greater, since the users might otherwise interfere with one another. In
addition, users often need to share not only hardware, but information (files, databases, etc.) as well. In short,
this view of the operating system holds that its primary task is to keep track of who is using which resource, to
grant resource requests, to account for usage, and to mediate conflicting requests from different programs and
users.

[Page 6]

Resource management includes multiplexing (sharing) resources in two ways: in time and in space. When a
resource is time multiplexed, different programs or users take turns using it. First one of them gets to use the
resource, then another, and so on. For example, with only one CPU and multiple programs that want to run on
it, the operating system first allocates the CPU to one program, then after it has run long enough, another one
gets to use the CPU, then another, and then eventually the first one again. Determining how the resource is
time multiplexedwho goes next and for how longis the task of the operating system. Another example of time
multiplexing is sharing the printer. When multiple print jobs are queued up for printing on a single printer, a
decision has to be made about which one is to be printed next.

The other kind of multiplexing is space multiplexing. Instead of the customers taking turns, each one gets part
of the resource. For example, main memory is normally divided up among several running programs, so each
one can be resident at the same time (for example, in order to take turns using the CPU). Assuming there is
enough memory to hold multiple programs, it is more efficient to hold several programs in memory at once
rather than give one of them all of it, especially if it only needs a small fraction of the total. Of course, this
raises issues of fairness, protection, and so on, and it is up to the operating system to solve them. Another
resource that is space multiplexed is the (hard) disk. In many systems a single disk can hold files from many
users at the same time. Allocating disk space and keeping track of who is using which disk blocks is a typical
operating system resource management task.

2

2

[Page 6 (continued)]

1.2. History of Operating Systems

Operating systems have been evolving through the years. In the following sections we will briefly look at a
few of the highlights. Since operating systems have historically been closely tied to the architecture of the
computers on which they run, we will look at successive generations of computers to see what their operating
systems were like. This mapping of operating system generations to computer generations is crude, but it does
provide some structure where there would otherwise be none.

The first true digital computer was designed by the English mathematician Charles Babbage (17921871).
Although Babbage spent most of his life and fortune trying to build his "analytical engine," he never got it
working properly because it was purely mechanical, and the technology of his day could not produce the
required wheels, gears, and cogs to the high precision that he needed. Needless to say, the analytical engine
did not have an operating system.

As an interesting historical aside, Babbage realized that he would need software for his analytical engine, so
he hired a young woman named Ada Lovelace, who was the daughter of the famed British poet Lord Byron,
as the world's first programmer. The programming language Ada&"ch01lev2sec3">

[Page 7]

1.2.1. The First Generation (194555) Vacuum Tubes and Plugboards

After Babbage's unsuccessful efforts, little progress was made in constructing digital computers until World
War II. Around the mid-1940s, Howard Aiken at Harvard University, John von Neumann at the Institute for
Advanced Study in Princeton, J. Presper Eckert and John Mauchley at the University of Pennsylvania, and
Konrad Zuse in Germany, among others, all succeeded in building calculating engines. The first ones used
mechanical relays but were very slow, with cycle times measured in seconds. Relays were later replaced by
vacuum tubes. These machines were enormous, filling up entire rooms with tens of thousands of vacuum
tubes, but they were still millions of times slower than even the cheapest personal computers available today.

In these early days, a single group of people designed, built, programmed, operated, and maintained each
machine. All programming was done in absolute machine language, often by wiring up plugboards to control
the machine's basic functions. Programming languages were unknown (even assembly language was
unknown). Operating systems were unheard of. The usual mode of operation was for the programmer to sign
up for a block of time on the signup sheet on the wall, then come down to the machine room, insert his or her
plugboard into the computer, and spend the next few hours hoping that none of the 20,000 or so vacuum tubes
would burn out during the run. Virtually all the problems were straightforward numerical calculations, such as
grinding out tables of sines, cosines, and logarithms.

By the early 1950s, the routine had improved somewhat with the introduction of punched cards. It was now
possible to write programs on cards and read them in instead of using plugboards; otherwise, the procedure
was the same.

1.2.2. The Second Generation (195565) Transistors and Batch Systems

The introduction of the transistor in the mid-1950s changed the picture radically. Computers became reliable
enough that they could be manufactured and sold to paying customers with the expectation that they would
continue to function long enough to get some useful work done. For the first time, there was a clear separation
between designers, builders, operators, programmers, and maintenance personnel.

1

1

These machines, now called mainframes, were locked away in specially airconditioned computer rooms, with
staffs of specially-trained professional operators to run them. Only big corporations or major government
agencies or universities could afford their multimillion dollar price tags. To run a job (i.e., a program or set of
programs), a programmer would first write the program on paper (in FORTRAN or possibly even in assembly
language), then punch it on cards. He would then bring the card deck down to the input room and hand it to
one of the operators and go drink coffee until the output was ready.

[Page 8]

When the computer finished whatever job it was currently running, an operator would go over to the printer
and tear off the output and carry it over to the output-room, so that the programmer could collect it later. Then
he would take one of the card decks that had been brought from the input room and read it in. If the
FORTRAN compiler was needed, the operator would have to get it from a file cabinet and read it in. Much
computer time was wasted while operators were walking around the machine room.

Given the high cost of the equipment, it is not surprising that people quickly looked for ways to reduce the
wasted time. The solution generally adopted was the batch system. The idea behind it was to collect a tray full
of jobs in the input room and then read them onto a magnetic tape using a small (relatively) inexpensive
computer, such as the IBM 1401, which was very good at reading cards, copying tapes, and printing output,
but not at all good at numerical calculations. Other, much more expensive machines, such as the IBM 7094,
were used for the real computing. This situation is shown in Fig. 1-2.

Figure 1-2. An early batch system. (a) Programmers bring cards to 1401. (b) 1401 reads batch of jobs onto tape.
(c) Operator carries input tape to 7094. (d) 7094 does computing. (e) Operator carries output tape to 1401. (f) 1401

prints output.

[View full size image]

After about an hour of collecting a batch of jobs, the tape was rewound and brought into the machine room,
where it was mounted on a tape drive. The operator then loaded a special program (the ancestor of today's
operating system), which read the first job from tape and ran it. The output was written onto a second tape,
instead of being printed. After each job finished, the operating system automatically read the next job from the
tape and began running it. When the whole batch was done, the operator removed the input and output tapes,
replaced the input tape with the next batch, and brought the output tape to a 1401 for printing off line (i.e., not
connected to the main computer).

The structure of a typical input job is shown in Fig. 1-3. It started out with a $JOB card, specifying the
maximum run time in minutes, the account number to be charged, and the programmer's name. Then came a
$FORTRAN card, telling the operating system to load the FORTRAN compiler from the system tape. It was
followed by the program to be compiled, and then a $LOAD card, directing the operating system to load the
object program just compiled. (Compiled programs were often written on scratch tapes and had to be loaded
explicitly.) Next came the $RUN card, telling the operating system to run the program with the data following

2

2

it. Finally, the $END card marked the end of the job. These primitive control cards were the forerunners of
modern job control languages and command interpreters.

[Page 9]

Figure 1-3. Structure of a typical FMS job.

Large second-generation computers were used mostly for scientific and engineering calculations, such as
solving the partial differential equations that often occur in physics and engineering. They were largely
programmed in FORTRAN and assembly language. Typical operating systems were FMS (the Fortran
Monitor System) and IBSYS, IBM's operating system for the 7094.

1.2.3. The Third Generation (19651980) ICs and Multiprogramming

By the early 1960s, most computer manufacturers had two distinct, and totally incompatible, product lines. On
the one hand there were the word-oriented, large-scale scientific computers, such as the 7094, which were
used for numerical calculations in science and engineering. On the other hand, there were the
character-oriented, commercial computers, such as the 1401, which were widely used for tape sorting and
printing by banks and insurance companies.

Developing, maintaining, and marketing two completely different product lines was an expensive proposition
for the computer manufacturers. In addition, many new computer customers initially needed a small machine
but later outgrew it and wanted a bigger machine that had the same architectures as their current one so it
could run all their old programs, but faster.

[Page 10]

IBM attempted to solve both of these problems at a single stroke by introducing the System/360. The 360 was
a series of software-compatible machines ranging from 1401-sized to much more powerful than the 7094. The
machines differed only in price and performance (maximum memory, processor speed, number of I/O devices
permitted, and so forth). Since all the machines had the same architecture and instruction set, programs

3

3

written for one machine could run on all the others, at least in theory. Furthermore, the 360 was designed to
handle both scientific (i.e., numerical) and commercial computing. Thus a single family of machines could
satisfy the needs of all customers. In subsequent years, IBM has come out with compatible successors to the
360 line, using more modern technology, known as the 370, 4300, 3080, 3090, and Z series.

The 360 was the first major computer line to use (small-scale) Integrated Circuits (ICs), thus providing a
major price/performance advantage over the second-generation machines, which were built up from
individual transistors. It was an immediate success, and the idea of a family of compatible computers was
soon adopted by all the other major manufacturers. The descendants of these machines are still in use at
computer centers today. Nowadays they are often used for managing huge databases (e.g., for airline
reservation systems) or as servers for World Wide Web sites that must process thousands of requests per
second.

The greatest strength of the "one family" idea was simultaneously its greatest weakness. The intention was
that all software, including the operating system, OS/360, had to work on all models. It had to run on small
systems, which often just replaced 1401s for copying cards to tape, and on very large systems, which often
replaced 7094s for doing weather forecasting and other heavy computing. It had to be good on systems with
few peripherals and on systems with many peripherals. It had to work in commercial environments and in
scientific environments. Above all, it had to be efficient for all of these different uses.

There was no way that IBM (or anybody else) could write a piece of software to meet all those conflicting
requirements. The result was an enormous and extraordinarily complex operating system, probably two to
three orders of magnitude larger than FMS. It consisted of millions of lines of assembly language written by
thousands of programmers, and contained thousands upon thousands of bugs, which necessitated a continuous
stream of new releases in an attempt to correct them. Each new release fixed some bugs and introduced new
ones, so the number of bugs probably remained constant in time.

One of the designers of OS/360, Fred Brooks, subsequently wrote a witty and incisive book describing his
experiences with OS/360 (Brooks, 1995). While it would be impossible to summarize the book here, suffice it
to say that the cover shows a herd of prehistoric beasts stuck in a tar pit. The cover of Silberschatz et al.
(2004) makes a similar point about operating systems being dinosaurs.

[Page 11]

Despite its enormous size and problems, OS/360 and the similar third-generation operating systems produced
by other computer manufacturers actually satisfied most of their customers reasonably well. They also
popularized several key techniques absent in second-generation operating systems. Probably the most
important of these was multiprogramming. On the 7094, when the current job paused to wait for a tape or
other I/O operation to complete, the CPU simply sat idle until the I/O finished. With heavily CPU-bound
scientific calculations, I/O is infrequent, so this wasted time is not significant. With commercial data
processing, the I/O wait time can often be 80 or 90 percent of the total time, so something had to be done to
avoid having the (expensive) CPU be idle so much.

The solution that evolved was to partition memory into several pieces, with a different job in each partition, as
shown in Fig. 1-4. While one job was waiting for I/O to complete, another job could be using the CPU. If
enough jobs could be held in main memory at once, the CPU could be kept busy nearly 100 percent of the
time. Having multiple jobs safely in memory at once requires special hardware to protect each job against
snooping and mischief by the other ones, but the 360 and other third-generation systems were equipped with
this hardware.

4

4

Figure 1-4. A multiprogramming system with three jobs in memory.

Another major feature present in third-generation operating systems was the ability to read jobs from cards
onto the disk as soon as they were brought to the computer room. Then, whenever a running job finished, the
operating system could load a new job from the disk into the now-empty partition and run it. This technique is
called spooling (from Simultaneous Peripheral Operation On Line) and was also used for output. With
spooling, the 1401s were no longer needed, and much carrying of tapes disappeared.

Although third-generation operating systems were well suited for big scientific calculations and massive
commercial data processing runs, they were still basically batch systems. Many programmers pined for the
first-generation days when they had the machine all to themselves for a few hours, so they could debug their
programs quickly. With third-generation systems, the time between submitting a job and getting back the
output was often hours, so a single misplaced comma could cause a compilation to fail, and the programmer to
waste half a day.

This desire for quick response time paved the way for timesharing, a variant of multiprogramming, in which
each user has an online terminal. In a timesharing system, if 20 users are logged in and 17 of them are
thinking or talking or drinking coffee, the CPU can be allocated in turn to the three jobs that want service.
Since people debugging programs usually issue short commands (e.g., compile a five-page procedure[])
rather than long ones (e.g., sort a million-record file), the computer can provide fast, interactive service to a
number of users and perhaps also work on big batch jobs in the background when the CPU is otherwise idle.
The first serious timesharing system, CTSS (Compatible Time Sharing System), was developed at M.I.T. on a
specially modified 7094 (Corbató et al., 1962). However, timesharing did not really become popular until the
necessary protection hardware became widespread during the third generation.

[] We will use the terms "procedure," "subroutine," and "function" interchangeably in this
book.

[Page 12]

After the success of the CTSS system, MIT, Bell Labs, and General Electric (then a major computer
manufacturer) decided to embark on the development of a "computer utility," a machine that would support
hundreds of simultaneous timesharing users. Their model was the electricity distribution systemwhen you
need electric power, you just stick a plug in the wall, and within reason, as much power as you need will be
there. The designers of this system, known as MULTICS (MULTiplexed Information and Computing
Service), envisioned one huge machine providing computing power for everyone in the Boston area. The idea
that machines far more powerful than their GE-645 mainframe would be sold for under a thousand dollars by
the millions only 30 years later was pure science fiction, like the idea of supersonic trans-Atlantic underse a
trains would be now.

MULTICS was a mixed success. It was designed to support hundreds of users on a machine only slightly
more powerful than an Intel 80386-based PC, although it had much more I/O capacity. This is not quite as
crazy as it sounds, since people knew how to write small, efficient programs in those days, a skill that has

5

5

subsequently been lost. There were many reasons that MULTICS did not take over the world, not the least of
which is that it was written in PL/I, and the PL/I compiler was years late and barely worked at all when it
finally arrived. In addition, MULTICS was enormously ambitious for its time, much like Charles Babbage's
analytical engine in the nineteenth century.

MULTICS introduced many seminal ideas into the computer literature, but turning it into a serious product
and a commercial success was a lot harder than anyone had expected. Bell Labs dropped out of the project,
and General Electric quit the computer business altogether. However, M.I.T. persisted and eventually got
MULTICS working. It was ultimately sold as a commercial product by the company that bought GE's
computer business (Honeywell) and installed by about 80 major companies and universities worldwide. While
their numbers were small, MULTICS users were fiercely loyal. General Motors, Ford, and the U.S. National
Security Agency, for example, only shut down their MULTICS systems in the late 1990s. The last MULTICS
running, at the Canadian Department of National Defence, shut down in October 2000. Despite its lack of
commercial success, MULTICS had a huge influence on subsequent operating systems. A great deal of
information about it exists (Corbató et al., 1972; Corbató and Vyssotsky, 1965; Daley and Dennis, 1968;
Organick, 1972; and Saltzer, 1974). It also has a stillactive Web site, www.multicians.org, with a great deal of
information about the system, its designers, and its users.

[Page 13]

The phrase "computer utility" is no longer heard, but the idea has gained new life in recent years. In its
simplest form, PCs or workstations (high-end PCs) in a business or a classroom may be connected via a LAN
(Local Area Network) to a file server on which all programs and data are stored. An administrator then has to
install and protect only one set of programs and data, and can easily reinstall local software on a
malfunctioning PC or workstation without worrying about retrieving or preserving local data. In more
heterogeneous environments, a class of software called middleware has evolved to bridge the gap between
local users and the files, programs, and databases they use on remote servers. Middleware makes networked
computers look local to individual users' PCs or workstations and presents a consistent user interface even
though there may be a wide variety of different servers, PCs, and workstations in use. The World Wide Web
is an example. A web browser presents documents to a user in a uniform way, and a document as seen on a
user's browser can consist of text from one server and graphics from another server, presented in a format
determined by a style sheet on yet another server. Businesses and universities commonly use a web interface
to access databases and run programs on a computer in another building or even another city. Middleware
appears to be the operating system of a distributed system, but it is not really an operating system at all, and is
beyond the scope of this book. For more on distributed systems see Tanenbaum and Van Steen (2002).

Another major development during the third generation was the phenomenal growth of minicomputers,
starting with the Digital Equipment Company (DEC) PDP-1 in 1961. The PDP-1 had only 4K of 18-bit words,
but at $120,000 per machine (less than 5 percent of the price of a 7094), it sold like hotcakes. For certain
kinds of nonnumerical work, it was almost as fast as the 7094 and gave birth to a whole new industry. It was
quickly followed by a series of other PDPs (unlike IBM's family, all incompatible) culminating in the
PDP-11.

One of the computer scientists at Bell Labs who had worked on the MULTICS project, Ken Thompson,
subsequently found a small PDP-7 minicomputer that no one was using and set out to write a stripped-down,
one-user version of MULTICS. This work later developed into the UNIX operating system, which became
popular in the academic world, with government agencies, and with many companies.

The history of UNIX has been told elsewhere (e.g., Salus, 1994). Because the source code was widely
available, various organizations developed their own (incompatible) versions, which led to chaos. Two major
versions developed, System V, from AT&T, and BSD, (Berkeley Software Distribution) from the University
of California at Berkeley. These had minor variants as well, now including FreeBSD, OpenBSD, and
NetBSD. To make it possible to write programs that could run on any UNIX system, IEEE developed a

6

6

http://www.multicians.org

standard for UNIX, called POSIX, that most versions of UNIX now support. POSIX defines a minimal system
call interface that conformant UNIX systems must support. In fact, some other operating systems now also
support the POSIX interface. The information needed to write POSIX-compliant software is available in
books (IEEE, 1990; Lewine, 1991), and online as the Open Group's "Single UNIX Specification" at
www.unix.org. Later in this chapter, when we refer to UNIX, we mean all of these systems as well, unless
stated otherwise. While they differ internally, all of them support the POSI X standard, so to the programmer
they are quite similar.

[Page 14]

1.2.4. The Fourth Generation (1980Present) Personal Computers

With the development of LSI (Large Scale Integration) circuits, chips containing thousands of transistors on a
square centimeter of silicon, the age of the microprocessor-based personal computer dawned. In terms of
architecture, personal computers (initially called microcomputers) were not all that different from
minicomputers of the PDP-11 class, but in terms of price they certainly were different. The minicomputer
made it possible for a department in a company or university to have its own computer. The microcomputer
made it possible for an individual to have his or her own computer.

There were several families of microcomputers. Intel came out with the 8080, the first general-purpose 8-bit
microprocessor, in 1974. A number of companies produced complete systems using the 8080 (or the
compatible Zilog Z80) and the CP/M (Control Program for Microcomputers) operating system from a
company called Digital Research was widely used with these. Many application programs were written to run
on CP/M, and it dominated the personal computing world for about 5 years.

Motorola also produced an 8-bit microprocessor, the 6800. A group of Motorola engineers left to form MOS
Technology and manufacture the 6502 CPU after Motorola rejected their suggested improvements to the
6800. The 6502 was the CPU of several early systems. One of these, the Apple II, became a major competitor
for CP/M systems in the home and educational markets. But CP/M was so popular that many owners of Apple
II computers purchased Z-80 coprocessor add-on cards to run CP/M, since the 6502 CPU was not compatible
with CP/M. The CP/M cards were sold by a little company called Microsoft, which also had a market niche
supplying BASIC interpreters used by a number of microcomputers running CP/M.

The next generation of microprocessors were 16-bit systems. Intel came out with the 8086, and in the early
1980s, IBM designed the IBM PC around Intel's 8088 (an 8086 on the inside, with an 8 bit external data path).
Microsoft offered IBM a package which included Microsoft's BASIC and an operating system, DOS (Disk
Operating System) originally developed by another companyMicrosoft bought the product and hired the
original author to improve it. The revised system was renamed MS-DOS (MicroSoft Disk Operating System)
and quickly came to dominate the IBM PC market.

[Page 15]

CP/M, MS-DOS, and the Apple DOS were all command-line systems: users typed commands at the keyboard.
Years earlier, Doug Engelbart at Stanford Research Institute had invented the GUI (Graphical User Interface),
pronounced "gooey," complete with windows, icons, menus, and mouse. Apple's Steve Jobs saw the
possibility of a truly user-friendly personal computer (for users who knew nothing about computers and did
not want to learn), and the Apple Macintosh was announced in early 1984. It used Motorola's 16-bit 68000
CPU, and had 64 KB of ROM (Read Only Memory), to support the GUI. The Macintosh has evolved over the
years. Subsequent Motorola CPUs were true 32-bit systems, and later still Apple moved to IBM PowerPC
CPUs, with RISC 32-bit (and later, 64-bit) architecture. In 2001 Apple made a major operating system
change, releasing Mac OS X, with a new version of the Macintosh GUI on top of Berkeley UNIX. And in

7

7

http://www.unix.org

2005 Apple announced that it would be switching to Intel processors.

To compete with the Macintosh, Microsoft invented Windows. Originally Windows was just a graphical
environment on top of 16-bit MS-DOS (i.e., it was more like a shell than a true operating system). However,
current versions of Windows are descendants of Windows NT, a full 32-bit system, rewritten from scratch.

The other major contender in the personal computer world is UNIX (and its various derivatives). UNIX is
strongest on workstations and other high-end computers, such as network servers. It is especially popular on
machines powered by high-performance RISC chips. On Pentium-based computers, Linux is becoming a
popular alternative to Windows for students and increasingly many corporate users. (Throughout this book we
will use the term "Pentium" to mean the entire Pentium family, including the low-end Celeron, the high end
Xeon, and compatible AMD microprocessors).

Although many UNIX users, especially experienced programmers, prefer a command-based interface to a
GUI, nearly all UNIX systems support a windowing system called the X Window system developed at M.I.T.
This system handles the basic window management, allowing users to create, delete, move, and resize
windows using a mouse. Often a complete GUI, such as Motif, is available to run on top of the X Window
system giving UNIX a look and feel something like the Macintosh or Microsoft Windows for those UNIX
users who want such a thing.

An interesting development that began taking place during the mid-1980s is the growth of networks of
personal computers running network operating systems and distributed operating systems (Tanenbaum and
Van Steen, 2002). In a network operating system, the users are aware of the existence of multiple computers
and can log in to remote machines and copy files from one machine to another. Each machine runs its own
local operating system and has its own local user (or users). Basically, the machines are independent of one
another.

[Page 16]

Network operating systems are not fundamentally different from single-processor operating systems. They
obviously need a network interface controller and some low-level software to drive it, as well as programs to
achieve remote login and remote file access, but these additions do not change the essential structure of the
operating system.

A distributed operating system, in contrast, is one that appears to its users as a traditional uniprocessor system,
even though it is actually composed of multiple processors. The users should not be aware of where their
programs are being run or where their files are located; that should all be handled automatically and
efficiently by the operating system.

True distributed operating systems require more than just adding a little code to a uniprocessor operating
system, because distributed and centralized systems differ in critical ways. Distributed systems, for example,
often allow applications to run on several processors at the same time, thus requiring more complex processor
scheduling algorithms in order to optimize the amount of parallelism.

Communication delays within the network often mean that these (and other) algorithms must run with
incomplete, outdated, or even incorrect information. This situation is radically different from a
single-processor system in which the operating system has complete information about the system state.

1.2.5. History of MINIX 3

When UNIX was young (Version 6), the source code was widely available, under AT&T license, and
frequently studied. John Lions, of the University of New South Wales in Australia, even wrote a little booklet

8

8

describing its operation, line by line (Lions, 1996). This booklet was used (with permission of AT&T) as a
text in many university operating system courses.

When AT&T released Version 7, it dimly began to realize that UNIX was a valuable commercial product, so
it issued Version 7 with a license that prohibited the source code from being studied in courses, in order to
avoid endangering its status as a trade secret. Many universities complied by simply dropping the study of
UNIX and teaching only theory.

Unfortunately, teaching only theory leaves the student with a lopsided view of what an operating system is
really like. The theoretical topics that are usually covered in great detail in courses and books on operating
systems, such as scheduling algorithms, are in practice not really that important. Subjects that really are
important, such as I/O and file systems, are generally neglected because there is little theory about them.

To remedy this situation, one of the authors of this book (Tanenbaum) decided to write a new operating
system from scratch that would be compatible with UNIX from the user's point of view, but completely
different on the inside. By not using even one line of AT&T code, this system avoided the licensing
restrictions, so it could be used for class or individual study. In this manner, readers could dissect a real
operating system to see what is inside, just as biology students dissect frogs. It was called MINIX and was
released in 1987 with its complete source code for anyone to study or modify. The name MINIX stands for
mini-UNIX because it is small enough that even a nonguru can understand how it works.

[Page 17]

In addition to the advantage of eliminating the legal problems, MINIX had another advantage over UNIX. It
was written a decade after UNIX and was structured in a more modular way. For instance, from the very first
release of MINIX the file system and the memory manager were not part of the operating system at all but ran
as user programs. In the current release (MINIX 3) this modularization has been extended to the I/O device
drivers, which (with the exception of the clock driver) all run as user programs. Another difference is that
UNIX was designed to be efficient; MINIX was designed to be readable (inasmuch as one can speak of any
program hundreds of pages long as being readable). The MINIX code, for example, has thousands of
comments in it.

MINIX was originally designed for compatibility with Version 7 (V7) UNIX. Version 7 was used as the
model because of its simplicity and elegance. It is sometimes said that Version 7 was an improvement not
only over all its predecessors, but also over all its successors. With the advent of POSIX, MINIX began
evolving toward the new standard, while maintaining backward compatibility with existing programs. This
kind of evolution is common in the computer industry, as no vendor wants to introduce a new system that
none of its existing customers can use without great upheaval. The version of MINIX described in this book,
MINIX 3, is based on the POSIX standard.

Like UNIX, MINIX was written in the C programming language and was intended to be easy to port to
various computers. The initial implementation was for the IBM PC. MINIX was subsequently ported to
several other platforms. In keeping with the "Small is Beautiful" philosophy, MINIX originally did not even
require a hard disk to run (in the mid-1980s hard disks were still an expensive novelty). As MINIX grew in
functionality and size, it eventually got to the point that a hard disk was needed for PCs, but in keeping with
the MINIX philosophy, a 200-MB partition is sufficient (for embedded applications, no hard disk is required
though). In contrast, even small Linux systems require 500-MB of disk space, and several GB will be needed
to install common applications.

To the average user sitting at an IBM PC, running MINIX is similar to running UNIX. All of the basic
programs, such as cat, grep, ls, make, and the shell are present and perform the same functions as their UNIX
counterparts. Like the operating system itself, all these utility programs have been rewritten completely from
scratch by the author, his students, and some other dedicated people, with no AT&T or other proprietary code.

9

9

Many other freely-distributable programs now exist, and in many cases these have been successfully ported
(recompiled) on MINIX.

MINIX continued to develop for a decade and MINIX 2 was released in 1997, together with the second
edition of this book, which described the new release. The changes between versions 1 and 2 were substantial
(e.g., from 16-bit real mode on an 8088 using floppy disks to 32-bit protected mode on a 386 using a hard
disk) but evolutionary.

[Page 18]

Development continued slowly but systematically until 2004, when Tanenbaum became convinced that
software was getting too bloated and unreliable and decided to pick up the slightly-dormant MINIX thread
again. Together with his students and programmers at the Vrije Universiteit in Amsterdam, he produced
MINIX 3, a major redesign of the system, greatly restructuring the kernel, reducing its size, and emphasizing
modularity and reliability. The new version was intended both for PCs and embedded systems, where
compactness, modularity, and reliability are crucial. While some people in the group called for a completely
new name, it was eventually decided to call it MINIX 3 since the name MINIX was already well known. By
way of analogy, when Apple abandoned it own operating system, Mac OS 9 and replaced it with a variant of
Berkeley UNIX, the name chosen was Mac OS X rather than APPLIX or something like that. Similar
fundamental changes have happened in the Windows family while retaining the Windows name.

The MINIX 3 kernel is well under 4000 lines of executable code, compared to millions of executable lines of
code for Windows, Linux, FreeBSD, and other operating systems. Small kernel size is important because
kernel bugs are far more devastating than bugs in user-mode programs and more code means more bugs. One
careful study has shown that the number of detected bugs per 1000 executable lines of code varies from 6 to
16 (Basili and Perricone, 1984). The actual number of bugs is probably much higher since the researchers
could only count reported bugs, not unreported bugs. Yet another study (Ostrand et al., 2004) showed that
even after more than a dozen releases, on the average 6% of all files contained bugs that were later reported
and after a certain point the bug level tends to stabilize rather than go asymptotically to zero. This result is
supported by the fact that when a very simple, automated, model-checker was let loose on stable versions of
Linux and OpenBSD, it found hundreds of kernel bugs, overwhelmingly in device drivers (Chou et al., 2001;
and Engler et al., 2001). This is the reason the device drivers were moved out of the kernel in MINIX 3; they
can do less damage in user mode.

Throughout this book MINIX 3 will be used as an example. Most of the comments about the MINIX 3 system
calls, however (as opposed to comments about the actual code), also apply to other UNIX systems. This
remark should be kept in mind when reading the text.

A few words about Linux and its relationship to MINIX may possibly be of interest to some readers. Shortly
after MINIX was released, a USENET newsgroup, comp.os.minix, was formed to discuss it. Within weeks, it
had 40,000 subscribers, most of whom wanted to add vast numbers of new features to MINIX to make it
bigger and better (well, at least bigger). Every day, several hundred of them offered suggestions, ideas, and
frequently snippets of source code. The author of MINIX was able to successfully resist this onslaught for
several years, in order to keep MINIX clean enough for students to understand and small enough that it could
run on computers that students could afford. For people who thought little of MS-DOS, the existence of
MINIX (with source code) as an alternative was even a reason to finally go out and buy a PC.

[Page 19]

One of these people was a Finnish student named Linus Torvalds. Torvalds installed MINIX on his new PC
and studied the source code carefully. Torvalds wanted to read USENET newsgroups (such as comp.os.minix)
on his own PC rather than at his university, but some features he needed were lacking in MINIX, so he wrote

10

10

a program to do that, but soon discovered he needed a different terminal driver, so he wrote that too. Then he
wanted to download and save postings, so he wrote a disk driver, and then a file system. By Aug. 1991 he had
produced a primitive kernel. On Aug. 25, 1991, he announced it on comp.os.minix. This announcement
attracted other people to help him, and on March 13, 1994 Linux 1.0 was released. Thus was Linux born.

Linux has become one of the notable successes of the open source movement (which MINIX helped start).
Linux is challenging UNIX (and Windows) in many environments, partly because commodity PCs which
support Linux are now available with performance that rivals the proprietary RISC systems required by some
UNIX implementations. Other open source software, notably the Apache web server and the MySQL
database, work well with Linux in the commercial world. Linux, Apache, MySQL, and the open source Perl
and PHP programming languages are often used together on web servers and are sometimes referred to by the
acronym LAMP. For more on the history of Linux and open source software see DiBona et al. (1999), Moody
(2001), and Naughton (2000).

11

11

12

12

[Page 19 (continued)]

1.3. Operating System Concepts

The interface between the operating system and the user programs is defined by the set of "extended
instructions" that the operating system provides. These extended instructions have been traditionally known as
system calls, although they can be implemented in several ways. To really understand what operating systems
do, we must examine this interface closely. The calls available in the interface vary from operating system to
operating system (although the underlying concepts tend to be similar).

We are thus forced to make a choice between (1) vague generalities ("operating systems have system calls for
reading files") and (2) some specific system ("MINIX 3 has a read system call with three parameters: one to
specify the file, one to tell where the data are to be put, and one to tell how many bytes to read").

We have chosen the latter approach. It's more work that way, but it gives more insight into what operating
systems really do. In Sec. 1.4 we will look closely at the basic system calls present in UNIX (including the
various versions of BSD), Linux, and MINIX 3. For simplicity's sake, we will refer only to MINI 3, but the
corresponding UNIX and Linux system calls are based on POSIX in most cases. Before we look at the actual
system calls, however, it is worth taking a bird's-eye view of MINIX 3, to get a general feel for what an
operating system is all about. This overview applies equally well to UNIX and Linux, as mentioned above.

[Page 20]

The MINIX 3 system calls fall roughly in two broad categories: those dealing with processes and those
dealing with the file system. We will now examine each of these in turn.

1.3.1. Processes

A key concept in MINIX 3, and in all operating systems, is the process. A process is basically a program in
execution. Associated with each process is its address space, a list of memory locations from some minimum
(usually 0) to some maximum, which the process can read and write. The address space contains the
executable program, the program's data, and its stack. Also associated with each process is some set of
registers, including the program counter, stack pointer, and other hardware registers, and all the other
information needed to run the program.

We will come back to the process concept in much more detail in Chap. 2, but for the time being, the easiest
way to get a good intuitive feel for a process is to think about multiprogramming systems. Periodically, the
operating system decides to stop running one process and start running another, for example, because the first
one has had more than its share of CPU time in the past second.

When a process is suspended temporarily like this, it must later be restarted in exactly the same state it had
when it was stopped. This means that all information about the process must be explicitly saved somewhere
during the suspension. For example, the process may have several files open for reading at once. Associated
with each of these files is a pointer giving the current position (i.e., the number of the byte or record to be read
next). When a process is temporarily suspended, all these pointers must be saved so that a read call executed
after the process is restarted will read the proper data. In many operating systems, all the information about
each process, other than the contents of its own address space, is stored in an operating system table called the
process table, which is an array (or linked list) of structures, one for each process currently in existence.

1

1

Thus, a (suspended) process consists of its address space, usually called the core image (in honor of the
magnetic core memories used in days of yore), and its process table entry, which contains its registers, among
other things.

The key process management system calls are those dealing with the creation and termination of processes.
Consider a typical example. A process called the command interpreter or shell reads commands from a
terminal. The user has just typed a command requesting that a program be compiled. The shell must now
create a new process that will run the compiler. When that process has finished the compilation, it executes a
system call to terminate itself.

[Page 21]

On Windows and other operating systems that have a GUI, (double) clicking on a desktop icon launches a
program in much the same way as typing its name at the command prompt. Although we will not discuss
GUIs much, they are really simple command interpreters.

If a process can create one or more other processes (usually referred to as child processes) and these processes
in turn can create child processes, we quickly arrive at the process tree structure of Fig. 1-5. Related processes
that are cooperating to get some job done often need to communicate with one another and synchronize their
activities. This communication is called interprocess communication, and will be addressed in detail in Chap.
2.

Figure 1-5. A process tree. Process A created two child processes, B and C. Process B created three child
processes, D, E, and F.

Other process system calls are available to request more memory (or release unused memory), wait for a child
process to terminate, and overlay its program with a different one.

Occasionally, there is a need to convey information to a running process that is not sitting around waiting for
it. For example, a process that is communicating with another process on a different computer does so by
sending messages to the remote process over a network. To guard against the possibility that a message or its
reply is lost, the sender may request that its own operating system notify it after a specified number of
seconds, so that it can retransmit the message if no acknowledgement has been received yet. After setting this
timer, the program may continue doing other work.

When the specified number of seconds has elapsed, the operating system sends an alarm signal to the process.
The signal causes the process to temporarily suspend whatever it was doing, save its registers on the stack,
and start running a special signal handling procedure, for example, to retransmit a presumably lost message.
When the signal handler is done, the running process is restarted in the state it was in just before the signal.
Signals are the software analog of hardware interrupts. They are generated by a variety of causes in addition
to timers expiring. Many traps detected by hardware, such as executing an illegal instruction or using an
invalid address, are also converted into signals to the guilty process.

2

2

[Page 22]

Each person authorized to use a MINIX 3 system is assigned a UID (User IDentification) by the system
administrator. Every process started has the UID of the person who started it. A child process has the same
UID as its parent. Users can be members of groups, each of which has a GID (Group IDentification).

One UID, called the superuser (in UNIX), has special power and may violate many of the protection rules. In
large installations, only the system administrator knows the password needed to become superuser, but many
of the ordinary users (especially students) devote considerable effort to trying to find flaws in the system that
allow them to become superuser without the password.

We will study processes, interprocess communication, and related issues in Chap. 2.

1.3.2. Files

The other broad category of system calls relates to the file system. As noted before, a major function of the
operating system is to hide the peculiarities of the disks and other I/O devices and present the programmer
with a nice, clean abstract model of device-independent files. System calls are obviously needed to create
files, remove files, read files, and write files. Before a file can be read, it must be opened, and after it has been
read it should be closed, so calls are provided to do these things.

To provide a place to keep files, MINIX 3 has the concept of a directory as a way of grouping files together. A
student, for example, might have one directory for each course he is taking (for the programs needed for that
course), another directory for his electronic mail, and still another directory for his World Wide Web home
page. System calls are then needed to create and remove directories. Calls are also provided to put an existing
file into a directory, and to remove a file from a directory. Directory entries may be either files or other
directories. This model also gives rise to a hierarchythe file systemas shown in Fig. 1-6.

Figure 1-6. A file system for a university department. (This item is displayed on page 23 in the print version)

[View full size image]

3

3

The process and file hierarchies both are organized as trees, but the similarity stops there. Process hierarchies
usually are not very deep (more than three levels is unusual), whereas file hierarchies are commonly four,
five, or even more levels deep. Process hierarchies are typically short-lived, generally a few minutes at most,
whereas the directory hierarchy may exist for years. Ownership and protection also differ for processes and
files. Typically, only a parent process may control or even access a child process, but mechanisms nearly
always exist to allow files and directories to be read by a wider group than just the owner.

Every file within the directory hierarchy can be specified by giving its path name from the top of the directory
hierarchy, the root directory. Such absolute path names consist of the list of directories that must be traversed
from the root directory to get to the file, with slashes separating the components. In Fig. 1-6, the path for file
CS101 is /Faculty/Prof.Brown/Courses/CS101. The leading slash indicates that the path is absolute, that is,
starting at the root directory. As an aside, in Windows, the backslash (\) character is used as the separator
instead of the slash (/) character, so the file path given above would be written as
\Faculty\Prof.Brown\Courses\CS101. Throughout this book we will use the UNIX convention for paths.

[Page 23]

At every instant, each process has a current working directory, in which path names not beginning with a slash
are looked for. As an example, in Fig. 1-6, if /Faculty/Prof.Brown were the working directory, then use of the
path name Courses/CS101 would yield the same file as the absolute path name given above. Processes can
change their working directory by issuing a system call specifying the new working directory.

Files and directories in MINIX 3 are protected by assigning each one an 11-bit binary protection code. The
protection code consists of three 3-bit fields: one for the owner, one for other members of the owner's group
(users are divided into groups by the system administrator), one for everyone else, and 2 bits we will discuss
later. Each field has a bit for read access, a bit for write access, and a bit for execute access. These 3 bits are
known as the rwx bits. For example, the protection code rwxr-x--x means that the owner can read, write, or
execute the file, other group members can read or execute (but not write) the file, and everyone else can
execute (but not read or write) the file. For a directory (as opposed to a file), x indicates search permission. A
dash means that the corresponding permission is absent (the bit is zero).

[Page 24]

Before a file can be read or written, it must be opened, at which time the permissions are checked. If access is
permitted, the system returns a small integer called a file descriptor to use in subsequent operations. If the
access is prohibited, an error code (1) is returned.

Another important concept in MINIX 3 is the mounted file system. Nearly all personal computers have one or
more CD-ROM drives into which CD-ROMs can be inserted and removed. To provide a clean way to deal
with removable media (CD-ROMs, DVDs, floppies, Zip drives, etc.), MINIX 3 allows the file system on a
CD-ROM to be attached to the main tree. Consider the situation of Fig. 1-7(a). Before the mount call, the
root file system, on the hard disk, and a second file system, on a CD-ROM, are separate and unrelated.

Figure 1-7. (a) Before mounting, the files on drive 0 are not accessible. (b) After mounting, they are part of the file
hierarchy.

4

4

However, the file system on the CD-ROM cannot be used, because there is no way to specify path names on
it. MINIX 3 does not allow path names to be prefixed by a drive name or number; that is precisely the kind of
device dependence that operating systems ought to eliminate. Instead, the mount system call allows the file
system on the CD-ROM to be attached to the root file system wherever the program wants it to be. In Fig.
1-7(b) the file system on drive 0 has been mounted on directory b, thus allowing access to files /b/x and /b/y.
If directory b had originally contained any files they would not be accessible while the CD-ROM was
mounted, since /b would refer to the root directory of drive 0. (Not being able to access these files is not as
serious as it at first seems: file systems are nearly always mounted on empty directories.) If a system contains
multiple hard disks, they can all be mounted into a single tree as well.

Another important concept in MINIX 3 is the special file. Special files are provided in order to make I/O
devices look like files. That way, they can be read and written using the same system calls as are used for
reading and writing files. Two kinds of special files exist: block special files and character special files. Block
special files are normally used to model devices that consist of a collection of randomly addressable blocks,
such as disks. By opening a block special file and reading, say, block 4, a program can directly access the
fourth block on the device, without regard to the structure of the file system contained on it. Similarly,
character special files are used to model printers, modems, and other devices that accept or output a character
stream. By convention, the special files are kept in the /dev directory. For example, /dev/lp might be the line
printer.

[Page 25]

The last feature we will discuss in this overview is one that relates to both processes and files: pipes. A pipe is
a sort of pseudofile that can be used to connect two processes, as shown in Fig. 1-8. If processes A and B wish
to talk using a pipe, they must set it up in advance. When process A wants to send data to process B, it writes
on the pipe as though it were an output file. Process B can read the data by reading from the pipe as though it
were an input file. Thus, communication between processes in MINIX 3 looks very much like ordinary file
reads and writes. Stronger yet, the only way a process can discover that the output file it is writing on is not
really a file, but a pipe, is by making a special system call.

Figure 1-8. Two processes connected by a pipe.

5

5

1.3.3. The Shell

The operating system is the code that carries out the system calls. Editors, compilers, assemblers, linkers, and
command interpreters definitely are not part of the operating system, even though they are important and
useful. At the risk of confusing things somewhat, in this section we will look briefly at the MINIX 3
command interpreter, called the shell. Although it is not part of the operating system, it makes heavy use of
many operating system features and thus serves as a good example of how the system calls can be used. It is
also the primary interface between a user sitting at his terminal and the operating system, unless the user is
using a graphical user interface. Many shells exist, including csh, ksh, zsh, and bash. All of them support the
functionality described below, which derives from the original shell (sh).

When any user logs in, a shell is started up. The shell has the terminal as standard input and standard output. It
starts out by typing the prompt, a character such as a dollar sign, which tells the user that the shell is waiting
to accept a command. If the user now types

date

[Page 26]

for example, the shell creates a child process and runs the date program as the child. While the child process is
running, the shell waits for it to terminate. When the child finishes, the shell types the prompt again and tries
to read the next input line.

The user can specify that standard output be redirected to a file, for example,

date >file

Similarly, standard input can be redirected, as in

sort <file1 >file2

which invokes the sort program with input taken from file1 and output sent to file2.

The output of one program can be used as the input for another program by connecting them with a pipe. Thus

cat file1 file2 file3 | sort >/dev/lp

invokes the cat program to concatenate three files and send the output to sort to arrange all the lines in
alphabetical order. The output of sort is redirected to the file /dev/lp, typically the printer.

If a user puts an ampersand after a command, the shell does not wait for it to complete. Instead it just gives a
prompt immediately. Consequently,

cat file1 file2 file3 | sort >/dev/lp &

6

6

starts up the sort as a background job, allowing the user to continue working normally while the sort is going
on. The shell has a number of other interesting features, which we do not have space to discuss here. Most
books for UNIX beginners are useful for MINIX 3 users who want to learn more about using the system.
Examples are Ray and Ray (2003) and Herborth (2005).

7

7

8

8

[Page 26 (continued)]

1.4. System Calls

Armed with our general knowledge of how MINIX 3 deals with
processes and files, we can now begin to look at the interface
between the operating system and its application programs, that is,
the set of system calls. Although this discussion specifically refers to
POSIX (International Standard 9945-1), hence also to MINI 3,
UNIX, and Linux, most other modern operating systems have
system calls that perform the same functions, even if the details
differ. Since the actual mechanics of issuing a system call are highly
machine dependent, and often must be expressed in assembly code,
a procedure library is provided to make it possible to make system
calls from C programs.

It is useful to keep the following in mind: any single-CPU computer
can execute only one instruction at a time. If a process is running a
user program in user mode and needs a system service, such as
reading data from a file, it has to execute a trap or system call
instruction to transfer control to the operating system. The operating
system then figures out what the calling process wants by inspecting
the parameters. Then it carries out the system call and returns
control to the instruction following the system call. In a sense,
making a system call is like making a special kind of procedure call,
only system calls enter the kernel or other privileged operating
system components and procedure calls do not.

[Page 27]

To make the system call mechanism clearer, let us take a quick look
at read. It has three parameters: the first one specifying the file, the
second one specifying the buffer, and the third one specifying the
number of bytes to read. A call to read from a C program might
look like this:

count = read(fd, buffer, nbytes);

The system call (and the library procedure) return the number of
bytes actually read in count. This value is normally the same as
nbytes, but may be smaller, if, for example, end-of-file is
encountered while reading.

If the system call cannot be carried out, either due to an invalid
parameter or a disk error, count is set to 1, and the error number is
put in a global variable, errno. Programs should always check the
results of a system call to see if an error occurred.

1

1

MINIX 3 has a total of 53 main system calls. These are listed in Fig.
1-9, grouped for convenience in six categories. A few other calls
exist, but they have very specialized uses so we will omit them here.
In the following sections we will briefly examine each of the calls of
Fig. 1-9 to see what it does. To a large extent, the services offered by
these calls determine most of what the operating system has to do,
since the resource management on personal computers is minimal (at
least compared to big machines with many users).

Figure 1-9. The main MINIX system calls. fd is a file descriptor; n is a
byte count. (This item is displayed on page 28 in the print version)
Process management pid = fork() Create a child

process
identical to
the parent

pid = waitpid(pid,
&statloc, opts)

Wait for a
child to
terminate

s = wait(&status) Old version of
waitpid

s = execve(name, argv,
envp)

Replace a
process core
image

exit(status) Terminate
process
execution and
return status

size = brk(addr) Set the size of
the data
segment

pid = getpid() Return the
caller's
process id

pid = getpgrp() Return the id
of the caller's
process group

pid = setsid() Create a new
session and
return its proc.
group id

l = ptrace(req, pid,
addr, data)

Used for
debugging

Signals s = sigaction(sig,
&act, &oldact)

Define action
to take on
signals

s =
sigreturn(&context)

Return from a
signal

s = sigprocmask(how,
&set, &old)

Examine or
change the
signal mask

s = sigpending(set) Get the set of
blocked
signals

2

2

s =
sigsuspend(sigmask)

Replace the
signal mask
and suspend
the process

s = kill(pid, sig) Send a signal
to a process

residual =
alarm(seconds)

Set the alarm
clock

s = pause() Suspend the
caller until the
next signal

File Management fd = creat(name, mode) Obsolete way
to create a
new file

fd = mknod(name, mode,
addr)

Create a
regular,
special, or
directory
i-node

fd = open(file, how, ...) Open a file for
reading,
writing or
both

s = close(fd) Close an open
file

n = read(fd, buffer,
nbytes)

Read data
from a file
into a buffer

n = write(fd, buffer,
nbytes)

Write data
from a buffer
into a file

pos = lseek(fd, offset,
whence)

Move the file
pointer

s = stat(name, &buf) Get a file's
status
information

s = fstat(fd, &buf) Get a file's
status
information

fd = dup(fd) Allocate a
new file
descriptor for
an open file

s = pipe(&fd[0]) Create a pipe
s = ioctl(fd, request,
argp)

Perform
special
operations on
a file

s = access(name,
amode)

Check a file's
accessibility

s = rename(old, new) Give a file a
new name

s = fcntl(fd, cmd, ...) File locking
and other

3

3

operations
Dir. & File System Mgt. s = mkdir(name, mode) Create a new

directory
s = rmdir(name) Remove an

empty
directory

s = link(name1, name2) Create a new
entry, name2,
pointing to
name1

s = unlink(name) Remove a
directory entry

s = mount(special, name,
flag)

Mount a file
system

s = umount(special) Unmount a
file system

s = sync() Flush all
cached blocks
to the disk

s = chdir(dirname) Change the
working
directory

s = chroot(dirname) Change the
root directory

Protection s = chmod(name, mode) Change a file's
protection bits

uid = getuid() Get the
caller's uid

gid = getgid() Get the
caller's gid

s = setuid(uid) Set the caller's
uid

s = setgid(gid) Set the caller's
gid

s = chown(name, owner,
group)

Change a file's
owner and
group

oldmask =
umask(complmode)

Change the
mode mask

Time Management seconds =
time(&seconds)

Get the
elapsed time
since Jan. 1,
1970

s = stime(tp) Set the
elapsed time
since Jan. 1,
1970

s = utime(file, timep) Set a file's
"last access"
time

s = times(buffer) Get the user
and system
times used so
far

4

4

This is a good place to point out that the mapping of POSIX procedure calls onto system calls is not
necessarily one-to-one. The POSIX standard specifies a number of procedures that a conformant system must
supply, but it does not specify whether they are system calls, library calls, or something else. In some cases,
the POSIX procedures are supported as library routines in MINIX 3. In others, several required procedures are
only minor variations of one another, and one system call handles all of them.

1.4.1. System Calls for Process Management

The first group of calls in Fig. 1-9 deals with process management. Fork is a good place to start the
discussion. Fork is the only way to create a new process in MINIX 3. It creates an exact duplicate of the
original process, including all the file descriptors, registerseverything. After the fork, the original process
and the copy (the parent and child) go their separate ways. All the variables have identical values at the time
of the fork, but since the parent's data are copied to create the child, subsequent changes in one of them do
not affect the other one. (The program text, which is unchangeable, is shared between parent and child.) The
fork call returns a value, which is zero in the child and equal to the child's process identifier or PID in the
parent. Using the returned PID, the two processes can see which one is the parent process and which one is the
child process.

[Page 29]

In most cases, after a fork, the child will need to execute different code from the parent. Consider the shell.
It reads a command from the terminal, forks off a child process, waits for the child to execute the command,
and then reads the next command when the child terminates. To wait for the child to finish, the parent
executes a waitpid system call, which just waits until the child terminates (any child if more than one
exists). Waitpid can wait for a specific child, or for any old child by setting the first parameter to 1. When
waitpid completes, the address pointed to by the second parameter, statloc, will be set to the child's exit
status (normal or abnormal termination and exit value). Various options are also provided, specified by the
third parameter. The waitpid call replaces the previous wait call, which is now obsolete but is provided
for reasons of backward compatibility.

Now consider how fork is used by the shell. When a command is typed, the shell forks off a new process.
This child process must execute the user command. It does this by using the execve system call, which
causes its entire core image to be replaced by the file named in its first parameter. (Actually, the system call
itself is exec, but several different library procedures call it with different parameters and slightly different
names. We will treat these as system calls here.)A highly simplified shell illustrating the use of fork,
waitpid, and execve is shown in Fig. 1-10.

Figure 1-10. A stripped-down shell. Throughout this book, TRUE is assumed to be defined as 1.

#define TRUE 1

while (TRUE){ /* repeat forever */
 type_prompt(); /* display prompt on the screen */
 read_command(command, parameters); /* read input from terminal */

 if (fork() != 0){ /* fork off child process */
 /* Parent code. */
 waitpid(1, &status, 0); /* wait for child to exit */
 } else {
 /* Child code. */
 execve(command, parameters, 0); /* execute command */

5

5

 }
}

In the most general case, execve has three parameters: the name of the file to be executed, a pointer to the
argument array, and a pointer to the environment array. These will be described shortly. Various library
routines, including execl, execv, execle, and execve, are provided to allow the parameters to be omitted or
specified in various ways. Throughout this book we will use the name exec to represent the system call
invoked by all of these.

[Page 30]

Let us consider the case of a command such as

cp file1 file2

used to copy file1 to file2. After the shell has forked, the child process locates and executes the file cp and
passes to it the names of the source and target files.

The main program of cp (and main program of most other C programs) contains the declaration

main(argc, argv, envp)

where argc is a count of the number of items on the command line, including the program name. For the
example above, argc is 3.

The second parameter, argv, is a pointer to an array. Element i of that array is a pointer to the i-th string on the
command line. In our example, argv[0] would point to the string "cp", argv[1] would point to the string
"file1", and argv[2] would point to the string "file2".

The third parameter of main, envp, is a pointer to the environment, an array of strings containing assignments
of the form name=value used to pass information such as the terminal type and home directory name to a
program. In Fig. 1-10, no environment is passed to the child, so the third parameter of execve is a zero.

If exec seems complicated, do not despair; it is (semantically) the most complex of all the POSIX system
calls. All the other ones are much simpler. As an example of a simple one, consider exit, which processes
should use when they are finished executing. It has one parameter, the exit status (0 to 255), which is returned
to the parent via statloc in the waitpid system call. The low-order byte of status contains the termination
status, with 0 being normal termination and the other values being various error conditions. The high-order
byte contains the child's exit status (0 to 255). For example, if a parent process executes the statement

n = waitpid(1, &statloc, options);

it will be suspended until some child process terminates. If the child exits with, say, 4 as the parameter to exit,
the parent will be awakened with n set to the child's PID and statloc set to 0x0400 (the C convention of
prefixing hexadecimal constants with 0x will be used throughout this book).

6

6

Processes in MINIX 3 have their memory divided up into three segments: the text segment (i.e., the program
code), the data segment (i.e., the variables), and the stack segment. The data segment grows upward and the
stack grows downward, as shown in Fig. 1-11. Between them is a gap of unused address space. The stack
grows into the gap automatically, as needed, but expansion of the data segment is done explicitly by using a
system call, brk, which specifies the new address where the data segment is to end. This address may be
more than the current value (data segment is growing) or less than the current value (data segment is
shrinking). The parameter must, of course, be less than the stack pointer or the data and stack segments would
overlap, which is forbidden.

[Page 31]

Figure 1-11. Processes have three segments: text, data, and stack. In this example, all three are in one address
space, but separate instruction and data space is also supported.

As a convenience for programmers, a library routine sbrk is provided that also changes the size of the data
segment, only its parameter is the number of bytes to add to the data segment (negative parameters make the
data segment smaller). It works by keeping track of the current size of the data segment, which is the value
returned by brk, computing the new size, and making a call asking for that number of bytes. The brk and
sbrk calls, however, are not defined by the POSIX standard. Programmers are encouraged to use the malloc
library procedure for dynamically allocating storage, and the underlying implementation of malloc was not
thought to be a suitable subject for standardization since few programmers use it directly.

The next process system call is also the simplest, getpid. It just returns the caller's PID. Remember that in
fork, only the parent was given the child's PID. If the child wants to find out its own PID, it must use
getpid. The getpgrp call returns the PID of the caller's process group. setsid creates a new session and
sets the process group's PID to the caller's. Sessions are related to an optional feature of POSIX, job control,
which is not supported by MINIX 3 and which will not concern us further.

The last process management system call, ptrace, is used by debugging programs to control the program
being debugged. It allows the debugger to read and write the controlled process' memory and manage it in
other ways.

1.4.2. System Calls for Signaling

Although most forms of interprocess communication are planned, situations exist in which unexpected
communication is needed. For example, if a user accidently tells a text editor to list the entire contents of a
very long file, and then realizes the error, some way is needed to interrupt the editor. In MINIX 3, the user can
hit the CTRL-C key on the keyboard, which sends a signal to the editor. The editor catches the signal and
stops the print-out. Signals can also be used to report certain traps detected by the hardware, such as illegal
instruction or floating point overflow. Timeouts are also implemented as signals.

7

7

[Page 32]

When a signal is sent to a process that has not announced its willingness to accept that signal, the process is
simply killed without further ado. To avoid this fate, a process can use the sigaction system call to
announce that it is prepared to accept some signal type, and to provide the address of the signal handling
procedure and a place to store the address of the current one. After a sigaction call, if a signal of the
relevant type is generated (e.g., by pressing CTRL-C), the state of the process is pushed onto its own stack,
and then the signal handler is called. It may run for as long as it wants to and perform any system calls it
wants to. In practice, though, signal handlers are usually fairly short. When the signal handling procedure is
done, it calls sigreturn to continue where it left off before the signal. The sigaction call replaces the
older signal call, which is now provided as a library procedure, however, for backward compatibility.

Signals can be blocked in MINIX 3. A blocked signal is held pending until it is unblocked. It is not delivered,
but also not lost. The sigprocmask call allows a process to define the set of blocked signals by presenting
the kernel with a bitmap. It is also possible for a process to ask for the set of signals currently pending but not
allowed to be delivered due to their being blocked. The sigpending call returns this set as a bitmap.
Finally, the sigsuspend call allows a process to atomically set the bitmap of blocked signals and suspend
itself.

Instead of providing a function to catch a signal, the program may also specify the constant SIG_IGN to have
all subsequent signals of the specified type ignored, or SIG_DFL to restore the default action of the signal
when it occurs. The default action is either to kill the process or ignore the signal, depending upon the signal.
As an example of how SIG_IGN is used, consider what happens when the shell forks off a background
process as a result of

command &

It would be undesirable for a SIGINT signal (generated by pressing CTRL-C) to affect the background
process, so after the fork but before the exec, the shell does

sigaction(SIGINT, SIG_IGN, NULL);

and

sigaction(SIGQUIT, SIG_IGN, NULL);

to disable the SIGINT and SIGQUIT signals. (SIGQUIT is generated by CTRL-\; it is the same as SIGINT
generated by CTRL-C except that if it is not caught or ignored it makes a core dump of the process killed.)
For foreground processes (no ampersand), these signals are not ignored.

[Page 33]

Hitting CTRL-C is not the only way to send a signal. The kill system call allows a process to signal another
process (provided they have the same UID unrelated processes cannot signal each other). Getting back to the
example of background processes used above, suppose a background process is started up, but later it is
decided that the process should be terminated. SIGINT and SIGQUIT have been disabled, so something else
is needed. The solution is to use the kill program, which uses the kill system call to send a signal to any

8

8

process. By sending signal 9 (SIGKILL), to a background process, that process can be killed. SIGKILL
cannot be caught or ignored.

For many real-time applications, a process needs to be interrupted after a specific time interval to do
something, such as to retransmit a potentially lost packet over an unreliable communication line. To handle
this situation, the alarm system call has been provided. The parameter specifies an interval, in seconds, after
which a SIGALRM signal is sent to the process. A process may only have one alarm outstanding at any
instant. If an alarm call is made with a parameter of 10 seconds, and then 3 seconds later another alarm
call is made with a parameter of 20 seconds, only one signal will be generated, 20 seconds after the second
call. The first signal is canceled by the second call to alarm. If the parameter to alarm is zero, any pending
alarm signal is canceled. If an alarm signal is not caught, the default action is taken and the signaled process is
killed.

It sometimes occurs that a process has nothing to do until a signal arrives. For example, consider a
computer-aided-instruction program that is testing reading speed and comprehension. It displays some text on
the screen and then calls alarm to signal it after 30 seconds. While the student is reading the text, the
program has nothing to do. It could sit in a tight loop doing nothing, but that would waste CPU time that
another process or user might need. A better idea is to use pause, which tells MINIX 3 to suspend the
process until the next signal.

1.4.3. System Calls for File Management

Many system calls relate to the file system. In this section we will look at calls that operate on individual files;
in the next one we will examine those that involve directories or the file system as a whole. To create a new
file, the creat call is used (why the call is creat and not create has been lost in the mists of time). Its
parameters provide the name of the file and the protection mode. Thus

fd = creat("abc", 0751);

creates a file called abc with mode 0751 octal (in C, a leading zero means that a constant is in octal). The
low-order 9 bits of 0751 specify the rwx bits for the owner (7 means read-write-execute permission), his
group (5 means read-execute), and others (1 means execute only).

Creat not only creates a new file but also opens it for writing, regardless of the file's mode. The file
descriptor returned, fd, can be used to write the file. If a creat is done on an existing file, that file is
truncated to length 0, provided, of course, that the permissions are all right. The creat call is obsolete, as
open can now create new files, but it has been included for backward compatibility.

[Page 34]

Special files are created using mknod rather than creat. A typical call is

fd = mknod("/dev/ttyc2", 020744, 0x0402);

which creates a file named /dev/ttyc2 (the usual name for console 2) and gives it mode 020744 octal (a
character special file with protection bits rwxr--r--). The third parameter contains the major device (4) in the
high-order byte and the minor device (2) in the low-order byte. The major device could have been anything,
but a file named /dev/ttyc2 ought to be minor device 2. Calls to mknod fail unless the caller is the superuser.

9

9

To read or write an existing file, the file must first be opened using open. This call specifies the file name to
be opened, either as an absolute path name or relative to the working directory, and a code of O_RDONLY,
O_WRONLY, or O_RDWR, meaning open for reading, writing, or both. The file descriptor returned can then
be used for reading or writing. Afterward, the file can be closed by close, which makes the file descriptor
available for reuse on a subsequent creat or open.

The most heavily used calls are undoubtedly read and write. We saw read earlier; write has the same
parameters.

Although most programs read and write files sequentially, for some applications programs need to be able to
access any part of a file at random. Associated with each file is a pointer that indicates the current position in
the file. When reading (writing) sequentially, it normally points to the next byte to be read (written). The
lseek call changes the value of the position pointer, so that subsequent calls to read or write can begin
anywhere in the file, or even beyond the end.

lseek has three parameters: the first is the file descriptor for the file, the second is a file position, and the
third tells whether the file position is relative to the beginning of the file, the current position, or the end of the
file. The value returned by lseek is the absolute position in the file after changing the pointer.

For each file, MINIX 3 keeps track of the file mode (regular file, special file, directory, and so on), size, time
of last modification, and other information. Programs can ask to see this information via the stat and
fstat system calls. These differ only in that the former specifies the file by name, whereas the latter takes a
file descriptor, making it useful for open files, especially standard input and standard output, whose names
may not be known. Both calls provide as the second parameter a pointer to a structure where the information
is to be put. The structure is shown in Fig. 1-12.

Figure 1-12. The structure used to return information for the stat and fstat system calls. In the actual code,
symbolic names are used for some of the types. (This item is displayed on page 35 in the print version)

struct stat{
 short st_dev; /* device where i-node belongs */
 unsigned short st_ino; /* i-node number */
 unsigned short st_mode; /* mode word */
 short st_nlink; /* number of links */
 short st_uid; /* user id */
 short st_gid; /* group id */
 short st_rdev; /* major/minor device for special files */
 long st_size; /* file size */
 long st_atime; /* time of last access */
 long st_mtime; /* time of last modification */
 long st_ctime; /* time of last change to i-node */
};

When manipulating file descriptors, the dup call is occasionally helpful. Consider, for example, a program
that needs to close standard output (file descriptor 1), substitute another file as standard output, call a function
that writes some output onto standard output, and then restore the original situation. Just closing file
descriptor 1 and then opening a new file will make the new file standard output (assuming standard input, file
descriptor 0, is in use), but it will be impossible to restore the original situation later.

[Page 35]

The solution is first to execute the statement

fd = dup(1);

10

10

which uses the dup system call to allocate a new file descriptor, fd, and arrange for it to correspond to the
same file as standard output. Then standard output can be closed and a new file opened and used. When it is
time to restore the original situation, file descriptor 1 can be closed, and then

n = dup(fd);

executed to assign the lowest file descriptor, namely, 1, to the same file as fd. Finally, fd can be closed and we
are back where we started.

The dup call has a variant that allows an arbitrary unassigned file descriptor to be made to refer to a given
open file. It is called by

dup2(fd, fd2);

where fd refers to an open file and fd2 is the unassigned file descriptor that is to be made to refer to the same
file as fd. Thus if fd refers to standard input (file descriptor 0) and fd2 is 4, after the call, file descriptors 0 and
4 will both refer to standard input.

Interprocess communication in MINIX 3 uses pipes, as described earlier. When a user types

cat file1 file2 | sort

the shell creates a pipe and arranges for standard output of the first process to write to the pipe, so standard
input of the second process can read from it. The pipe system call creates a pipe and returns two file
descriptors, one for writing and one for reading. The call is

[Page 36]

pipe(&fd[0]);

where fd is an array of two integers and fd[0] is the file descriptor for reading and fd[1] is the one for writing.
Typically, a fork comes next, and the parent closes the file descriptor for reading and the child closes the file
descriptor for writing (or vice versa), so when they are done, one process can read the pipe and the other can
write on it.

Figure 1-13 depicts a skeleton procedure that creates two processes, with the output of the first one piped into
the second one. (A more realistic example would do error checking and handle arguments.) First a pipe is
created, and then the procedure forks, with the parent eventually becoming the first process in the pipeline and
the child process becoming the second one. Since the files to be executed, process1 and process2, do not know
that they are part of a pipeline, it is essential that the file descriptors be manipulated so that the first process'
standard output be the pipe and the second one's standard input be the pipe. The parent first closes off the file
descriptor for reading from the pipe. Then it closes standard output and does a DUP call that allows file
descriptor 1 to write on the pipe. It is important to realize that dup always returns the lowest available file
descriptor, in this case, 1. Then the program closes the other pipe file descriptor.

11

11

Figure 1-13. A skeleton for setting up a two-process pipeline. (This item is displayed on page 37 in the print
version)

#define STD_INPUT0 /* file descriptor for standard input */
#define STD_OUTPUT1 /* file descriptor for standard output */
pipeline(process1, process2)
char *process1, *process2; /* pointers to program names */
{
 int fd[2];

 pipe(&fd[0]); /* create a pipe */
 if (fork() != 0) {
 /* The parent process executes these statements. */
 close(fd[0]); /* process 1 does not need to read from pipe */
 close(STD_OUTPUT); /* prepare for new standard output */
 dup(fd[1]); /* set standard output to fd[1] */
 close(fd[1]); /* this file descriptor not needed any more */
 execl(process1, process1, 0);
 } else {
 /* The child process executes these statements. */
 close(fd[1]); /* process 2 does not need to write to pipe */
 close(STD_INPUT); /* prepare for new standard input */
 dup(fd[0]); /* set standard input to fd[0] */
 close(fd[0]); /* this file descriptor not needed any more */
 execl(process2, process2, 0);
 }
}

After the exec call, the process started will have file descriptors 0 and 2 be unchanged, and file descriptor 1
for writing on the pipe. The child code is analogous. The parameter to execl is repeated because the first one is
the file to be executed and the second one is the first parameter, which most programs expect to be the file
name.

The next system call, ioctl, is potentially applicable to all special files. It is, for instance, used by block
device drivers like the SCSI driver to control tape and CD-ROM devices. Its main use, however, is with
special character files, primarily terminals. POSIX defines a number of functions which the library translates
into ioctl calls. The tcgetattr and tcsetattr library functions use ioctl to change the characters used for
correcting typing errors on the terminal, changing the terminal mode, and so forth.

Traditionally, there are three terminal modes, cooked, raw, and cbreak. Cooked mode is the normal terminal
mode, in which the erase and kill characters work normally, CTRL-S and CTRL-Q can be used for stopping
and starting terminal output, CTRL-D means end of file, CTRL-C generates an interrupt signal, and CTRL-\
generates a quit signal to force a core dump.

In raw mode, all of these functions are disabled; consequently, every character is passed directly to the
program with no special processing. Furthermore, in raw mode, a read from the terminal will give the program
any characters that have been typed, even a partial line, rather than waiting for a complete line to be typed, as
in cooked mode. Screen editors often use this mode.

[Page 37]

Cbreak mode is in between. The erase and kill characters for editing are disabled, as is CTRL-D, but CTRL-S,
CTRL-Q, CTRL-C, and CTRL-\ are enabled. Like raw mode, partial lines can be returned to programs (if
intraline editing is turned off there is no need to wait until a whole line has been receivedthe user cannot
change his mind and delete it, as he can in cooked mode).

12

12

POSIX does not use the terms cooked, raw, and cbreak. In POSIX terminology canonical mode corresponds
to cooked mode. In this mode there are eleven special characters defined, and input is by lines. In
noncanonical mode a minimum number of characters to accept and a time, specified in units of 1/10th of a
second, determine how a read will be satisfied. Under POSIX there is a great deal of flexibility, and various
flags can be set to make noncanonical mode behave like either cbreak or raw mode. The older terms are more
descriptive, and we will continue to use them informally.

Ioctl has three parameters, for example a call to tcsetattr to set terminal parameters will result in

ioctl(fd, TCSETS, &termios);

The first parameter specifies a file, the second one specifies an operation, and the third one is the address of
the POSIX structure that contains flags and the array of control characters. Other operation codes instruct the
system to postpone the changes until all output has been sent, cause unread input to be discarded, and return
the current values.

[Page 38]

The access system call is used to determine whether a certain file access is permitted by the protection
system. It is needed because some programs can run using a different user's UID. This SETUID mechanism
will be described later.

The rename system call is used to give a file a new name. The parameters specify the old and new names.

Finally, the fcntl call is used to control files, somewhat analogous to ioctl (i.e., both of them are horrible
hacks). It has several options, the most important of which is for advisory file locking. Using fcntl, it is
possible for a process to lock and unlock parts of files and test part of a file to see if it is locked. The call does
not enforce any lock semantics. Programs must do this themselves.

1.4.4. System Calls for Directory Management

In this section we will look at some system calls that relate more to directories or the file system as a whole,
rather than just to one specific file as in the previous section. The first two calls, mkdir and rmdir, create
and remove empty directories, respectively. The next call is link. Its purpose is to allow the same file to
appear under two or more names, often in different directories. A typical use is to allow several members of
the same programming team to share a common file, with each of them having the file appear in his own
directory, possibly under different names. Sharing a file is not the same as giving every team member a
private copy, because having a shared file means that changes that any member of the team makes are
instantly visible to the other membersthere is only one file. When copies are made of a file, subsequent
changes made to one copy do not affect the other ones.

To see how link works, consider the situation of Fig. 1-14(a). Here are two users, ast and jim, each having
their own directories with some files. If ast now executes a program containing the system call

link("/usr/jim/memo", "/usr/ast/note");

the file memo in jim's directory is now entered into ast's directory under the name note. Thereafter,
/usr/jim/memo and /usr/ast/note refer to the same file.

13

13

Figure 1-14. (a) Two directories before linking /usr/jim/memo to ast's directory. (b) The same directories after
linking. (This item is displayed on page 39 in the print version)

Understanding how link works will probably make it clearer what it does. Every file in UNIX has a unique
number, its i-number, that identifies it. This inumber is an index into a table of i-nodes, one per file, telling
who owns the file, where its disk blocks are, and so on. A directory is simply a file containing a set of
(i-number, ASCII name) pairs. In the first versions of UNIX, each directory entry was 16 bytes2 bytes for the
i-number and 14 bytes for the name. A more complicated structure is needed to support long file names, but
conceptually a directory is still a set of (i-number, ASCII name) pairs. In Fig. 1-14, mail has inumber 16, and
so on. What link does is simply create a new directory entry with a (possibly new) name, using the i-number
of an existing file. In Fig. 1-14(b), two entries have the same i-number (70) and thus refer to the same file. If
either one is later removed, using the unlink system call, the other one remains. If both are removed, UNIX
sees that no entries to the file exist (a field in the i-node keeps track of the number of directory entries
pointing to the file), so the file is removed from the disk.

[Page 39]

As we have mentioned earlier, the mount system call allows two file systems to be merged into one. A
common situation is to have the root file system containing the binary (executable) versions of the common
commands and other heavily used files, on a hard disk. The user can then insert a CD-ROM with files to be
read into the CD-ROM drive.

By executing the mount system call, the CD-ROM file system can be attached to the root file system, as
shown in Fig. 1-15. A typical statement in C to perform the mount is

mount("/dev/cdrom0", "/mnt", 0);

where the first parameter is the name of a block special file for CD-ROM drive 0, the second parameter is the
place in the tree where it is to be mounted, and the third one tells whether the file system is to be mounted
read-write or read-only.

Figure 1-15. (a) File system before the mount. (b) File system after the mount.

14

14

After the mount call, a file on CD-ROM drive 0 can be accessed by just using its path from the root directory
or the working directory, without regard to which drive it is on. In fact, second, third, and fourth drives can
also be mounted anywhere in the tree. The mount call makes it possible to integrate removable media into a
single integrated file hierarchy, without having to worry about which device a file is on. Although this
example involves CD-ROMs, hard disks or portions of hard disks (often called partitions or minor devices)
can also be mounted this way. When a file system is no longer needed, it can be unmounted with the umount
system call.

[Page 40]

MINIX 3 maintains a block cache cache of recently used blocks in main memory to avoid having to read them
from the disk if they are used again quickly. If a block in the cache is modified (by a write on a file) and the
system crashes before the modified block is written out to disk, the file system will be damaged. To limit the
potential damage, it is important to flush the cache periodically, so that the amount of data lost by a crash will
be small. The system call sync tells MINIX 3 to write out all the cache blocks that have been modified since
being read in. When MINIX 3 is started up, a program called update is started as a background process to do a
sync every 30 seconds, to keep flushing the cache.

Two other calls that relate to directories are chdir and chroot. The former changes the working directory
and the latter changes the root directory. After the call

chdir("/usr/ast/test");

an open on the file xyz will open /usr/ast/test/xyz. chroot works in an analogous way. Once a process has
told the system to change its root directory, all absolute path names (path names beginning with a "/") will
start at the new root. Why would you want to do that? For securityserver programs for protocols such as FTP
(File Transfer Protocol) and HTTP (HyperText Transfer Protocol) do this so remote users of these services
can access only the portions of a file system below the new root. Only superusers may execute chroot, and
even superusers do not do it very often.

1.4.5. System Calls for Protection

In MINIX 3 every file has an 11-bit mode used for protection. Nine of these bits are the read-write-execute
bits for the owner, group, and others. The chmod system call makes it possible to change the mode of a file.
For example, to make a file read-only by everyone except the owner, one could execute

chmod("file", 0644);

The other two protection bits, 02000 and 04000, are the SETGID (set-group-id) and SETUID (set-user-id)
bits, respectively. When any user executes a program with the SETUID bit on, for the duration of that process
the user's effective UID is changed to that of the file's owner. This feature is heavily used to allow users to
execute programs that perform superuser only functions, such as creating directories. Creating a directory uses
mknod, which is for the superuser only. By arranging for the mkdir program to be owned by the superuser
and have mode 04755, ordinary users can be given the power to execute mknod but in a highly restricted
way.

15

15

[Page 41]

When a process executes a file that has the SETUID or SETGID bit on in its mode, it acquires an effective
UID or GID different from its real UID or GID. It is sometimes important for a process to find out what its
real and effective UID or GID is. The system calls getuid and getgid have been provided to supply this
information. Each call returns both the real and effective UID or GID, so four library routines are needed to
extract the proper information: getuid, getgid, geteuid, and getegid. The first two get the real UID/GID, and
the last two the effective ones.

Ordinary users cannot change their UID, except by executing programs with the SETUID bit on, but the
superuser has another possibility: the setuid system call, which sets both the effective and real UIDs.
setgid sets both GIDs. The superuser can also change the owner of a file with the chown system call. In
short, the superuser has plenty of opportunity for violating all the protection rules, which explains why so
many students devote so much of their time to trying to become superuser.

The last two system calls in this category can be executed by ordinary user processes. The first one, umask,
sets an internal bit mask within the system, which is used to mask off mode bits when a file is created. After
the call

umask(022);

the mode supplied by creat and mknod will have the 022 bits masked off before being used. Thus the call

creat("file", 0777);

will set the mode to 0755 rather than 0777. Since the bit mask is inherited by child processes, if the shell does
a umask just after login, none of the user's processes in that session will accidently create files that other
people can write on.

When a program owned by the root has the SETUID bit on, it can access any file, because its effective UID is
the superuser. Frequently it is useful for the program to know if the person who called the program has
permission to access a given file. If the program just tries the access, it will always succeed, and thus learn
nothing.

What is needed is a way to see if the access is permitted for the real UID. The access system call provides a
way to find out. The mode parameter is 4 to check for read access, 2 for write access, and 1 for execute
access. Combinations of these values are also allowed. For example, with mode equal to 6, the call returns 0 if
both read and write access are allowed for the real ID; otherwise1 is returned. With mode equal to 0, a check
is made to see if the file exists and the directories leading up to it can be searched.

[Page 42]

Although the protection mechanisms of all UNIX-like operating systems are generally similar, there are some
differences and inconsistencies that lead to security vulnerabilities. See Chen et al. (2002) for a discussion.

1.4.6. System Calls for Time Management

MINIX 3 has four system calls that involve the time-of-day clock. Time just returns the current time in
seconds, with 0 corresponding to Jan. 1, 1970 at midnight (just as the day was starting, not ending). Of course,

16

16

the system clock must be set at some point in order to allow it to be read later, so stime has been provided to
let the clock be set (by the superuser). The third time call is utime, which allows the owner of a file (or the
superuser) to change the time stored in a file's i-node. Application of this system call is fairly limited, but a
few programs need it, for example, touch, which sets the file's time to the current time.

Finally, we have times, which returns the accounting information to a process, so it can see how much CPU
time it has used directly, and how much CPU time the system itself has expended on its behalf (handling its
system calls). The total user and system times used by all of its children combined are also returned.

17

17

18

18

[Page 42 (continued)]

1.5. Operating System Structure

Now that we have seen what operating systems look like on the outside (i.e, the
programmer's interface), it is time to take a look inside. In the following sections, we
will examine five different structures that have been tried, in order to get some idea of
the spectrum of possibilities. These are by no means exhaustive, but they give an idea of
some designs that have been tried in practice. The five designs are monolithic systems,
layered systems, virtual machines, exokernels, and client-server systems.

1.5.1. Monolithic Systems

By far the most common organization, this approach might well be subtitled "The Big
Mess." The structure is that there is no structure. The operating system is written as a
collection of procedures, each of which can call any of the other ones whenever it needs
to. When this technique is used, each procedure in the system has a well-defined
interface in terms of parameters and results, and each one is free to call any other one, if
the latter provides some useful computation that the former needs.

To construct the actual object program of the operating system when this approach is
used, one first compiles all the individual procedures, or files containing the procedures,
and then binds them all together into a single object file using the system linker. In terms
of information hiding, there is essentially noneevery procedure is visible to every other
procedure (as opposed to a structure containing modules or packages, in which much of
the information is hidden away inside modules, and only the officially designated entry
points can be called from outside the module).

[Page 43]

Even in monolithic systems, however, it is possible to have at least a little structure. The
services (system calls) provided by the operating system are requested by putting the
parameters in well-defined places, such as in registers or on the stack, and then
executing a special trap instruction known as a kernel call or supervisor call.

This instruction switches the machine from user mode to kernel mode and transfers
control to the operating system. (Most CPUs have two modes: kernel mode, for the
operating system, in which all instructions are allowed; and user mode, for user
programs, in which I/O and certain other instructions are not allowed.)

This is a good time to look at how system calls are performed. Recall that the read call
is used like this:

count = read(fd, buffer, nbytes);

[Page 44]

1

1

In preparation for calling the read library procedure, which actually makes the read
system call, the calling program first pushes the parameters onto the stack, as shown in
steps 13 in Fig. 1-16. C and C++ compilers push the parameters onto the stack in reverse
order for historical reasons (having to do with making the first parameter to printf, the
format string, appear on top of the stack). The first and third parameters are called by
value, but the second parameter is passed by reference, meaning that the address of the
buffer (indicated by &) is passed, not the contents of the buffer. Then comes the actual
call to the library procedure (step 4). This instruction is the normal procedure call
instruction used to call all procedures.

Figure 1-16. The 11 steps in making the system call read(fd, buffer, nbytes). (This
item is displayed on page 43 in the print version)

[View full size image]

The library procedure, possibly written in assembly language, typically puts the system
call number in a place where the operating system expects it, such as a register (step 5).
Then it executes a trAP instruction to switch from user mode to kernel mode and start
execution at a fixed address within the kernel (step 6). The kernel code that starts
examines the system call number and then dispatches to the correct system call handler,
usually via a table of pointers to system call handlers indexed on system call number
(step 7). At that point the system call handler runs (step 8). Once the system call handler
has completed its work, control may be returned to the user-space library procedure at
the instruction following the trAP instruction (step 9). This procedure then returns to
the user program in the usual way procedure calls return (step 10).

To finish the job, the user program has to clean up the stack, as it does after any
procedure call (step 11). Assuming the stack grows downward, as it often does, the
compiled code increments the stack pointer exactly enough to remove the parameters
pushed before the call to read. The program is now free to do whatever it wants to do
next.

2

2

In step 9 above, we said "may be returned to the user-space library procedure" for good
reason. The system call may block the caller, preventing it from continuing. For
example, if it is trying to read from the keyboard and nothing has been typed yet, the
caller has to be blocked. In this case, the operating system will look around to see if
some other process can be run next. Later, when the desired input is available, this
process will get the attention of the system and steps 911 will occur.

This organization suggests a basic structure for the operating system:

A main program that invokes the requested service procedure.1.
A set of service procedures that carry out the system calls.2.
A set of utility procedures that help the service procedures.3.

In this model, for each system call there is one service procedure that takes care of it.
The utility procedures do things that are needed by several service procedures, such as
fetching data from user programs. This division of the procedures into three layers is
shown in Fig. 1-17.

[Page 45]

Figure 1-17. A simple structuring model for a monolithic system.

1.5.2. Layered Systems

A generalization of the approach of Fig. 1-17 is to organize the operating system as a
hierarchy of layers, each one constructed upon the one below it. The first system
constructed in this way was the THE system built at the Technische Hogeschool
Eindhoven in the Netherlands by E. W. Dijkstra (1968) and his students. The THE
system was a simple batch system for a Dutch computer, the Electrologica X8, which
had 32K of 27-bit words (bits were expensive back then).

The system had 6 layers, as shown in Fig. 1-18. Layer 0 dealt with allocation of the
processor, switching between processes when interrupts occurred or timers expired.
Above layer 0, the system consisted of sequential processes, each of which could be
programmed without having to worry about the fact that multiple processes were
running on a single processor. In other words, layer 0 provided the basic
multiprogramming of the CPU.

3

3

Figure 1-18. Structure of the THE operating system.
Layer Function

5 The operator
4 User programs
3 Input/output

management
2 Operator-process

communication
1 Memory and drum

management
0 Processor

allocation and
multiprogramming

Layer 1 did the memory management. It allocated space for processes in main memory and on a 512K word
drum used for holding parts of processes (pages) for which there was no room in main memory. Above layer
1, processes did not have to worry about whether they were in memory or on the drum; the layer 1 software
took care of making sure pages were brought into memory whenever they were needed.

[Page 46]

Layer 2 handled communication between each process and the operator console. Above this layer each
process effectively had its own operator console. Layer 3 took care of managing the I/O devices and buffering
the information streams to and from them. Above layer 3 each process could deal with abstract I/O devices
with nice properties, instead of real devices with many peculiarities. Layer 4 was where the user programs
were found. They did not have to worry about process, memory, console, or I/O management. The system
operator process was located in layer 5.

A further generalization of the layering concept was present in the MULTICS system. Instead of layers,
MULTICS was organized as a series of concentric rings, with the inner ones being more privileged than the
outer ones. When a procedure in an outer ring wanted to call a procedure in an inner ring, it had to make the
equivalent of a system call, that is, a TRAP instruction whose parameters were carefully checked for validity
before allowing the call to proceed. Although the entire operating system was part of the address space of
each user process in MULTICS, the hardware made it possible to designate individual procedures (memory
segments, actually) as protected against reading, writing, or executing.

Whereas the THE layering scheme was really only a design aid, because all the parts of the system were
ultimately linked together into a single object program, in MULTICS, the ring mechanism was very much
present at run time and enforced by the hardware. The advantage of the ring mechanism is that it can easily be
extended to structure user subsystems. For example, a professor could write a program to test and grade
student programs and run this program in ring n, with the student programs running in ring n + 1 so that they
could not change their grades. The Pentium hardware supports the MULTICS ring structure, but no major
operating system uses it at present.

1.5.3. Virtual Machines

The initial releases of OS/360 were strictly batch systems. Nevertheless, many 360 users wanted to have
timesharing, so various groups, both inside and outside IBM decided to write timesharing systems for it. The
official IBM timesharing system, TSS/360, was delivered late, and when it finally arrived it was so big and
slow that few sites converted over to it. It was eventually abandoned after its development had consumed
some $50 million (Graham, 1970). But a group at IBM's Scientific Center in Cambridge, Massachusetts,
produced a radically different system that IBM eventually accepted as a product, and which is now widely

4

4

used on its mainframes.

This system, originally called CP/CMS and later renamed VM/370 (Seawright and MacKinnon, 1979), was
based on a very astute observation: a timesharing system provides (1) multiprogramming and (2) an extended
machine with a more convenient interface than the bare hardware. The essence of VM/370 is to completely
separate these two functions.

[Page 47]

The heart of the system, known as the virtual machine monitor, runs on the bare hardware and does the
multiprogramming, providing not one, but several virtual machines to the next layer up, as shown in Fig.
1-19. However, unlike all other operating systems, these virtual machines are not extended machines, with
files and other nice features. Instead, they are exact copies of the bare hardware, including kernel/user mode,
I/O, interrupts, and everything else the real machine has.

Figure 1-19. The structure of VM/370 with CMS.

[View full size image]

Because each virtual machine is identical to the true hardware, each one can run any operating system that
will run directly on the bare hardware. Different virtual machines can, and frequently do, run different
operating systems. Some run one of the descendants of OS/360 for batch or transaction processing, while
others run a single-user, interactive system called CMS (Conversational Monitor System) for timesharing
users.

When a CMS program executes a system call, the call is trapped to the operating-system in its own virtual
machine, not to VM/370, just as it would if it were running on a real machine instead of a virtual one. CMS
then issues the normal hardware I/O instructions for reading its virtual disk or whatever is needed to carry out
the call. These I/O instructions are trapped by VM/370, which then performs them as part of its simulation of
the real hardware. By making a complete separation of the functions of multiprogramming and providing an
extended machine, each of the pieces can be much simpler, more flexible, and easier to maintain.

The idea of a virtual machine is used nowadays in a different context: running old MS-DOS programs on a
Pentium. When designing the Pentium and its software, both Intel and Microsoft realized that there would be
a big demand for running old software on new hardware. For this reason, Intel provided a virtual 8086 mode
on the Pentium. In this mode, the machine acts like an 8086 (which is identical to an 8088 from a software
point of view), including 16-bit addressing with a 1-MB limit.

This mode is used by Windows, and other operating systems for running old MS-DOS programs. These
programs are started up in virtual 8086 mode. As long as they execute normal instructions, they run on the
bare hardware. However, when a program tries to trap to the operating system to make a system call, or tries
to do protected I/O directly, a trap to the virtual machine monitor occurs.

5

5

[Page 48]

Two variants on this design are possible. In the first one, MS-DOS itself is loaded into the virtual 8086's
address space, so the virtual machine monitor just reflects the trap back to MS-DOS, just as would happen on
a real 8086. When MS-DOS later tries to do the I/O itself, that operation is caught and carried out by the
virtual machine monitor.

In the other variant, the virtual machine monitor just catches the first trap and does the I/O itself, since it
knows what all the MS-DOS system calls are and thus knows what each trap is supposed to do. This variant is
less pure than the first one, since it emulates only MS-DOS correctly, and not other operating systems, as the
first one does. On the other hand, it is much faster, since it saves the trouble of starting up MS-DOS to do the
I/O. A further disadvantage of actually running MS-DOS in virtual 8086 mode is that MS-DOS fiddles around
with the interrupt enable/disable bit quite a lot, all of which must be emulated at considerable cost.

It is worth noting that neither of these approaches are really the same as VM/370, since the machine being
emulated is not a full Pentium, but only an 8086. With the VM/370 system, it is possible to run VM/370,
itself, in the virtual machine. Even the earliest versions of Windows require at least a 286 and cannot be run
on a virtual 8086.

Several virtual machine implementations are marketed commercially. For companies that provide web-hosting
services, it can be more economical to run multiple virtual machines on a single fast server (perhaps one with
multiple CPUs) than to run many small computers, each hosting a single Web site. VMWare and Microsoft's
Virtual PC are marketed for such installations. These programs use large files on a host system as simulated
disks for their guest systems. To achieve efficiency they analyze guest system program binaries and allow safe
code to run directly on the host hardware, trapping instructions that make operating system calls. Such
systems are also useful in education. For instance, students working on MINIX 3 lab assignments can work
using MINIX 3 as a guest operating system on VMWare on a Windows, Linux or UNIX host with no risk of
damaging other software installed on the same PC. Most professors teaching other subjects would be very
nervous about sharing laboratory computers with an operating systems course where student mistakes could
corrupt or erase disk data.

Another are a where virtual machines are used, but in a somewhat different way, is for running Java programs.
When Sun Microsystems invented the Java programming language, it also invented a virtual machine (i.e., a
computer architecture) called the JVM (Java Virtual Machine). The Java compiler produces code for JVM,
which then typically is executed by a software JVM interpreter. The advantage of this approach is that the
JVM code can be shipped over the Internet to any computer that has a JVM interpreter and run there. If the
compiler had produced SPARC or Pentium binary programs, for example, they could not have been shipped
and run anywhere as easily. (Of course, Sun could have produced a compiler that produced SPARC binaries
and then distributed a SPARC interpreter, but JVM is a much simpler architecture to interpret.) Another
advantage of using JVM is that if the interpreter is implemented properly, which is not completely trivial,
incoming JVM programs can be checked for safety and then executed in a protected environment so they
cannot steal data or do any damage.

[Page 49]

1.5.4. Exokernels

With VM/370, each user process gets an exact copy of the actual computer. With virtual 8086 mode on the
Pentium, each user process gets an exact copy of a different computer. Going one step further, researchers at
M.I.T. built a system that gives each user a clone of the actual computer, but with a subset of the resources
(Engler et al., 1995; and Leschke, 2004). Thus one virtual machine might get disk blocks 0 to 1023, the next

6

6

one might get blocks 1024 to 2047, and so on.

At the bottom layer, running in kernel mode, is a program called the exokernel. Its job is to allocate resources
to virtual machines and then check attempts to use them to make sure no machine is trying to use somebody
else's resources. Each user-level virtual machine can run its own operating system, as on VM/370 and the
Pentium virtual 8086s, except that each one is restricted to using only the resources it has asked for and been
allocated.

The advantage of the exokernel scheme is that it saves a layer of mapping. In the other designs, each virtual
machine thinks it has its own disk, with blocks running from 0 to some maximum, so the virtual machine
monitor must maintain tables to remap disk addresses (and all other resources). With the exokernel, this
remapping is not needed. The exokernel need only keep track of which virtual machine has been assigned
which resource. This method still has the advantage of separating the multiprogramming (in the exokernel)
from the user operating system code (in user space), but with less overhead, since all the exokernel has to do
is keep the virtual machines out of each other's hair.

1.5.5. Client-Server Model

VM/370 gains much in simplicity by moving a large part of the traditional operating system code
(implementing the extended machine) into a higher layer, CMS. Nevertheless, VM/370 itself is still a complex
program because simulating a number of virtual 370s is not that simple (especially if you want to do it
reasonably efficiently).

A trend in modern operating systems is to take this idea of moving code up into higher layers even further and
remove as much as possible from the operating system, leaving a minimal kernel. The usual approach is to
implement most of the operating system functions in user processes. To request a service, such as reading a
block of a file, a user process (now known as the client process) sends the request to a server process, which
then does the work and sends back the answer.

[Page 50]

In this model, shown in Fig. 1-20, all the kernel does is handle the communication between clients and
servers. By splitting the operating system up into parts, each of which only handles one facet of the system,
such as file service, process service, terminal service, or memory service, each part becomes small and
manageable. Furthermore, because all the servers run as user-mode processes, and not in kernel mode, they do
not have direct access to the hardware. As a consequence, if a bug in the file server is triggered, the file
service may crash, but this will not usually bring the whole machine down.

Figure 1-20. The client-server model.

[View full size image]

7

7

Another advantage of the client-server model is its adaptability to use in distributed systems (see Fig. 1-21). If
a client communicates with a server by sending it messages, the client need not know whether the message is
handled locally in its own machine, or whether it was sent across a network to a server on a remote machine.
As far as the client is concerned, the same thing happens in both cases: a request was sent and a reply came
back.

Figure 1-21. The client-server model in a distributed system.

[View full size image]

The picture painted above of a kernel that handles only the transport of messages from clients to servers and
back is not completely realistic. Some operating system functions (such as loading commands into the
physical I/O device registers) are difficult, if not impossible, to do from user-space programs. There are two
ways of dealing with this problem. One way is to have some critical server processes (e.g., I/O device drivers)
actually run in kernel mode, with complete access to all the hardware, but still communicate with other
processes using the normal message mechanism. A variant of this mechanism was used in earlier versions of
MINIX where drivers were compiled into the kernel but ran as separate processes.

[Page 51]

The other way is to build a minimal amount of mechanism into the kernel but leave the policy decisions up to
servers in user space. For example, the kernel might recognize that a message sent to a certain special address
means to take the contents of that message and load it into the I/O device registers for some disk, to start a
disk read. In this example, the kernel would not even inspect the bytes in the message to see if they were valid
or meaningful; it would just blindly copy them into the disk's device registers. (Obviously, some scheme for
limiting such messages to authorized processes only must be used.) This is how MINIX 3 works, drivers are
in user space and use special kernel calls to request reads and writes of I/O registers or to access kernel
information. The split between mechanism and policy is an important concept; it occurs again and again in
operating systems in various contexts.

8

8

[Page 51 (continued)]

1.6. Outline of the Rest of This Book

Operating systems typically have four major components: process management, I/O device management,
memory management, and file management. MINIX 3 is also divided into these four parts. The next four
chapters deal with these four topics, one topic per chapter. Chapter 6 is a list of suggested readings and a
bibliography.

The chapters on processes, I/O, memory management, and file systems have the same general structure. First
the general principles of the subject are laid out. Then comes an overview of the corresponding area of
MINIX 3 (which also applies to UNIX). Finally, the MINIX 3 implementation is discussed in detail. The
implementation section may be skimmed or skipped without loss of continuity by readers just interested in the
principles of operating systems and not interested in the MINIX 3 code. Readers who are interested in finding
out how a real operating system (MINIX 3) works should read all the sections.

1

1

2

2

[Page 51 (continued)]

1.7. Summary

Operating systems can be viewed from two viewpoints: resource managers and extended machines. In the
resource manager view, the operating system's job is to efficiently manage the different parts of the system. In
the extended machine view, the job of the system is to provide the users with a virtual machine that is more
convenient to use than the actual machine.

[Page 52]

Operating systems have a long history, starting from the days when they replaced the operator, to modern
multiprogramming systems.

The heart of any operating system is the set of system calls that it can handle. These tell what the operating
system really does. For MINIX 3, these calls can be divided into six groups. The first group of system calls
relates to process creation and termination. The second group handles signals. The third group is for reading
and writing files. A fourth group is for directory management. The fifth group protects information, and the
sixth group is about keeping track of time.

Operating systems can be structured in several ways. The most common ones are as a monolithic system, as a
hierarchy of layers, as a virtual machine system, using an exokernel, and using the client-server model.

1

1

2

2

[Page 52 (continued)]

Problems

1. What are the two main functions of an operating system?

2. What is the difference between kernel mode and user mode? Why is the difference important to an
operating system?

3. What is multiprogramming?

4. What is spooling? Do you think that advanced personal computers will have spooling as a standard
feature in the future?

5. On early computers, every byte of data read or written was directly handled by the CPU (i.e., there
was no DMADirect Memory Access). What implications does this organization have for
multiprogramming?

6. Why was timesharing not widespread on second-generation computers?

7. Which of the following instructions should be allowed only in kernel mode?

(a) Disable all interrupts.

(b) Read the time-of-day clock.

(c) Set the time-of-day clock.

(d) Change the memory map.

8. List some differences between personal computer operating systems and mainframe operating
systems.

9. Give one reason why a closed-source proprietary operating system like Windows should have
better quality than an open-source operating system like Linux. Now give one reason why an
open-source operating system like Linux should have better quality than a closed-source
proprietary operating system like Windows.

10. A MINIX file whose owner has UID = 12 and GID = 1 has mode rwxr-x---. Another user with UID
= 6, GID = 1 tries to execute the file. What will happen?

[Page 53]

11. In view of the fact that the mere existence of a superuser can lead to all kinds of security problems,
why does such a concept exist?

12. All versions of UNIX support file naming using both absolute paths (relative to the root) and
relative paths (relative to the working directory). Would it be possible to dispose of one of these
and just use the other? If so, which would you suggest keeping?

13. Why is the process table needed in a timesharing system? Is it also needed in personal computer
systems in which only one process exists, that process taking over the entire machine until it is
finished?

1

1

14. What is the essential difference between a block special file and a character special file?

15. In MINIX 3 if user 2 links to a file owned by user 1, then user 1 removes the file, what happens
when user 2 tries to read the file?

16. Are pipes an essential facility? Would major functionality be lost if they were not available?

17. Modern consumer appliances such as stereos and digital cameras often have a display where
commands can be entered and the results of entering those commands can be viewed. These
devices often have a primitive operating system inside. To what part of a personal computer
software is the command processing via the stereo or camera's display similar to?

18. Windows does not have a fork system call, yet it is able to create new processes. Make an
educated guess about the semantics of the system call Windows uses to create new processes.

19. Why is the chroot system call limited to the superuser?(Hint: Think about protection problems.)

20. Examine the list of system calls in Fig. 1-9. Which call do you think is likely to execute most
quickly. Explain your answer.

21. Suppose that a computer can execute 1 billion instructions/sec and that a system call takes 1000
instructions, including the trap and all the context switching. How many system calls can the
computer execute per second and still have half the CPU capacity for running application code?

22. There is a mknod system call in Fig. 1-16 but there is no rmnod call. Does this mean that you
have to be very, very careful about making nodes this way because there is no way to every remove
them?

23. Why does MINIX 3 have the program update running in the background all the time?

24. Does it ever make any sense to ignore the SIGALRM signal?

25. The client-server model is popular in distributed systems. Can it also be used in a single-computer
system?

26. The initial versions of the Pentium could not support a virtual machine monitor. What essential
characteristic is needed to allow a machine to be virtualizable?

27. Write a program (or series of programs) to test all the MINIX 3 system calls. For each call, try
various sets of parameters, including some incorrect ones, to see if they are detected.

[Page 54]

28. Write a shell that is similar to Fig. 1-10 but contains enough code that it actually works so you can
test it. You might also add some features such as redirection of input and output, pipes, and
background jobs.

2

2

[Page 55]

2. Processes

We are now about to embark on a detailed study of how operating systems, in general, and MINIX 3, in
particular, are designed and constructed. The most central concept in any operating system is the process: an
abstraction of a running program. Everything else hinges on this concept, and it is important that the operating
system designer (and student) understand this concept well.

1

1

2

2

[Page 55 (continued)]

2.1. Introduction to Processes

All modern computers can do several things at the same time. While running a user
program, a computer can also be reading from a disk and outputting text to a screen or
printer. In a multiprogramming system, the CPU also switches from program to
program, running each for tens or hundreds of milliseconds. While, strictly speaking, at
any instant of time, the CPU is running only one program, in the course of 1 second, it
may work on several programs, thus giving the users the illusion of parallelism.
Sometimes people speak of pseudoparallelism in this context, to contrast it with the true
hardware parallelism of multiprocessor systems (which have two or more CPUs sharing
the same physical memory). Keeping track of multiple, parallel activities is hard for
people to do. Therefore, operating system designers over the years have evolved a
conceptual model (sequential processes) that makes parallelism easier to deal with. That
model, its uses, and some of its consequences form the subject of this chapter.

[Page 56]

2.1.1. The Process Model

In this model, all the runnable software on the computer, sometimes including the
operating system, is organized into a number of sequential processes, or just processes
for short. A process is just an executing program, including the current values of the
program counter, registers, and variables. Conceptually, each process has its own virtual
CPU. In reality, of course, the real CPU switches back and forth from process to process,
but to understand the system, it is much easier to think about a collection of processes
running in (pseudo) parallel, than to try to keep track of how the CPU switches from
program to program. This rapid switching back and forth is called multiprogramming, as
we saw in Chap. 1.

In Fig. 2-1(a) we see a computer multiprogramming four programs in memory. In Fig.
2-1(b) we see four processes, each with its own flow of control (i.e., its own program
counter), and each one running independently of the other ones. Of course, there is only
one physical program counter, so when each process runs, its logical program counter is
loaded into the real program counter. When it is finished for the time being, the physical
program counter is saved in the process' logical program counter in memory. In Fig.
2-1(c) we see that viewed over a long enough time interval, all the processes have made
progress, but at any given instant only one process is actually running.

Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual model of four
independent, sequential processes. (c) Only one program is active at any instant.

[View full size image]

1

1

With the CPU switching back and forth among the processes, the rate at which a process
performs its computation will not be uniform, and probably not even reproducible if the
same processes are run again. Thus, processes must not be programmed with built-in
assumptions about timing. Consider, for example, an I/O process that starts a streamer
tape to restore backed up files, executes an idle loop 10,000 times to let it get up to
speed, and then issues a command to read the first record. If the CPU decides to switch
to another process during the idle loop, the tape process might not run again until after
the first record was already past the read head. When a process has critical real-time
requirements like this, that is, particular events must occur within a specified number of
milliseconds, special measures must be taken to ensure that they do occur. Normally,
however, most processes are not affected by the underlying multiprogramming of the
CPU or the relative speeds of different processes.

[Page 57]

The difference between a process and a program is subtle, but crucial. An analogy may
help make this point clearer. Consider a culinary-minded computer scientist who is
baking a birthday cake for his daughter. He has a birthday cake recipe and a kitchen well
stocked with the necessary input: flour, eggs, sugar, extract of vanilla, and so on. In this
analogy, the recipe is the program (i.e., an algorithm expressed in some suitable
notation), the computer scientist is the processor (CPU), and the cake ingredients are the
input data. The process is the activity consisting of our baker reading the recipe, fetching
the ingredients, and baking the cake.

Now imagine that the computer scientist's son comes running in crying, saying that he
has been stung by a bee. The computer scientist records where he was in the recipe (the
state of the current process is saved), gets out a first aid book, and begins following the
directions in it. Here we see the processor being switched from one process (baking) to a
higher priority process (administering medical care), each having a different program
(recipe vs. first aid book). When the bee sting has been taken care of, the computer
scientist goes back to his cake, continuing at the point where he left off.

The key idea here is that a process is an activity of some kind. It has a program, input,
output, and a state. A single processor may be shared among several processes, with
some scheduling algorithm being used to determine when to stop work on one process
and service a different one.

2.1.2. Process Creation

Operating systems need some way to make sure all the necessary processes exist. In very
simple systems, or in systems designed for running only a single application (e.g.,

2

2

controlling a device in real time), it may be possible to have all the processes that will
ever be needed be present when the system comes up. In general-purpose systems,
however, some way is needed to create and terminate processes as needed during
operation. We will now look at some of the issues.

There are four principal events that cause processes to be created:

1. System initialization.

2. Execution of a process creation system call by a running process.

3. A user request to create a new process.

4. Initiation of a batch job.

[Page 58]

When an operating system is booted, often several processes are created. Some of these
are foreground processes, that is, processes that interact with (human) users and perform
work for them. Others are background processes, which are not associated with
particular users, but instead have some specific function. For example, a background
process may be designed to accept incoming requests for web pages hosted on that
machine, waking up when a request arrives to service the request. Processes that stay in
the background to handle some activity such as web pages, printing, and so on are called
daemons. Large systems commonly have dozens of them. In MINIX 3, the ps program
can be used to list the running processes.

In addition to the processes created at boot time, new processes can be created afterward
as well. Often a running process will issue system calls to create one or more new
processes to help it do its job. Creating new processes is particularly useful when the
work to be done can easily be formulated in terms of several related, but otherwise
independent interacting processes. For example, when compiling a large program, the
make program invokes the C compiler to convert source files to object code, and then it
invokes the install program to copy the program to its destination, set ownership and
permissions, etc. In MINIX 3, the C compiler itself is actually several different
programs, which work together. These include a preprocessor, a C language parser, an
assembly language code generator, an assembler, and a linker.

In interactive systems, users can start a program by typing a command. In MINIX 3,
virtual consoles allow a user to start a program, say a compiler, and then switch to an
alternate console and start another program, perhaps to edit documentation while the
compiler is running.

The last situation in which processes are created applies only to the batch systems found
on large mainframes. Here users can submit batch jobs to the system (possibly
remotely). When the operating system decides that it has the resources to run another
job, it creates a new process and runs the next job from the input queue in it.

Technically, in all these cases, a new process is created by having an existing process
execute a process creation system call. That process may be a running user process, a
system process invoked from the keyboard or mouse, or a batch manager process. What

3

3

that process does is execute a system call to create the new process. This system call
tells the operating system to create a new process and indicates, directly or indirectly,
which program to run in it.

In MINIX 3, there is only one system call to create a new process: fork. This call
creates an exact clone of the calling process. After the fork, the two processes, the
parent and the child, have the same memory image, the same environment strings, and
the same open files. That is all there is. Usually, the child process then executes
execve or a similar system call to change its memory image and run a new program.
For example, when a user types a command, say, sort, to the shell, the shell forks off a
child process and the child executes sort. The reason for this two-step process is to allow
the child to manipulate its file descriptors after the fork but before the execve to
accomplish redirection of standard input, standard output, and standard error.

[Page 59]

In both MINIX 3 and UNIX, after a process is created both the parent and child have
their own distinct address spaces. If either process changes a word in its address space,
the change is not visible to the other process. The child's initial address space is a copy
of the parent's, but there are two distinct address spaces involved; no writable memory is
shared (like some UNIX implementations, MINIX 3 can share the program text between
the two since that cannot be modified). It is, however, possible for a newly created
process to share some of its creator's other resources, such as open files.

2.1.3. Process Termination

After a process has been created, it starts running and does whatever its job is. However,
nothing lasts forever, not even processes. Sooner or later the new process will terminate,
usually due to one of the following conditions:

1. Normal exit (voluntary).

2. Error exit (voluntary).

3. Fatal error (involuntary).

4. Killed by another process
(involuntary).

Most processes terminate because they have done their work. When a compiler has
compiled the program given to it, the compiler executes a system call to tell the
operating system that it is finished. This call is exit in MINIX 3. Screen-oriented
programs also support voluntary termination. For instance, editors always have a key
combination that the user can invoke to tell the process to save the working file, remove
any temporary files that are open and terminate.

The second reason for termination is that the process discovers a fatal error. For
example, if a user types the command

cc foo.c

4

4

to compile the program foo.c and no such file exists, the compiler simply exits.

The third reason for termination is an error caused by the process, perhaps due to a
program bug. Examples include executing an illegal instruction, referencing nonexistent
memory, or dividing by zero. In MINIX 3, a process can tell the operating system that it
wishes to handle certain errors itself, in which case the process is signaled (interrupted)
instead of terminated when one of the errors occurs.

The fourth reason a process might terminate is that one process executes a system call
telling the operating system to kill some other process. In MINIX 3, this call is kill.
Of course, the killer must have the necessary authorization to do in the killee. In some
systems, when a process terminates, either voluntarily or otherwise, all processes it
created are immediately killed as well. MINIX 3 does not work this way, however.

[Page 60]

2.1.4. Process Hierarchies

In some systems, when a process creates another process, the parent and child continue
to be associated in certain ways. The child can itself create more processes, forming a
process hierarchy. Unlike plants and animals that use sexual reproduction, a process has
only one parent (but zero, one, two, or more children).

In MINIX 3, a process, its children, and further descendants together may form a process
group. When a user sends a signal from the keyboard, the signal may be delivered to all
members of the process group currently associated with the keyboard (usually all
processes that were created in the current window). This is signal-dependent. If a signal
is sent to a group, each process can catch the signal, ignore the signal, or take the default
action, which is to be killed by the signal.

As a simple example of how process trees are used, let us look at how MINIX 3
initializes itself. Two special processes, the reincarnation server and init are present in
the boot image. The reincarnation server's job is to (re)start drivers and servers. It begins
by blocking, waiting for a message telling it what to create.

In contrast, init executes the /etc/rc script that causes it to issue commands to the
reincarnation server to start the drivers and servers not present in the boot image. This
procedure makes the drivers and servers so started children of the reincarnation server,
so if any of them ever terminate, the reincarnation server will be informed and can
restart (i.e., reincarnate) them again. This mechanism is intended to allow MINIX 3 to
tolerate a driver or server crash because a new one will be started automatically. In
practice, replacing a driver is much easier than replacing a server, however, since there
fewer repercussions elsewhere in the system. (And, we do not say this always works
perfectly; it is still work in progress.)

When init has finished this, it reads a configuration file /etc/ttytab) to see which
terminals and virtual terminals exist. Init forks a getty process for each one, displays a
login prompt on it, and then waits for input. When a name is typed, getty execs a login
process with the name as its argument. If the user succeeds in logging in, login will
exec the user's shell. So the shell is a child of init. User commands create children of

5

5

the shell, which are grandchildren of init. This sequence of events is an example of how
process trees are used. As an aside, the code for the reincarnation server and init is not
listed in this book; neither is the shell. The line had to be drawn somewhere. But now
you have the basic idea.

2.1.5. Process States

Although each process is an independent entity, with its own program counter registers,
stack, open files, alarms, and other internal state, processes often need to interact,
communicate, and synchronize with other processes. One process may generate some
output that another process uses as input, for example. In that case, the data needs to be
moved between processes. In the shell command

[Page 61]

cat chapter1 chapter2 chapter3 | grep tree

the first process, running cat, concatenates and outputs three files. The second process,
running grep, selects all lines containing the word "tree." Depending on the relative
speeds of the two processes (which depends on both the relative complexity of the
programs and how much CPU time each one has had), it may happen that grep is ready
to run, but there is no input waiting for it. It must then block until some input is
available.

When a process blocks, it does so because logically it cannot continue, typically because
it is waiting for input that is not yet available. It is also possible for a process that is
conceptually ready and able to run to be stopped because the operating system has
decided to allocate the CPU to another process for a while. These two conditions are
completely different. In the first case, the suspension is inherent in the problem (you
cannot process the user's command line until it has been typed). In the second case, it is
a technicality of the system (not enough CPUs to give each process its own private
processor). In Fig. 2-2 we see a state diagram showing the three states a process may be
in:

1. Running (actually using the CPU at that instant).

2. Ready (runnable; temporarily stopped to let another
process run).

3. Blocked (unable to run until some external event happens).

Figure 2-2. A process can be in running, blocked, or ready state. Transitions between these
states are as shown.

6

6

Logically, the first two states are similar. In both cases the process is willing to run, only
in the second one, there is temporarily no CPU available for it. The third state is
different from the first two in that the process cannot run, even if the CPU has nothing
else to do.

Four transitions are possible among these three states, as shown. Transition 1 occurs
when a process discovers that it cannot continue. In some systems the process must
execute a system call, block or pause to get into blocked state. In other systems,
including MINIX 3, when a process reads from a pipe or special file (e.g., a terminal)
and there is no input available, the process is automatically moved from the running
state to the blocked state.

[Page 62]

Transitions 2 and 3 are caused by the process scheduler, a part of the operating-system,
without the process even knowing about them. Transition 2 occurs when the scheduler
decides that the running process has run long enough, and it is time to let another
process have some CPU time. Transition 3 occurs when all the other processes have had
their fair share and it is time for the first process to get the CPU to run again. The subject
of schedulingdeciding which process should run when and for how longis an important
one. Many algorithms have been devised to try to balance the competing demands of
efficiency for the system as a whole and fairness to individual processes. We will look at
scheduling and study some of these algorithms later in this chapter.

Transition 4 occurs when the external event for which a process was waiting (e.g., the
arrival of some input) happens. If no other process is running then, transition 3 will be
triggered immediately, and the process will start running. Otherwise it may have to wait
in ready state for a little while until the CPU is available.

Using the process model, it becomes much easier to think about what is going on inside
the system. Some of the processes run programs that carry out commands typed in by a
user. Other processes are part of the system and handle tasks such as carrying out
requests for file services or managing the details of running a disk or a tape drive. When
a disk interrupt occurs, the system may make a decision to stop running the current
process and run the disk process, which was blocked waiting for that interrupt. We say
"may" because it depends upon relative priorities of the running process and the disk
driver process. But the point is that instead of thinking about interrupts, we can think
about user processes, disk processes, terminal processes, and so on, which block when
they are waiting for something to happen. When the disk block has been read or the
character typed, the process waiting for it is unblocked and is eligible to run again.

This view gives rise to the model shown in Fig. 2-3. Here the lowest level of the
operating system is the scheduler, with a variety of processes on top of it. All the
interrupt handling and details of actually starting and stopping processes are hidden

7

7

away in the scheduler, which is actually quite small. The rest of the operating system is
nicely structured in process form. The model of Fig. 2-3 is used in MINIX 3. Of course,
the "scheduler" is not the only thing in the lowest layer, there is also support for interrupt
handling and interprocess communication. Nevertheless, to a first approximation, it does
show the basic structure.

Figure 2-3. The lowest layer of a process-structured operating system handles interrupts
and scheduling. Above that layer are sequential processes. (This item is displayed on page

63 in the print version)

2.1.6. Implementation of Processes

To implement the process model, the operating system maintains a table (an array of
structures), called the process table, with one entry per process. (Some authors call these
entries process control blocks.) This entry contains information about the process' state,
its program counter, stack pointer, memory allocation, the status of its open files, its
accounting and scheduling information, alarms and other signals, and everything else
about the process that must be saved when the process is switched from running to ready
state so that it can be restarted later as if it had never been stopped.

[Page 63]

In MINIX 3, interprocess communication, memory management, and file management
are each handled by separate modules within the system, so the process table is
partitioned, with each module maintaining the fields that it needs. Figure 2-4 shows
some of the more important fields. The fields in the first column are the only ones
relevant to this chapter. The other two columns are provided just to give an idea of what
information is needed elsewhere in the system.

Figure 2-4. Some of the fields of the MINIX 3 process table. The fields are distributed over
the kernel, the process manager, and the file system.
Kernel Process

management
File
management

Registers Pointer to
text segment

UMASK
mask

Program counter Pointer to
data segment

Root
directory

Program status word Pointer to bss
segment

Working
directory

Stack pointer Exit status File
descriptors

8

8

Process state Signal status Real id
Current scheduling priority Process ID Effective

UID
Maximum scheduling priority Parent

process
Real GID

Scheduling ticks left Process
group

Effective
GID

Quantum size Children's
CPU time

Controlling
tty

CPU time used Real UID Save area for
read/write

Message queue pointers Effective
UID

System call
parameters

Pending signal bits Real GID Various flag
bits

Various flag bits Effective
GID

Process name File info for
sharing text
Bitmaps for
signals
Various flag
bits
Process
name

[Page 64]

Now that we have looked at the process table, it is possible to explain a little more about how the illusion of
multiple sequential processes is maintained on a machine with one CPU and many I/O devices. What follows
is technically a description of how the "scheduler" of Fig. 2-3 works in MINIX 3 but most modern operating
systems work essentially the same way. Associated with each I/O device class (e.g., floppy disks, hard disks,
timers, terminals) is a data structure in a table called the interrupt descriptor table. The most important part of
each entry in this table is called the interrupt vector. It contains the address of the interrupt service procedure.
Suppose that user process 23 is running when a disk interrupt occurs. The program counter, program status
word, and possibly one or more registers are pushed onto the (current) stack by the interrupt hardware. The
computer then jumps to the address specified in the disk interrupt vector. That is all the hardware does. From
here on, it is up to the software.

The interrupt service procedure starts out by saving all the registers in the process table entry for the current
process. The current process number and a pointer to its entry are kept in global variables so they can be
found quickly. Then the information deposited by the interrupt is removed from the stack, and the stack
pointer is set to a temporary stack used by the process handler. Actions such as saving the registers and setting
the stack pointer cannot even be expressed in high-level languages such as C, so they are performed by a
small assembly language routine. When this routine is finished, it calls a C procedure to do the rest of the
work for this specific interrupt type.

Interprocess communication in MINIX 3 is via messages, so the next step is to build a message to be sent to
the disk process, which will be blocked waiting for it. The message says that an interrupt occurred, to
distinguish it from messages from user processes requesting disk blocks to be read and things like that. The
state of the disk process is now changed from blocked to ready and the scheduler is called. In MINIX 3,
different processes have different priorities, to give better service to I/O device handlers than to user

9

9

processes, for example. If the disk process is now the highest priority runnable process, it will be scheduled to
run. If the process that was interrupted is just as important or more so, then it will be scheduled to run again,
and the disk process will have to wait a little while.

Either way, the C procedure called by the assembly language interrupt code now returns, and the assembly
language code loads up the registers and memory map for the now-current process and starts it running.
Interrupt handling and scheduling are summarized in Fig. 2-5. It is worth noting that the details vary slightly
from system to system.

Figure 2-5. Skeleton of what the lowest level of the operating system does when an interrupt occurs. (This item is
displayed on page 65 in the print version)

Hardware stacks program counter, etc.1.
Hardware loads new program counter from interrupt vector.2.
Assembly language procedure saves registers.3.
Assembly language procedure sets up new stack.4.
C interrupt service constructs and sends message.5.
Message passing code marks waiting message recipient ready.6.
Scheduler decides which process is to run next.7.
C procedure returns to the assembly code.8.
Assembly language procedure starts up new current process.9.

2.1.7. Threads

In traditional operating systems, each process has an address space and a single thread of control. In fact, that
is almost the definition of a process. Nevertheless, there are often situations in which it is desirable to have
multiple threads of control in the same address space running in quasi-parallel, as though they were separate
processes (except for the shared address space). These threads of control are usually just called threads,
although some people call them lightweight processes.

[Page 65]

One way of looking at a process is that it is a way to group related resources together. A process has an
address space containing program text and data, as well as other resources. These resources may include open
files, child processes, pending alarms, signal handlers, accounting information, and more. By putting them
together in the form of a process, they can be managed more easily.

The other concept a process has is a thread of execution, usually shortened to just thread. The thread has a
program counter that keeps track of which instruction to execute next. It has registers, which hold its current
working variables. It has a stack, which contains the execution history, with one frame for each procedure
called but not yet returned from. Although a thread must execute in some process, the thread and its process
are different concepts and can be treated separately. Processes are used to group resources together; threads
are the entities scheduled for execution on the CPU.

What threads add to the process model is to allow multiple executions to take place in the same process
environment, to a large degree independent of one another. In Fig. 2-6(a) we see three traditional processes.
Each process has its own address space and a single thread of control. In contrast, in Fig. 2-6(b) we see a
single process with three threads of control. Although in both cases we have three threads, in Fig. 2-6(a) each
of them operates in a different address space, whereas in Fig. 2-6(b) all three of them share the same address
space.

10

10

Figure 2-6. (a) Three processes each with one thread. (b) One process with three threads. (This item is displayed
on page 66 in the print version)

[View full size image]

As an example of where multiple threads might be used, consider a web browser process. Many web pages
contain multiple small images. For each image on a web page, the browser must set up a separate connection
to the page's home site and request the image. A great deal of time is spent establishing and releasing all these
connections. By having multiple threads within the browser, many images can be requested at the same time,
greatly speeding up performance in most cases since with small images, the set-up time is the limiting factor,
not the speed of the transmission line.

[Page 66]

When multiple threads are present in the same address space, a few of the fields of Fig. 2-4 are not per
process, but per thread, so a separate thread table is needed, with one entry per thread. Among the per-thread
items are the program counter, registers, and state. The program counter is needed because threads, like
processes, can be suspended and resumed. The registers are needed because when threads are suspended, their
registers must be saved. Finally, threads, like processes, can be in running, ready, or blocked state. Fig. 2-7
lists some per-process and per-thread items.

Figure 2-7. The first column lists some items shared by all threads in a process. The second one lists some items
private to each thread.

Per process items

Per thread items

Address space

Program counter

Global variables

Registers

Open files

Stack

11

11

Child processes

State

Pending alarms

Signals and signal handlers

Accounting information

In some systems, the operating system is not aware of the threads. In other words, they are managed entirely
in user space. When a thread is about to block, for example, it chooses and starts its successor before stopping.
Several userlevel threads packages are in common use, including the POSIX P-threads and Mach C-threads
packages.

[Page 67]

In other systems, the operating system is aware of the existence of multiple threads per process, so when a
thread blocks, the operating system chooses the next one to run, either from the same process or a different
one. To do scheduling, the kernel must have a thread table that lists all the threads in the system, analogous to
the process table.

Although these two alternatives may seem equivalent, they differ considerably in performance. Switching
threads is much faster when thread management is done in user space than when a system call is needed. This
fact argues strongly for doing thread management in user space. On the other hand, when threads are managed
entirely in user space and one thread blocks (e.g., waiting for I/O or a page fault to be handled), the kernel
blocks the entire process, since it is not even aware that other threads exist. This fact as well as others argue
for doing thread management in the kernel (Boehm, 2005). As a consequence, both systems are in use, and
various hybrid schemes have been proposed as well (Anderson et al., 1992).

No matter whether threads are managed by the kernel or in user space, they introduce a raft of problems that
must be solved and which change the programming model appreciably. To start with, consider the effects of
the fork system call. If the parent process has multiple threads, should the child also have them? If not, the
process may not function properly, since all of them may be essential.

However, if the child process gets as many threads as the parent, what happens if a thread was blocked on a
read call, say, from the keyboard? Are two threads now blocked on the keyboard? When a line is typed, do
both threads get a copy of it? Only the parent? Only the child? The same problem exists with open network
connections.

Another class of problems is related to the fact that threads share many data structures. What happens if one
thread closes a file while another one is still reading from it? Suppose that one thread notices that there is too
little memory and starts allocating more memory. Then, part way through, a thread switch occurs, and the new
thread also notices that there is too little memory and also starts allocating more memory. Does the allocation
happen once or twice? In nearly all systems that were not designed with threads in mind, the libraries (such as
the memory allocation procedure) are not reentrant, and will crash if a second call is made while the first one
is still active.

12

12

Another problem relates to error reporting. In UNIX, after a system call, the status of the call is put into a
global variable, errno. What happens if a thread makes a system call, and before it is able to read errno,
another thread makes a system call, wiping out the original value?

Next, consider signals. Some signals are logically thread specific; others are not. For example, if a thread calls
alarm, it makes sense for the resulting signal to go to the thread that made the call. When the kernel is aware
of threads, it can usually make sure the right thread gets the signal. When the kernel is not aware of threads,
the threads package must keep track of alarms by itself. An additional complication for user-level threads
exists when (as in UNIX) a process may only have one alarm at a time pending and several threads call
alarm independently.

[Page 68]

Other signals, such as a keyboard-initiated SIGINT, are not thread specific. Who should catch them? One
designated thread? All the threads? A newly created thread? Each of these solutions has problems.
Furthermore, what happens if one thread changes the signal handlers without telling other threads?

One last problem introduced by threads is stack management. In many systems, when stack overflow occurs,
the kernel just provides more stack, automatically. When a process has multiple threads, it must also have
multiple stacks. If the kernel is not aware of all these stacks, it cannot grow them automatically upon stack
fault. In fact, it may not even realize that a memory fault is related to stack growth.

These problems are certainly not insurmountable, but they do show that just introducing threads into an
existing system without a fairly substantial system redesign is not going to work at all. The semantics of
system calls have to be redefined and libraries have to be rewritten, at the very least. And all of these things
must be done in such a way as to remain backward compatible with existing programs for the limiting case of
a process with only one thread. For additional information about threads, see Hauser et al. (1993) and Marsh
et al. (1991).

13

13

14

14

[Page 68 (continued)]

2.2. Interprocess Communication

Processes frequently need to communicate with other processes. For example, in a shell pipeline, the output of the
first process must be passed to the second process, and so on down the line. Thus there is a need for communication
between processes, preferably in a well-structured way not using interrupts. In the following sections we will look
at some of the issues related to this InterProcess Communication or IPC.

There are three issues here. The first was alluded to above: how one process can pass information to another. The
second has to do with making sure two or more processes do not get into each other's way when engaging in critical
activities (suppose two processes each try to grab the last 1 MB of memory). The third concerns proper sequencing
when dependencies are present: if process A produces data and process B prints it, B has to wait until A has
produced some data before starting to print. We will examine all three of these issues in some detail in this section.

It is also important to mention that two of these issues apply equally well to threads. The first onepassing
informationis easy for threads since they share a common address space (threads in different address spaces that
need to communicate fall under the heading of communicating processes). However, the other twokeeping out of
each other's hair and proper sequencingapply as well to threads. The same problems exist and the same solutions
apply. Below we will discuss the problem in the context of processes, but please keep in mind that the same
problems and solutions also apply to threads.

[Page 69]

2.2.1. Race Conditions

In some operating systems, processes that are working together may share some common storage that each one can
read and write. The shared storage may be in main memory (possibly in a kernel data structure) or it may be a
shared file; the location of the shared memory does not change the nature of the communication or the problems
that arise. To see how interprocess communication works in practice, let us consider a simple but common example,
a print spooler. When a process wants to print a file, it enters the file name in a special spooler directory. Another
process, the printer daemon, periodically checks to see if so are any files to be printed, and if so removes their
names from the directory.

Imagine that our spooler directory has a large number of slots, numbered 0, 1, 2, ..., each one capable of holding a
file name. Also imagine that there are two shared variables, out, which points to the next file to be printed, and in,
which points to the next free slot in the directory. These two variables might well be kept in a two-word file
available to all processes. At a certain instant, slots 0 to 3 are empty (the files have already been printed) and slots 4
to 6 are full (with the names of files to be printed). More or less simultaneously, processes A and B decide they
want to queue a file for printing. This situation is shown in Fig. 2-8.

Figure 2-8. Two processes want to access shared memory at the same time.

1

1

In jurisdictions where Murphy's law[] is applicable, the following might well happen. Process A reads in and
stores the value, 7, in a local variable called next_free_slot. Just then a clock interrupt occurs and the CPU decides
that process A has run long enough, so it switches to process B. Process B also reads in, and also gets a 7, so it
stores the name of its file in slot 7 and updates in to be an 8. Then it goes off and does other things.

[] If something can go wrong, it will.

[Page 70]

Eventually, process A runs again, starting from the place it left off last time. It looks at next_free_slot, finds a 7
there, and writes its file name in slot 7, erasing the name that process B just put there. Then it computes
next_free_slot + 1, which is 8, and sets in to 8. The spooler directory is now internally consistent, so the printer
daemon will not notice anything wrong, but process B will never receive any output. User B will hang around the
printer room for years, wistfully hoping for output that never comes. Situations like this, where two or more
processes are reading or writing some shared data and the final result depends on who runs precisely when, are
called race conditions. Debugging programs containing race conditions is no fun at all. The results of most test runs
are fine, but once in a blue moon something weird and unexplained happens.

2.2.2. Critical Sections

How do we avoid race conditions? The key to preventing trouble here and in many other situations involving shared
memory, shared files, and shared everything else is to find some way to prohibit more than one process from
reading and writing the shared data at the same time. Put in other words, what we need is mutual exclusionsome
way of making sure that if one process is using a shared variable or file, the other processes will be excluded from
doing the same thing. The difficulty above occurred because process B started using one of the shared variables
before process A was finished with it. The choice of appropriate primitive operations for achieving mutual
exclusion is a major design issue in any operating system, and a subject that we will now examine in great detail.

The problem of avoiding race conditions can also be formulated in an abstract way. Part of the time, a process is
busy doing internal computations and other things that do not lead to race conditions. However, sometimes a
process may be accessing shared memory or files. That part of the program where the shared memory is accessed is
called the critical region or critical section. If we could arrange matters such that no two processes were ever in
their critical regions at the same time, we could avoid race conditions.

2

2

Although this requirement avoids race conditions, this is not sufficient for having parallel processes cooperate
correctly and efficiently using shared data. We need four conditions to hold to have a good solution:

1. No two processes may be simultaneously inside their critical regions.

2. No assumptions may be made about speeds or the number of CPUs.

3. No process running outside its critical region may block other processes.

4. No process should have to wait forever to enter its critical region.

[Page 71]

The behavior that we want is shown in Fig. 2-9. Here process A enters its critical region at time T1. A little later, at
time T2 process B attempts to enter its critical region but fails because another process is already in its critical
region and we allow only one at a time. Consequently, B is temporarily suspended until time T3 when A leaves its
critical region, allowing B to enter immediately. Eventually B leaves (at T4) and we are back to the original
situation with no processes in their critical regions.

Figure 2-9. Mutual exclusion using critical regions.

[View full size image]

2.2.3. Mutual Exclusion with Busy Waiting

In this section we will examine various proposals for achieving mutual exclusion, so that while one process is busy
updating shared memory in its critical region, no other process will enter its critical region and cause trouble.

Disabling Interrupts

The simplest solution is to have each process disable all interrupts just after entering its critical region and reenable
them just before leaving it. With interrupts disabled, no clock interrupts can occur. The CPU is only switched from
process to process as a result of clock or other interrupts, after all, and with interrupts turned off the CPU will not
be switched to another process. Thus, once a process has disabled interrupts, it can examine and update the shared

3

3

memory without fear that any other process will intervene.

This approach is generally unattractive because it is unwise to give user processes the power to turn off interrupts.
Suppose that one of them did, and then never turned them on again? That could be the end of the system.
Furthermore, if the system is a multiprocessor, with two or more CPUs, disabling interrupts affects only the CPU
that executed the disable instruction. The other ones will continue running and can access the shared memory.

[Page 72]

On the other hand, it is frequently convenient for the kernel itself to disable interrupts for a few instructions while it
is updating variables or lists. If an interrupt occurred while the list of ready processes, for example, was in an
inconsistent state, race conditions could occur. The conclusion is: disabling interrupts is often a useful technique
within the operating system itself but is not appropriate as a general mutual exclusion mechanism for user
processes.

Lock Variables

As a second attempt, let us look for a software solution. Consider having a single, shared, (lock) variable, initially 0.
When a process wants to enter its critical region, it first tests the lock. If the lock is 0, the process sets it to 1 and
enters the critical region. If the lock is already 1, the process just waits until it becomes 0. Thus, a 0 means that no
process is in its critical region, and a 1 means that some process is in its critical region.

Unfortunately, this idea contains exactly the same fatal flaw that we saw in the spooler directory. Suppose that one
process reads the lock and sees that it is 0. Before it can set the lock to 1, another process is scheduled, runs, and
sets the lock to 1. When the first process runs again, it will also set the lock to 1, and two processes will be in their
critical regions at the same time.

Now you might think that we could get around this problem by first reading out the lock value, then checking it
again just before storing into it, but that really does not help. The race now occurs if the second process modifies
the lock just after the first process has finished its second check.

Strict Alternation

A third approach to the mutual exclusion problem is shown in Fig. 2-10. This program fragment, like most others in
this book, is written in C. C was chosen here because real operating systems are commonly written in C (or
occasionally C++), but hardly ever in languages like Java. C is powerful, efficient, and predictable, characteristics
critical for writing operating systems. Java, for example, is not predictable because it might run out of storage at a
critical moment and need to invoke the garbage collector at a most inopportune time. This cannot happen in C
because there is no garbage collection in C. A quantitative comparison of C, C++, Java, and four other languages is
given by Prechelt (2000).

Figure 2-10. A proposed solution to the critical region problem. (a) Process 0. (b) Process 1. In both cases, be sure to
note the semicolons terminating the while statements. (This item is displayed on page 73 in the print version)

while (TRUE){ while (TRUE) {
 while(turn != 0) /* loop* /; while(turn != 1) /* loop* /;
 critical_region(); critical_region();
 turn = 1; turn = 0;
 noncritical_region(); noncritical_region();
} }
 (a) (b)

4

4

In Fig. 2-10, the integer variable turn, initially 0, keeps track of whose turn it is to enter the critical region and
examine or update the shared memory. Initially, process 0 inspects turn, finds it to be 0, and enters its critical
region. Process 1 also finds it to be 0 and therefore sits in a tight loop continually testing turn to see when it
becomes 1. Continuously testing a variable until some value appears is called busy waiting. It should usually be
avoided, since it wastes CPU time. Only when there is a reasonable expectation that the wait will be short is busy
waiting used. A lock that uses busy waiting is called a spin lock.

[Page 73]

When process 0 leaves the critical region, it sets turn to 1, to allow process 1 to enter its critical region. Suppose
that process 1 finishes its critical region quickly, so both processes are in their noncritical regions, with turn set to 0.
Now process 0 executes its whole loop quickly, exiting its critical region and setting turn to 1. At this point turn is 1
and both processes are executing in their noncritical regions.

Suddenly, process 0 finishes its noncritical region and goes back to the top of its loop. Unfortunately, it is not
permitted to enter its critical region now, because turn is 1 and process 1 is busy with its noncritical region. It hangs
in its while loop until process 1 sets turn to 0. Put differently, taking turns is not a good idea when one of the
processes is much slower than the other.

This situation violates condition 3 set out above: process 0 is being blocked by a process not in its critical region.
Going back to the spooler directory discussed above, if we now associate the critical region with reading and
writing the spooler directory, process 0 would not be allowed to print another file because process 1 was doing
something else.

In fact, this solution requires that the two processes strictly alternate in entering their critical regions, for example,
in spooling files. Neither one would be permitted to spool two in a row. While this algorithm does avoid all races, it
is not really a serious candidate as a solution because it violates condition 3.

Peterson's Solution

By combining the idea of taking turns with the idea of lock variables and warning variables, a Dutch
mathematician, T. Dekker, was the first one to devise a software solution to the mutual exclusion problem that does
not require strict alternation. For a discussion of Dekker's algorithm, see Dijkstra (1965).

[Page 74]

In 1981, G.L. Peterson discovered a much simpler way to achieve mutual exclusion, thus rendering Dekker's
solution obsolete. Peterson's algorithm is shown in Fig. 2-11. This algorithm consists of two procedures written in
ANSI C, which means that function prototypes should be supplied for all the functions defined and used. However,
to save space, we will not show the prototypes in this or subsequent examples.

Figure 2-11. Peterson's solution for achieving mutual exclusion.

#define FALSE 0
#define TRUE 1
#define N 2 /* number of processes */

int turn; /* whose turn is it? */
int interested[N]; /* all values initially 0 (FALSE)*/
void enter_region(int process) /* process is 0 or 1 */

5

5

{
 int other; /* number of the other process */
 other = 1 - process; /* the opposite of process */
 interested[process] = TRUE; /* show that you are interested */
 turn = process; /* set flag */
 while (turn == process && interested[other] == TRUE) /* null statement */;
}
void leave_region(int process) /* process: who is leaving */
{
 interested[process] = FALSE; /* indicate departure from critical region */
}

Before using the shared variables (i.e., before entering its critical region), each process calls enter_region with its
own process number, 0 or 1, as the parameter. This call will cause it to wait, if need be, until it is safe to enter. After
it has finished with the shared variables, the process calls leave_region to indicate that it is done and to allow the
other process to enter, if it so desires.

Let us see how this solution works. Initially, neither process is in its critical region. Now process 0 calls
enter_region. It indicates its interest by setting its array element and sets turn to 0. Since process 1 is not interested,
enter_region returns immediately. If process 1 now calls enter_region, it will hang there until interested[0] goes to
FALSE, an event that only happens when process 0 calls leave_region to exit the critical region.

Now consider the case that both processes call enter_region almost simultaneously. Both will store their process
number in turn. Whichever store is done last is the one that counts; the first one is lost. Suppose that process 1
stores last, so turn is 1. When both processes come to the while statement, process 0 executes it zero times and
enters its critical region. Process 1 loops and does not enter its critical region.

[Page 75]

The TSL Instruction

Now let us look at a proposal that requires a little help from the hardware. Many computers, especially those
designed with multiple processors in mind, have an instruction

TSL RX,LOCK

(Test and Set Lock) that works as follows: it reads the contents of the memory word LOCK into register RX and
then stores a nonzero value at the memory address LOCK. The operations of reading the word and storing into it are
guaranteed to be indivisibleno other processor can access the memory word until the instruction is finished. The
CPU executing the TSL instruction locks the memory bus to prohibit other CPUs from accessing memory until it is
done.

To use the TSL instruction, we will use a shared variable, LOCK, to coordinate access to shared memory. When
LOCK is 0, any process may set it to 1 using the TSL instruction and then read or write the shared memory. When
it is done, the process sets LOCK back to 0 using an ordinary move instruction.

How can this instruction be used to prevent two processes from simultaneously entering their critical regions? The
solution is given in Fig. 2-12. There a four-instruction subroutine in a fictitious (but typical) assembly language is
shown. The first instruction copies the old value of LOCK to the register and then sets LOCK to 1. Then the old
value is compared with 0. If it is nonzero, the lock was already set, so the program just goes back to the beginning
and tests it again. Sooner or later it will become 0 (when the process currently in its critical region is done with its

6

6

critical region), and the subroutine returns, with the lock set. Clearing the lock is simple. The program just stores a
0 in LOCK. No special instructions are needed.

Figure 2-12. Entering and leaving a critical region using the TSL instruction.

enter_region:
 TSL REGISTER,LOCK |copy LOCK to register and set LOCK to 1
 CMP REGISTER,#0 |was LOCK zero?
 JNE ENTER_REGION |if it was non zero, LOCK was set, so loop
 RET |return to caller; critical region entered

leave_region:
 MOVE LOCK,#0 |store a 0 in LOCK
 RET |return to caller

[Page 76]

One solution to the critical region problem is now straightforward. Before entering its critical region, a process calls
enter_region, which does busy waiting until the lock is free; then it acquires the lock and returns. After the critical
region the process calls leave_region, which stores a 0 in LOCK. As with all solutions based on critical regions, the
processes must call enter_region and leave_region at the correct times for the method to work. If a process cheats,
the mutual exclusion will fail.

2.2.4. Sleep and Wakeup

Both Peterson's solution and the solution using TSL are correct, but both have the defect of requiring busy waiting.
In essence, what these solutions do is this: when a process wants to enter its critical region, it checks to see if the
entry is allowed. If it is not, the process just sits in a tight loop waiting until it is.

Not only does this approach waste CPU time, but it can also have unexpected effects. Consider a computer with two
processes, H, with high priority and L, with low priority, which share a critical region. The scheduling rules are
such that H is run whenever it is in ready state. At a certain moment, with L in its critical region, H becomes ready
to run (e.g., an I/O operation completes). H now begins busy waiting, but since L is never scheduled while H is
running, L never gets the chance to leave its critical region, so H loops forever. This situation is sometimes referred
to as the priority inversion problem.

Now let us look at some interprocess communication primitives that block instead of wasting CPU time when they
are not allowed to enter their critical regions. One of the simplest is the pair sleep and wakeup. sleep is a
system call that causes the caller to block, that is, be suspended until another process wakes it up. The wakeup call
has one parameter, the process to be awakened. Alternatively, both sleep and wakeup each have one parameter,
a memory address used to match up sleeps with wakeups.

The Producer-Consumer Problem

As an example of how these primitives can be used in practice, let us consider the producer-consumer problem (also
known as the bounded buffer problem). Two processes share a common, fixed-size buffer. One of them, the
producer, puts information into the buffer, and the other one, the consumer, takes it out. (It is also possible to
generalize the problem to have m producers and n consumers, but we will only consider the case of one producer
and one consumer because this assumption simplifies the solutions).

7

7

Trouble arises when the producer wants to put a new item in the buffer, but it is already full. The solution is for the
producer to go to sleep, to be awakened when the consumer has removed one or more items. Similarly, if the
consumer wants to remove an item from the buffer and sees that the buffer is empty, it goes to sleep until the
producer puts something in the buffer and wakes it up.

[Page 77]

This approach sounds simple enough, but it leads to the same kinds of race conditions we saw earlier with the
spooler directory. To keep track of the number of items in the buffer, we will need a variable, count. If the
maximum number of items the buffer can hold is N, the producer's code will first test to see if count is N. If it is, the
producer will go to sleep; if it is not, the producer will add an item and increment count.

The consumer's code is similar: first test count to see if it is 0. If it is, go to sleep; if it is nonzero, remove an item
and decrement the counter. Each of the processes also tests to see if the other should be sleeping, and if not, wakes
it up. The code for both producer and consumer is shown in Fig. 2-13.

Figure 2-13. The producer-consumer problem with a fatal race condition.

[View full width]
#define N 100 /* number of slots in the buffer */
int count = 0; /* number of items in the buffer */

void producer(void)
{
 int item;

 while (TRUE){ /* repeat forever */
 item = produce_item(); /* generate next item */
 if (count == N) sleep(); /* if buffer is full, go to sleep */
 insert_item(item); /* put item in buffer */
 count = count + 1; /* increment count of items in buffer */
 if (count == 1) wakeup(consumer); /* was buffer empty? */
 }
}

void consumer(void)
{
 int item;

 while (TRUE){ /* repeat forever */
 if (count == 0) sleep(); /* if buffer is empty, got to sleep */
 item = remove_item(); /* take item out of buffer */
 count = count 1; /* decrement count of items in
 buffer */

 if (count ==N 1) wakeup(producer); /* was buffer full? */
 consume_item(item); /* print item */
 }
}

To express system calls such as sleep and wakeup in C, we will show them as calls to library routines. They are
not part of the standard C library but presumably would be available on any system that actually had these system
calls. The procedures enter_item and remove_item, which are not shown, handle the bookkeeping of putting items
into the buffer and taking items out of the buffer.

8

8

[Page 78]

Now let us get back to the race condition. It can occur because access to count is unconstrained. The following
situation could possibly occur. The buffer is empty and the consumer has just read count to see if it is 0. At that
instant, the scheduler decides to stop running the consumer temporarily and start running the producer. The
producer enters an item in the buffer, increments count, and notices that it is now 1. Reasoning that count was just
0, and thus the consumer must be sleeping, the producer calls wakeup to wake the consumer up.

Unfortunately, the consumer is not yet logically asleep, so the wakeup signal is lost. When the consumer next runs,
it will test the value of count it previously read, find it to be 0, and go to sleep. Sooner or later the producer will fill
up the buffer and also go to sleep. Both will sleep forever.

The essence of the problem here is that a wakeup sent to a process that is not (yet) sleeping is lost. If it were not
lost, everything would work. A quick fix is to modify the rules to add a wakeup waiting bit to the picture. When a
wakeup is sent to a process that is still awake, this bit is set. Later, when the process tries to go to sleep, if the
wakeup waiting bit is on, it will be turned off, but the process will stay awake. The wakeup waiting bit is a piggy
bank for wakeup signals.

While the wakeup waiting bit saves the day in this simple example, it is easy to construct examples with three or
more processes in which one wakeup waiting bit is insufficient. We could make another patch, and add a second
wakeup waiting bit, or maybe 8 or 32 of them, but in principle the problem is still there.

2.2.5. Semaphores

This was the situation until E. W. Dijkstra (1965) suggested using an integer variable to count the number of
wakeups saved for future use. In his proposal, a new variable type, called a semaphore, was introduced. A
semaphore could have the value 0, indicating that no wakeups were saved, or some positive value if one or more
wakeups were pending.

Dijkstra proposed having two operations, down and up (which are generalizations of sleep and wakeup,
respectively). The down operation on a semaphore checks to see if the value is greater than 0. If so, it decrements
the value (i.e., uses up one stored wakeup) and just continues. If the value is 0, the process is put to sleep without
completing the down for the moment. Checking the value, changing it, and possibly going to sleep is all done as a
single, indivisible, atomic action. It is guaranteed that once a semaphore operation has started, no other process can
access the semaphore until the operation has completed or blocked. This atomicity is absolutely essential to solving
synchronization problems and avoiding race conditions.

The up operation increments the value of the semaphore addressed. If one or more processes were sleeping on that
semaphore, unable to complete an earlier down operation, one of them is chosen by the system (e.g., at random)
and is allowed to complete its down. Thus, after an up on a semaphore with processes sleeping on it, the
semaphore will still be 0, but there will be one fewer process sleeping on it. The operation of incrementing the
semaphore and waking up one process is also indivisible. No process ever blocks doing an up, just as no process
ever blocks doing a wakeup in the earlier model.

[Page 79]

As an aside, in Dijkstra's original paper, he used the names p and v instead of down and up, respectively, but since
these have no mnemonic significance to people who do not speak Dutch (and only marginal significance to those
who do), we will use the terms down and up instead. These were first introduced in Algol 68.

9

9

Solving the Producer-Consumer Problem using Semaphores

Semaphores solve the lost-wakeup problem, as shown in Fig. 2-14. It is essential that they be implemented in an
indivisible way. The normal way is to implement up and down as system calls, with the operating system briefly
disabling all interrupts while it is testing the semaphore, updating it, and putting the process to sleep, if necessary.
As all of these actions take only a few instructions, no harm is done in disabling interrupts. If multiple CPUs are
being used, each semaphore should be protected by a lock variable, with the TSL instruction used to make sure that
only one CPU at a time examines the semaphore. Be sure you understand that using TSL to prevent several CPUs
from accessing the semaphore at the same time is quite different from busy waiting by the producer or consumer
waiting for the other to empty or fill the buffer. The semaphore operation will only take a few microseconds,
whereas the producer or consumer might take arbitrarily long.

Figure 2-14. The producer-consumer problem using semaphores. (This item is displayed on page 80 in the print
version)

#define N 100 /* number of slots in the buffer */
typedef int semaphore; /* semaphores are a special kind of int */
semaphore mutex = 1; /* controls access to critical region */
semaphore empty = N; /* counts empty buffer slots */
semaphore full = 0; /* counts full buffer slots */

void producer(void)
{
 int item;

 while (TRUE){ /* TRUE is the constant 1 */
 item = produce_item(); /* generate something to put in buffer */
 down(&empty); /* decrement empty count */
 down(&mutex); /* enter critical region */
 insert_item(item); /* put new item in buffer */
 up(&mutex); /* leave critical region */
 up(&full); /* increment count of full slots */
 }
}

void consumer(void)
{
 int item;

 while (TRUE){ /* infinite loop */
 down(&full); /* decrement full count */
 down(&mutex); /* enter critical region */
 item = remove_item(); /* take item from buffer */
 up(&mutex); /* leave critical region */
 up(&empty); /* increment count of empty slots */
 consume_item(item); /* do something with the item */
 }
}

This solution uses three semaphores: one called full for counting the number of slots that are full, one called empty
for counting the number of slots that are empty, and one called mutex to make sure the producer and consumer do
not access the buffer at the same time. Full is initially 0, empty is initially equal to the number of slots in the buffer,
and mutex is initially 1. Semaphores that are initialized to 1 and used by two or more processes to ensure that only
one of them can enter its critical region at the same time are called binary semaphores. If each process does a down
just before entering its critical region and an up just after leaving it, mutual exclusion is guaranteed.

Now that we have a good interprocess communication primitive at our disposal, let us go back and look at the
interrupt sequence of Fig. 2-5 again. In a system-using semaphores, the natural way to hide interrupts is to have a

10

10

semaphore, initially set to 0, associated with each I/O device. Just after starting an I/O device, the managing process
does a down on the associated semaphore, thus blocking immediately. When the interrupt comes in, the interrupt
handler then does an up on the associated semaphore, which makes the relevant process ready to run again. In this
model, step 6 in Fig. 2-5 consists of doing an up on the device's semaphore, so that in step 7 the scheduler will be
able to run the device manager. Of course, if several processes are now ready, the scheduler may choose to run an
even more important process next. We will look at how scheduling is done later in this chapter.

[Page 80]

In the example of Fig. 2-14, we have actually used semaphores in two different ways. This difference is important
enough to make explicit. The mutex semaphore is used for mutual exclusion. It is designed to guarantee that only
one process at a time will be reading or writing the buffer and the associated variables. This mutual exclusion is
required to prevent chaos. We will study mutual exclusion and how to achieve it more in the next section.

[Page 81]

The other use of semaphores is for synchronization. The full and empty semaphores are needed to guarantee that
certain event sequences do or do not occur. In this case, they ensure that the producer stops running when the buffer
is full, and the consumer stops running when it is empty. This use is different from mutual exclusion.

2.2.6. Mutexes

When the semaphore's ability to count is not needed, a simplified version of the semaphore, called a mutex, is
sometimes used. Mutexes are good only for managing mutual exclusion to some shared resource or piece of code.
They are easy and efficient to implement, which makes them especially useful in thread packages that are
implemented entirely in user space.

A mutex is a variable that can be in one of two states: unlocked or locked. Consequently, only 1 bit is required to
represent it, but in practice an integer often is used, with 0 meaning unlocked and all other values meaning locked.
Two procedures are used with mutexes. When a process (or thread) needs access to a critical region, it calls
mutex_lock. If the mutex is currently unlocked (meaning that the critical region is available), the call succeeds and
the calling thread is free to enter the critical region.

On the other hand, if the mutex is already locked, the caller is blocked until the process in the critical region is
finished and calls mutex_unlock. If multiple processes are blocked on the mutex, one of them is chosen at random
and allowed to acquire the lock.

2.2.7. Monitors

With semaphores interprocess communication looks easy, right? Forget it. Look closely at the order of the downs
before entering or removing items from the buffer in Fig. 2-14. Suppose that the two downs in the producer's code
were reversed in order, so mutex was decremented before empty instead of after it. If the buffer were completely
full, the producer would block, with mutex set to 0. Consequently, the next time the consumer tried to access the
buffer, it would do a down on mutex, now 0, and block too. Both processes would stay blocked forever and no
more work would ever be done. This unfortunate situation is called a deadlock. We will study deadlocks in detail in
Chap. 3.

This problem is pointed out to show how careful you must be when using semaphores. One subtle error and
everything comes to a grinding halt. It is like programming in assembly language, only worse, because the errors
are race conditions, deadlocks, and other forms of unpredictable and irreproducible behavior.

11

11

[Page 82]

To make it easier to write correct programs, Brinch Hansen (1973) and Hoare (1974) proposed a higher level
synchronization primitive called a monitor. Their proposals differed slightly, as described below. A monitor is a
collection of procedures, variables, and data structures that are all grouped together in a special kind of module or
package. Processes may call the procedures in a monitor whenever they want to, but they cannot directly access the
monitor's internal data structures from procedures declared outside the monitor. This rule, which is common in
modern object-oriented languages such as Java, was relatively unusual for its time, although objects can be traced
back to Simula 67. Figure 2-15 illustrates a monitor written in an imaginary language, Pidgin Pascal.

Figure 2-15. A monitor.

monitor example
 integer i;
 condition c;

 procedure producer (x);
 .
 .
 .
 end;

 procedure consumer (x);
 .
 .
 .
 end;
end monitor;

Monitors have a key property that makes them useful for achieving mutual exclusion: only one process can be
active in a monitor at any instant. Monitors are a programming language construct, so the compiler knows they are
special and can handle calls to monitor procedures differently from other procedure calls. Typically, when a process
calls a monitor procedure, the first few instructions of the procedure will check to see if any other process is
currently active within the monitor. If so, the calling process will be suspended until the other process has left the
monitor. If no other process is using the monitor, the calling process may enter.

It is up to the compiler to implement the mutual exclusion on monitor entries, but a common way is to use a mutex
or binary semaphore. Because the compiler, not the programmer, arranges for the mutual exclusion, it is much less
likely that something will go wrong. In any event, the person writing the monitor does not have to be aware of how
the compiler arranges for mutual exclusion. It is sufficient to know that by turning all the critical regions into
monitor procedures, no two processes will ever execute their critical regions at the same time.

[Page 83]

Although monitors provide an easy way to achieve mutual exclusion, as we have seen above, that is not enough.
We also need a way for processes to block when they cannot proceed. In the producer-consumer problem, it is easy
enough to put all the tests for buffer-full and buffer-empty in monitor procedures, but how should the producer
block when it finds the buffer full?

The solution lies in the introduction of condition variables, along with two operations on them, wait and signal.
When a monitor procedure discovers that it cannot continue (e.g., the producer finds the buffer full), it does a wait

12

12

on some condition variable, say, full. This action causes the calling process to block. It also allows another process
that had been previously prohibited from entering the monitor to enter now.

This other process, for example, the consumer, can wake up its sleeping partner-by doing a signal on the
condition variable that its partner is waiting on. To avoid having two active processes in the monitor at the same
time, we need a rule telling what happens after a signal. Hoare proposed letting the newly awakened process run,
suspending the other one. Brinch Hansen proposed finessing the problem by requiring that a process doing a
signal must exit the monitor immediately. In other words, a signal statement may appear only as the final
statement in a monitor procedure. We will use Brinch Hansen's proposal because it is conceptually simpler and is
also easier to implement. If a signal is done on a condition variable on which several processes are waiting, only
one of them, determined by the system scheduler, is revived.

There is also a third solution, not proposed by either Hoare or Brinch Hansen. This is to let the signaler continue to
run and allow the waiting process to start running only after the signaler has exited the monitor.

Condition variables are not counters. They do not accumulate signals for later use the way semaphores do. Thus if a
condition variable is signaled with no one waiting on it, the signal is lost. In other words, the wait must come
before the signal. This rule makes the implementation much simpler. In practice it is not a problem because it is
easy to keep track of the state of each process with variables, if need be. A process that might otherwise do a
signal can see that this operation is not necessary by looking at the variables.

A skeleton of the producer-consumer problem with monitors is given in Fig. 2-16 in Pidgin Pascal. The advantage
of using Pidgin Pascal here is that it is pure and simple and follows the Hoare/Brinch Hansen model exactly.

Figure 2-16. An outline of the producer-consumer problem with monitors. Only one monitor procedure at a time is
active. The buffer has N slots. (This item is displayed on page 84 in the print version)

monitor ProducerConsumer
condition full, empty;
integer count;

procedure insert(item: integer);
begin

if count = N then wait(full);
insert_item(item);
count := count + 1;
if count = 1 then signal(empty)

end;

function remove: integer;
begin

if count = 0 then wait(empty);
remove = remove_item;
count := count 1;
if count = N 1 then signal(full)

end;

count := 0;
end monitor;

procedure producer;
begin

while true do
begin

item = produce_item;
ProducerConsumer.insert(item)

end
end;

13

13

procedure consumer;
begin

while true do
begin

item = ProducerConsumer.remove;
consume_item(item)
end

end;

You may be thinking that the operations wait and signal look similar to sleep and wakeup, which we saw
earlier had fatal race conditions. They are very similar, but with one crucial difference: sleep and wakeup failed
because while one process was trying to go to sleep, the other one was trying to wake it up. With monitors, that
cannot happen. The automatic mutual exclusion on monitor procedures guarantees that if, say, the producer inside a
monitor procedure discovers that the buffer is full, it will be able to complete the wait operation without having to
worry about the possibility that the scheduler may switch to the consumer just before the wait completes. The
consumer will not even be let into the monitor at all until the wait is finished and the producer is marked as no
longer runnable.

[Page 84]

Although Pidgin Pascal is an imaginary language, some real programming languages also support monitors,
although not always in the form designed by Hoare and Brinch Hansen. One such language is Java. Java is an
object-oriented language that supports user-level threads and also allows methods (procedures) to be grouped
together into classes. By adding the keyword synchronized to a method declaration, Java guarantees that once
any thread has started executing that method, no other thread will be allowed to start executing any other
synchronized method in that class.

[Page 85]

Synchronized methods in Java differ from classical monitors in an essential way: Java does not have condition
variables. Instead, it offers two procedures, wait and notify that are the equivalent of sleep and wakeup except that
when they are used inside synchronized methods, they are not subject to race conditions.

By making the mutual exclusion of critical regions automatic, monitors make parallel programming much less
error-prone than with semaphores. Still, they too have some drawbacks. It is not for nothing that Fig. 2-16 is written
in Pidgin Pascal rather than in C, as are the other examples in this book. As we said earlier, monitors are a
programming language concept. The compiler must recognize them and arrange for the mutual exclusion somehow.
C, Pascal, and most other languages do not have monitors, so it is unreasonable to expect their compilers to enforce
any mutual exclusion rules. In fact, how could the compiler even know which procedures were in monitors and
which were not?

These same languages do not have semaphores either, but adding semaphores is easy: all you need to do is add two
short assembly code routines to the library to issue the up and down system calls. The compilers do not even have
to know that they exist. Of course, the operating systems have to know about the semaphores, but at least if you
have a semaphore-based operating system, you can still write the user programs for it in C or C++ (or even
FORTRAN if you are masochistic enough). With monitors, you need a language that has them built in.

Another problem with monitors, and also with semaphores, is that they were designed for solving the mutual
exclusion problem on one or more CPUs that all have access to a common memory. By putting the semaphores in
the shared memory and protecting them with TSL instructions, we can avoid races. When we go to a distributed

14

14

system consisting of multiple CPUs, each with its own private memory, connected by a local area network, these
primitives become inapplicable. The conclusion is that semaphores are too low level and monitors are not usable
except in a few programming languages. Also, none of the primitives provide for information exchange between
machines. Something else is needed.

2.2.8. Message Passing

That something else is message passing. This method of interprocess communication uses two primitives, send
and receive, which, like semaphores and unlike monitors, are system calls rather than language constructs. As
such, they can easily be put into library procedures, such as

[Page 86]

 send(destination, &message);

and

 receive(source, &message);

The former call sends a message to a given destination and the latter one receives a message from a given source (or
from ANY, if the receiver does not care). If no message is available, the receiver could block until one arrives.
Alternatively, it could return immediately with an error code.

Design Issues for Message Passing Systems

Message passing systems have many challenging problems and design issues that do not arise with semaphores or
monitors, especially if the communicating processes are on different machines connected by a network. For
example, messages can be lost by the network. To guard against lost messages, the sender and receiver can agree
that as soon as a message has been received, the receiver will send back a special acknowledgement message. If the
sender has not received the acknowledgement within a certain time interval, it retransmits the message.

Now consider what happens if the message itself is received correctly, but the acknowledgement is lost. The sender
will retransmit the message, so the receiver will get it twice. It is essential that the receiver can distinguish a new
message from the retransmission of an old one. Usually, this problem is solved by putting consecutive sequence
numbers in each original message. If the receiver gets a message bearing the same sequence number as the previous
message, it knows that the message is a duplicate that can be ignored.

Message systems also have to deal with the question of how processes are named, so that the process specified in a
send or receive call is unambiguous. Authentication is also an issue in message systems: how can the client tell
that he is communicating with the real file server, and not with an imposter?

At the other end of the spectrum, there are also design issues that are important when the sender and receiver are on
the same machine. One of these is performance. Copying messages from one process to another is always slower
than doing a semaphore operation or entering a monitor. Much work has gone into making message passing
efficient. Cheriton (1984), for example, has suggested limiting message size to what will fit in the machine's
registers, and then doing message passing using the registers.

15

15

The Producer-Consumer Problem with Message Passing

Now let us see how the producer-consumer problem can be solved with message passing and no shared memory. A
solution is given in Fig. 2-17. We assume that all messages are the same size and that messages sent but not yet
received are buffered automatically by the operating system. In this solution, a total of N messages is used,
analogous to the N slots in a shared memory buffer. The consumer starts out by sending N empty messages to the
producer. Whenever the producer has an item to give to the consumer, it takes an empty message and sends back a
full one. In this way, the total number of messages in the system remains constant in time, so they can be stored in a
given amount of memory known in advance.

[Page 87]

Figure 2-17. The producer-consumer problem with N messages.

#define N 100 /* number of slots in the buffer */

void producer(void)
{
 int item;
 message m; /* message buffer */

 while (TRUE) {
 item = produce_item(); /* generate something to put in buffer */
 receive(consumer, &m); /* wait for an empty to arrive */
 build_message(&m, item); /* construct a message to send */
 send(consumer, &m); /* send item to consumer */
 }
}

void consumer(void)
{
 int item, i;
 message m;

 for (i = 0; i < N; i++) send(producer, &m); /* send N empties */
 while (TRUE) {
 receive(producer, &m); /* get message containing item */
 item = extract_item(&m); /* extract item from message */
 send(producer, &m); /* send back empty reply */
 consume_item(item); /* do some1thing with the item */
 }
}

If the producer works faster than the consumer, all the messages will end up full, waiting for the consumer; the
producer will be blocked, waiting for an empty to come back. If the consumer works faster, then the reverse
happens: all the messages will be empties waiting for the producer to fill them up; the consumer will be blocked,
waiting for a full message.

Many variants are possible with message passing. For starters, let us look at how messages are addressed. One way
is to assign each process a unique address and have messages be addressed to processes. A different way is to
invent a new data structure, called a mailbox. A mailbox is a place to buffer a certain number of messages, typically
specified when the mailbox is created. When mailboxes are used, the address parameters in the send and
receive calls are mailboxes, not processes. When a process tries to send to a mailbox that is full, it is suspended
until a message is removed from that mailbox, making room for a new one.

16

16

[Page 88]

For the producer-consumer problem, both the producer and consumer would create mailboxes large enough to hold
N messages. The producer would send messages containing data to the consumer's mailbox, and the consumer
would send empty messages to the producer's mailbox. When mailboxes are used, the buffering mechanism is clear:
the destination mailbox holds messages that have been sent to the destination process but have not yet been
accepted.

The other extreme from having mailboxes is to eliminate all buffering. When this approach is followed, if the send
is done before the receive, the sending process is blocked until the receive happens, at which time the
message can be copied directly from the sender to the receiver, with no intermediate buffering. Similarly, if the
receive is done first, the receiver is blocked until a send happens. This strategy is often known as a rendezvous.
It is easier to implement than a buffered message scheme but is less flexible since the sender and receiver are forced
to run in lockstep.

The processes that make up the MINIX 3 operating system itself use the rendezvous method with fixed size
messages for communication among themselves. User processes also use this method to communicate with
operating system components, although a programmer does not see this, since library routines mediate systems
calls. Interprocess communication between user processes in MINIX 3 (and UNIX) is via pipes, which are
effectively mailboxes. The only real difference between a message system with mailboxes and the pipe mechanism
is that pipes do not preserve message boundaries. In other words, if one process writes 10 messages of 100 bytes to
a pipe and another process reads 1000 bytes from that pipe, the reader will get all 10 messages at once. With a true
message system, each read should return only one message. Of course, if the processes agree always to read and
write fixed-size messages from the pipe, or to end each message with a special character (e.g., linefeed), no
problems arise.

Message passing is commonly used in parallel programming systems. One well-known message-passing system, for
example, is MPI (Message-Passing Interface). It is widely used for scientific computing. For more information
about it, see for example Gropp et al. (1994) and Snir et al. (1996).

17

17

18

18

[Page 88 (continued)]

2.3. Classical IPC Problems

The operating systems literature is full of interprocess communication problems that have been widely
discussed using a variety of synchronization methods. In the following sections we will examine two of the
better-known problems.

[Page 89]

2.3.1. The Dining Philosophers Problem

In 1965, Dijkstra posed and solved a synchronization problem he called the dining philosophers problem.
Since that time, everyone inventing yet another synchronization primitive has felt obligated to demonstrate
how wonderful the new primitive is by showing how elegantly it solves the dining philosophers problem. The
problem can be stated quite simply as follows. Five philosophers are seated around a circular table. Each
philosopher has a plate of spaghetti. The spaghetti is so slippery that a philosopher needs two forks to eat it.
Between each pair of plates is one fork. The layout of the table is illustrated in Fig. 2-18.

Figure 2-18. Lunch time in the Philosophy Department.

The life of a philosopher consists of alternate periods of eating and thinking. (This is something of an
abstraction, even for philosophers, but the other activities are irrelevant here.) When a philosopher gets
hungry, she tries to acquire her left and right fork, one at a time, in either order. If successful in acquiring two
forks, she eats for a while, then puts down the forks and continues to think. The key question is: can you write
a program for each philosopher that does what it is supposed to do and never gets stuck? (It has been pointed
out that the two-fork requirement is somewhat artificial; perhaps we should switch from Italian to Chinese
food, substituting rice for spaghetti and chopsticks for forks.)

Figure 2-19 shows the obvious solution. The procedure take_fork waits until the specified fork is available
and then seizes it. Unfortunately, the obvious solution is wrong. Suppose that all five philosophers take their
left forks simultaneously. None will be able to take their right forks, and there will be a deadlock.

1

1

Figure 2-19. A nonsolution to the dining philosophers problem. (This item is displayed on page 90 in the print
version)

#define N 5 /* number of philosophers */

void philosopher(int i) /* i: philosopher number, from 0 to 4 */
{
 while (TRUE) {
 think(); /* philosopher is thinking */
 take_fork(i); /* take left fork */
 take_fork((i+1) % N); /* take right fork; % is modulo operator */
 eat(); /* yum-yum, spaghetti */
 put_fork(i); /* put left fork back on the table */
 put_fork((i+1) % N); /* put right fork back on the table */
 }
}

We could modify the program so that after taking the left fork, the program checks to see if the right fork is
available. If it is not, the philosopher puts down the left one, waits for some time, and then repeats the whole
process. This proposal too, fails, although for a different reason. With a little bit of bad luck, all the
philosophers could start the algorithm simultaneously, picking up their left forks, seeing that their right forks
were not available, putting down their left forks, waiting, picking up their left forks again simultaneously, and
so on, forever. A situation like this, in which all the programs continue to run indefinitely but fail to make any
progress is called starvation. (It is called starvation even when the problem does not occur in an Italian or a
Chinese restaurant.)

[Page 90]

Now you might think, "If the philosophers would just wait a random time instead of the same time after
failing to acquire the right-hand fork, the chance that everything would continue in lockstep for even an hour
is very small." This observation is true, and in nearly all applications trying again later is not a problem. For
example, in a local area network using Ethernet, a computer sends a packet only when it detects no other
computer is sending one. However, because of transmission delays, two computers separated by a length of
cable may send packets that overlapa collision. When a collision of packets is detected each computer waits a
random time and tries again; in practice this solution works fine. However, in some applications one would
prefer a solution that always works and cannot fail due to an unlikely series of random numbers. Think about
safety control in a nuclear power plant.

One improvement to Fig. 2-19 that has no deadlock and no starvation is to protect the five statements
following the call to think by a binary semaphore. Before starting to acquire forks, a philosopher would do a
down on mutex. After replacing the forks, she would do an up on mutex. From a theoretical viewpoint, this
solution is adequate. From a practical one, it has a performance bug: only one philosopher can be eating at any
instant. With five forks available, we should be able to allow two philosophers to eat at the same time.

[Page 92]

The solution presented in Fig. 2-20 is deadlock-free and allows the maximum parallelism for an arbitrary
number of philosophers. It uses an array, state, to keep track of whether a philosopher is eating, thinking, or
hungry (trying to acquire forks). A philosopher may move into eating state only if neither neighbor is eating.
Philosopher i's neighbors are defined by the macros LEFT and RIGHT. In other words, if i is 2, LEFT is 1 and
RIGHT is 3.

2

2

Figure 2-20. A solution to the dining philosophers problem. (This item is displayed on page 91 in the print
version)

#define N 5 /* number of philosophers */
#define LEFT (i+N-1)%N /* number of i's left neighbor */
#define RIGHT (i+1)%N /* number of i's right neighbor */
#define THINKING 0 /* philosopher is thinking */
#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING 2 /* philosopher is eating */
typedef int semaphore; /* semaphores are a special kind of int */
int state[N]; /* array to keep track of everyone's state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[N]; /* one semaphore per philosopher */

void philosopher(int i) /* i: philosopher number, from 0 to N1 */
{
 while (TRUE){ /* repeat forever */
 think(); /* philosopher is thinking */
 take_forks(i); /* acquire two forks or block */
 eat(); /* yum-yum, spaghetti */
 put_forks(i); /* put both forks back on table */
 }
}

void take_forks(int i) /* i: philosopher number, from 0 to N1 */
{
 down(&mutex); /* enter critical region */
 state[i] = HUNGRY; /* record fact that philosopher i is hungry */
 test(i); /* try to acquire 2 forks */
 up(&mutex); /* exit critical region */
 down(&s[i]); /* block if forks were not acquired */
}

void put_forks(i) /* i: philosopher number, from 0 to N1 */
{
 down(&mutex); /* enter critical region */
 state[i] = THINKING; /* philosopher has finished eating */
 test(LEFT); /* see if left neighbor can now eat */
 test(RIGHT); /* see if right neighbor can now eat */
 up(&mutex); /* exit critical region */
}

void test(i) /* i: philosopher number, from 0 to N1* /
{
 if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
 state[i] = EATING;
 up(&s[i]);
 }
}

The program uses an array of semaphores, one per philosopher, so hungry philosophers can block if the
needed forks are busy. Note that each process runs the procedure philosopher as its main code, but the other
procedures, take_forks, put_forks, and test are ordinary procedures and not separate processes.

2.3.2. The Readers and Writers Problem

The dining philosophers problem is useful for modeling processes that are competing for exclusive access to a
limited number of resources, such as I/O devices. Another famous problem is the readers and writers problem
which models access to a database (Courtois et al., 1971). Imagine, for example, an airline reservation system,
with many competing processes wishing to read and write it. It is acceptable to have multiple processes
reading the database at the same time, but if one process is updating (writing) the database, no other process

3

3

may have access to the database, not even a reader. The question is how do you program the readers and the
writers? One solution is shown in Fig. 2-21.

Figure 2-21. A solution to the readers and writers problem. (This item is displayed on page 93 in the print version)

typedef int semaphore; /* use your imagination */
semaphore mutex = 1; /* controls access to 'rc' */
semaphore db = 1; /* controls access to the database */
int rc = 0; /* # of processes reading or wanting to */

void reader(void)
{
 while (TRUE){ /* repeat forever */
 down(&mutex); /* get exclusive access to 'rc' */
 rc = rc + 1; /* one reader more now */
 if (rc == 1) down(&db); /* if this is the first reader ... */
 up(&mutex); /* release exclusive access to 'rc' */
 read_data_base(); /* access the data */
 down(&mutex); /* get exclusive access to 'rc' */
 rc = rc 1; /* one reader fewer now */
 if (rc == 0) up(&db); /* if this is the last reader ... */
 up(&mutex); /* release exclusive access to 'rc' */
 use_data_read(); /* noncritical region */
 }
}

void writer(void)
{
 while (TRUE){ /* repeat forever */
 think_up_data(); /* noncritical region */
 down(&db); /* get exclusive access */
 write_data_base(); /* update the data */
 up(&db); /* release exclusive access */
 }
}

In this solution, the first reader to get access to the data base does a down on the semaphore db. Subsequent
readers merely have to increment a counter, rc. As readers leave, they decrement the counter and the last one
out does an up on the semaphore, allowing a blocked writer, if there is one, to get in.

The solution presented here implicitly contains a subtle decision that is worth commenting on. Suppose that
while a reader is using the data base, another reader comes along. Since having two readers at the same time is
not a problem, the second reader is admitted. A third and subsequent readers can also be admitted if they
come along.

Now suppose that a writer comes along. The writer cannot be admitted to the data base, since writers must
have exclusive access, so the writer is suspended. Later, additional readers show up. As long as at least one
reader is still active, subsequent readers are admitted. As a consequence of this strategy, as long as there is a
steady supply of readers, they will all get in as soon as they arrive. The writer will be kept suspended until no
reader is present. If a new reader arrives, say, every 2 seconds, and each reader takes 5 seconds to do its work,
the writer will never get in.

To prevent this situation, the program could be written slightly differently: When a reader arrives and a writer
is waiting, the reader is suspended behind the writer instead of being admitted immediately. In this way, a
writer has to wait for readers that were active when it arrived to finish but does not have to wait for readers
that came along after it. The disadvantage of this solution is that it achieves less concurrency and thus lower
performance. Courtois et al. present a solution that gives priority to writers. For details, we refer you to the

4

4

paper.

[Page 93]

5

5

6

6

[Page 93 (continued)]

2.4. Scheduling

In the examples of the previous sections, we have often had situations in which two or more processes (e.g.,
producer and consumer) were logically runnable. When a computer is multiprogrammed, it frequently has
multiple processes competing for the CPU at the same time. When more than one process is in the ready state
and there is only one CPU available, the operating system must decide which process to run first. The part of
the operating system that makes the choice is called the scheduler; the algorithm it uses is called the
scheduling algorithm.

[Page 94]

Many scheduling issues apply both to processes and threads. Initially, we will focus on process scheduling,
but later we will take a brief look at some issues specific to thread scheduling.

2.4.1. Introduction to Scheduling

Back in the old days of batch systems with input in the form of card images on a magnetic tape, the
scheduling algorithm was simple: just run the next job on the tape. With timesharing systems, the scheduling
algorithm became more complex, because there were generally multiple users waiting for service. There may
be one or more batch streams as well (e.g., at an insurance company, for processing claims). On a personal
computer you might think there would be only one active process. After all, a user entering a document on a
word processor is unlikely to be simultaneously compiling a program in the background. However, there are
often background jobs, such as electronic mail daemons sending or receiving e-mail. You might also think
that computers have gotten so much faster over the years that the CPU is rarely a scarce resource any more.
However, new applications tend to demand more resources. Processing digital photographs or watching real
time video are examples.

Process Behavior

Nearly all processes alternate bursts of computing with (disk) I/O requests, as shown in Fig. 2-22. Typically
the CPU runs for a while without stopping, then a system call is made to read from a file or write to a file.
When the system call completes, the CPU computes again until it needs more data or has to write more data,
and so on. Note that some I/O activities count as computing. For example, when the CPU copies bits to a
video RAM to update the screen, it is computing, not doing I/O, because the CPU is in use. I/O in this sense is
when a process enters the blocked state waiting for an external device to complete its work.

Figure 2-22. Bursts of CPU usage alternate with periods of waiting for I/O. (a) A CPU-bound process. (b) An
I/O-bound process. (This item is displayed on page 95 in the print version)

[View full size image]

1

1

The important thing to notice about Fig. 2-22 is that some processes, such as the one in Fig. 2-22(a), spend
most of their time computing, while others, such as the one in Fig. 2-22(b), spend most of their time waiting
for I/O. The former are called compute-bound; the latter are called I/O-bound. Compute-bound processes
typically have long CPU bursts and thus infrequent I/O waits, whereas I/O-bound processes have short CPU
bursts and thus frequent I/O waits. Note that the key factor is the length of the CPU burst, not the length of the
I/O burst. I/O-bound processes are I/O bound because they do not compute much between I/O requests, not
because they have especially long I/O requests. It takes the same time to read a disk block no matter how
much or how little time it takes to process the data after they arrive.

[Page 95]

It is worth noting that as CPUs get faster, processes tend to get more I/O-bound. This effect occurs because
CPUs are improving much faster than disks. As a consequence, the scheduling of I/O-bound processes is
likely to become a more important subject in the future. The basic idea here is that if an I/O-bound process
wants to run, it should get a chance quickly so it can issue its disk request and keep the disk busy.

When to Schedule

There are a variety of situations in which scheduling may occur. First, scheduling is absolutely required on
two occasions:

When a process exits.1.
When a process blocks on I/O, or a semaphore.2.

In each of these cases the process that had most recently been running becomes unready, so another must be
chosen to run next.

There are three other occasions when scheduling is usually done, although logically it is not absolutely
necessary at these times:

When a new process is created.1.
When an I/O interrupt occurs.2.
When a clock interrupt occurs.3.

In the case of a new process, it makes sense to reevaluate priorities at this time. In some cases the parent may
be able to request a different priority for its child.

2

2

[Page 96]

In the case of an I/O interrupt, this usually means that an I/O device has now completed its work. So some
process that was blocked waiting for I/O may now be ready to run.

In the case of a clock interrupt, this is an opportunity to decide whether the currently running process has run
too long. Scheduling algorithms can be divided into two categories with respect to how they deal with clock
interrupts. A non-preemptive scheduling algorithm picks a process to run and then just lets it run until it
blocks (either on I/O or waiting for another process) or until it voluntarily releases the CPU. In contrast, a
preemptive scheduling algorithm picks a process and lets it run for a maximum of some fixed time. If it is still
running at the end of the time interval, it is suspended and the scheduler picks another process to run (if one is
available). Doing preemptive scheduling requires having a clock interrupt occur at the end of the time interval
to give control of the CPU back to the scheduler. If no clock is available, nonpreemptive scheduling is the
only option.

Categories of Scheduling Algorithms

Not surprisingly, in different environments different scheduling algorithms are needed. This situation arises
because different application areas (and different kinds of operating systems) have different goals. In other
words, what the scheduler should optimize for is not the same in all systems. Three environments worth
distinguishing are

Batch.1.
Interactive.2.
Real time.3.

In batch systems, there are no users impatiently waiting at their terminals for a quick response. Consequently,
nonpreemptive algorithms, or preemptive algorithms with long time periods for each process are often
acceptable. This approach reduces process switches and thus improves performance.

In an environment with interactive users, preemption is essential to keep one process from hogging the CPU
and denying service to the others. Even if no process intentionally ran forever, due to a program bug, one
process might shut out all the others indefinitely. Preemption is needed to prevent this behavior.

In systems with real-time constraints, preemption is, oddly enough, sometimes not needed because the
processes know that they may not run for long periods of time and usually do their work and block quickly.
The difference with interactive systems is that real-time systems run only programs that are intended to further
the application at hand. Interactive systems are general purpose and may run arbitrary programs that are not
cooperative or even malicious.

[Page 97]

Scheduling Algorithm Goals

In order to design a scheduling algorithm, it is necessary to have some idea of what a good algorithm should
do. Some goals depend on the environment (batch, interactive, or real time), but there are also some that are
desirable in all cases. Some goals are listed in Fig. 2-23. We will discuss these in turn below.

3

3

Figure 2-23. Some goals of the scheduling algorithm under different circumstances.
All systems

Fairness giving each process a fair share of the CPU
Policy enforcement seeing that stated policy is carried out
Balance keeping all parts of the system busy

Batch systems
Throughput maximize jobs per hour
Turnaround time minimize time between submission and termination
CPU utilization keep the CPU busy all the time

Interactive systems
Response time respond to requests quickly
Proportionality meet users' expectations

Realtime systems
Meeting deadlines avoid losing data
Predictability avoid quality degradation in multimedia systems

Under all circumstances, fairness is important. Comparable processes should get comparable service. Giving
one process much more CPU time than an equivalent one is not fair. Of course, different categories of
processes may be treated differently. Think of safety control and doing the payroll at a nuclear reactor's
computer center.

Somewhat related to fairness is enforcing the system's policies. If the local policy is that safety control
processes get to run whenever they want to, even if it means the payroll is 30 sec late, the scheduler has to
make sure this policy is enforced.

Another general goal is keeping all parts of the system busy when possible. If the CPU and all the I/O devices
can be kept running all the time, more work gets done per second than if some of the components are idle. In a
batch system, for example, the scheduler has control of which jobs are brought into memory to run. Having
some CPU-bound processes and some I/O-bound processes in memory together is a better idea than first
loading and running all the CPU-bound jobs and then, when they are finished, loading and running all the
I/O-bound jobs. If the latter strategy is used, when the CPU-bound processes are running, they will fight for
the CPU and the disk will be idle. Later, when the I/O-bound jobs come in, they will fight for the disk and the
CPU will be idle. Better to keep the whole system running at once by a careful mix of processes.

[Page 98]

The managers of corporate computer centers that run many batch jobs (e.g., processing insurance claims)
typically look at three metrics to see how well their systems are performing: throughput, turnaround time, and
CPU utilization. Throughput is the number of jobs per second that the system completes. All things
considered, finishing 50 jobs per second is better than finishing 40 jobs per second. Turnaround time is the
average time from the moment that a batch job is submitted until the moment it is completed. It measures how
long the average user has to wait for the output. Here the rule is: Small is Beautiful.

A scheduling algorithm that maximizes throughput may not necessarily minimize turnaround time. For
example, given a mix of short jobs and long jobs, a scheduler that always ran short jobs and never ran long
jobs might achieve an excellent throughput (many short jobs per second) but at the expense of a terrible
turnaround time for the long jobs. If short jobs kept arriving at a steady rate, the long jobs might never run,
making the mean turnaround time infinite while achieving a high throughput.

CPU utilization is also an issue with batch systems because on the big mainframes where batch systems run,
the CPU is still a major expense. Thus computer center managers feel guilty when it is not running all the
time. Actually though, this is not such a good metric. What really matters is how many jobs per second come
out of the system (throughput) and how long it takes to get a job back (turnaround time). Using CPU

4

4

utilization as a metric is like rating cars based on how many times per second the engine turns over.

For interactive systems, especially timesharing systems and servers, different goals apply. The most important
one is to minimize response time, that is the time between issuing a command and getting the result. On a
personal computer where a background process is running (for example, reading and storing email from the
network), a user request to start a program or open a file should take precedence over the background work.
Having all interactive requests go first will be perceived as good service.

A somewhat related issue is what might be called proportionality. Users have an inherent (but often incorrect)
idea of how long things should take. When a request that is perceived as complex takes a long time, users
accept that, but when a request that is perceived as simple takes a long time, users get irritated. For example, if
clicking on a icon that calls up an Internet provider using an analog modem takes 45 seconds to establish a
connection, the user will probably accept that as a fact of life. On the other hand, if clicking on an icon that
breaks the connection takes 45 seconds, the user will probably be swearing a blue streak by the 30-sec mark
and frothing at the mouth by 45 sec. This behavior is due to the common user perception that placing a phone
call and getting a connection is supposed to take a lot longer than just hanging up. In some cases (such as this
one), the scheduler cannot do anything about the response time, but in other cases it can, especially when the
delay is due to a poor choice of process order.

[Page 99]

Real-time systems have different properties than interactive systems, and thus different scheduling goals.
They are characterized by having deadlines that must or at least should be met. For example, if a computer is
controlling a device that produces data at a regular rate, failure to run the data-collection process on time may
result in lost data. Thus the foremost need in a real-time system is meeting all (or most) deadlines.

In some real-time systems, especially those involving multimedia, predictability is important. Missing an
occasional deadline is not fatal, but if the audio process-runs too erratically, the sound quality will deteriorate
rapidly. Video is also an issue, but the ear is much more sensitive to jitter than the eye. To avoid this problem,
process scheduling must be highly predictable and regular.

2.4.2. Scheduling in Batch Systems

It is now time to turn from general scheduling issues to specific scheduling algorithms. In this section we will
look at algorithms used in batch systems. In the following ones we will examine interactive and real-time
systems. It is worth pointing out that some algorithms are used in both batch and interactive systems. We will
study these later. Here we will focus on algorithms that are only suitable in batch systems.

First-Come First-Served

Probably the simplest of all scheduling algorithms is nonpreemptive first-come first-served. With this
algorithm, processes are assigned the CPU in the order they request it. Basically, there is a single queue of
ready processes. When the first job enters the system from the outside in the morning, it is started
immediately and allowed to run as long as it wants to. As other jobs come in, they are put onto the end of the
queue. When the running process blocks, the first process on the queue is run next. When a blocked process
becomes ready, like a newly arrived job, it is put on the end of the queue.

The great strength of this algorithm is that it is easy to understand and equally easy to program. It is also fair
in the same sense that allocating scarce sports or concert tickets to people who are willing to stand on line
starting at 2A .M . is fair. With this algorithm, a single linked list keeps track of all ready processes. Picking a
process to run just requires removing one from the front of the queue. Adding a new job or unblocked process
just requires attaching it to the end of the queue. What could be simpler?

5

5

Unfortunately, first-come first-served also has a powerful disadvantage. Suppose that there is one
compute-bound process that runs for 1 sec at a time and many I/O-bound processes that use little CPU time
but each have to perform 1000 disk reads in order to complete. The compute-bound process runs for 1 sec,
then it reads a disk block. All the I/O processes now run and start disk reads. When the compute-bound
process gets its disk block, it runs for another 1 sec, followed by all the I/O-bound processes in quick
succession.

[Page 100]

The net result is that each I/O-bound process gets to read 1 block per second and will take 1000 sec to finish.
With a scheduling algorithm that preempted the compute-bound process every 10 msec, the I/O-bound
processes would finish in 10 sec instead of 1000 sec, and without slowing down the compute-bound process
very much.

Shortest Job First

Now let us look at another nonpreemptive batch algorithm that assumes the run times are known in advance.
In an insurance company, for example, people can predict quite accurately how long it will take to run a batch
of 1000 claims, since similar work is done every day. When several equally important jobs are sitting in the
input queue waiting to be started, the scheduler picks the shortest job first. Look at Fig. 2-24. Here we find
four jobs A, B, C, and D with run times of 8, 4, 4, and 4 minutes, respectively. By running them in that order,
the turnaround time for A is 8 minutes, for B is 12 minutes, for C is 16 minutes, and for D is 20 minutes for an
average of 14 minutes.

Figure 2-24. An example of shortest job first scheduling. (a) Running four jobs in the original order. (b) Running
them in shortest job first order.

Now let us consider running these four jobs using shortest job first, as shown in Fig. 2-24(b). The turnaround
times are now 4, 8, 12, and 20 minutes for an average of 11 minutes. Shortest job first is provably optimal.
Consider the case of four jobs, with run times of a, b, c, and d, respectively. The first job finishes at time a, the
second finishes at time a + b, and so on. The mean turnaround time is (4 a + 3 b + 2 c + d) / 4. It is clear that a
contributes more to the average than the other times, so it should be the shortest job, with b next, then c, and
finally d as the longest as it affects only its own turnaround time. The same argument applies equally well to
any number of jobs.

It is worth pointing out that shortest job first is only optimal when all the jobs are available simultaneously.
As a counterexample, consider five jobs, A through E, with run times of 2, 4, 1, 1, and 1, respectively. Their
arrival times are 0, 0, 3, 3, and 3. Initially, only A or B can be chosen, since the other three jobs have not
arrived yet. Using shortest job first we will run the jobs in the order A, B, C, D, E, for an average wait of 4.6.
However, running them in the order B, C, D, E, A has an average wait of 4.4.

[Page 101]

6

6

Shortest Remaining Time Next

A preemptive version of shortest job first is shortest remaining time next. With this algorithm, the scheduler
always chooses the process whose remaining run time is the shortest. Again here, the run time has to be
known in advance. When a new job arrives, its total time is compared to the current process' remaining time.
If the new job needs less time to finish than the current process, the current process is suspended and the new
job started. This scheme allows new short jobs to get good service.

Three-Level Scheduling

From a certain perspective, batch systems allow scheduling at three different levels, as illustrated in Fig. 2-25.
As jobs arrive at the system, they are initially placed in an input queue stored on the disk. The admission
scheduler decides which jobs to admit to the system. The others are kept in the input queue until they are
selected. A typical algorithm for admission control might be to look for a mix of compute-bound jobs and
I/O-bound jobs. Alternatively, short jobs could be admitted quickly whereas longer jobs would have to wait.
The admission scheduler is free to hold some jobs in the input queue and admit jobs that arrive later if it so
chooses.

Figure 2-25. Three-level scheduling.

[View full size image]

Once a job has been admitted to the system, a process can be created for it and it can contend for the CPU.
However, it might well happen that the number of processes is so large that there is not enough room for all of
them in memory. In that case, some of the processes have to be swapped out to disk. The second level of
scheduling is deciding which processes should be kept in memory and which ones should be kept on disk. We
will call this scheduler the memory scheduler, since it determines which processes are kept in memory and
which on the disk.

[Page 102]

This decision has to be reviewed frequently to allow the processes on disk to get some service. However,
since bringing a process in from disk is expensive, the review probably should not happen more often than
once per second, maybe less often. If the contents of main memory are shuffled too often, a large amount of
disk bandwidth will be wasted, slowing down file I/O.

7

7

To optimize system performance as a whole, the memory scheduler might well want to carefully decide how
many processes it wants in memory, called the degree of multiprogramming, and what kind of processes. If it
has information about which processes are compute bound and which are I/O bound, it can try to keep a mix
of these process types in memory. As a very crude approximation, if a certain class of process computes about
20% of the time, keeping five of them around is roughly the right number to keep the CPU busy.

To make its decisions, the memory scheduler periodically reviews each process-on disk to decide whether or
not to bring it into memory. Among the criteria that it can use to make its decision are the following ones:

How long has it been since the process was swapped in or out?1.
How much CPU time has the process had recently?2.
How big is the process? (Small ones do not get in the way.)3.
How important is the process?4.

The third level of scheduling is actually picking one of the ready processes in main memory to run next. Often
this is called the CPU scheduler and is the one people usually mean when they talk about the "scheduler." Any
suitable algorithm can be used here, either preemptive or nonpreemptive. These include the ones described
above as well as a number of algorithms to be described in the next section.

2.4.3. Scheduling in Interactive Systems

We will now look at some algorithms that can be used in interactive systems. All of these can also be used as
the CPU scheduler in batch systems as well. While three-level scheduling is not possible here, two-level
scheduling (memory scheduler and CPU scheduler) is possible and common. Below we will focus on the CPU
scheduler and some common scheduling algorithms.

[Page 103]

Round-Robin Scheduling

Now let us look at some specific scheduling algorithms. One of the oldest, simplest, fairest, and most widely
used algorithms is round robin. Each process is assigned a time interval, called its quantum, which it is
allowed to run. If the process is still running at the end of the quantum, the CPU is preempted and given to
another process. If the process has blocked or finished before the quantum has elapsed, the CPU switching is
done when the process blocks, of course. Round robin is easy to implement. All the scheduler needs to do is
maintain a list of runnable processes, as shown in Fig. 2-26(a). When the process uses up its quantum, it is put
on the end of the list, as shown in Fig. 2-26(b).

Figure 2-26. Round-robin scheduling. (a) The list of runnable processes. (b) The list of runnable processes after B
uses up its quantum.

[View full size image]

8

8

The only interesting issue with round robin is the length of the quantum. Switching from one process to
another requires a certain amount of time for doing the administrationsaving and loading registers and
memory maps, updating various tables and lists, flushing and reloading the memory cache, etc. Suppose that
this process switch or context switch, as it is sometimes called, takes 1 msec, including switching memory
maps, flushing and reloading the cache, etc. Also suppose that the quantum is set at 4 msec. With these
parameters, after doing 4 msec of useful work, the CPU will have to spend 1 msec on process switching.
Twenty percent of the CPU time will be wasted on administrative overhead. Clearly, this is too much.

To improve the CPU efficiency, we could set the quantum to, say, 100 msec. Now the wasted time is only 1
percent. But consider what happens on a timesharing system if ten interactive users hit the carriage return key
at roughly the same time. Ten processes will be put on the list of runnable processes. If the CPU is idle, the
first one will start immediately, the second one may not start until 100 msec later, and so on. The unlucky last
one may have to wait 1 sec before getting a chance, assuming all the others use their full quanta. Most users
will perceive a 1-sec response to a short command as sluggish.

Another factor is that if the quantum is set longer than the mean CPU burst, preemption will rarely happen.
Instead, most processes will perform a blocking operation before the quantum runs out, causing a process
switch. Eliminating preemption improves performance because process switches then only happen when they
are logically necessary, that is, when a process blocks and cannot continue because it is logically waiting for
something.

[Page 104]

The conclusion can be formulated as follows: setting the quantum too short causes too many process switches
and lowers the CPU efficiency, but setting it too long may cause poor response to short interactive requests. A
quantum of around 2050 msec is often a reasonable compromise.

Priority Scheduling

Round-robin scheduling makes the implicit assumption that all processes are equally important. Frequently,
the people who own and operate multiuser computers have different ideas on that subject. At a university, the
pecking order may be deans first, then professors, secretaries, janitors, and finally students. The need to take
external factors into account leads to priority scheduling. The basic idea is straightforward: Each process is
assigned a priority, and the runnable process with the highest priority is allowed to run.

Even on a PC with a single owner, there may be multiple processes, some more important than others. For
example, a daemon process sending electronic mail in the background should be assigned a lower priority
than a process displaying a video film on the screen in real time.

To prevent high-priority processes from running indefinitely, the scheduler may decrease the priority of the
currently running process at each clock tick (i.e., at each clock interrupt). If this action causes its priority to
drop below that of the next highest process, a process switch occurs. Alternatively, each process may be
assigned a maximum time quantum that it is allowed to run. When this quantum is used up, the next highest
priority process is given a chance to run.

Priorities can be assigned to processes statically or dynamically. On a military-computer, processes started by
generals might begin at priority 100, processes started by colonels at 90, majors at 80, captains at 70,
lieutenants at 60, and so on. Alternatively, at a commercial computer center, high-priority jobs might cost 100
dollars an hour, medium priority 75 dollars an hour, and low priority 50 dollars an hour. The UNIX system
has a command, nice, which allows a user to voluntarily reduce the priority of his process, in order to be nice
to the other users. Nobody ever uses it.

9

9

Priorities can also be assigned dynamically by the system to achieve certain system goals. For example, some
processes are highly I/O bound and spend most of their time waiting for I/O to complete. Whenever such a
process wants the CPU, it should be given the CPU immediately, to let it start its next I/O request, which can
then proceed in parallel with another process actually computing. Making the I/O-bound process wait a long
time for the CPU will just mean having it around occupying memory for an unnecessarily long time. A simple
algorithm for giving good service to I/O-bound processes is to set the priority to 1 / f, where f is the fraction of
the last quantum that a process used. A process that used only 1 msec of its 50 msec quantum would get
priority 50, while a process that ran 25 msec before blocking would get priority 2, and a process that used the
whole quantum would get priority 1.

[Page 105]

It is often convenient to group processes into priority classes and use priority scheduling among the classes
but round-robin scheduling within each class. Figure 2-27 shows a system with four priority classes. The
scheduling algorithm is as follows: as long as there are runnable processes in priority class 4, just run each one
for one quantum, round-robin fashion, and never bother with lower priority classes. If priority class 4 is
empty, then run the class 3 processes round robin. If classes 4 and 3 are both empty, then run class 2 round
robin, and so on. If priorities are not adjusted occasionally, lower priority classes may all starve to death.

Figure 2-27. A scheduling algorithm with four priority classes.

MINIX 3 uses a similar system to Fig. 2-27, although there are sixteen priority classes in the default
configuration. In MINIX 3, components of the operating system run as processes. MINIX 3 puts tasks (I/O
drivers) and servers (memory manager, file system, and network) in the highest priority classes. The initial
priority of each task or service is defined at compile time; I/O from a slow device may be given lower priority
than I/O from a fast device or even a server. User processes generally have lower priority than system
components, but all priorities can change during execution.

Multiple Queues

One of the earliest priority schedulers was in CTSS (Corbató et al., 1962). CTSS had the problem that process
switching was very slow because the 7094 could hold only one process in memory. Each switch meant
swapping the current process to disk and reading in a new one from disk. The CTSS designers quickly
realized that it was more efficient to give CPU-bound processes a large quantum once in a while, rather than
giving them small quanta frequently (to reduce swapping). On the other hand, giving all processes a large
quantum would mean poor response time, as we have already observed. Their solution was to set up priority
classes. Processes in the highest class were run for one quantum. Processes in the next highest class were run
for two quanta. Processes in the next class were run for four quanta, and so on. Whenever a process used up
all the quanta allocated to it, it was moved down one class.

10

10

[Page 106]

As an example, consider a process that needed to compute continuously for 100 quanta. It would initially be
given one quantum, then swapped out. Next time it would get two quanta before being swapped out. On
succeeding runs it would get 4, 8, 16, 32, and 64 quanta, although it would have used only 37 of the final 64
quanta to complete its work. Only 7 swaps would be needed (including the initial load) instead of 100 with a
pure round-robin algorithm. Furthermore, as the process sank deeper and deeper into the priority queues, it
would be run less and less frequently, saving the CPU for short, interactive processes.

The following policy was adopted to prevent a process that needed to run for a long time when it first started
but became interactive later, from being punished forever. Whenever a carriage return was typed at a terminal,
the process belonging to that terminal was moved to the highest priority class, on the assumption that it was
about to become interactive. One fine day, some user with a heavily CPU-bound process discovered that just
sitting at the terminal and typing carriage returns at random every few seconds did wonders for his response
time. He told all his friends. Moral of the story: getting it right in practice is much harder than getting it right
in principle.

Many other algorithms have been used for assigning processes to priority classes. For example, the influential
XDS 940 system (Lampson, 1968), built at Berkeley, had four priority classes, called terminal, I/O, short
quantum, and long quantum. When a process that was waiting for terminal input was finally awakened, it
went into the highest priority class (terminal). When a process waiting for a disk block became ready, it went
into the second class. When a process was still running when its quantum ran out, it was initially placed in the
third class. However, if a process used up its quantum too many times in a row without blocking for terminal
or other I/O, it was moved down to the bottom queue. Many other systems use something similar to favor
interactive users and processes over background ones.

Shortest Process Next

Because shortest job first always produces the minimum average response time for batch systems, it would be
nice if it could be used for interactive processes as well. To a certain extent, it can be. Interactive processes
generally follow the pattern of wait for command, execute command, wait for command, execute command,
and so on. If we regard the execution of each command as a separate "job," then we could minimize overall
response time by running the shortest one first. The only problem is figuring out which of the currently
runnable processes is the shortest one.

One approach is to make estimates based on past behavior and run the process with the shortest estimated
running time. Suppose that the estimated time per command for some terminal is T0. Now suppose its next run
is measured to be T1. We could update our estimate by taking a weighted sum of these two numbers, that is,
aT 0 + (1 a) T 1. Through the choice of a we can decide to have the estimation process forget old runs quickly,
or remember them for a long time. With a = 1/2, we get successive estimates of

[Page 107]

After three new runs, the weight of T0 in the new estimate has dropped to 1/8.

The technique of estimating the next value in a series by taking the weighted average of the current measured
value and the previous estimate is sometimes called aging. It is applicable to many situations where a

11

11

prediction must be made based on previous values. Aging is especially easy to implement when a = 1/2. All
that is needed is to add the new value to the current estimate and divide the sum by 2 (by shifting it right 1
bit).

Guaranteed Scheduling

A completely different approach to scheduling is to make real promises to the users about performance and
then live up to them. One promise that is realistic to make and easy to live up to is this: If there are n users
logged in while you are working, you will receive about 1 /n of the CPU power. Similarly, on a single-user
system with n processes running, all things being equal, each one should get 1 /n of the CPU cycles.

To make good on this promise, the system must keep track of how much CPU each process has had since its
creation. It then computes the amount of CPU each one is entitled to, namely the time since creation divided
by n. Since the amount of CPU time each process has actually had is also known, it is straightforward to
compute the ratio of actual CPU time consumed to CPU time entitled. A ratio of 0.5 means that a process has
only had half of what it should have had, and a ratio of 2.0 means that a process has had twice as much as it
was entitled to. The algorithm is then to run the process with the lowest ratio until its ratio has moved above
its closest competitor.

Lottery Scheduling

While making promises to the users and then living up to them is a fine idea, it is difficult to implement.
However, another algorithm can be used to give similarly predictable results with a much simpler
implementation. It is called lottery scheduling (Waldspurger and Weihl, 1994).

The basic idea is to give processes lottery tickets for various system resources, such as CPU time. Whenever a
scheduling decision has to be made, a lottery ticket is chosen at random, and the process holding that ticket
gets the resource. When applied to CPU scheduling, the system might hold a lottery 50 times a second, with
each winner getting 20 msec of CPU time as a prize.

[Page 108]

To paraphrase George Orwell: "All processes are equal, but some processes are more equal." More important
processes can be given extra tickets, to increase their odds of winning. If there are 100 tickets outstanding, and
one process holds 20 of them, it will have a 20 percent chance of winning each lottery. In the long run, it will
get about 20 percent of the CPU. In contrast to a priority scheduler, where it is very hard to state what having
a priority of 40 actually means, here the rule is clear: a process holding a fraction f of the tickets will get about
a fraction f of the resource in question.

Lottery scheduling has several interesting properties. For example, if a new process shows up and is granted
some tickets, at the very next lottery it will have a chance of winning in proportion to the number of tickets it
holds. In other words, lottery scheduling is highly responsive.

Cooperating processes may exchange tickets if they wish. For example, when a client process sends a message
to a server process and then blocks, it may give all of its tickets to the server, to increase the chance of the
server running next. When the server is finished, it returns the tickets so the client can run again. In fact, in the
absence of clients, servers need no tickets at all.

Lottery scheduling can be used to solve problems that are difficult to handle with other methods. One example
is a video server in which several processes are feeding video streams to their clients, but at different frame
rates. Suppose that the processes need frames at 10, 20, and 25 frames/sec. By allocating these processes 10,
20, and 25 tickets, respectively, they will automatically divide the CPU in approximately the correct

12

12

proportion, that is, 10 : 20 : 25.

Fair-Share Scheduling

So far we have assumed that each process is scheduled on its own, without regard to who its owner is. As a
result, if user 1 starts up 9 processes and user 2 starts up 1 process, with round robin or equal priorities, user 1
will get 90% of the CPU and user 2 will get only 10% of it.

To prevent this situation, some systems take into account who owns a process before scheduling it. In this
model, each user is allocated some fraction of the CPU and the scheduler picks processes in such a way as to
enforce it. Thus if two users have each been promised 50% of the CPU, they will each get that, no matter how
many processes they have in existence.

As an example, consider a system with two users, each of which has been promised 50% of the CPU. User 1
has four processes, A, B, C, and D, and user 2 has only 1 process, E. If round-robin scheduling is used, a
possible scheduling sequence that meets all the constraints is this one:

A E B E C E D E A E B E C E D E ...

[Page 109]

On the other hand, if user 1 is entitled to twice as much CPU time as user 2, we might get

A B E C D E A B E C D E ...

Numerous other possibilities exist, of course, and can be exploited, depending on what the notion of fairness
is.

2.4.4. Scheduling in Real-Time Systems

A real-time system is one in which time plays an essential role. Typically, one or more physical devices
external to the computer generate stimuli, and the computer must react appropriately to them within a fixed
amount of time. For example, the computer in a compact disc player gets the bits as they come off the drive
and must convert them into music within a very tight time interval. If the calculation takes too long, the music
will sound peculiar. Other real-time systems are patient monitoring in a hospital intensive-care unit, the
autopilot in an aircraft, and robot control in an automated factory. In all these cases, having the right answer
but having it too late is often just as bad as not having it at all.

Real-time systems are generally categorized as hard real time, meaning there are absolute deadlines that must
be met, or else, and soft real time, meaning that missing an occasional deadline is undesirable, but
nevertheless tolerable. In both cases, real-time behavior is achieved by dividing the program into a number of
processes, each of whose behavior is predictable and known in advance. These processes are generally short
lived and can run to completion in well under a second. When an external event is detected, it is the job of the
scheduler to schedule the processes in such a way that all deadlines are met.

The events that a real-time system may have to respond to can be further categorized as periodic (occurring at
regular intervals) or aperiodic (occurring unpredictably). A system may have to respond to multiple periodic
event streams. Depending on how much time each event requires for processing, it may not even be possible
to handle them all. For example, if there are m periodic events and event i occurs with period Pi and requires
Ci seconds of CPU time to handle each event, then the load can only be handled if

13

13

A real-time system that meets this criteria is said to be schedulable.

As an example, consider a soft real-time system with three periodic events, with periods of 100, 200, and 500
msec, respectively. If these events require 50, 30, and 100 msec of CPU time per event, respectively, the
system is schedulable because 0.5 + 0.15 + 0.2 < 1. If a fourth event with a period of 1 sec is added, the
system will remain schedulable as long as this event does not need more than 150 msec of CPU time per
event. Implicit in this calculation is the assumption that the context-switching overhead is so small that it can
be ignored.

[Page 110]

Real-time scheduling algorithms can be static or dynamic. The former make their scheduling decisions before
the system starts running. The latter make their scheduling decisions at run time. Static scheduling only works
when there is perfect information available in advance about the work needed to be done and the deadlines
that have to be met. Dynamic scheduling algorithms do not have these restrictions.

2.4.5. Policy versus Mechanism

Up until now, we have tacitly assumed that all the processes in the system belong to different users and are
thus competing for the CPU. While this is often true, sometimes it happens that one process has many
children running under its control. For example, a database management system process may have many
children. Each child might be working on a different request, or each one might have some specific function
to perform (query parsing, disk access, etc.). It is entirely possible that the main process has an excellent idea
of which of its children are the most important (or the most time critical) and which the least. Unfortunately,
none of the schedulers discussed above accept any input from user processes about scheduling decisions. As a
result, the scheduler rarely makes the best choice.

The solution to this problem is to separate the scheduling mechanism from the scheduling policy. What this
means is that the scheduling algorithm is parameterized in some way, but the parameters can be filled in by
user processes. Let us consider the database example once again. Suppose that the kernel uses a priority
scheduling algorithm but provides a system call by which a process can set (and change) the priorities of its
children. In this way the parent can control in detail how its children are scheduled, even though it does not do
the scheduling itself. Here the mechanism is in the kernel but policy is set by a user process.

2.4.6. Thread Scheduling

When several processes each have multiple threads, we have two levels of parallelism present: processes and
threads. Scheduling in such systems differs substantially depending on whether user-level threads or
kernel-level threads (or both) are supported.

Let us consider user-level threads first. Since the kernel is not aware of the existence of threads, it operates as
it always does, picking a process, say, A, and giving A control for its quantum. The thread scheduler inside A
decides which thread to run, say A1. Since there are no clock interrupts to multiprogram threads, this thread
may continue running as long as it wants to. If it uses up the process' entire quantum, the kernel will select
another process to run.

14

14

[Page 111]

When the process A finally runs again, thread A1 will resume running. It will continue to consume all of A's
time until it is finished. However, its antisocial behavior will not affect other processes. They will get
whatever the scheduler considers their appropriate share, no matter what is going on inside process A.

Now consider the case that A's threads have relatively little work to do per CPU burst, for example, 5 msec of
work within a 50-msec quantum. Consequently, each one runs for a little while, then yields the CPU back to
the thread scheduler. This might lead to the sequence A1, A2, A3, A1, A2, A3, A1, A2, A3, A1, before the
kernel switches to process B. This situation is illustrated in Fig. 2-28(a).

Figure 2-28. (a) Possible scheduling of user-level threads with a 50-msec process quantum and threads that run 5
msec per CPU burst. (b) Possible scheduling of kernel-level threads with the same characteristics as (a).

[View full size image]

The scheduling algorithm used by the run-time system can be any of the ones described above. In practice,
round-robin scheduling and priority scheduling are most common. The only constraint is the absence of a
clock to interrupt a thread that has run too long.

Now consider the situation with kernel-level threads. Here the kernel picks a particular thread to run. It does
not have to take into account which process the thread belongs to, but it can if it wants to. The thread is given
a quantum and is forceably suspended if it exceeds the quantum. With a 50-msec quantum but threads that
block after 5 msec, the thread order for some period of 30 msec might be A1, B1, A2, B2, A3, B3, something
not possible with these parameters and user-level threads. This situation is partially depicted in Fig. 2-28(b).

A major difference between user-level threads and kernel-level threads is the performance. Doing a thread
switch with user-level threads takes a handful of machine instructions. With kernel-level threads it requires a
full context switch, changing the memory map, and invalidating the cache, which is several orders of
magnitude slower. On the other hand, with kernel-level threads, having a thread block on I/O does not
suspend the entire process as it does with user-level threads.

[Page 112]

Since the kernel knows that switching from a thread in process A to a thread in process B is more expensive
that running a second thread in process A (due to having to change the memory map and having the memory
cache spoiled), it can take this information into account when making a decision. For example, given two

15

15

threads that are otherwise equally important, with one of them belonging to the same process as a thread that
just blocked and one belonging to a different process, preference could be given to the former.

Another important factor to consider is that user-level threads can employ an application-specific thread
scheduler. For example, consider a web server which has a dispatcher thread to accept and distribute incoming
requests to worker threads. Suppose that a worker thread has just blocked and the dispatcher thread and two
worker threads are ready. Who should run next? The run-time system, knowing what all the threads do, can
easily pick the dispatcher to run next, so it can start another worker running. This strategy maximizes the
amount of parallelism in an environment where workers frequently block on disk I/O. With kernel-level
threads, the kernel would never know what each thread did (although they could be assigned different
priorities). In general, however, application-specific thread schedulers can tune an application better than the
kernel can.

16

16

[Page 112 (continued)]

2.5. Overview of Processes in MINIX 3

Having completed our study of the principles of process management, interprocess
communication, and scheduling, we can now take a look at how they are applied in
MINIX 3. Unlike UNIX, whose kernel is a monolithic program not split up into modules,
MINIX 3 itself is a collection of processes that communicate with each other and also with
user processes, using a single interprocess communication primitivemessage passing. This
design gives a more modular and flexible structure, making it easy, for example, to replace
the entire file system by a completely different one, without having even to recompile the
kernel.

2.5.1. The Internal Structure of MINIX 3

Let us begin our study of MINIX 3 by taking a bird's-eye view of the system. MINIX 3 is
structured in four layers, with each layer performing a well-defined function. The four
layers are illustrated in Fig. 2-29.

Figure 2-29. MINIX 3 is structured in four layers. Only processes in the bottom layer may use
privileged (kernel mode) instructions. (This item is displayed on page 113 in the print

version)

[View full size image]

The kernel in the bottom layer schedules processes and manages the transitions between
the ready, running, and blocked states of Fig. 2-2. The kernel also handles all messages
between processes. Message handling requires checking for legal destinations, locating the
send and receive buffers in physical memory, and copying bytes from sender to receiver.
Also part of the kernel is support for access to I/O ports and interrupts, which on modern
processors require use of privileged kernel mode instructions not available to ordinary
processes.

[Page 113]

In addition to the kernel itself, this layer contains two modules that function similarly to
device drivers. The clock task is an I/O device driver in the sense that it interacts with the
hardware that generates timing signals, but it is not user-accessible like a disk or
communications line driverit interfaces only with the kernel.

1

1

One of the main functions of layer 1 is to provide a set of privileged kernel calls to the
drivers and servers above it. These include reading and writing I/O ports, copying data
between address spaces, and so on. Implementation of these calls is done by the system
task. Although the system task and the clock task are compiled into the kernel's address
space, they are scheduled as separate processes and have their own call stacks.

Most of the kernel and all of the clock and system tasks are written in C. However, a small
amount of the kernel is written in assembly language. The assembly language parts deal
with interrupt handling, the low-level mechanics of managing context switches between
processes (saving and restoring registers and the like), and low-level parts of manipulating
the MMU hardware. By and large, the assembly-language code handles those parts of the
kernel that deal directly with the hardware at a very low level and which cannot be
expressed in C. These parts have to be rewritten when MINIX 3 is ported to a new
architecture.

The three layers above the kernel could be considered to be a single layer because the
kernel fundamentally treats them all of them the same way. Each one is limited to user
mode instructions, and each is scheduled to run by the kernel. None of them can access
I/O ports directly. Furthermore, none of them can access memory outside the segments
allotted to it.

However, processes potentially have special privileges (such as the ability to make kernel
calls). This is the real difference between processes in layers 2, 3, and 4. The processes in
layer 2 have the most privileges, those in layer 3 have some privileges, and those in layer
4 have no special privileges. For example, processes in layer 2, called device drivers, are
allowed to request that the system task read data from or write data to I/O ports on their
behalf. A driver is needed for each device type, including disks, printers, terminals, and
network interfaces. If other I/O devices are present, a driver is needed for each one of
those, as well. Device drivers may also make other kernel calls, such as requesting that
newly-read data be copied to the address space of a different process.

[Page 114]

The third layer contains servers, processes that provide useful services to the user
processes. Two servers are essential. The process manager (PM) carries out all the MINIX
3 system calls that involve starting or stopping process execution, such as fork, exec,
and exit, as well as system calls related to signals, such as alarm and kill, which can
alter the execution state of a process. The process manager also is responsible for
managing memory, for instance, with the brk system call. The file system (FS) carries
out all the file system calls, such as read, mount, and chdir.

It is important to understand the difference between kernel calls and POSIX system calls.
Kernel calls are low-level functions provided by the system task to allow the drivers and
servers to do their work. Reading a hardware I/O port is a typical kernel call. In contrast,
the POSIX system calls such as read, fork, and unlink are high-level calls defined by
the POSIX standard, and are available to user programs in layer 4. User programs contain
many POSIX calls but no kernel calls. Occasionally when we are not being careful with
our language we may call a kernel call a system call. The mechanisms used to make these
calls are similar, and kernel calls can be considered a special subset of system calls.

In addition to the PM and FS, other servers exist in layer 3. They perform functions that
are specific to MINIX 3. It is safe to say that the functionality of the process manager and
the file system will be found in any operating system. The information server (IS) handles

2

2

jobs such as providing debugging and status information about other drivers and servers,
something that is more necessary in a system like MINIX 3, designed for experimentation,
than would be the case for a commercial operating system which users cannot alter. The
reincarnation server (RS) starts, and if necessary restarts, device drivers that are not loaded
into memory at the same time as the kernel. In particular, if a driver fails during operation,
the reincarnation server detects this failure, kills the driver if it is not already dead, and
starts a fresh copy of the driver, making the system highly fault tolerant. This functionality
is absent from most operating systems. On a networked system the optional network
server (inet) is also in level 3. Servers cannot do I/O directly, but they can communicate
with drivers to request I/O. Servers can also communicate with the kernel via the system
task.

As we noted at the start of Chap. 1, operating systems do two things: manage resources
and provide an extended machine by implementing system calls. In MINIX 3 the resource
management is largely done by the drivers in layer 2, with help from the kernel layer when
privileged access to I/O ports or the interrupt system is required. System call interpretation
is done by the process manager and file system servers in layer 3. The file system has been
carefully designed as a file "server" and could be moved to a remote machine with few
changes.

[Page 115]

The system does not need to be recompiled to include additional servers. The process
manager and the file system can be supplemented with the network server and other
servers by attaching additional servers as required when MINIX 3 starts up or later.
Device drivers, although typically started when the system is started, can also be started
later. Both device drivers and servers are compiled and stored on disk as ordinary
executable files, but when properly started up they are granted access to the special
privileges needed. A user program called service provides an interface to the reincarnation
server which manages this. Although the drivers and servers are independent processes,
they differ from user processes in that normally they never terminate while the system is
active.

We will often refer to the drivers and servers in layers 2 and 3 as system processes.
Arguably, system processes are part of the operating system. They do not belong to any
user, and many if not all of them will be activated before the first user logs on. Another
difference between system processes and user processes is that system processes have
higher execution priority than user processes. In fact, normally drivers have higher
execution priority than servers, but this is not automatic. Execution priority is assigned on
a case-by-case basis in MINIX 3; it is possible for a driver that services a slow device to
be given lower priority than a server that must respond quickly.

Finally, layer 4 contains all the user processesshells, editors, compilers, and user-written
a.out programs. Many user processes come and go as users log in, do work, and log out. A
running system normally has some user processes that are started when the system is
booted and which run forever. One of these is init, which we will describe in the next
section. Also, several daemons are likely to be running. A daemon is a background
process that executes periodically or always waits for some event, such as the arrival of a
packet from the network. In a sense a daemon is a server that is started independently and
runs as a user process. Like true servers installed at startup time, it is possible to configure
a daemon to have a higher priority than ordinary user processes.

A note about the terms task and device driver is needed. In older versions of MINIX all

3

3

device drivers were compiled together with the kernel, which gave them access to data
structures belonging to the kernel and each other. They also could all access I/O ports
directly. They were referred to as "tasks" to distinguish them from pure independent
user-space processes. In MINIX 3, device drivers have been implemented completely in
user-space. The only exception is the clock task, which is arguably not a device driver in
the same sense as drivers that can be accessed through device files by user processes.
Within the text we have taken pains to use the term "task" only when referring to the clock
task or the system task, both of which are compiled into the kernel to function. We have
been careful to replace the word "task" with "device driver" where we refer to user-space
device drivers. However, function names, variable names, and comments in the source
code have not been as carefully updated. Thus, as you look at source code during your
study of MINIX 3 you may find the word "task" where "device driver" is meant.

[Page 116]

2.5.2. Process Management in MINIX 3

Processes in MINIX 3 follow the general process model described at length earlier in this
chapter. Processes can create subprocesses, which in turn can create more subprocesses,
yielding a tree of processes. In fact, all the user processes in the whole system are part of a
single tree with init (see Fig. 2-29) at the root. Servers and drivers are a special case, of
course, since some of them must be started before any user process, including init.

MINIX 3 Startup

How does an operating system start up? We will summarize the MINIX 3 startup
sequence in the next few pages. For a look at how some other operating systems do this,
see Dodge et al. (2005).

On most computers with disk devices, there is a boot disk hierarchy. Typically, if a floppy
disk is in the first floppy disk drive, it will be the boot disk. If no floppy disk is present
and a CD-ROM is present in the first CD-ROM drive, it becomes the boot disk. If there is
neither a floppy disk nor a CD-ROM present, the first hard drive becomes the boot disk.
The order of this hierarchy may be configurable by entering the BIOS immediately after
powering the computer up. Additional devices, especially other removable storage
devices, may be supported as well.

When the computer is turned on, if the boot device is a diskette, the hardware reads the
first sector of the first track of the boot disk into memory and executes the code it finds
there. On a diskette this sector contains the bootstrap program. It is very small, since it has
to fit in one sector (512 bytes). The MINIX 3 bootstrap loads a larger program, boot,
which then loads the operating system itself.

In contrast, hard disks require an intermediate step. A hard disk is divided into partitions,
and the first sector of a hard disk contains a small program and the disk's partition table.
Collectively these two pieces are called the master boot record. The program part is
executed to read the partition table and to select the active partition. The active partition
has a bootstrap on its first sector, which is then loaded and executed to find and start a
copy of boot in the partition, exactly as is done when booting from a diskette.

CD-ROMs came along later in the history of computers than floppy disks and hard disks,
and when support for booting from a CD-ROM is present it is capable of more than just

4

4

loading one sector. A computer that supports booting from a CD-ROM can load a large
block of data into memory immediately. Typically what is loaded from the CD-ROM is an
exact copy of a bootable floppy disk, which is placed in memory and used as a RAM disk.
After this first step control is transferred to the RAM disk and booting continues exactly
as if a physical floppy disk were the boot device. On an older computer which has a
CD-ROM drive but does not support booting from a CD-ROM, the bootable floppy disk
image can be copied to a floppy disk which can then be used to start the system. The
CD-ROM must be in the CD-ROM drive, of course, since the bootable floppy disk image
expects that.

[Page 117]

In any case, the MINIX 3 boot program looks for a specific multipart file on the diskette
or partition and loads the individual parts into memory at the proper locations. This is the
boot image. The most important parts are the kernel (which include the clock task and the
system task), the process manager, and the file system. Additionally, at least one disk
driver must be loaded as part of the boot image. There are several other programs loaded
in the boot image. These include the reincarnation server, the RAM disk, console, and log
drivers, and init.

It should be strongly emphasized that all parts of the boot image are separate programs.
After the essential kernel, process manager and file system have been loaded many other
parts could be loaded separately. An exception is the reincarnation server. It must be part
of the boot image. It gives ordinary processes loaded after initialization the special
priorities and privileges which make them into system processes, It can also restart a
crashed driver, which explains its name. As mentioned above, at least one disk driver is
essential. If the root file system is to be copied to a RAM disk, the memory driver is also
required, otherwise it could be loaded later. The tty and log drivers are optional in the boot
image. They are loaded early just because it is useful to be able to display messages on the
console and save information to a log early in the startup process. Init could certainly be
loaded later, but it controls initial configuration of the system, and it was easiest just to
include it in the boot image file.

Startup is not a trivial operation. Operations that are in the realms of the disk driver and
the file system must be performed by boot before these parts of the system are active. In a
later section we will detail how MINIX 3 is started. For now, suffice it to say that once the
loading operation is complete the kernel starts running.

During its initialization phase the kernel starts the system and clock tasks, and then the
process manager and the file system. The process manager and the file system then
cooperate in starting other servers and drivers that are part of the boot image. When all
these have run and initialized themselves, they will block, waiting for something to do.
MINIX 3 scheduling prioritizes processes. Only when all tasks, drivers, and servers loaded
in the boot image have blocked will init, the first user process, be executed. System
components loaded with the boot image or during initialization are shown in Fig. 2-30.

[Page 118]

5

5

Figure 2-30. Some important MINIX 3 system components. Others such as an Ethernet driver
and the inet server may also be present.
Component DescriptionLoaded

by
kernel Kernel +

clock and
system
tasks

(in
boot
image)

pm Process
manager

(in
boot
image)

fs File system (in
boot
image)

rs (Re)starts
servers and
drivers

(in
boot
image)

memory RAM disk
driver

(in
boot
image)

log Buffers log
output

(in
boot
image)

tty Console
and
keyboard
driver

(in
boot
image)

driver Disk (at,
bios, or
floppy)
driver

(in
boot
image)

init parent of
all user
processes

(in
boot
image)

floppy Floppy
driver (if
booted
from hard
disk)

/etc/rc

is Information
server (for
debug
dumps)

/etc/rc

cmos Reads
CMOS
clock to set
time

/etc/rc

random Random
number
generator

/etc/rc

printer Printer
driver

/etc/rc

6

6

Initialization of the Process Tree

Init is the first user process, and also the last process loaded as part of the boot image. You might think
building of a process tree such as that of Fig. 1-5 begins once init starts running. Well, not exactly. That
would be true in a conventional operating system, but MINIX 3 is different. First, there are already quite a few
system processes running by the time init gets to run. The tasks CLOCK and SYSTEM that run within the
kernel are unique processes that are not visible outside of the kernel. They receive no PIDs and are not
considered part of any tree of processes. The process manager is the first process to run in user space; it is
given PID 0 and is neither a child nor a parent of any other process. The reincarnation server is made the
parent of all the other processes started from the boot image (e.g., the drivers and servers). The logic of this is
that the reincarnation server is the process that should be informed if any of these should need to be restarted.

As we will see, even after init starts running there are differences between the way a process tree is built in
MINIX 3 and the conventional concept. Init in a UNIX-like system is given PID 1, and even though init is not
the first process to run, the traditional PID 1 is reserved for it in MINIX 3. Like all the user space processes in
the boot image (except the process manager), init is made one of the children of the reincarnation server. As in
a standard UNIX-like system, init first executes the /etc/rc shell script. This script starts additional drivers and
servers that are not part of the boot image. Any program started by the rc script will be a child of init. One of
the first programs run is a utility called service. Service itself runs as a child of init, as would be expected. But
now things once again vary from the conventional.

[Page 119]

Service is the user interface to the reincarnation server. The reincarnation server starts an ordinary program
and converts it into a system process. It starts floppy (if it was not used in booting the system), cmos (which is
needed to read the real-time clock), and is, the information server which manages the debug dumps that are
produced by pressing function keys (F1, F2, etc.) on the console keyboard. One of the actions of the
reincarnation server is to adopt all system processes except the process manager as its own children.

After the cmos device driver has been started the rc script can initialize the real-time clock. Up to this point all
files needed must be found on the root device. The servers and drivers needed initially are in the /sbin
directory; other commands needed for startup are in /bin. Once the initial startup steps have been completed
other file systems such as /usr are mounted. An important function of the rc script is to check for file system
problems that might have resulted from a previous system crash. The test is simplewhen the system is
shutdown correctly by executing the shutdown command an entry is written to the login history file,
/usr/adm/wtmp. The command shutdown C checks whether the last entry in wtmp is a shutdown entry. If
not, it is assumed an abnormal shutdown occurred, and the fsck utility is run to check all file systems. The
final job of /etc/rc is to start daemons. This may be done by subsidiary scripts. If you look at the output of a
ps axl command, which shows both PIDs and parent PIDs (PPIDs), you will see that daemons such as
update and usyslogd will normally be the among the first persistent processes which are children of init.

Finally init reads the file /etc/ttytab, which lists all potential terminal devices. Those devices that can be used
as login terminals (in the standard distribution, just the main console and up to three virtual consoles, but
serial lines and network pseudo terminals can be added) have an entry in the getty field of /etc/ttytab, and init
forks off a child process for each such terminal. Normally, each child executes /usr/bin/getty which prints a
message, then waits for a name to be typed. If a particular terminal requires special treatment (e.g., a dial-up
line) /etc/ttytab can specify a command (such as /usr/bin/stty) to be executed to initialize the line before
running getty.

When a user types a name to log in, /usr/bin/login is called with the name as its argument. Login determines if
a password is required, and if so prompts for and verifies the password. After a successful login, login
executes the user's shell (by default /bin/sh, but another shell may be specified in the /etc/passwd file). The
shell waits for commands to be typed and then forks off a new process for each command. In this way, the
shells are the children of init, the user processes are the grandchildren of init, and all the user processes in the

7

7

system are part of a single tree. In fact, except for the tasks compiled into the kernel and the process manager,
all processes, both system processes and user processes, form a tree. But unlike the process tree of a
conventional UNIX system, init is not at the root of the tree, and the structure of the tree does not allow one to
determine the order in which system processes were started.

[Page 120]

The two principal MINIX 3 system calls for process management are fork and exec. Fork is the only way
to create a new process. Exec allows a process to execute a specified program. When a program is executed,
it is allocated a portion of memory whose size is specified in the program file's header. It keeps this amount of
memory throughout its execution, although the distribution among data segment, stack segment, and unused
can vary as the process runs.

All the information about a process is kept in the process table, which is divided up among the kernel, process
manager, and file system, with each one having those fields that it needs. When a new process comes into
existence (by fork), or an old process terminates (by exit or a signal), the process manager first updates its
part of the process table and then sends messages to the file system and kernel telling them to do likewise.

2.5.3. Interprocess Communication in MINIX 3

Three primitives are provided for sending and receiving messages. They are called by the C library procedures

 send(dest, &message);

to send a message to process dest,

 receive(source, &message);

to receive a message from process source (or ANY), and

 sendrec(src_dst, &message);

to send a message and wait for a reply from the same process. The second parameter in each call is the local
address of the message data. The message passing mechanism in the kernel copies the message from the
sender to the receiver. The reply (for sendrec) overwrites the original message. In principle this kernel
mechanism could be replaced by a function which copies messages over a network to a corresponding
function on another machine, to implement a distributed system. In practice this would be complicated
somewhat by the fact that message contents sometimes include pointers to large data structures, and a
distributed system would have to provide for copying the data itself over the network.

Each task, driver or server process is allowed to exchange messages only with certain other processes. Details
of how this is enforced will be described later. The usual flow of messages is downward in the layers of Fig
2-29, and messages can be between processes in the same layer or between processes in adjacent layers. User
processes cannot send messages to each other. User processes in layer 4 can initiate messages to servers in
layer 3, servers in layer 3 can initiate messages to drivers in layer 2.

8

8

[Page 121]

When a process sends a message to a process that is not currently waiting for a message, the sender blocks
until the destination does a receive. In other words, MINIX 3 uses the rendezvous method to avoid the
problems of buffering sent, but not yet received, messages. The advantage of this approach is that it is simple
and eliminates the need for buffer management (including the possibility of running out of buffers). In
addition, because all messages are of fixed length determined at compile time, buffer overrun errors, a
common source of bugs, are structurally prevented.

The basic purpose of the restrictions on exchanges of messages is that if process A is allowed to generate a
send or sendrec directed to process B, then process B can be allowed to call receive with A designated
as the sender, but B should not be allowed to send to A. Obviously, if A tries to send to B and blocks, and
B tries to send to A and blocks we have a deadlock. The "resource" that each would need to complete the
operations is not a physical resource like an I/O device, it is a call to receive by the target of the message.
We will have more to say about deadlocks in Chap. 3.

Occasionally something different from a blocking message is needed. There exists another important
message-passing primitive. It is called by the C library procedure

notify(dest);

and is used when a process needs to make another process aware that something important has happened. A
notify is nonblocking, which means the sender continues to execute whether or not the recipient is waiting.
Because it does not block, a notification avoids the possibility of a message deadlock.

The message mechanism is used to deliver a notification, but the information conveyed is limited. In the
general case the message contains only the identity of the sender and a timestamp added by the kernel.
Sometimes this is all that is necessary. For instance, the keyboard uses a notify call when one of the
function keys (F1 to F12 and shifted F1 to F12) is pressed. In MINIX 3, function keys are used to trigger
debugging dumps. The Ethernet driver is an example of a process that generates only one kind of debug dump
and never needs to get any other communication from the console driver. Thus a notification to the Ethernet
driver from the keyboard driver when the dump-Ethernet-stats key is pressed is unambiguous. In other cases a
notification is not sufficient, but upon receiving a notification the target process can send a message to the
originator of the notification to request more information.

There is a reason notification messages are so simple. Because a notify call does not block, it can be made
when the recipient has not yet done a receive. But the simplicity of the message means that a notification
that cannot be received is easily stored so the recipient can be informed of it the next time the recipient calls
receive. In fact, a single bit suffices. Notifications are meant for use between system processes, of which
there can be only a relatively small number. Every system process has a bitmap for pending notifications, with
a distinct bit for every system process. So if process A needs to send a notification to process B at a time when
process B is not blocked on a receive, the message-passing mechanism sets a bit which corresponds to A in
B's bitmap of pending notifications. When B finally does a receive, the first step is to check its pending
notifications bitmap. It can learn of attempted notifications from multiple sources this way. The single bit is
enough to regenerate the information content of the notification. It tells the identity of the sender, and the
message passing code in the kernel adds the timestamp when it is delivered. Timestamps are used primarily to
see if timers have expired, so it does not matter that the timestamp may be for a time later than the time when
the sender first tried to send the notification.

[Page 122]

9

9

There is a further refinement to the notification mechanism. In certain cases an additional field of the
notification message is used. When the notification is generated to inform a recipient of an interrupt, a bitmap
of all possible sources of interrupts is included in the message. And when the notification is from the system
task a bitmap of all pending signals for the recipient is part of the message. The natural question at this point
is, how can this additional information be stored when the notification must be sent to a process that is not
trying to receive a message? The answer is that these bitmaps are in kernel data structures. They do not need
to be copied to be preserved. If a notification must be deferred and reduced to setting a single bit, when the
recipient eventually does a receive and the notification message is regenerated, knowing the origin of the
notification is enough to specify which additional information needs to be included in the message. And for
the recipient, the origin of the notification also tells whether or not the message contains additional
information, and, if so, how it is to be interpreted,

A few other primitives related to interprocess communication exist. They will be mentioned in a later section.
They are less important than send, receive, sendrec, and notify.

2.5.4. Process Scheduling in MINIX 3

The interrupt system is what keeps a multiprogramming operating system going. Processes block when they
make requests for input, allowing other processes to execute. When input becomes available, the current
running process is interrupted by the disk, keyboard, or other hardware. The clock also generates interrupts
that are used to make sure a running user process that has not requested input eventually relinquishes the
CPU, to give other processes their chance to run. It is the job of the lowest layer of MINIX 3 to hide these
interrupts by turning them into messages. As far as processes are concerned, when an I/O device completes an
operation it sends a message to some process, waking it up and making it eligible to run.

[Page 123]

Interrupts are also generated by software, in which case they are often called traps. The send and receive
operations that we described above are translated by the system library into software interrupt instructions
which have exactly the same effect as hardware-generated interruptsthe process that executes a software
interrupt is immediately blocked and the kernel is activated to process the interrupt. User programs do not
refer to send or receive directly, but any time one of the system calls listed in Fig. 1-9 is invoked, either
directly or by a library routine, sendrec is used internally and a software interrupt is generated.

Each time a process is interrupted (whether by a conventional I/O device or by the clock) or due to execution
of a software interrupt instruction, there is an opportunity to redetermine which process is most deserving of
an opportunity to run. Of course, this must be done whenever a process terminates, as well, but in a system
like MINIX 3 interruptions due to I/O operations or the clock or message passing occur more frequently than
process termination.

The MINIX 3 scheduler uses a multilevel queueing system. Sixteen queues are defined, although recompiling
to use more or fewer queues is easy. The lowest priority queue is used only by the IDLE process which runs
when there is nothing else to do. User processes start by default in a queue several levels higher than the
lowest one.

Servers are normally scheduled in queues with priorities higher than allowed for user processes, drivers in
queues with priorities higher than those of servers, and the clock and system tasks are scheduled in the highest
priority queue. Not all of the sixteen available queues are likely to be in use at any time. Processes are started
in only a few of them. A process may be moved to a different priority queue by the system or (within certain
limits) by a user who invokes the nice command. The extra levels are available for experimentation, and as
additional drivers are added to MINIX 3 the default settings can be adjusted for best performance. For
instance, if it were desired to add a server to stream digital audio or video to a network, such a server might be

10

10

assigned a higher starting priority than current servers, or the initial priority of a current server or driver might
be reduced in order for the new server to achieve better performance.

In addition to the priority determined by the queue on which a process is placed, another mechanism is used to
give some processes an edge over others. The quantum, the time interval allowed before a process is
preempted, is not the same for all processes. User processes have a relatively low quantum. Drivers and
servers normally should run until they block. However, as a hedge against malfunction they are made
preemptable, but are given a large quantum. They are allowed to run for a large but finite number of clock
ticks, but if they use their entire quantum they are preempted in order not to hang the system. In such a case
the timed-out process will be considered ready, and can be put on the end of its queue. However, if a process
that has used up its entire quantum is found to have been the process that ran last, this is taken as a sign it may
be stuck in a loop and preventing other processes with lower priority from running. In this case its priority is
lowered by putting it on the end of a lower priority queue. If the process times out again and another process
still has not been able to run, its priority will again be lowered. Eventually, something else should get a
chance to run.

[Page 124]

A process that has been demoted in priority can earn its way back to a higher priority queue. If a process uses
all of its quantum but is not preventing other processes from running it will be promoted to a higher priority
queue, up to the maximum priority permitted for it. Such a process apparently needs its quantum, but is not
being inconsiderate of others.

Otherwise, processes are scheduled using a slightly modified round robin. If a process has not used its entire
quantum when it becomes unready, this is taken to mean that it blocked waiting for I/O, and when it becomes
ready again it is put on the head of the queue, but with only the left-over part of its previous quantum. This is
intended to give user processes quick response to I/O. A process that became unready because it used its
entire quantum is placed at the end of the queue in pure round robin fashion.

With tasks normally having the highest priority, drivers next, servers below drivers, and user processes last, a
user process will not run unless all system processes have nothing to do, and a system process cannot be
prevented from running by a user process.

When picking a process to run, the scheduler checks to see if any processes are queued in the highest priority
queue. If one or more are ready, the one at the head of the queue is run. If none is ready the next lower priority
queue is similarly tested, and so on. Since drivers respond to requests from servers and servers respond to
requests from user processes, eventually all high priority processes should complete whatever work was
requested of them. They will then block with nothing to do until user processes get a turn to run and make
more requests. If no process is ready, the IDLE process is chosen. This puts the CPU in a low-power mode
until the next interrupt occurs.

At each clock tick, a check is made to see if the current process has run for more than its allotted quantum. If
it has, the scheduler moves it to the end of its queue (which may require doing nothing if it is alone on the
queue). Then the next process to run is picked, as described above. Only if there are no processes on
higher-priority queues and if the previous process is alone on its queue will it get to run again immediately.
Otherwise the process at the head of the highest priority nonempty queue will run next. Essential drivers and
servers are given such large quanta that normally they are normally never preempted by the clock. But if
something goes wrong their priority can be temporarily lowered to prevent the system from coming to a total
standstill. Probably nothing useful can be done if this happens to an essential server, but it may be possible to
shut the system down gracefully, preventing data loss and possibly collecting information that can help in
debugging the problem.

11

11

12

12

[Page 125]

2.6. Implementation of Processes in MINIX 3

We are now moving closer to looking at the actual code, so a few words about the notation
we will use are perhaps in order. The terms "procedure," "function," and "routine" will be
used interchangeably. Names of variables, procedures, and files will be written in italics, as
in rw_flag. When a variable, procedure, or file name starts a sentence, it will be capitalized,
but the actual names begin with lower case letters. There are a few exceptions, the tasks
which are compiled into the kernel are identified by upper case names, such as CLOCK,
SYSTEM, and IDLE. System calls will be in lower case Helvetica, for example, read.

The book and the software, both of which are continuously evolving, did not "go to press" on
the same day, so there may be minor discrepancies between the references to the code, the
printed listing, and the CD-ROM version. Such differences generally only affect a line or
two, however. The source code printed in the book has been simplified by omitting code used
to compile options that are not discussed in the book. The complete version is on the
CD-ROM. The MINIX 3 Web site (www.minix3.org) has the current version, which has new
features and additional software and documentation.

2.6.1. Organization of the MINIX 3 Source Code

The implementation of MINIX 3 as described in this book is for an IBM PC-type machine
with an advanced processor chip (e.g., 80386, 80486, Pentium, Pentium Pro, II, III, 4, M, or
D) that uses 32-bit words. We will refer to all of these as Intel 32-bit processors. The full path
to the C language source code on a standard Intel-based platform is /usr/src/ (a trailing "/" in
a path name indicates that it refers to a directory). The source directory tree for other
platforms may be in a different location. Throughout the book, MINIX 3 source code files
will be referred to using a path starting with the top src/ directory. An important subdirectory
of the source tree is src/include/, where the master copy of the C header files are located. We
will refer to this directory as include/.

Each directory in the source tree contains a file named Makefile which directs the operation
of the UNIX-standard make utility. The Makefile controls compilation of files in its directory
and may also direct compilation of files in one or more subdirectories. The operation of make
is complex and a full description is beyond the scope of this section, but it can be
summarized by saying that make manages efficient compilation of programs involving
multiple source files. Make assures that all necessary files are compiled. It tests previously
compiled modules to see if they are up to date and recompiles any whose source files have
been modified since the previous compilation. This saves time by avoiding recompilation of
files that do not need to be recompiled. Finally, make directs the combination of separately
compiled modules into an executable program and may also manage installation of the
completed program.

[Page 126]

All or part of the src/ tree can be relocated, since the Makefile in each source directory uses a
relative path to C source directories. For instance, you may want to make a source directory
on the root filesystem, /src/, for speedy compilation if the root device is a RAM disk. If you
are developing a special version you can make a copy of src/ under another name.

1

1

http://www.minix3.org

The path to the C header files is a special case. During compilation every Makefile expects to
find header files in /usr/include/ (or the equivalent path on a non-Intel platform). However,
src/tools/Makefile, used to recompile the system, expects to find a master copy of the headers
in /usr/src/include (on an Intel system). Before recompiling the system, however, the entire
/usr/include/ directory tree is deleted and /usr/src/include/ is copied to /usr/include/. This was
done to make it possible to keep all files needed in the development of MINIX 3 in one place.
This also makes it easy to maintain multiple copies of the entire source and headers tree for
experimenting with different configurations of the MINIX 3 system. However, if you want to
edit a header file as part of such an experiment, you must be sure to edit the copy in the
src/include directory and not the one in /usr/include/.

This is a good place to point out for newcomers to the C language how file names are quoted
in a #include statement. Every C compiler has a default header directory where it looks
for include files. Frequently, this is /usr/include/. When the name of a file to include is quoted
between less-than and greater-than symbols ("< ... >") the compiler searches for the file in the
default header directory or a specified subdirectory, for example,

#include <filename>

includes a file from /usr/include/.

Many programs also require definitions in local header files that are not meant to be shared
system-wide. Such a header may have the same name as and be meant to replace or
supplement a standard header. When the name is quoted between ordinary quote characters
("'' ... ''") the file is searched for first in the same directory as the source file (or a specified
subdirectory) and then, if not found there, in the default directory. Thus

#include ''filename''

reads a local file.

The include/ directory contains a number of POSIX standard header files. In addition, it has
three subdirectories:

sys/ additional POSIX headers.

minix/ header files used by the MINIX 3 operating system.

ibm/ header files with IBM PC-specific definitions.

To support extensions to MINIX 3 and programs that run in the MINIX 3 environment, other
files and subdirectories are also present in include/ as provided on the CD-ROM and also on
the MINIX 3 Web site. For instance, include/arpa/ and the include/net/ directory and its
subdirectory include/net/gen/ support network extensions. These are not necessary for
compiling the basic MINIX 3 system, and files in these directories are not listed in Appendix
B.

[Page 127]

2

2

In addition to src/include/, the src/ directory contains three other important subdirectories
with operating system source code:

kernel/ layer 1 (scheduling, messages, clock and system tasks).

drivers/ layer 2 (device drivers for disk, console, printer, etc.).

servers/ layer 3 (process manager, file system, other servers).

Three other source code directories are not printed or discussed in the text, but are essential to
producing a working system:

src/lib/ source code for library procedures (e.g., open, read).

src/tools/ Makefile and scripts for building the MINIX 3 system.

src/boot/ the code for booting and installing MINIX 3.

The standard distribution of MINIX 3 includes many additional source files not discussed in
this text. In addition to the process manager and file system source code, the system source
directory src/servers/ contains source code for the init program and the reincarnation server,
rs, both of which are essential parts of a running MINIX 3 system. The network server source
code is in src/servers/inet/. Src/drivers/ has source code for device drivers not discussed in
this text, including alternative disk drivers, sound cards, and network adapters. Since MINIX
3 is an experimental operating system, meant to be modified, there is a src/test/ directory with
programs designed to test thoroughly a newly compiled MINIX 3 system. An operating
system exists, of course, to support commands (programs) that will run on it, so there is a
large src/commands/ directory with source code for the utility programs (e.g., cat, cp, date, ls,
pwd and more than 200 others). Source code for some major open source applications
originally developed by the GNU and BSD projects is here, too.

The "book" version of MINIX 3 is configured with many of the optional parts omitted (trust
us: we cannot fit everything into one book or into your head in a semester-long course). The
"book" version is compiled using modified Makefile s that do not refer to unnecessary files.
(A standard Makefile requires that files for optional components be present, even if not to be
compiled.) Omitting these files and the conditional statements that select them makes reading
the code easier.

For convenience we will usually refer to simple file names when it it is clear from the context
what the complete path is. However, be aware that some file names appear in more than one
directory. For instance, there are several files named const.h. Src/kernel/const.h defines
constants used in the kernel, while src/servers/pm/const.h defines constants used by the
process manager, etc.

[Page 128]

The files in a particular directory will be discussed together, so there should not be any
confusion. The files are listed in Appendix B in the order they are discussed in the text, to
make it easier to follow along. Acquisition of a couple of bookmarks might be of use at this
point, so you can go back and forth between the text and the listing. To keep the size of the
listing reasonable, code for every file is not printed. In general, those functions that are

3

3

described in detail in the text are listed in Appendix B; those that are just mentioned in
passing are not listed, but the complete source is on the CD-ROM and Web site, both of
which also provide an index to functions, definitions, and global variables in the source code.

Appendix C contains an alphabetical list of all files described in Appendix B, divided into
sections for headers, drivers, kernel, file system, and process manager. This appendix and the
Web site and CD-ROM indices reference the listed objects by line number in the source code.

The code for layer 1 is contained in the directory src/kernel/. Files in this directory support
process control, the lowest layer of the MINIX 3 structure we saw in Fig. 2-29. This layer
includes functions which handle system initialization, interrupts, message passing and
process scheduling. Intimately connected with these are two modules compiled into the same
binary, but which run as independent processes. These are the system task which provides an
interface between kernel services and processes in higher layers, and the clock task which
provides timing signals to the kernel. In Chap. 3, we will look at files in several of the
subdirectories of src/drivers, which support various device drivers, the second layer in Fig.
2-29. Then in Chap. 4, we will look at the process manager files in src/servers/pm/. Finally,
in Chap. 5, we will study the file system, whose source files are located in src/servers/fs/.

2.6.2. Compiling and Running MINIX 3

To compile MINIX 3, run make in src/tools/. There are several options, for installing MINIX
3 in different ways. To see the possibilities run make with no argument. The simplest
method is make image.

When make image is executed, a fresh copy of the header files in src/include/ is copied to
/usr/include/. Then source code files in src/kernel/ and several subdirectories of src/servers/
and src/drivers/ are compiled to object files. All the object files in src/kernel/ are linked to
form a single executable program, kernel. The object files in src/servers/pm/ are also linked
together to form a single executable program, pm, and all the object files in src/servers/fs/ are
linked to form fs. The additional programs listed as part of the boot image in Fig. 2-30 are
also compiled and linked in their own directories. These include rs and init in subdirectories
of src/servers/ and memory/, log/, and tty/ in subdirectories of src/drivers/. The component
designated "driver" in Fig. 2-30 can be one of several disk drivers; we discuss here a MINIX
3 system configured to boot from the hard disk using the standard at_wini driver, which will
be compiled in src/drivers/at_wini/. Other drivers can be added, but most drivers need not be
compiled into the boot image. The same is true for networking support; compilation of the
basic MINIX 3 system is the same whether or not networking will be used.

[Page 129]

To install a working MINIX 3 system capable of being booted, a program called installboot
(whose source is in src/boot/) adds names to kernel, pm, fs, init, and the other components of
the boot image, pads each one out so that its length is a multiple of the disk sector size (to
make it easier to load the parts independently), and concatenates them onto a single file. This
new file is the boot image and can be copied into the /boot/ directory or the /boot/image/
directory of a floppy disk or a hard disk partition. Later, the boot monitor program can load
the boot image and transfer control to the operating system.

[Page 130]

4

4

Figure 2-31 shows the layout of memory after the concatenated programs are separated and
loaded. The kernel is loaded in low memory, all the other parts of the boot image are loaded
above 1 MB. When user programs are run, the available memory above the kernel will be
used first. When a new program will not fit there, it will be loaded in the high memory range,
above init. Details, of course, depend upon the system configuration. For instance, the
example in the figure is for a MINIX 3 file system configured with a block cache that can
hold 512 4-KB disk blocks. This is a modest amount; more is recommended if adequate
memory is available. On the other hand, if the size of the block cache were reduced
drastically it would be possible to make the entire system fit into less than 640K of memory,
with room for a few user processes as well.

Figure 2-31. Memory layout after MINIX 3 has been loaded from the disk into memory. The
kernel, servers, and drivers are independently compiled and linked programs, listed on the left.
Sizes are approximate and not to scale. (This item is displayed on page 129 in the print version)

5

5

It is important to realize that MINIX 3 consists of several totally independent programs that
communicate only by passing messages. A procedure called panic in the directory
src/servers/fs/ does not conflict with a procedure called panic in src/servers/pm/ because they
ultimately are linked into different executable files. The only procedures that the three pieces
of the operating system have in common are a few of the library routines in src/lib/. This
modular structure makes it very easy to modify, say, the file system, without having these
changes affect the process manager. It also makes it straightforward to remove the file system
altogether and to put it on a different machine as a file server, communicating with user
machines by sending messages over a network.

As another example of the modularity of MINIX 3, adding network support makes absolutely
no difference to the process manager, the file system, or the kernel. Both an Ethernet driver
and the inet server can be activated after the boot image is loaded; they would appear in Fig.
2-30 with the processes started by /etc/rc, and they would be loaded into one of the "Memory
available for user programs" regions of Fig. 2-31. A MINIX 3 system with networking
enabled can be used as a remote terminal or an ftp and web server. Only if you want to allow
incoming logins to the MINIX 3 system over the network would any part of MINIX 3 as
described in the text need modification: this is tty, the console driver, which would need to be
recompiled with pseudo terminals configured to allow remote logins.

2.6.3. The Common Header Files

The include/ directory and its subdirectories contain a collection of files defining constants,
macros, and types. The POSIX standard requires many of these definitions and specifies in
which files of the main include/ directory and its subdirectory include/sys/ each required
definition is to be found. The files in these directories are header or include files, identified
by the suffix .h, and used by means of #include statements in C source files. These
statements are a built-in feature of the C language. Include files make maintenance of a large
system easier.

[Page 131]

Headers likely to be needed for compiling user programs are mainly found in include/
whereas include/sys/ traditionally is used for files that are used primarily for compiling
system programs and utilities. The distinction is not terribly important, and a typical
compilation, whether of a user program or part of the operating system, will include files
from both of these directories. We will discuss here the files that are needed to compile the
standard MINIX 3 system, first treating those in include/ and then those in include/sys/. In the
next section we will discuss files in the include/minix/ and include/ibm/ directories, which, as
the directory names indicate, are unique to MINIX 3 and its implementation on IBM-type
(really, Intel-type) computers.

The first headers to be considered are truly general purpose ones, so much so that they are not
referenced directly by any of the C language source files for the MINIX 3 system. Rather,
they are themselves included in other header files. Each major component of MINIX 3 has a
master header file, such as src/kernel/kernel.h, src/servers/pm/pm.h, and src/servers/fs/fs.h.
These are included in every compilation of these components. Source code for each of the
device drivers includes a somewhat similar file, src/drivers/drivers.h. Each master header is
tailored to the needs of the corresponding part of the MINIX 3 system, but each one starts
with a section like the one shown in Fig. 2-32 and includes most of the files shown there. The
master headers will be discussed again in other sections of the book. This preview is to
emphasize that headers from several directories are used together. In this section and the next

6

6

one we will mention each of the files referenced in Fig. 2-32.

Figure 2-32. Part of a master header which ensures inclusion of header files needed by all C
source files. Note that two const.h files, one from the include/ tree and one from the local
directory, are referenced.

#include <minix/config.h> /* MUST be first */
#include <ansi.h> /* MUST be second */
#include <limits.h>
#include <errno.h>
#include <sys/types.h>
#include <minix/const.h>
#include <minix/type.h>
#include <minix/syslib.h>
#include "const.h"

Let us start with the first header in include/, ansi.h (line 0000). This is the second header that
is processed whenever any part of the MINIX 3 system is compiled; only
include/minix/config.h is processed earlier. The purpose of ansi.h is to test whether the
compiler meets the requirements of Standard C, as defined by the International Organization
for Standards. Standard C is also often referred to as ANSI C, since the standard was
originally developed by the American National Standards Institute before gaining
international recognition. A Standard C compiler defines several macros that can then be
tested in programs being compiled. __STDC__ is such a macro, and it is defined by a
standard compiler to have a value of 1, just as if the C preprocessor had read a line like

[Page 132]

#define__STDC__1

The compiler distributed with current versions of MINIX 3 conforms to Standard C, but older
versions of MINIX were developed before the adoption of the standard, and it is still possible
to compile MINIX 3 with a classic (Kernighan & Ritchie) C compiler. It is intended that
MINIX 3 should be easy to port to new machines, and allowing older compilers is part of
this. At lines 0023 to 0025 the statement

#define _ANSI

is processed if a Standard C compiler is in use. Ansi.h defines several macros in different
ways, depending upon whether the _ANSI macro is defined. This is an example of a feature
test macro.

Another feature test macro defined here is _POSIX_SOURCE (line 0065). This is required
by POSIX. Here we ensure it is defined if other macros that imply POSIX conformance are
defined.

When compiling a C program the data types of the arguments and the returned values of
functions must be known before code that references such data can be generated. In a
complex system ordering of function definitions to meet this requirement is difficult, so C

7

7

allows use of function prototypes to declare the arguments and return value types of a
function before it is defined. The most important macro in ansi.h is _PROTOTYPE. This
macro allows us to write function prototypes in the form

 _PROTOTYPE (return-type function-name, (argument-type argument, ...))

and have this transformed by the C preprocessor into

 return-type function-name(argument-type, argument, ...)

if the compiler is an ANSI Standard C compiler, or

 return-type function-name()

if the compiler is an old-fashioned (i.e., Kernighan & Ritchie) compiler.

Before we leave ansi.h let us mention one additional feature. The entire file (except for initial
comments) is enclosed between lines that read

[Page 133]

#ifndef _ANSI_H

and

#endif /* _ANSI_H */

On the line immediately following the #ifndef _ANSI_H itself is defined. A header file
should be included only once in a compilation; this construction ensures that the contents of
the file will be ignored if it is included multiple times. We will see this technique used in all
the header files in the include/ directory.

Two points about this deserve mention. First, in all of the #ifndef ... #define
sequences for files in the master header directories, the filename is preceded by an
underscore. Another header with the same name may exist within the C source code
directories, and the same mechanism will be used there, but underscores will not be used.
Thus inclusion of a file from the master header directory will not prevent processing of
another header file with the same name in a local directory. Second, note that the comment
/* _ANSI_H */ after the #ifndef is not required. Such comments can be helpful in
keeping track of nested #ifndef ... #endif and #ifdef ... #endif sections.
However, care is needed in writing such comments: if incorrect they are worse than no
comment at all.

8

8

The second file in include/ that is indirectly included in most MINIX 3 source files is the
limits.h header (line 0100). This file defines many basic sizes, both language types such as
the number of bits in an integer, as well as operating system limits such as the length of a file
name.

Note that for convenience, the line numbering in Appendix B is ratcheted up to the next
multiple of 100 when a new file is listed. Thus do not expect ansi.h to contain 100 lines
(00000 through 00099). In this way, small changes to one file will (probably) not affect
subsequent files in a revised listing. Also note that when a new file is encountered in the
listing, a special three-line header consisting of a row of + signs, the file name, and another
row of + signs is present (without line numbering). An example of this header is shown
between lines 00068 and 00100.

Errno.h (line 0200), is also included by most of the master headers. It contains the error
numbers that are returned to user programs in the global variable errno when a system call
fails. Errno is also used to identify some internal errors, such as trying to send a message to a
nonexistent task. Internally, it would be inefficient to examine a global variable after a call to
a function that might generate an error, but functions must often return other integers, for
instance, the number of bytes transferred during an I/O operation. The MINIX 3 solution is to
return error numbers as negative values to mark them as error codes within the system, and
then to convert them to positive values before being returned to user programs. The trick that
is used is that each error code is defined in a line like

#define EPERM (_SIGN 1)

(line 0236). The master header file for each part of the operating system defines the
_SYSTEM macro, but _SYSTEM is never defined when a user program is compiled. If
_SYSTEM is defined, then _SIGN is defined as "-"; otherwise it is given a null definition.

[Page 134]

The next group of files to be considered are not included in all the master headers, but are
nevertheless used in many source files in all parts of the MINIX 3 system. The most
important is unistd.h (line 0400). This header defines many constants, most of which are
required by POSIX. In addition, it includes prototypes for many C functions, including all
those used to access MINIX 3 system calls. Another widely used file is string.h (line 0600),
which provides prototypes for many C functions used for string manipulation. The header
signal.h (line 0700) defines the standard signal names. Several MINIX 3-specific signals for
operating system use are defined, as well. The fact that operating systems functions are
handled by independent processes rather than within a monolithic kernel requires some
special signal-like communication between the system components. Signal.h also contains
prototypes for some signal-related functions. As we will see later, signal handling involves all
parts of MINIX 3.

Fcntl.h (line 0900) symbolically defines many parameters used in file control operations. For
instance, it allows one to use the macro O _RDONLY instead of the numeric value 0 as a
parameter to a open call. Although this file is referenced mostly by the file system, its
definitions are also needed in a number of places in the kernel and the process manager.

As we will see when we look at the device driver layer in Chap. 3, the console and terminal
interface of an operating system is complex, because many different types of hardware have
to interact with the operating system and user programs in a standardized way. Termios.h

9

9

(line 1000) defines constants, macros, and function prototypes used for control of
terminal-type I/O devices. The most important structure is the termios structure. It contains
flags to signal various modes of operation, variables to set input and output transmission
speeds, and an array to hold special characters (e.g., the INTR and KILL characters). This
structure is required by POSIX, as are many of the macros and function prototypes defined in
this file.

However, as all-encompassing as the POSIX standard is meant to be, it does not provide
everything one might want, and the last part of the file, from line 1140 onward, provides
extensions to POSIX. Some of these are of obvious value, such as extensions to define
standard baud rates of 57,600 baud and higher, and support for terminal display screen
windows. The POSIX standard does not forbid extensions, as no reasonable standard can ever
be all-inclusive. But when writing a program in the MINIX 3 environment which is intended
to be portable to other environments, some caution is required to avoid the use of definitions
specific to MINIX 3. This is fairly easy to do. In this file and other files that define MINIX
3-specific extensions the use of the extensions is controlled by the

#ifdef _MINIX

statement. If the macro _MINIX is not defined, the compiler will not even see the MINIX 3
extensions; they will all be completely ignored.

[Page 135]

Watchdog timers are supported by timers.h (line 1300), which is included in the kernel's
master header. It defines a struct timer, as well as prototypes of functions used to operate on
lists of timers. On line 1321 appears a typedef for tmr _func_t. This data type is a pointer to a
function. At line 1332 its use is seen: within a timer structure, used as an element in a list of
timers, one element is a tmr _func_t to specify a function to be called when the timer expires.

We will mention four more files in the include/ directory that are not listed in Appendix B.
Stdlib.h defines types, macros, and function prototypes that are likely to be needed in the
compilation of all but the most simple of C programs. It is one of the most frequently used
headers in compiling user programs, although within the MINIX 3 system source it is
referenced by only a few files in the kernel. Stdio.h is familiar to everyone who has started to
learn programming in C by writing the famous "Hello World!" program. It is hardly used at
all in system files, although, like stdlib.h, it is used in almost every user program. A.out.h
defines the format of the files in which executable programs are stored on disk. An exec
structure is defined here, and the information in this structure is used by the process manager
to load a new program image when an exec call is made. Finally, stddef.h defines a few
commonly used macros.

Now let us go on to the subdirectory include/sys/. As shown in Fig. 2-32, the master headers
for the main parts of the MINIX 3 system all cause sys/types.h (line 1400) to be read
immediately after reading ansi.h. Sys/types.h defines many data types used by MINIX 3.
Errors that could arise from misunderstanding which fundamental data types are used in a
particular situation can be avoided by using the definitions provided here. Fig. 2-33 shows
the way the sizes, in bits, of a few types defined in this file differ when compiled for 16-bit or
32-bit processors. Note that all type names end with "_t". This is not just a convention; it is a
requirement of the POSIX standard. This is an example of a reserved suffix, and "_t" should
not be used as a suffix of any name which is not a type name.

10

10

Figure 2-33. The size, in bits, of some types on 16-bit and 32-bit systems.
Type 16-Bit

MINIX
32-Bit
MINIX

gid_t 8 8
dev_t 16 16
pid_t 16 32
ino_t 16 32

MINIX 3 currently runs natively on 32-bit microprocessors, but 64-bit processors-will be increasingly
important in the future. A type that is not provided by the hardware can be synthesized if necessary. On line
1471 the u64_t type is defined as struct {u32_t[2]}. This type is not needed very often in the current
implementation, but it can be usefulfor instance, all disk and partition data (offsets and sizes) is stored as 64
bit numbers, allowing for very large disks.

[Page 136]

MINIX 3 uses many type definitions that ultimately are interpreted by the compiler as a relatively small
number of common types. This is intended to help make the code more readable; for instance, a variable
declared as the type dev _t is recognizable as a variable meant to hold the major and minor device numbers
that identify an I/O device. For the compiler, declaring such a variable as a short would work equally well.
Another thing to note is that many of the types defined here are matched by corresponding types with the first
letter capitalized, for instance, dev _t and Dev _t. The capitalized variants are all equivalent to type int to the
compiler; these are provided to be used in function prototypes which must use types compatible with the int
type to support K&R compilers. The comments in types.h explain this in more detail.

One other item worth mention is the section of conditional code that starts with

#if _EM_WSIZE == 2

(lines 1502 to 1516). As noted earlier, most conditional code has been removed from the source as discussed
in the text. This example was retained so we could point out one way that conditional definitions can be used.
The macro used, _EM _WSIZE, is another example of a compiler-defined feature test macro. It tells the word
size for the target system in bytes. The #if ... #else ... #endif sequence is a way of getting some
definitions right once and for all, to make subsequent code compile correctly whether a 16-bit or 32-bit system
is in use.

Several other files in include/sys/ are widely used in the MINIX 3 system. The file sys/sigcontext.h (line
1600) defines structures used to preserve and restore normal system operation before and after execution of a
signal handling routine and is used both in the kernel and the process manager. Sys/stat.h (line 1700) defines
the structure which we saw in Fig. 1-12, returned by the stat and fstat system calls, as well as the
prototypes of the functions stat and fstat and other functions used to manipulate file properties. It is referenced
in several parts of the file system and the process manager.

Other files we will discuss in this section are not as widely referenced as the ones discussed above. Sys/dir.h
(line 1800) defines the structure of a MINIX 3 directory entry. It is only referenced directly once, but this
reference includes it in another header that is widely used in the file system. It is important because, among
other things, it tells how many characters a file name may contain (60). The sys/wait.h (line 1900) header
defines macros used by the wait and waitpid system calls, which are implemented in the process
manager.

11

11

Several other files in include/sys/ should be mentioned, although they are not listed in Appendix B. MINIX 3
supports tracing executables and analyzing core dumps with a debugger program, and sys/ptrace.h defines the
various operations possible with the ptrace system call. Sys/svrctl.h defines data structures and macros used
by svrctl, which is not really a system call, but is used like one. Svrctl is used to coordinate server-level
processes as the system starts up. The select system call permits waiting for input on multiple channelsfor
instance, pseudo terminals waiting for network connections. Definitions needed by this call are in sys/select.h.

[Page 137]

We have deliberately left discussion of sys/ioctl.h and related files until last, because they cannot be fully
understood without also looking at a file in the next directory, minix/ioctl.h. The ioctl system call is used
for device control operations. The number of devices which can be interfaced with a modern computer system
is ever increasing. All need various kinds of control. Indeed, the main difference between MINIX 3 as
described in this book and other versions is that for purposes of the book we describe MINIX 3 with relatively
few input/output devices. Many others, such as network interfaces, SCSI controllers, and sound cards, can be
added.

To make things more manageable, a number of small files, each containing one group of definitions, are used.
They are all included by sys/ioctl.h (line 2000), which functions similarly to the master header of Fig. 2-32.
We have listed only one of these included files, sys/ioc_disk.h (line 2100), in Appendix B. This and the other
files included by sys _ioctl.h are located in the include/sys/ directory because they are considered part of the
"published interface," meaning a programmer can use them in writing any program to be run in the MINIX 3
environment. However, they all depend upon additional macro definitions provided in minix/ioctl.h (line
2200), which is included by each. Minix/ioctl.h should not be used by itself in writing programs, which is why
it is in include/minix/ rather than include/sys/.

The macros defined together by these files define how the various elements needed for each possible function
are packed into a 32 bit integer to be passed to ioctl. For instance, disk devices need five types of
operations, as can be seen in sys/ioc _disk.h at lines 2110 to 2114. The alphabetic 'd' parameter tells ioctl
that the operation is for a disk device, an integer from 3 through 7 codes for the operation, and the third
parameter for a write or read operation tells the size of the structure in which data is to be passed. In
minix/ioctl.h lines 2225 to 2231 show that 8 bits of the alphabetic code are shifted 8 bits to the left, the 13
least significant bits of the size of the structure are shifted 16 bits to the left, and these are then logically
ANDed with the small integer operation code. Another code in the most significant 3 bits of a 32-bit number
encodes the type of return value.

Although this looks like a lot of work, this work is done at compile time and makes for a much more efficient
interface to the system call at run time, since the parameter actually passed is the most natural data type for
the host machine CPU. It does, however, bring to mind a famous comment Ken Thompson put into the source
code of an early version of UNIX:

/* You are not expected to understand this */

Minix/ioctl.h also contains the prototype for the ioctl system call at line 2241. This call is not directly
invoked by programmers in many cases, since the POSIX defined functions prototyped in include/termios.h
have replaced many uses of the old ioctl library function for dealing with terminals, consoles, and similar
devices. Nevertheless, it is still necessary. In fact, the POSIX functions for control of terminal devices are
converted into ioctl system calls by the library.

[Page 138]

12

12

2.6.4. The MINIX 3 Header Files

The subdirectories include/minix/ and include/ibm/ contain header files specific to MINIX 3. Files in
include/minix/ are needed for an implementation of MINIX 3 on any platform, although there are
platform-specific alternative definitions within some of them. We have already discussed one file here, ioctl.h.
The files in include/ibm/ define structures and macros that are specific to MINIX 3 as implemented on
IBM-type machines.

We will start with the minix/ directory. In the previous section, it was noted that config.h (line 2300) is
included in the master headers for all parts of the MINIX 3 system, and is thus the first file actually processed
by the compiler. On many occasions, when differences in hardware or the way the operating system is
intended to be used require changes in the configuration of MINIX 3, editing this file and recompiling the
system is all that must be done. We suggest that if you modify this file you should also modify the comment
on line 2303 to help identify the purpose of the modifications.

The user-settable parameters are all in the first part of the file, but some of these parameters are not intended
to be edited here. On line 2326 another header file, minix/sys_config.h is included, and definitions of some
parameters are inherited from this file. The programmers thought this was a good idea because a few files in
the system need the basic definitions in sys_config.h without the rest of those in config.h. In fact, there are
many names in config.h which do not begin with an underscore that are likely to conflict with names in
common usage, such as CHIP or INTEL that would be likely to be found in software ported to MINIX 3 from
another operating system. All of the names in sys_config.h begin with underscores, and conflicts are less
likely.

MACHINE is actually configured as _MACHINE_IBM_PC in sys_config.h; lines 2330 to 2334 lists short
alternatives for all possible values for MACHINE. Earlier versions of MINIX were ported to Sun, Atari, and
MacIntosh platforms, and the full source code contains alternatives for alternative hardware. Most of the
MINIX 3 source code is independent of the type of machine, but an operating system always has some
system-dependent code. Also, it should be noted that, because MINIX 3 is so new, as of this writing
additional work is needed to complete porting MINIX 3 to non-Intel platforms.

Other definitions in config.h allow customization for other needs in a particular installation. For instance, the
number of buffers used by the file system for the disk cache should generally be as large as possible, but a
large number of buffers requires lots of memory. Caching 128 blocks, as configured on line 2345, is
considered minimal and satisfactory only for a MINIX 3 installation on a system with less than 16 MB of
RAM; for systems with ample memory a much larger number can be put here. If it is desired to use a modem
or log in over a network connection the NR_RS_LINES and NR_PTYS definitions (lines 2379 and 2380)
should be increased and the system recompiled. The last part of config.h contains definitions that are
necessary, but which should not be changed. Many definitions here just define alternate names for constants
defined in sys_config.h.

[Page 139]

Sys_config.h (line 2500) contains definitions that are likely to be needed by a system programmer, for
instance someone writing a new device driver. You are not likely to need to change very much in this file,
with the possible exception of _NR_PROCS (line 2522). This controls the size of the process table. If you
want to use a MINIX 3 system as a network server with many remote users or many server processes running
simultaneously, you might need to increase this constant.

The next file is const.h (line 2600), which illustrates another common use of header files. Here we find a
variety of constant definitions that are not likely to be changed when compiling a new kernel but that are used
in a number of places. Defining them here helps to prevent errors that could be hard to track down if
inconsistent definitions were made in multiple places. Other files named const.h can be found elsewhere in the

13

13

MINIX 3 source tree, but they are for more limited use. Similarly, definitions that are used only in the kernel
are included in src/kernel/const.h. Definitions that are used only in the file system are included in
src/servers/fs/const.h. The process manager uses src/servers/pm/const.h for its local definitions. Only those
definitions that are used in more than one part of the MINIX 3 system are included in include/minix/const.h.

A few of the definitions in const.h are noteworthy. EXTERN is defined as a macro expanding into extern (line
2608). Global variables that are declared in header files and included in two or more files are declared
EXTERN, as in

EXTERN int who;

If the variable were declared just as

int who;

and included in two or more files, some linkers would complain about a multiply defined variable.
Furthermore, the C reference manual explicitly forbids this construction (Kernighan and Ritchie, 1988).

To avoid this problem, it is necessary to have the declaration read

extern int who;

in all places but one. Using EXTERN prevents this problem by having it expand into extern everywhere that
const.h is included, except following an explicit redefinition of EXTERN as the null string. This is done in
each part of MINIX 3 by putting global definitions in a special file called glo.h, for instance, src/kernel/glo.h,
which is indirectly included in every compilation. Within each glo.h there is a sequence

[Page 140]

#ifdef_TABLE
#undef EXTERN
#define EXTERN
#endif

and in the table.c files of each part of MINIX 3 there is a line

#define_TABLE

preceding the #include section. Thus when the header files are included and expanded as part of the
compilation of table.c, extern is not inserted anywhere (because EXTERN is defined as the null string within
table.c) and storage for the global variables is reserved only in one place, in the object file table.o.

If you are new to C programming and do not quite understand what is going on here, fear not; the details are
really not important. This is a polite way of rephrasing Ken Thompson's famous comment cited earlier.
Multiple inclusion of header files can cause problems for some linkers because it can lead to multiple

14

14

declarations for included variables. The EXTERN business is simply a way to make MINIX 3 more portable
so it can be linked on machines whose linkers do not accept multiply defined variables.

PRIVATE is defined as a synonym for static. Procedures and data that are not referenced outside the file in
which they are declared are always declared as PRIVATE to prevent their names from being visible outside
the file in which they are declared. As a general rule, all variables and procedures should be declared with a
local scope, if possible. PUBLIC is defined as the null string. An example from kernel/proc.c may help make
this clear. The declaration

PUBLIC void lock_dequeue(rp)

comes out of the C preprocessor as

void lock_dequeue(rp)

which, according to the C language scope rules, means that the function name lock_dequeue is exported from
the file and the function can be called from anywhere in any file linked into the same binary, in this case,
anywhere in the kernel. Another function declared in the same file is

PRIVATE void dequeue(rp)

which is preprocessed to become

static void dequeue(rp)

This function can only be called from code in the same source file. PRIVATE and PUBLIC are not necessary
in any sense but are attempts to undo the damage caused by the C scope rules (the default is that names are
exported outside the file; it should be just the reverse).

[Page 141]

The rest of const.h defines numerical constants used throughout the system. A section of const.h is devoted to
machine or configuration-dependent definitions. For instance, throughout the source code the basic unit of
memory allocation is the click. Different values for the click size may be chosen for different processor
architectures. For Intel platforms it is 1024 bytes. Alternatives for Intel, Motorola 68000, and Sun SPARC
architectures are defined on lines 2673 to 2681. This file also contains the macros MAX and MIN, so we can
say

z = MAX(x, y);

to assign the larger of x and y to z.

Type.h (line 2800) is another file that is included in every compilation by means of the master headers. It
contains a number of key type definitions, along with related numerical values.

15

15

The first two structs define two different types of memory map, one for local memory regions (within the data
space of a process) and one for remote memory areas, such as a RAM disk (lines 2828 to 2840). This is a
good place to mention the concepts used in referring to memory. As we just mentioned, the click is the basic
unit of measurement of memory; in MINIX 3 for Intel processors a click is 1024 bytes. Memory is measured
as phys_clicks, which can be used by the kernel to access any memory element anywhere in the system, or as
vir_clicks, used by processes other than the kernel. A vir_clicks memory reference is always with respect to
the base of a segment of memory assigned to a particular process, and the kernel often has to make
translations between virtual (i.e. process-based) and physical (RAM-based) addresses. The inconvenience of
this is offset by the fact that a process can do all its own memory references in vir_clicks.

One might suppose that the same unit could be used to specify the size of either type of memory, but there is
an advantage to using vir_clicks to specify the size of a unit of memory allocated to a process, since when this
unit is used a check is done to be sure that no memory is accessed outside of what has been specifically
assigned to the current process. This is a major feature of the protected mode of modern Intel processors, such
as the Pentium family. Its absence in the early 8086 and 8088 processors caused some headaches in the design
of earlier versions of MINIX.

Another important structure defined here is sigmsg (lines 2866 to 2872). When a signal is caught the kernel
has to arrange that the next time the signaled process gets to run it will run the signal handler, rather than
continuing execution where it was interrupted. The process manager does most of the work of managing
signals; it passes a structure like this to the kernel when a signal is caught.

The kinfo structure (lines 2875 to 2893) is used to convey information about the kernel to other parts of the
system. The process manager uses this information when it sets up its part of the process table.

[Page 142]

Data structures and function prototypes for interprocess communication are defined in ipc.h (line 3000). The
most important definition in this file is message on lines 3020 to 3032. While we could have defined message
to be an array of some number of bytes, it is better programming practice to have it be a structure containing a
union of the various message types that are possible. Seven message formats, mess_1 through mess_8, are
defined (type mess_6 is obsolete). A message is a structure containing a field m_source, telling who sent the
message, a field m_type, telling what the message type is (e.g., SYS_EXEC to the system task) and the data
fields.

The seven message types are shown in Fig. 2-34. In the figure four message types, the first two and the last
two, seem identical. Just in terms of size of the data elements they are identical, but many of the data types are
different. It happens that on an Intel CPU with a 32-bit word size the int, long, and pointer data types are all
32-bit types, but this would not necessarily be the case on another kind of hardware. Defining seven distinct
formats makes it easier to recompile MINIX 3 for a different architecture.

Figure 2-34. The seven message types used in MINIX 3. The sizes of message elements will vary, depending upon
the architecture of the machine; this diagram illustrates sizes on CPUs with 32-bit pointers, such as those of

Pentium family members. (This item is displayed on page 143 in the print version)

[View full size image]

16

16

When it is necessary to send a message containing, say, three integers and three pointers (or three integers and
two pointers), then the first format in Fig. 2-34 is the one to use. The same applies to the other formats. How
does one assign a value to the first integer in the first format? Suppose that the message is called x. Then
x.m_u refers to the union portion of the message struct. To refer to the first of the six alternatives in the union,
we use x.m_u.m_m1. Finally, to get at the first integer in this struct we say x.m_u.m_m1.m1i1. This is quite a
mouthful, so somewhat shorter field names are defined as macros after the definition of message itself. Thus
x.m1_i1 can be used instead of x.m_u.m_m1.m1i1. The short names all have the form of the letter m, the
format number, an underscore, one or two letters indicating whether the field is an integer, pointer, long,
character, character array, or function, and a sequence number to distinguish multiple instances of the same
type within a message.

While discussing message formats, this is a good place to note that an operating-system and its compiler often
have an "understanding" about things like the layout of structures, and this can make the implementer's life
easier. In MINIX 3, the int fields in messages are sometimes used to hold unsigned data types. In some cases
this could cause overflow, but the code was written using the knowledge that the MINIX 3 compiler copies
unsigned types to ints and vice versa without changing the data or generating code to detect overflow. A more
compulsive approach would be to replace each int field with a union of an int and an unsigned. The same
applies to the long fields in the messages; some of them may be used to pass unsigned long data. Are we
cheating here? Perhaps a little bit, one might say, but if you wish to port MINIX 3 to a new platform, quite
clearly the exact format of the messages is something to which you must pay a great deal of attention, and
now you have been alerted that the behavior of the compiler is another factor that needs attention.

[Page 143]

Also defined in ipc.h are prototypes for the message passing primitives described earlier (lines 3095 to 3101).
In addition to the important send, receive, sendrec, and notify primitives, several others are defined.
None of these are much used; in fact one could say that they are relicts of earlier stages of development of
MINIX 3. Old computer programs make good archaeological digs. They might disappear in a future release.
Nevertheless, if we do not explain them now some readers undoubtedly will worry about them. The

17

17

nonblocking nb_send and nb_receive calls have mostly been replaced by notify, which was
implemented later and considered a better solution to the problem of sending or checking for a message
without blocking. The prototype for echo has no source or destination field. This primitive serves no useful
purpose in production code, but was useful during development to test the time it took to send and receive a
message.

[Page 144]

One other file in include/minix/, syslib.h (line 3200), is almost universally used by means of inclusion in the
master headers of all of the user-space components of MINIX 3. This file not included in the kernel's master
header file, src/kernel/kernel.h, because the kernel does not need library functions to access itself. Syslib.h
contains prototypes for C library functions called from within the operating system to access other operating
system services.

We do not describe details of C libraries in this text, but many library functions are standard and will be
available for any C compiler. However, the C functions referenced by syslib.h are of course quite specific to
MINIX 3 and a port of MINIX 3 to a new system with a different compiler requires porting these library
functions. Fortunately this is not difficult, since most of these functions simply extract the parameters of the
function call and insert them into a message structure, then send the message and extract the results from the
reply message. Many of these library functions are defined in a dozen or fewer lines of C code.

Noteworthy in this file are four macros for accessing I/O ports for input or output using byte or word data
types and the prototype of the sys_sdevio function to which all four macros refer (lines 3241 to 3250).
Providing a way for device drivers to request reading and writing of I/O ports by the kernel is an essential part
of the MINIX 3 project to move all such drivers to user space.

A few functions which could have been defined in syslib.h are in a separate file, sysutil.h (line 3400), because
their object code is compiled into a separate library. Two functions prototyped here need a little more
explanation. The first is printf (line 3442). If you have experience programming in C you will recognize that
printf is a standard library function, referenced in almost all programs.

This is not the printf function you think it is, however. The version of printf in the standard library cannot be
used within system components. Among other things, the standard printf is intended to write to standard
output, and must be able to format floating point numbers. Using standard output would require going through
the file system, but for printing messages when there is a problem and a system component needs to display
an error message, it is desirable to be able to do this without the assistance of any other system components.
Also, support for the full range of format specifications usable with the standard printf would bloat the code
for no useful purpose. So a simplified version of printf that does only what is needed by operating system
components is compiled into the system utilities library. This is found by the compiler in a place that will
depend upon the platform; for 32-bit Intel systems it is /usr/lib/i386/libsysutil.a. When the file system, the
process manager, or another part of the operating system is linked to library functions this version is found
before the standard library is searched.

On the next line is a prototype for kputc. This is called by the system version of printf to do the work of
displaying characters on the console. However, more tricky business is involved here. Kputc is defined in
several places. There is a copy in the system utilities library, which will be the one used by default. But
several parts of the system define their own versions. We will see one when we study the console interface in
the next chapter. The log driver (which is not described in detail here) also defines its own version. There is
even a definition of kputc in the kernel itself, but this is a special case. The kernel does not use printf. A
special printing function, kprintf, is defined as part of the kernel and is used when the kernel needs to print.

[Page 145]

18

18

When a process needs to execute a MINIX 3 system call, it sends a message to the process manager (PM for
short) or the file system (FS for short). Each message contains the number of the system call desired. These
numbers are defined in the next file, callnr.h (line 3500). Some numbers are not used, these are reserved for
calls not yet implemented or represent calls implemented in other versions which are now handled by library
functions. Near the end of the file some call numbers are defined that do not correspond to calls shown in Fig
1-9. Svrctl (mentioned earlier), ksig, unpause, revive, and task_reply are used only within the
operating system itself. The system call mechanism is a convenient way to implement these. In fact, because
they will not be used by external programs, these "system calls," may be modified in new versions of MINIX
3 without fear of breaking user programs.

The next file is com.h (line 3600). One interpretation of the file name is that is stands for common, another is
that it stands for communication. This file provides common definitions used for communication between
servers and device drivers. On lines 3623 to 3626 task numbers are defined. To distinguish them from process
numbers, task numbers are negative. On lines 3633 to 3640 process numbers are defined for the processes that
are loaded in the boot image. Note these are slot numbers in the process table; they should not be confused
with process id (PID) numbers.

The next section of com.h defines how messages are constructed to carry out a notify operation. The
process numbers are used in generating the value that is passed in the m_type field of the message. The
message types for notifications and other messages defined in this file are built by combining a base value that
signifies a type category with a small number that indicates the specific type. The rest of this file is a
compendium of macros that translate meaningful identifiers into the cryptic numbers that identify message
types and field names.

A few other files in include/minix/ are listed in Appendix B. Devio.h (line 4100) defines types and constants
that support user-space access to I/O ports, as well as some macros that make it easier to write code that
specifies ports and values. Dmap.h (line 4200) defines a struct and an array of that struct, both named dmap.
This table is used to relate major device numbers to the functions that support them. Major and minor device
numbers for the memory device driver and major device numbers for other important device drivers are also
defined.

Include/minix/ contains several additional specialized headers that are not listed in Appendix B, but which
must be present to compile the system. One is u64.h which provides support for 64-bit integer arithmetic
operations, necessary to manipulate disk addresses on high capacity disk drives. These were not even dreamed
of when UNIX, the C language, Pentium-class processors, and MINIX were first conceived. A future version
of MINIX 3 may be written in a language that has built-in support for 64-bit integers on CPUs with 64-bit
registers; until then, the definitions in u64.h provide a work-around.

[Page 146]

Three files remain to be mentioned. Keymap.h defines the structures used to implement specialized keyboard
layouts for the character sets needed for different languages. It is also needed by programs which generate and
load these tables. Bitmap.h provides a few macros to make operations like setting, resetting, and testing bits
easier. Finally, partition.h defines the information needed by MINIX 3 to define a disk partition, either by its
absolute byte offset and size on the disk, or by a cylinder, head, sector address. The u64_t type is used for the
offset and size, to allow use of large disks. This file does not describe the layout of a partition table on a disk,
the file that does that is in the next directory.

The last specialized header directory we will consider, include/ibm/, contains several files which provide
definitions related to the IBM PC family of computers. Since the C language knows only memory addresses,
and has no provision for accessing I/O port addresses, the library contains routines written in assembly
language to read and write from ports. The various routines available are declared in ibm/portio.h (line 4300).
All possible input and output routines for byte, integer, and long data types, singly or as strings, are available,

19

19

from inb (input one byte) to outsl (output a string of longs). Low-level routines in the kernel may also need to
disable or reenable CPU interrupts, which are also actions that C cannot handle. The library provides
assembly code to do this, and intr_disable and intr_enable are declared on lines 4325 and 4326.

The next file in this directory is interrupt.h (line 4400), which defines port address and memory locations used
by the interrupt controller chip and the BIOS of PC-compatible systems. Finally, more I/O ports are defined in
ports.h (line 4500). This file provides addresses needed to access the keyboard interface and the timer chip
used by the clock chip.

Several additional files in include/ibm/ with IBM-specific data are not listed in Appendix B, but are essential
and should be mentioned. Bios.h, memory.h, and partition.h are copiously commented and are worth reading
if you would like to know more about memory use or disk partition tables. Cmos.h, cpu.h, and int86.h provide
additional information on ports, CPU flag bits, and calling BIOS and DOS services in 16-bit mode. Finally,
diskparm.h defines a data structure needed for formatting a floppy disk.

2.6.5. Process Data Structures and Header Files

Now let us dive in and see what the code in src/kernel/ looks like. In the previous two sections we structured
our discussion around an excerpt from a typical master header; we will look first at the real master header for
the kernel, kernel.h (line 4600). It begins by defining three macros. The first, _POSIX_SOURCE, is a feature
test macro defined by the POSIX standard itself. All such macros are required to begin with the underscore
character, "_". The effect of defining the _POSIX_SOURCE macro is to ensure that all symbols required by
the standard and any that are explicitly permitted, but not required, will be visible, while hiding any additional
symbols that are unofficial extensions to POSIX. We have already mentioned the next two definitions: the
_MINIX macro overrides the effect of _POSIX_SOURCE for extensions defined by MINIX 3, and
_SYSTEM can be tested wherever it is important to do something differently when compiling system code, as
opposed to user code, such as changing the sign of error codes. Kernel.h then includes other header files from
include/ and its subdirectories include/sys/ include/minix/, and include/ibm/ including all those referred to in
Fig. 2-32. We have discussed all of these files in the previous two sections. Finally, six additional headers
from the local directory, src/kernel/, are included, their names included in quote characters.

[Page 147]

Kernel.h makes it possible to guarantee that all source files share a large number of important definitions by
writing the single line

#include "kernel.h"

in each of the other kernel source files. Since the order of inclusion of header files is sometimes important,
kernel.h also ensures that this ordering is done correctly, once and forever. This carries to a higher level the
"get it right once, then forget the details" technique embodied in the header file concept. Similar master
headers are provided in source directories for other system components, such as the file system and the
process manager.

Now let us proceed to look at the local header files included in kernel.h. First we have yet another file named
config.h, which, analogous to the system-wide file include/minix/config.h, must be included before any of the
other local include files. Just as we have files const.h and type.h in the common header directory
include/minix/, we also have files const.h. and type.h in the kernel source directory, src/kernel/. The files in
include/minix/ are placed there because they are needed by many parts of the system, including programs that
run under the control of the system. The files in src/kernel/ provide definitions needed only for compilation of
the kernel. The FS, PM, and other system source directories also contain const.h and type.h files to define

20

20

constants and types needed only for those parts of the system. Two of the other files included in the master
header, proto.h glo.h, have no counterparts in the main include/ directories, but we will find that they, too,
have counterparts used in compiling the file system and the process manager. The last local header included in
kernel.h is another ipc.h.

Since this is the first time it has come up in our discussion, note at the beginning of kernel/config.h there is a
#ifndef ... #define sequence to prevent trouble if the file is included multiple times. We have seen the
general idea before. But note here that the macro defined here is CONFIG_H without an underscore. Thus it is
distinct from the macro _CONFIG_H defined in include/minix/config.h.

[Page 148]

The kernel's version of config.h gathers in one place a number of definitions that are unlikely to need changes
if your interest in MINIX 3 is studying how an operating system works, or using this operating system in a
conventional general-purpose computer. However, suppose you want to make a really tiny version of MINIX
3 for controlling a scientific instrument or a home-made cellular telephone. The definitions on lines 4717 to
4743 allow selective disabling of kernel calls. Eliminating unneeded functionality also reduces memory
requirements because the code needed to handle each kernel call is conditionally compiled using the
definitions on lines 4717 to 4743. If some function is disabled, the code needed to execute it is omitted from
the system binary. For example, a cellular telephone might not need to fork off new processes, so the code for
doing so could be omitted from the executable file, resulting in a smaller memory footprint. Most other
constants defined in this file control basic parameters. For instance, while handling interrupts a special stack
of size K_STACK_BYTES is used. This value is set on line 4772. The space for this stack is reserved within
mpx386.s, an assembly language file.

In const.h (line 4800) a macro for converting virtual addresses relative to the base of the kernel's memory
space to physical addresses is defined on line 4814. A C function, umap_local, is defined elsewhere in the
kernel code so the kernel can do this conversion on behalf of other components of the system, but for use
within the kernel the macro is more efficient. Several other useful macros are defined here, including several
for manipulating bitmaps. An important security mechanism built into the Intel hardware is activated by two
macro definition lines here. The processor status word (PSW) is a CPU register, and I/O Protection Level
(IOPL) bits within it define whether access to the interrupt system and I/O ports is allowed or denied. On lines
4850 and 4851 different PSW values are defined that determine this access for ordinary and privileged
processes. These values are put on the stack as part of putting a new process in execution.

In the next file we will consider, type.h (line 4900), the memory structure (lines 4925 to 4928) uses two
quantities, base address and size, to uniquely specify an area of memory.

Type.h defines several other prototypes and structures used in any implementation of MINIX 3. For instance,
two structures, kmessages, used for diagnostic messages from the kernel, and randomness, used by the
random number generator, are defined. Type.h also contains several machine-dependent type definitions. To
make the code shorter and more readable we have removed conditional code and definitions for other CPU
types. But you should recognize that definitions like the stackframe_s structure (lines 4955 to 4974), which
defines how machine registers are saved on the stack, is specific to Intel 32-bit processors. For another
platform the stackframe_s structure would be defined in terms of the register structure of the CPU to be used.
Another example is the segdesc_s structure (lines 4976 to 4983), which is part of the protection mechanism
that keeps processes from accessing memory regions outside those assigned to them. For another CPU the
segdesc_s structure might not exist at all, depending upon the mechanism used to implement memory
protection.

[Page 149]

21

21

Another point to make about structures like these is that making sure all the required data is present is
necessary, but possibly not sufficient for optimal performance. The stackframe_s must be manipulated by
assembly language code. Defining it in a form that can be efficiently read or written by assembly language
code reduces the time required for a context switch.

The next file, proto.h (line 5100), provides prototypes of all functions that must be known outside of the file
in which they are defined. All are written using the _PROTOTYPE macro discussed in the previous section,
and thus the MINIX 3 kernel can be compiled either with a classic C (Kernighan and Ritchie) compiler, such
as the original MINIX 3 C compiler, or a modern ANSI Standard C compiler, such as the one which is part of
the MINIX 3 distribution. A number of these prototypes are system-dependent, including interrupt and
exception handlers and functions that are written in assembly language.

In glo.h (line 5300) we find the kernel's global variables. The purpose of the macro EXTERN was described
in the discussion of include/minix/const.h. It normally expands into extern. Note that many definitions in glo.h
are preceded by this macro. The symbol EXTERN is forced to be undefined when this file is included in
table.c, where the macro _TABLE is defined. Thus the actual storage space for the variables defined this way
is reserved when glo.h is included in the compilation of table.c. Including glo.h in other C source files makes
the variables in table.c known to the other modules in the kernel.

Some of the kernel information structures here are used at startup. Aout (line 5321) will hold the address of an
array of the headers of all of the MINIX 3 system image components. Note that these are physical addresses,
that is, addresses relative to the entire address space of the processor. As we will see later, the physical
address of aout will be passed from the boot monitor to the kernel when MINIX 3 starts up, so the startup
routines of the kernel can get the addresses of all MINIX 3 components from the monitor's memory space.
Kinfo (line 5322) is also an important piece of information. Recall that the structure was defined in
include/minix/type.h. Just as the boot monitor uses aout to pass information about all processes in the boot
image to the kernel, the kernel fills in the fields of kinfo with information about itself that other components
of the system may need to know about.

The next section of glo.h contains variables related to control of process and kernel execution. Prev_ptr,
proc_ptr, and next_ptr point to the process table entries of the previous, current, and next processes to run.
Bill_ptr also points to a process table entry; it shows which process is currently being billed for clock ticks
used. When a user process calls the file system, and the file system is running, proc_ptr points to the file
system process. However, bill_ptr will point to the user making the call, since CPU time used by the file
system is charged as system time to the caller. We have not actually heard of a MINIX system whose owner
charges others for their use of CPU time, but it could be done. The next variable, k_reenter, is used to count
nested executions of kernel code, such as when an interrupt occurs when the kernel itself, rather than a user
process, is running. This is important, because switching context from a user process to the kernel or vice
versa is different (and more costly) than reentering the kernel. When an interrupt service complete it is
important for it to determine whether control should remain with the kernel or if a user-space process should
be restarted. This variable is also tested by some functions which disable and reenable interrupts, such as
lock_enqueue. If such a function is executed when interrupts are disabled already, the interrupts should not be
reenabled when reenabling is not wanted. Finally, in this section there is a counter for lost clock ticks. How a
clock tick can be lost and what is done about it will be discussed when we discuss the clock task.

[Page 150]

The last few variables defined in glo.h, are declared here because they must be known throughout the kernel
code, but they are declared as extern rather than as EXTERN because they are initialized variables, a feature
of the C language. The use of the EXTERN macro is not compatible with C-style initialization, since a
variable can only be initialized once.

Tasks that run in kernel space, currently just the clock task and the system task, have their own stacks within

22

22

t_stack. During interrupt handling, the kernel uses a separate stack, but it is not declared here, since it is only
accessed by the assembly language level routine that handles interrupt processing, and does not need to be
known globally. The last file included in kernel.h, and thus used in every compilation, is ipc.h (line 5400). It
defines various constants used in interprocess communication. We will discuss these later when we get to the
file where they are used, kernel/proc.c.

Several more kernel header files are widely used, although not so much that they are included in kernel.h. The
first of these is proc.h (line 5500), which defines the kernel's process table. The complete state of a process is
defined by the process' data in memory, plus the information in its process table slot. The contents of the CPU
registers are stored here when a process is not executing and then are restored when execution resumes. This
is what makes possible the illusion that multiple processes are executing simultaneously and interacting,
although at any instant a single CPU can be executing instructions of only one process. The time spent by the
kernel saving and restoring the process state during each context switch is necessary, but obviously this is
time during which the work of the processes themselves is suspended. For this reason these structures are
designed for efficiency. As noted in the comment at the beginning of proc.h, many routines written in
assembly language also access these structures, and another header, sconst.h, defines offsets to fields in the
process table for use by the assembly code. Thus changing a definition in proc.h may necessitate a change in
sconst.h.

Before going further we should mention that, because of MINIX 3's microkernel structure, the process table
we will discuss is here is paralleled by tables in PM and FS which contain per-process entries relevant to the
function of these parts of MINIX 3. Together, all three of these tables are equivalent to the process table of an
operating system with a monolithic structure, but for the moment when we speak of the process table we will
be talking about only the kernel's process table. The others will be discussed in later chapters.

[Page 151]

Each slot in the process table is defined as a struct proc (lines 5516 to 5545). Each entry contains storage for
the process' registers, stack pointer, state, memory map, stack limit, process id, accounting, alarm time, and
message info. The first part of each process table entry is a stackframe_s structure. A process that is already in
memory is put into execution by loading its stack pointer with the address of its process table entry and
popping all the CPU registers from this struct.

There is more to the state of a process than just the CPU registers and the data in memory, however. In
MINIX 3, each process has a pointer to a priv structure in its process table slot (line 5522). This structure
defines allowed sources and destinations of messages for the process and many other privileges. We will look
at details later. For the moment, note that each system process has a pointer to a unique copy of this structure,
but user privileges are all equalthe pointers of all user processes point to the same copy of the structure. There
is also a byte-sized field for a set of bit flags, p_rts_flags (line 5523). The meanings of the bits will be
described below. Setting any bit to 1 means a process is not runnable, so a zero in this field indicates a process
is ready.

Each slot in the process table provides space for information that may be needed by the kernel. For instance,
the p_max_priority field (line 5526), tells which scheduling queue the process should be queued on when it is
ready to run for the first time. Because the priority of a process may be reduced if it prevents other processes
from running, there is also a p_priority field which is initially set equal to p_max_priority. P_priority is the
field that actually determines the queue used each time the process is ready.

The time used by each process is recorded in the two clock_t variables at lines 5532 and 5533. This
information must be accessed by the kernel and it would be inefficient to store this in a process' own memory
space, although logically that could be done. P_nextready (line 5535), is used to link processes together on the
scheduler queues.

23

23

The next few fields hold information related to messages between processes. When a process cannot complete
a send because the destination is not waiting, the sender is put onto a queue pointed to by the destination's
p_caller_q pointer (line 5536). That way, when the destination finally does a receive, it is easy to find all
the processes wanting to send to it. The p_q_link field (line 5537) is used to link the members of the queue
together.

The rendezvous method of passing messages is made possible by the storage space reserved at lines 5538 to
5540. When a process does a receive and there is no message waiting for it, it blocks and the number of the
process it wants to receive from is stored in p_getfrom. Similarly, p_sendto holds the process number of
the destination when a process does a send and the recipient is not waiting. The address of the message
buffer is stored in p_messbuf. The penultimate field in each process table slot is p_pending (line 5542), a
bitmap used to keep track of signals that have not yet been passed to the process manager (because the process
manager is not waiting for a message).

[Page 152]

Finally, the last field in a process table entry is a character array, p_name, for holding the name of the process.
This field is not needed for process management by the kernel. MINIX 3 provides various debug dumps
triggered by pressing a special key on the console keyboard. Some of these allow viewing information about
all processes, with the name of each process printed along with other data. Having a meaningful name
associated with each process makes understanding and debugging kernel operation easier.

Following the definition of a process table slot come definitions of various constants used in its elements. The
various flag bits that can be set in p_rts_flags are defined and described on lines 5548 to 5555. If the slot is
not in use, SLOT_FREE is set. After a fork, NO_MAP is set to prevent the child process from running until
its memory map has been set up. SENDING and RECEIVING indicate that the process is blocked trying to
send or receive a message. SIGNALED and SIG_PENDING indicate that signals have been received, and
P_STOP provides support for tracing. NO_PRIV is used to temporarily prevent a new system process from
executing until its setup is complete.

The number of scheduling queues and allowable values for the p_priority field are defined next (lines 5562 to
5567). In the current version of this file user processes are allowed to be given access to the highest priority
queue; this is probably a carry-over from the early days of testing drivers in user space and MAX_USER_Q
should probably adjusted to a lower priority (larger number).

Next come several macros that allow addresses of important parts of the process-table to be defined as
constants at compilation time, to provide faster access at run time, and then more macros for run time
calculations and tests. The macro proc_addr (line 5577) is provided because it is not possible to have negative
subscripts in C. Logically, the array proc should go from NR_TASKS to +NR_PROCS. Unfortunately, in C it
must start at 0, so proc [0] refers to the most negative task, and so forth. To make it easier to keep track of
which slot goes with which process, we can write

rp = proc_addr(n);

to assign to rp the address of the process slot for process n, either positive or negative.

The process table itself is defined here as an array of proc structures, proc[NR_TASKS + NR_PROCS] (line
5593). Note that NR_TASKS is defined in include/minix/com.h (line 3630) and the constant NR_PROCS is
defined in include/minix/config.h (line 2522). Together these set the size of the kernel's process table.
NR_PROCS can be changed to create a system capable of handling a larger number of processes, if that is
necessary (e.g., on a large server).

24

24

[Page 153]

Finally, several macros are defined to speed access. The process table is accessed frequently, and calculating
an address in an array requires slow multiplication operations, so an array of pointers to the process table
elements, pproc_addr (line 5594), is provided. The two arrays rdy_head and rdy_tail are used to maintain the
scheduling queues. For example, the first process on the default user queue is pointed to by
rdy_head[USER_Q].

As we mentioned at the beginning of the discussion of proc.h there is another file sconst.h (line 5600), which
must be synchronized with proc.h if there are changes in the structure of the process table. Sconst.h defines
constants used by assembler code, expressed in a form usable by the assembler. All of these are offsets into
the stackframe_s structure portion of a process table entry. Since assembler code is not processed by the C
compiler, it is simpler to have such definitions in a separate file. Also, since these definitions are all machine
dependent, isolating them here simplifies the process of porting MINIX 3 to another processor which will
need a different version of sconst.h. Note that many offsets are expressed as the previous value plus W, which
is set equal to the word size at line 5601. This allows the same file to serve for compiling a 16-bit or 32-bit
version of MINIX 3.

Duplicate definitions create a potential problem. Header files are supposed to allow one to provide a single
correct set of definitions and then proceed to use them in many places without devoting a lot of further
attention to the details. Obviously, duplicate definitions, like those in proc.h and sconst.h, violate that
principle. This is a special case, of course, but as such, special attention is required if changes are made to
either of these files to ensure the two files remain consistent.

The system privileges structure, priv, that was mentioned briefly in the discussion of the process table is fully
defined in priv.h, on lines 5718 to 5735. First there is a set of flag bits, s_flags, and then come the
s_trap_mask, s_ipc_from, s_ipc_to, and s_call_mask fields which define which system calls may be initiated,
which processes messages may be received from or sent to, and which kernel calls are allowed.

The priv structure is not part of the process table, rather each process table slot has a pointer to an instance of
it. Only system processes have private copies; user processes all point to the same copy. Thus, for a user
process the remaining fields of the structure are not relevant, as sharing them does not make sense. These
fields are bitmaps of pending notifications, hardware interrupts, and signals, and a timer. It makes sense to
provide these here for system processes, however. User processes have notifications, signals, and timers
managed on their behalf by the process manager.

The organization of priv.h is similar to that of proc.h. After the definition of the priv structure come macros
definitions for the flag bits, some important addresses known at compile time, and some macros for address
calculations at run time. Then the table of priv structures, priv[NR_SYS_PROCS], is defined, followed by an
array of pointers, ppriv_addr[NR_SYS_PROCS] (lines 5762 and 5763). The pointer array provides fast
access, analogous to the array of pointers that provides fast access to process table slots. The value of
STACK_GUARD defined on line 5738 is a pattern that is easily recognizable. Its use will be seen later; the
reader is invited to search the Internet to learn about the history of this value.

[Page 154]

The last item in priv.h is a test to make sure that NR_SYS_PROCS has been defined to be larger than the
number of processes in the boot image. The #error line will print a message if the test condition tests true.
Although behavior may be different with other C compilers, with the standard MINIX 3 compiler this will
also abort the compilation.

25

25

The F4 key triggers a debug dump that shows some of the information in the privilege table. Figure 2-35
shows a few lines of this table for some representative processes. The flags entries mean P: preemptable, B:
billable, S: system. The traps mean E: echo, S: send, R: receive, B: both, N: notification. The bitmap has a bit
for each of the NR_SYS_PROCS (32) system processes allowed, the order corresponds to the id field. (In the
figure only 16 bits are shown, to make it fit the page better.) All user processes share id 0, which is the
left-most bit position. The bitmap shows that user processes such as init can send messages only to the process
manager, file system, and reincarnation server, and must use sendrec. The servers and drivers shown in the
figure can use any of the ipc primitives and all but memory can send to any other process.

Figure 2-35. Part of a debug dump of the privilege table. The clock task, file server, tty, and init processes
privileges are typical of tasks, servers, device drivers, and user processes, respectively. The bitmap is truncated
to 16 bits.

 --nr- -id- -name- -flags- -traps- -ipc_to mask ------
 (-4) (01) IDLE P-BS- ----- 00000000 00001111
 [-3] (02) CLOCK ---S- --R-- 00000000 00001111
 [-2] (03) SYSTEM ---S- --R-- 00000000 00001111
 [-1] (04) KERNEL ---S- ----- 00000000 00001111
 0 (05) pm P--S- ESRBN 11111111 11111111
 1 (06) fs P--S- ESRBN 11111111 11111111
 2 (07) rs P--S- ESRBN 11111111 11111111
 3 (09) memory P--S- ESRBN 00110111 01101111
 4 (10) log P--S- ESRBN 11111111 11111111
 5 (08) tty P--S- ESRBN 11111111 11111111
 6 (11) driver P--S- ESRBN 11111111 11111111
 7 (00) init P-B-- E--B- 00000111 00000000

Another header that is included in a number of different source files is protect.h (line 5800). Almost
everything in this file deals with architecture details of the Intel processors that support protected mode (the
80286, 80386, 80486, and the Pentium series). A detailed description of these chips is beyond the scope of
this book. Suffice it to say that they contain internal registers that point to descriptor tables in memory.
Descriptor tables define how system resources are used and prevent processes from accessing memory
assigned to other processes.

[Page 155]

The architecture of 32-bit Intel processors also provides for four privilege levels, of which MINIX 3 takes
advantage of three. These are defined symbolically on lines 5843 to 5845. The most central parts of the
kernel, the parts that run during interrupts and that manage context switches, always run with
INTR_PRIVILEGE. Every address in the memory and every register in the CPU can be accessed by a process
with this privilege level. The tasks run at TASK_PRIVILEGE level, which allows them to access I/O but not
to use instructions that modify special registers, like those that point to descriptor tables. Servers and user
processes run at USER_PRIVILEGE level. Processes executing at this level are unable to execute certain
instructions, for instance those that access I/O ports, change memory assignments, or change privilege levels
themselves.

The concept of privilege levels will be familiar to those who are familiar with the architecture of modern
CPUs, but those who have learned computer architecture through study of the assembly language of low-end
microprocessors may not have encountered such features.

One header file in kernel/ has not yet been described: system.h, and we will postpone discussing it until later
in this chapter when we describe the system task, which runs as an independent process, although it is
compiled with the kernel. For now we are through with header files and are ready to dig into the *.c C
language source files. The first of these that we will look at is table.c (line 6000). Compilation of this

26

26

produces no executable code, but the compiled object file table.o will contain all the kernel data structures.
We have already seen many of these data structures defined, in glo.h and other headers. On line 6028 the
macro _TABLE is defined, immediately before the #include statements. As explained earlier, this
definition causes EXTERN to become defined as the null string, and storage space to be allocated for all the
data declarations preceded by EXTERN.

In addition to the variables declared in header files there are two other places where global data storage is
allocated. Some definitions are made directly in table.c. On lines 6037 to 6041 the stack space needed by
kernel components is defined, and the total amount of stack space for tasks is reserved as the array
t_stack[TOT_STACK_SPACE] on line 6045.

The rest of table.c defines many constants related to properties of processes, such as the combinations of flag
bits, call traps, and masks that define to whom messages and notifications can be sent that we saw in Fig. 2-35
(lines 6048 to 6071). Following this are masks to define the kernel calls allowed for various processes. The
process manager and file server are all allowed unique combinations. The reincarnation server is allowed
access to all kernel calls, not for its own use, but because as the parent of other system processes it can only
pass to its children subsets of its own privileges. Drivers are given a common set of kernel call masks, except
for the RAM disk driver which needs unusual access to memory. (Note that the comment on line 6075 that
mentions the "system services manager" should say "reincarnation server"the name was changed during
development and some comments still refer to the old name.)

[Page 156]

Finally, on lines 6095 to 6109, the image table is defined. It has been put here rather than in a header file
because the trick with EXTERN used to prevent multiple declarations does not work with initialized
variables; that is, you may not say

extern int x = 3;

anywhere. The image table provides details needed to initialize all of the processes that are loaded from the
boot image. It will be used by the system at startup. As an example of the information contained here,
consider the field labeled "qs" in the comment on line 6096. This shows the size of the quantum assigned to
each process. Ordinary user processes, as children of init, get to run for 8 clock ticks. The CLOCK and
SYSTEM tasks are allowed to run for 64 clock ticks if necessary. They are not really expected to run that long
before blocking, but unlike user-space servers and drivers they cannot be demoted to a lower-priority queue if
they prevent other processes from getting a chance to run.

If a new process is to be added to the boot image, a new row must be provided in the image table. An error in
matching the size of image to other constants is intolerable and cannot be permitted. At the end of table.c tests
are made for errors, using a little trick. The array dummy is declared here twice. In each declaration the size of
dummy will be impossible and will trigger a compiler error if a mistake has been made. Since dummy is
declared as extern, no space is allocated for it here (or anywhere). Since it is not referenced anywhere else in
the code, this will not bother the compiler.

Additional global storage is allocated at the end of the assembly language file mpx386.s. Although it will
require skipping ahead several pages in the listing to see this, it is appropriate to discuss this now, since we are
on the subject of global variables. On line 6822 the assembler directive .sect .rom is used to put a magic
number (to identify a valid MINIX 3 kernel) at the very beginning of the kernel's data segment. A .sect
bss assembler directive and the .space pseudoinstruction are also used here to reserve space for the
kernel's stack. The .comm pseudoinstruction labels several words at the top of the stack so they may be
manipulated directly. We will come back to mpx386.s in a few pages, after we have discussed bootstrapping
MINIX 3.

27

27

2.6.6. Bootstrapping MINIX 3

It is almost time to start looking at the executable codebut not quite. Before we do that, let us take a few
moments to understand how MINIX 3 is loaded into memory. It is, of course, loaded from a disk, but the
process is not completely trivial and the exact sequence of events depends on the kind of disk. In particular, it
depends on whether the disk is partitioned or not. Figure 2-36 shows how diskettes and partitioned disks are
laid out.

[Page 157]

Figure 2-36. Disk structures used for bootstrapping. (a) Unpartitioned disk. The first sector is the bootblock. (b)
Partitioned disk. The first sector is the master boot record, also called masterboot.

[View full size image]

When the system is started, the hardware (actually, a program in ROM) reads the first sector of the boot disk,
copies it to a fixed location in memory, and executes the code found there. On an unpartitioned MINIX 3
diskette, the first sector is a bootblock which loads the boot program, as in Fig. 2-36(a). Hard disks are
partitioned, and the program on the first sector (called masterboot on MINIX systems) first relocates itself to a
different memory region, then reads the partition table, loaded with it from the first sector. Then it loads and
executes the first sector of the active partition, as shown in Fig. 2-36(b). (Normally one and only one partition
is marked active). A MINIX 3 partition has the same structure as an unpartitioned MINIX 3 diskette, with a
bootblock that loads the boot program. The bootblock code is the same for an unpartitioned or a partitioned
disk. Since the masterboot program relocates itself the bootblock code can be written to run at the same
memory address where masterboot is originally loaded.

The actual situation can be a little more complicated than the figure shows, because a partition may contain
subpartitions. In this case the first sector of the partition will be another master boot record containing the
partition table for the subpartitions. Eventually, however, control will be passed to a boot sector, the first
sector on a device that is not further subdivided. On a diskette the first sector is always a boot sector. MINIX
3 does allow a form of partitioning of a diskette, but only the first partition may be booted; there is no separate
master boot record, and subpartitions are not possible. This makes it possible for partitioned and
non-partitioned diskettes to be mounted in exactly the same way. The main use for a partitioned floppy disk is
that it provides a convenient way to divide an installation disk into a root image to be copied to a RAM disk
and a mounted portion that can be dismounted when no longer needed, in order to free the diskette drive for
continuing the installation process.

28

28

[Page 158]

The MINIX 3 boot sector is modified at the time it is written to the disk by a special program called
installboot which writes the boot sector and patches into it the disk address of a file named boot on its
partition or subpartition. In MINIX 3, the standard location for the boot program is in a directory of the same
name, that is, /boot/boot. But it could be anywherethe patching of the boot sector just mentioned locates the
disk sectors from which it is to be loaded. This is necessary because previous to loading boot there is no way
to use directory and file names to find a file.

Boot is the secondary loader for MINIX 3. It can do more than just load the operating system however, as it is
a monitor program that allows the user to change, set, and save various parameters. Boot looks in the second
sector of its partition to find a set of parameters to use. MINIX 3, like standard UNIX, reserves the first 1K
block of every disk device as a bootblock, but only one 512-byte sector is loaded by the ROM boot loader or
the master boot sector, so 512 bytes are available for saving settings. These control the boot operation, and are
also passed to the operating system itself. The default settings present a menu with one choice, to start MINIX
3, but the settings can be modified to present a more complex menu allowing other operating systems to be
started (by loading and executing boot sectors from other partitions), or to start MINIX 3 with various options.
The default settings can also be modified to bypass the menu and start MINIX 3 immediately.

Boot is not a part of the operating system, but it is smart enough to use the file system data structures to find
the actual operating system image. Boot looks for a file with the name specified in the image= boot parameter,
which by default is /boot/image. If there is an ordinary file with this name it is loaded, but if this is the name
of a directory the newest file within it is loaded. Many operating systems have a predefined file name for the
boot image. But MINIX 3 users are encouraged to modify it and to create new versions. It is useful to be able
to select from multiple versions, in order to return to an older version if an experiment is unsuccessful.

We do not have space here to go into more detail about the boot monitor. It is a sophisticated program, almost
a miniature operating system in itself. It works together with MINIX 3, and when MINIX 3 is properly shut
down, the boot monitor regains control. If you would like to know more, the MINIX 3 Web site provides a
link to a detailed description of the boot monitor source code.

[Page 159]

The MINIX 3 boot image (also called system image) is a concatenation of several program files: the kernel,
process manager, file system, reincarnation server, several device drivers, and init, as shown in Fig 2-30. Note
that MINIX 3 as described here is configured with just one disk driver in the boot image, but several may be
present, with the active one selected by a label. Like all binary programs, each file in the boot image includes
a header that tells how much space to reserve for uninitialized data and stack after loading the executable code
and initialized data, so the next program can be loaded at the proper address.

The memory regions available for loading the boot monitor and the component programs of MINIX 3 will
depend upon the hardware. Also, some architectures may require adjustment of internal addresses within
executable code to correct them for the actual address where a program is loaded. The segmented architecture
of Intel processors makes this unnecessary.

Details of the loading process differ with machine type. The important thing is that by one means or another
the operating system is loaded into memory. Following this, a small amount of preparation is required before
MINIX 3 can be started. First, while loading the image, boot reads a few bytes from the image that tell boot
some of its properties, most importantly whether it was compiled to run in 16-bit or 32-bit mode. Then some
additional information needed to start the system is made available to the kernel. The a.out headers of the
components of the MINIX 3 image are extracted into an array within boot's memory space, and the base
address of this array is passed to the kernel. MINIX 3 can return control to the boot monitor when it

29

29

terminates, so the location where execution should resume in the monitor is also passed on. These items are
passed on the stack, as we shall see later.

Several other pieces of information, the boot parameters, must be communicated from the boot monitor to the
operating system. Some are needed by the kernel and some are not needed but are passed along for
information, for instance, the name of the boot image that was loaded. These items can all be represented as
string=value pairs, and the address of a table of these pairs is passed on the stack. Fig. 2-37 shows a typical set
of boot parameters as displayed by the sysenv command from the MINIX 3 command line.

Figure 2-37. Boot parameters passed to the kernel at boot time in a typical MINIX 3 system. (This item is displayed
on page 160 in the print version)

rootdev=904
ramimagedev=904
ramsize=0
processor=686
bus=at
video=vga
chrome=color
memory=800:92540,100000:3DF0000
label=AT
controller=c0
image=boot/image

In this example, an important item we will see again soon is the memory parameter; in this case it indicates
that the boot monitor has determined that there are two segments of memory available for MINIX 3 to use.
One begins at hexadecimal address 800 (decimal 2048) and has a size of hexadecimal 0x92540 (decimal
599,360) bytes; the other begins at 100000 (1,048,576) and contains 0x3df00000 (64,946,176) bytes. This is
typical of all but the most elderly PC-compatible computers. The design of the original IBM PC placed
read-only memory at the top of the usable range of memory, which is limited to 1 MB on an 8088 CPU.
Modern PC-compatible machines always have more memory than the original PC, but for compatibility they
still have read-only memory at the same addresses as the older machines. Thus, the read-write memory is
discontinuous, with a block of ROM between the lower 640 KB and the upper range above 1 MB. The boot
monitor loads the kernel into the low memory range and the servers, drivers, and init into the memory range
above the ROM if possible. This is primarily for the benefit of the file system, so a large block cache can be
used without bumping into the read-only memory.

[Page 160]

We should also mention here that operating systems are not universally loaded from local disks. Diskless
workstations may load their operating systems from a remote disk, over a network connection. This requires
network software in ROM, of course. Although details vary from what we have described here, the elements
of the process are likely to be similar. The ROM code must be just smart enough to get an executable file over
the net that can then obtain the complete operating system. If MINIX 3 were loaded this way, very little would
need to be changed in the initialization process that occurs once the operating system code is loaded into
memory. It would, of course, need a network server and a modified file system that could access files via the
network.

2.6.7. System Initialization

Earlier versions of MINIX could be compiled in 16-bit mode if compatibility with older processor chips were
required, and MINIX 3 retains some source code for 16-bit mode. However, the version described here and

30

30

distributed on the CD-ROM is usable only on 32-bit machines with 80386 or better processors. It does not
work in 16-bit mode, and creation of a 16-bit version may require removing some features. Among other
things, 32-bit binaries are larger than 16-bit ones, and independent user-space drivers cannot share code the
way it could be done when drivers were compiled into a single binary. Nevertheless, a common base of C
source code is used and the compiler generates the appropriate output depending upon whether the compiler
itself is the 16-bit or 32-bit version of the compiler. A macro defined by the compiler itself determines the
definition of the _WORD_SIZE macro in the file include/minix/sys_config.h.

[Page 161]

The first part of MINIX 3 to execute is written in assembly language, and different source code files must be
used for the 16-bit or 32-bit compiler. The 32-bit version of the initialization code is in mpx386.s. The
alternative, for 16-bit systems, is in mpx88.s. Both of these also include assembly language support for other
low-level kernel operations. The selection is made automatically in mpx.s. This file is so short that the entire
file can be presented in Fig. 2-38.

Figure 2-38. How alternative assembly language source files are selected.

#include <minix/config.h>
#if_WORD_SIZE == 2
#include "mpx88.s"
#else
#include "mpx386.s"
#endif

Mpx.s shows an unusual use of the C preprocessor #include statement. Customarily the #include
preprocessor directive is used to include header files, but it can also be used to select an alternate section of
source code. Using #if statements to do this would require putting all the code in both of the large files
mpx88.s and mpx386.s into a single file. Not only would this be unwieldy; it would also be wasteful of disk
space, since in a particular installation it is likely that one or the other of these two files will not be used at all
and can be archived or deleted. In the following discussion we will use the 32-bit mpx386.s.

Since this is almost our first look at executable code, let us start with a few words about how we will do this
throughout the book. The multiple source files used in compiling a large C program can be hard to follow. In
general, we will keep discussions confined to a single file at a time. The order of inclusion of the files in
Appendix B is the order in which we discuss them in the text. We will start with the entry point for each part
of the MINIX 3 system, and we will follow the main line of execution. When a call to a supporting function is
encountered, we will say a few words about the purpose of the call, but normally we will not go into a detailed
description of the internals of the function at that point, leaving that until we arrive at the definition of the
called function. Important subordinate functions are usually defined in the same file in which they are called,
following the higher-level calling functions, but small or general-purpose functions are sometimes collected in
separate files. We do not attempt to discuss the internals of every function, and files that contain such
functions may not be listed in Appendix B.

To facilitate portability to other platforms, separate files are frequently used for machine-dependent and
machine-independent code. To make code easier to understand and reduce the overall size of the listings, most
conditional code for platforms other than Intel 32-bit systems has been stripped from the printed files in
Appendix B. Complete versions of all files are in the source directories on the CD-ROM and are also
available on the MINIX 3 Web site.

[Page 162]

31

31

A substantial amount of effort has been made to make the code readable by humans. But a large program has
many branches, and sometimes understanding a main function requires reading the functions it calls, so
having a few slips of paper to use as bookmarks and deviating from our order of discussion to look at things in
a different order may be helpful at times.

Having laid out our intended way of organizing the discussion of the code, we start by an exception. Startup
of MINIX 3 involves several transfers of control between the assembly language routines in mpx386.s and C
language routines in the files start.c and main.c. We will describe these routines in the order that they are
executed, even though that involves jumping from one file to another.

Once the bootstrap process has loaded the operating system into memory, control is transferred to the label
MINIX (in mpx386.s, line 6420). The first instruction is a jump over a few bytes of data; this includes the
boot monitor flags (line 6423) mentioned earlier. At this point the flags have already served their purpose;
they were read by the monitor when it loaded the kernel into memory. They are located here because it is an
easily specified address. They are used by the boot monitor to identify various characteristics of the kernel,
most importantly, whether it is a 16-bit or 32-bit system. The boot monitor always starts in 16-bit mode, but
switches the CPU to 32-bit mode if necessary. This happens before control passes to the label MINIX.

Understanding the state of the stack at this point will help make sense of the following code. The monitor
passes several parameters to MINIX 3, by putting them on the stack. First the monitor pushes the address of
the variable aout, which holds the address of an array of the header information of the component programs of
the boot image. Next it pushes the size and then the address of the boot parameters. These are all 32-bit
quantities. Next come the monitor's code segment address and the location to return to within the monitor
when MINIX 3 terminates. These are both 16-bit quantities, since the monitor operates in 16-bit protected
mode. The first few instructions in mpx386.s convert the 16-bit stack pointer used by the monitor into a 32-bit
value for use in protected mode. Then the instruction

mov ebp, esp

(line 6436) copies the stack pointer value to the ebp register, so it can be used with offsets to retrieve from
the stack the values placed there by the monitor, as is done at lines 6464 to 6467. Note that because the stack
grows downward with Intel processors, 8(ebp) refers to a value pushed subsequent to pushing the value
located at 12(ebp).

The assembly language code must do a substantial amount of work, setting up a stack frame to provide the
proper environment for code compiled by the C compiler, copying tables used by the processor to define
memory segments, and setting up various processor registers. As soon as this work is complete, the
initialization process continues by calling (at line 6481) the C function cstart (in start.c, which we will
consider next). Note that it is referred to as _cstart in the assembly language code. This is because all
functions compiled by the C compiler have an underscore prepended to their names in the symbol tables, and
the linker looks for such names when separately compiled modules are linked. Since the assembler does not
add underscores, the writer of an assembly language program must explicitly add one in order for the linker to
be able to find a corresponding name in the object file compiled by the C compiler.

[Page 163]

Cstart calls another routine to initialize the Global Descriptor Table, the central data structure used by Intel
32-bit processors to oversee memory protection, and the Interrupt Descriptor Table, used to select the code to
be executed for each possible interrupt type. Upon returning from cstart the lgdt and lidt instructions
(lines 6487 and 6488) make these tables effective by loading the dedicated registers by which they are
addressed. The instruction

32

32

jmpf CS_SELECTOR:csinit

looks at first glance like a no-operation, since it transfers control to exactly where control would be if there
were a series of nop instructions in its place. But this is an important part of the initialization process. This
jump forces use of the structures just initialized. After some more manipulation of the processor registers,
MINIX terminates with a jump (not a call) at line 6503 to the kernel's main entry point (in main.c). At this
point the initialization code in mpx386.s is complete. The rest of the file contains code to start or restart a task
or process, interrupt handlers, and other support routines that had to be written in assembly language for
efficiency. We will return to these in the next section.

We will now look at the top-level C initialization functions. The general strategy is to do as much as possible
using high-level C code. As we have seen, there are already two versions of the mpx code. One chunk of C
code can eliminate two chunks of assembler code. Almost the first thing done by cstart (in start.c, line 6920) is
to set up the CPU's protection mechanisms and the interrupt tables, by calling prot_init. Then it copies the
boot parameters to the kernel's memory, and it scans them, using the function get_value (line 6997) to search
for parameter names and return corresponding value strings. This process determines the type of video
display, processor type, bus type, and, if in 16-bit mode, the processor operating mode (real or protected). All
this information is stored in global variables, for access when needed by any part of the kernel code.

Main (in main.c, line 7130), completes initialization and then starts normal execution of the system. It
configures the interrupt control hardware by calling intr_init. This is done here because it cannot be done until
the machine type is known. (Because intr_init is very dependent upon the hardware the procedure is in a
separate file which we will describe later.) The parameter (1) in the call tells intr_init that it is initializing for
MINIX 3. With a parameter (0) it can be called to reinitialize the hardware to the original state when MINIX 3
terminates and returns control to the boot monitor. Intr_init ensures that any interrupts that occur before
initialization is complete have no effect. How this is done will be described later.

[Page 164]

The largest part of main's code is devoted to setup of the process table and the privilege table, so that when the
first tasks and processes are scheduled, their memory maps, registers, and privilege information will be set
correctly. All slots in the process table are marked as free and the pproc_addr array that speeds access to the
process table is initialized by the loop on lines 7150 to 7154. The loop on lines 7155 to 7159 clears the
privilege table and the ppriv_addr array similarly to the process table and its access array. For both the process
and privilege tables, putting a specific value in one field is adequate to mark the slot as not in use. But for
each table every slot, whether in use or not, needs to be initialized with an index number.

An aside on a minor characteristic of the C language: the code on line 7153

(pproc_addr + NR_TASKS)[i] = rp;

could just as well have been written as

pproc_addr[i + NR_TASKS] = rp;

In the C language a [i] is just another way of writing *(a+i). So it does not make much difference if you add a
constant to a or to i. Some C compilers generate slightly better code if you add a constant to the array instead
of the index. Whether it really makes a difference here, we cannot say.

33

33

Now we come to the long loop on lines 7172 to 7242, which initializes the process table with the necessary
information to run all of the processes in the boot image. (Note that there is another outdated comment on line
7161 which mentions only tasks and servers.) All of these processes must be present at startup time and none
of them will terminate during normal operation. At the start of the loop, ip is assigned the address of an entry
in the image table created in table.c (line 7173). Since ip is a pointer to a structure, the elements of the
structure can be accessed using notation like ip>proc_nr, as is done on line 7174. This notation is used
extensively in the MINIX 3 source code. In a similar way, rp is a pointer to a slot of the process table, and
priv(rp) points to a slot of the privilege table. Much of the initialization of the process and privilege tables in
the long loop consists of reading a value from the image table and storing it in the process table or the
privilege table.

On line 7185 a test is made for processes that are part of the kernel, and if this is true the special
STACK_GUARD pattern is stored in the base of the task's stack area. This can be checked later on to be sure
the stack has not overflowed. Then the initial stack pointer for each task is set up. Each task needs its own
private stack pointer. Since the stack grows toward lower addresses in memory, the initial stack pointer is
calculated by adding the size of the task's stack to the current base address (lines 7190 and 7191). There is one
exception: the KERNEL process (also identified as HARDWARE in some places) is never considered ready,
never runs as an ordinary process, and thus has no need of a stack pointer.

[Page 165]

The binaries of boot image components are compiled like any other MINIX 3 programs, and the compiler
creates a header, as defined in include/a.out.h, at the beginning of each of the files. The boot loader copies
each of these headers into its own memory space before MINIX 3 starts, and when the monitor transfers
control to the MINIX: entry point in mpx386.s the physical address of the header area is passed to the
assembly code in the stack, as we have seen. At line 7202, one of these headers is copied to a local exec
structure, ehdr, using hdrindex as the index into the array of headers. Then the data and text segment
addresses are converted to clicks and entered into the memory map for this process (lines 7205 to 7214).

Before continuing, we should mention a few points. First, for kernel processes hdrindex is always assigned a
value of zero at line 7178. These processes are all compiled into the same file as the kernel, and the
information about their stack requirements is in the image table. Since a task compiled into the kernel can call
code and access data located anywhere in the kernel's space, the size of an individual task is not meaningful.
Thus the same element of the array at aout is accessed for the kernel and for each task, and the size fields for a
task is filled with the sizes for the kernel itself. The tasks get their stack information from the image table,
initialized during compilation of table.c. After all kernel processes have been processed, hdrindex is
incremented on each pass through the loop (line 7196), so all the user-space system processes get the proper
data from their own headers.

Another point to mention here is that functions that copy data are not necessarily consistent in the order in
which the source and destination are specified. In reading this loop, beware of potential confusion. The
arguments to strncpy, a function from the standard C library, are ordered such that the destination comes first:
strncpy(to, from, count). This is analogous to an assignment operation, in which the left hand side
specifies the variable being assigned to and the right hand side is the expression specifying the value to be
assigned. This function is used at line 7179 to copy a process name into each process table slot for debugging
and other purposes. In contrast, the phys_copy function uses an opposite convention, phys_copy(from,
to, quantity). Phys_copy is used at line 7202 to copy program headers of user-space processes.

Continuing our discussion of the initialization of the process table, at lines 7220 and 7221 the initial value of
the program counter and the processor status word are set. The processor status word for the tasks is different
from that for device drivers and servers, because tasks have a higher privilege level that allows them to access
I/O ports. Following this, if the process is a user-space one, its stack pointer is initialized.

34

34

One entry in the process table does not need to be (and cannot be) scheduled. The HARDWARE process
exists only for bookkeeping purposesit is credited with the time used while servicing an interrupt. All other
processes are put on the appropriate queues by the code in lines 7234 and 7235. The function called
lock_enqueue disables interrupts before modifying the queues and then reenables them when the queue has
been modified. This is not required at this point when nothing is running yet, but it is the standard method,
and there is no point in creating extra code to be used just once.

[Page 166]

The last step in initializing each slot in the process table is to call the function alloc_segments at line 7241.
This machine-dependent routine sets into the proper fields the locations, sizes, and permission levels for the
memory segments used by each process. For older Intel processors that do not support protected mode, it
defines only the segment locations. It would have to be rewritten to handle a processor type with a different
method of allocating memory.

Once the process table has been initialized for all the tasks, the servers, and init, the system is almost ready to
roll. The variable bill_ptr tells which process gets billed for processor time; it needs to have an initial value set
at line 7250, and IDLE is clearly an appropriate choice. Now the kernel is ready to begin its normal work of
controlling and scheduling the execution of processes, as illustrated in Fig. 2-2.

Not all of the other parts of the system are ready for normal operation yet, but all of these other parts run as
independent processes and have been marked ready and queued to run. They will initialize themselves when
they run. All that is left is for the kernel to call announce to announce it is ready and then to call restart (lines
7251 and 7252). In many C programs main is a loop, but in the MINIX 3 kernel its job is done once the
initialization is complete. The call to restart on line 7252 starts the first queued process. Control never returns
to main.

_Restart is an assembly language routine in mpx386.s. In fact, _restart is not a complete function; it is an
intermediate entry point in a larger procedure. We will discuss it in detail in the next section; for now we will
just say that _restart causes a context switch, so the process pointed to by proc_ptr will run. When _restart has
executed for the first time we can say that MINIX 3 is runningit is executing a process. _Restart is executed
again and again as tasks, servers, and user processes are given their opportunities to run and then are
suspended, either to wait for input or to give other processes their turns.

Of course, the first time _restart is executed, initialization is only complete for the kernel. Recall that there are
three parts to the MINIX 3 process table. You might ask how can any processes run when major parts of the
process table have not been set up yet. The full answer to this will be seen in later chapters. The short answer
is that the instruction pointers of all processes in the boot image initially point to initialization code for each
process, and all will block fairly soon. Eventually, the process manager and the file system will get to run their
initialization code, and their parts of the process table will be completed. Eventually init will fork off a getty
process for each terminal. These processes will block until input is typed at some terminal, at which point the
first user can log in.

[Page 167]

We have now traced the startup of MINIX 3 through three files, two written in C and one in assembly
language. The assembly language file, mpx386.s, contains additional code used in handling interrupts, which
we will look at in the next section. However, before we go on let us wrap up with a brief description of the
remaining routines in the two C files. The remaining function in start.c is get_value (line 6997). It is used to
find entries in the kernel environment, which is a copy of the boot parameters. It is a simplified version of a
standard library function which is rewritten here in order to keep the kernel simple.

35

35

There are three additional procedures in main.c. Announce displays a copyright notice and tells whether
MINIX 3 is running in real mode or 16-bit or 32-bit protected mode, like this:

MINIX 3.1 Copyright 2006 Vrije Universiteit, Amsterdam, The Netherlands
Executing in 32-bit protected mode

When you see this message you know initialization of the kernel is complete. Prepare_shutdown (line 7272)
signals all system processes with a SIGKSTOP signal (system processes cannot be signaled in the same way
as user processes). Then it sets a timer to allow all the system process time to clean up before it calls the final
procedure here, shutdown. Shutdown will normally return control to the MINIX 3 boot monitor. To do so the
interrupt controllers are restored to the BIOS settings by the intr_init(0) call on line 7338.

2.6.8. Interrupt Handling in MINIX

Details of interrupt hardware are system dependent, but any system must have elements functionally
equivalent to those to be described for systems with 32-bit Intel CPUs. Interrupts generated by hardware
devices are electrical signals and are handled in the first place by an interrupt controller, an integrated circuit
that can sense a number of such signals and for each one generate a unique data pattern on the processor's data
bus. This is necessary because the processor itself has only one input for sensing all these devices, and thus
cannot differentiate which device needs service. PCs using Intel 32-bit processors are normally equipped with
two such controller chips. Each can handle eight inputs, but one is a slave which feeds its output to one of the
inputs of the master, so fifteen distinct external devices can be sensed by the combination, as shown in Fig.
2-39. Some of the fifteen inputs are dedicated; the clock input, IRQ 0, for instance, does not have a connection
to any socket into which a new adapter can be plugged. Others are connected to sockets and can be used for
whatever device is plugged in.

Figure 2-39. Interrupt processing hardware on a 32-bit Intel PC. (This item is displayed on page 168 in the print
version)

[View full size image]

In the figure, interrupt signals arrive on the various IRQ n lines shown at the right. The connection to the
CPU's INT pin tells the processor that an interrupt has occurred. The INTA (interrupt acknowledge) signal

36

36

from the CPU causes the controller responsible for the interrupt to put data on the system data bus telling the
processor which service routine to execute. The interrupt controller chips are programmed during system
initialization, when main calls intr_init. The programming determines the output sent to the CPU for a signal
received on each of the input lines, as well as various other parameters of the controller's operation. The data
put on the bus is an 8-bit number, used to index into a table of up to 256 elements. The MINIX 3 table has 56
elements. Of these, 35 are actually used; the others are reserved for use with future Intel processors or for
future enhancements to MINIX 3. On 32-bit Intel processors this table contains interrupt gate descriptors,
each of which is an 8-byte structure with several fields.

[Page 168]

Several modes of response to interrupts are possible; in the one used by MINIX 3, the fields of most concern
to us in each of the interrupt gate descriptors point to the service routine's executable code segment and the
starting address within it. The CPU executes the code pointed to by the selected descriptor. The result is
exactly the same as execution of an

int <nnn>

assembly language instruction. The only difference is that in the case of a hardware interrupt the <nnn>
originates from a register in the interrupt controller chip, rather than from an instruction in program memory.

The task-switching mechanism of a 32-bit Intel processor that is called into play in response to an interrupt is
complex, and changing the program counter to execute another function is only a part of it. When the CPU
receives an interrupt while running a process it sets up a new stack for use during the interrupt service. The
location of this stack is determined by an entry in the Task State Segment (TSS). One such structure exists for
the entire system, initialized by cstart's call to prot_init, and modified as each process is started. The effect is
that the new stack created by an interrupt always starts at the end of the stackframe_s structure within the
process table entry of the interrupted process. The CPU automatically pushes several key registers onto this
new stack, including those necessary to reinstate the interrupted process' own stack and restore its program
counter. When the interrupt handler code starts running, it uses this area in the process table as its stack, and
much of the information needed to return to the interrupted process will have already been stored. The
interrupt handler pushes the contents of additional registers, filling the stackframe, and then switches to a
stack provided by the kernel while it does whatever must be done to service the interrupt.

[Page 169]

Termination of an interrupt service routine is done by switching the stack from the kernel stack back to a
stackframe in the process table (but not necessarily the same one that was created by the last interrupt),
explicitly popping the additional registers, and executing an iretd (return from interrupt) instruction.
Iretd restores the state that existed before an interrupt, restoring the registers that were pushed by the
hardware and switching back to a stack that was in use before an interrupt. Thus an interrupt stops a process,
and completion of the interrupt service restarts a process, possibly a different one from the one that was most
recently stopped. Unlike the simpler interrupt mechanisms that are the usual subject of assembly language
programming texts, nothing is stored on the interrupted process' working stack when a user process is
interrupted. Furthermore, because the stack is created anew in a known location (determined by the TSS) after
an interrupt, control of multiple processes is simplified. To start a different process all that is necessary is to
point the stack pointer to the stackframe of another process, pop the registers that were explicitly pushed, and
execute an iretd instruction.

The CPU disables all interrupts when it receives an interrupt. This guarantees that nothing can occur to cause

37

37

the stackframe within a process table entry to overflow. This is automatic, but assembly-level instructions
exist to disable and enable interrupts, as well. Interrupts remain disabled while the kernel stack, located
outside the process table, is in use. A mechanism exists to allow an exception handler (a response to an error
detected by the CPU) to run when the kernel stack is in use. An exception is similar to an interrupt and
exceptions cannot be disabled. Thus, for the sake of exceptions there must be a way to deal with what are
essentially nested interrupts. In this case a new stack is not created. Instead, the CPU pushes the essential
registers needed for resumption of the interrupted code onto the existing stack. An exception is not supposed
to occur while the kernel is running, however, and will result in a panic.

When an iretd is encountered while executing kernel code, a the return mechanism is simpler than the one
used when a user process is interrupted. The processor can determine how to handle the iretd by examining
the code segment selector that is popped from the stack as part of the iretd's action.

[Page 170]

The privilege levels mentioned earlier control the different responses to interrupts received while a process is
running and while kernel code (including interrupt service routines) is executing. The simpler mechanism is
used when the privilege level of the interrupted code is the same as the privilege level of the code to be
executed in response to the interrupt. The usual case, however, is that the interrupted code is less privileged
than the interrupt service code, and in this case the more elaborate mechanism, using the TSS and a new stack,
is employed. The privilege level of a code segment is recorded in the code segment selector, and as this is one
of the items stacked during an interrupt, it can be examined upon return from the interrupt to determine what
the iretd instruction must do.

Another service is provided by the hardware when a new stack is created to use while servicing an interrupt.
The hardware checks to make sure the new stack is big enough for at least the minimum quantity of
information that must be placed on it. This protects the more privileged kernel code from being accidentally
(or maliciously) crashed by a user process making a system call with an inadequate stack. These mechanisms
are built into the processor specifically for use in the implementation of operating systems that support
multiple processes.

This behavior may be confusing if you are unfamiliar with the internal working of 32-bit Intel CPUs.
Ordinarily we try to avoid describing such details, but understanding what happens when an interrupt occurs
and when an iretd instruction is executed is essential to understanding how the kernel controls the
transitions to and from the "running" state of Fig. 2-2. The fact that the hardware handles much of the work
makes life much easier for the programmer, and presumably makes the resulting system more efficient. All
this help from the hardware does, however, make it hard to understand what is happening just by reading the
software.

Having now described the interrupt mechanism, we will return to mpx386.s and look at the tiny part of the
MINIX 3 kernel that actually sees hardware interrupts. An entry point exists for each interrupt. The source
code at each entry point, _hwint00 to _hwint07, (lines 6531 to 6560) looks like a call to hwint_master (line
6515), and the entry points _hwint08 to _hwint15 (lines 6583 to 6612) look like calls to hwint_slave (line
6566). Each entry point appears to pass a parameter in the call, indicating which device needs service. In fact,
these are really not calls, but macros, and eight separate copies of the code defined by the macro definition of
hwint_master are assembled, with only the irq parameter different. Similarly, eight copies of the hwint_slave
macro are assembled. This may seem extravagant, but assembled code is very compact. The object code for
each expanded macro occupies fewer than 40 bytes. In servicing an interrupt, speed is important, and doing it
this way eliminates the overhead of executing code to load a parameter, call a subroutine, and retrieve the
parameter.

We will continue the discussion of hwint_master as if it really were a single function, rather than a macro that
is expanded in eight different places. Recall that before hwint_master begins to execute, the CPU has created

38

38

a new stack in the stackframe_s of the interrupted process, within its process table slot. Several key registers
have already been saved there, and all interrupts are disabled. The first action of hwint_master is to call save
(line 6516). This subroutine pushes all the other registers necessary to restart the interrupted process. Save
could have been written inline as part of the macro to increase speed, but this would have more than doubled
the size of the macro, and in any case save is needed for calls by other functions. As we shall see, save plays
tricks with the stack. Upon returning to hwint_master, the kernel stack, not a stackframe in the process table,
is in use.

[Page 171]

Two tables declared in glo.h are now used. _Irq_handlers contains the hook information, including addresses
of handler routines. The number of the interrupt being serviced is converted to an address within
_irq_handlers. This address is then pushed onto the stack as the argument to _intr_handle, and _intr_handle is
called, We will look at the code of _intr_handle later. For the moment, we will just say that not only does it
call the service routine for the interrupt that was called, it sets or resets a flag in the _irq_actids array to
indicate whether this attempt to service the interrupt succeeded, and it gives other entries on the queue another
chance to run and be removed from the list. Depending upon exactly what was required of the handler, the
IRQ may or may not be available to receive another interrupt upon the return from the call to _intr_handle.
This is determined by checking the corresponding entry in _irq_actids.

A nonzero value in _irq_actids shows that interrupt service for this IRQ is not complete. If so, the interrupt
controller is manipulated to prevent it from responding to another interrupt from the same IRQ line. (lines
6722 to 6724). This operation masks the ability of the controller chip to respond to a particular input; the
CPU's ability to respond to all interrupts is inhibited internally when it first receives the interrupt signal and
has not yet been restored at this point.

A few words about the assembly language code used may be helpful to readers unfamiliar with assembly
language programming. The instruction

jz 0f

on line 6521 does not specify a number of bytes to jump over. The 0f is not a hexadecimal number, nor is it a
normal label. Ordinary label names are not permitted to begin with numeric characters. This is the way the
MINIX 3 assembler specifies a local label; the 0f means a jump forward to the next numeric label 0, on line
6525. The byte written on line 6526 allows the interrupt controller to resume normal operation, possibly with
the line for the current interrupt disabled.

An interesting and possibly confusing point is that the 0: label on line 6525 occurs elsewhere in the same file,
on line 6576 in hwint_slave. The situation is even more complicated than it looks at first glance since these
labels are within macros and the macros are expanded before the assembler sees this code. Thus there are
actually sixteen 0: labels in the code seen by the assembler. The possible proliferation of labels declared
within macros is the reason why the assembly language provides local labels; when resolving a local label, the
assembler uses the nearest one that matches in the specified direction, and additional occurrences of a local
label are ignored.

[Page 172]

_Intr_handle is hardware dependent, and details of its code will be discussed when we get to the file i8259.c.
However, a few word about how it functions are in order now. _Intr_handle scans a linked list of structures
that hold, among other things, addresses of functions to be called to handle an interrupt for a device, and the

39

39

process numbers of the device drivers. It is a linked list because a single IRQ line may be shared with several
devices. The handler for each device is supposed to test whether its device actually needs service. Of course,
this step is not necessary for an IRQ such as the clock interrupt, IRQ 0, which is hard wired to the chip that
generates clock signals with no possibility of any other device triggering this IRQ.

The handler code is intended to be written so it can return quickly. If there is no work to be done or the
interrupt service is completed immediately, the handler returns TRUE. A handler may perform an operation
like reading data from an input device and transferring the data to a buffer where it can be accessed when the
corresponding driver has its next chance to run. The handler may then cause a message to be sent to its device
driver, which in turn causes the device driver to be scheduled to run as a normal process. If the work is not
complete, the handler returns FALSE. An element of the _irq_act_ids array is a bitmap that records the results
for all the handlers on the list in such a way that the result will be zero if and only if every one of the handlers
returned TRUE. If that is not the case, the code on lines 6522 to 6524 disables the IRQ before the interrupt
controller as a whole is reenabled on line 6536.

This mechanism ensures that none of the handlers on the chain belonging to an IRQ will be activated until all
of the device drivers to which these handlers belong have completed their work. Obviously, there needs to be
another way to reenable an IRQ. That is provided in a function enable_irq which we will see later. Suffice it to
say, each device driver must be sure that enable_irq is called when its work is done. It also is obvious that
enable_irq first should reset its own bit in the element of _irq_act_ids that corresponds to the IRQ of the
driver, and then should test whether all bits have been reset. Only then should the IRQ be reenabled on the
interrupt controller chip.

What we have just described applies in its simplest form only to the clock driver, because the clock is the only
interrupt-driven device that is compiled into the kernel binary. The address of an interrupt handler in another
process is not meaningful in the context of the kernel, and the enable_irq function in the kernel cannot be
called by a separate process in its own memory space. For user-space device drivers, which means all device
drivers that respond to hardware-initiated interrupts except for the clock driver, the address of a common
handler, generic_handler, is stored in the linked list of hooks. The source code for this function is in the
system task files, but since the system task is compiled together with the kernel and since this code is
executed in response to an interrupt it cannot really be considered part of the system task. The other
information in each element of the list of hooks includes the process number of the associated device driver.
When generic_handler is called it sends a message to the correct device driver which causes the specific
handler functions of the driver to run. The system task supports the other end of the chain of events described
above as well. When a user-space device driver completes its work it makes a sys_irqctl kernel call,
which causes the system task to call enable_irq on behalf of that driver to prepare for the next interrupt.

[Page 173]

Returning our attention to hwint_master, note that it terminates with a ret instruction (line 6527). It is not
obvious that something tricky happens here. If a process has been interrupted, the stack in use at this point is
the kernel stack, and not the stack within a process table that was set up by the hardware before hwint_master
was started. In this case, manipulation of the stack by save will have left the address of _restart on the kernel
stack. This results in a task, driver, server, or user process once again executing. It may not be, and in fact
very likely is not, the same process as was executing when the interrupt occurred. This depends upon whether
the processing of the message created by the device-specific interrupt service routine caused a change in the
process scheduling queues. In the case of a hardware interrupt this will almost always be the case. Interrupt
handlers usually result in messages to device drivers, and device drivers generally are queued on higher
priority queues than user processes. This, then, is the heart of the mechanism which creates the illusion of
multiple processes executing simultaneously.

To be complete, let us mention that if an interrupt could occur while kernel code were executing, the kernel
stack would already be in use, and save would leave the address of restart1 on the kernel stack. In this case,

40

40

whatever the kernel was doing previously would continue after the ret at the end of hwint_master. This is a
description of handling of nested interrupts, and these are not allowed to occur in MINIX 3 interrupts are not
enabled while kernel code is running. However, as mentioned previously, the mechanism is necessary in order
to handle exceptions. When all the kernel routines involved in responding to an exception are complete_restart
will finally execute. In response to an exception while executing kernel code it will almost certainly be true
that a process different from the one that was interrupted last will be put into execution. The response to an
exception in the kernel is a panic, and what happens will be an attempt to shut down the system with as little
damage as possible.

Hwint_slave (line 6566) is similar to hwint_master, except that it must reenable both the master and slave
controllers, since both of them are disabled by receipt of an interrupt by the slave.

Now let us move on to look at save (line 6622), which we have already mentioned. Its name describes one of
its functions, which is to save the context of the interrupted process on the stack provided by the CPU, which
is a stackframe within the process table. Save uses the variable _k_reenter to count and determine the level of
nesting of interrupts. If a process was executing when the current interrupt occurred, the

[Page 174]

mov esp, k_stktop

instruction on line 6635 switches to the kernel stack, and the following instruction pushes the address of
_restart. If an interrupt could occur while the kernel stack were already in use the address of restart1 would be
pushed instead (line 6642). Of course, an interrupt is not allowed here, but the mechanism is here to handle
exceptions. In either case, with a possibly different stack in use from the one that was in effect upon entry, and
with the return address in the routine that called it buried beneath the registers that have just been pushed, an
ordinary return instruction is not adequate for returning to the caller. The

jmp RETADR-P_STACKBASE(eax)

instructions that terminate the two exit points of save, at line 6638 and line 6643 use the address that was
pushed when save was called.

Reentrancy in the kernel causes many problems, and eliminating it resulted in simplification of code in several
places. In MINIX 3 the _k_reenter variable still has a purposealthough ordinary interrupts cannot occur while
kernel code is executing exceptions are still possible. For now, the thing to keep in mind is that the jump on
line 6634 will never occur in normal operation. It is, however, necessary for dealing with exceptions.

As an aside, we must admit that the elimination of reentrancy is a case where programming got ahead of
documentation in the development of MINIX 3. In some ways documentation is harder than programmingthe
compiler or the program will eventually reveal errors in a program. There is no such mechanism to correct
comments in source code. There is a rather long comment at the start of mpx386.s which is, unfortunately,
incorrect. The part of the comment on lines 6310 to 6315 should say that a kernel reentry can occur only when
an exception is detected.

The next procedure in mpx386.s is _s_call, which begins on line 6649. Before looking at its internal details,
look at how it ends. It does not end with a ret or jmp instruction. In fact, execution continues at _restart
(line 6681). _S_call is the system call counterpart of the interrupt-handling mechanism. Control arrives at
_s_call following a software interrupt, that is, execution of an int <nnn> instruction. Software interrupts
are treated like hardware interrupts, except of course the index into the Interrupt Descriptor Table is encoded

41

41

into the nnn part of an int <nnn> instruction, rather than being supplied by an interrupt controller chip.
Thus, when _s_call is entered, the CPU has already switched to a stack inside the process table (supplied by
the Task State Segment), and several registers have already been pushed onto this stack. By falling through to
_restart, the call to _s_call ultimately terminates with an iretd instruction, and, just as with a hardware
interrupt, this instruction will start whatever process is pointed to by proc_ptr at that point. Figure 2-40
compares the handling of a hardware interrupt and a system call using the software interrupt mechanism.

[Page 175]

Figure 2-40. (a) How a hardware interrupt is processed. (b) How a system call is made.

[View full size image]

Let us now look at some details of _s_call. The alternate label, _p_s_call, is a vestige of the 16-bit version of
MINIX 3, which has separate routines for protected mode and real mode operation. In the 32-bit version all
calls to either label end up here. A programmer invoking a MINIX 3 system call writes a function call in C
that looks like any other function call, whether to a locally defined function or to a routine in the C library.
The library code supporting a system call sets up a message, loads the address of the message and the process
id of the destination into CPU registers, and then invokes an int SYS386_VECTOR instruction. As
described above, the result is that control passes to the start of _s_call, and several registers have already been
pushed onto a stack inside the process table. All interrupts are disabled, too, as with a hardware interrupt.

The first part of the _s_call code resembles an inline expansion of save and saves the additional registers that
must be preserved. Just as in save, a

mov esp, k_stktop

instruction then switches to the kernel stack. (The similarity of a software interrupt to a hardware interrupt
extends to both disabling all interrupts). Following this comes a call to _sys_call (line 6672), which we will
discuss in the next section. For now we just say that it causes a message to be delivered, and that this in turn
causes the scheduler to run. Thus, when _sys_call returns, it is probable that proc_ptr will be pointing to a
different process from the one that initiated the system call. Then execution falls through to restart.

42

42

[Page 176]

We have seen that _restart (line 6681) is reached in several ways:

By a call from main when the system starts.1.
By a jump from hwint_master or hwint_slave after a hardware interrupt.2.
By falling through from _s_call after a system call.3.

Fig. 2-41 is a simplified summary of how control passes back and forth between processes and the kernel
via_restart.

Figure 2-41. Restart is the common point reached after system startup, interrupts, or system calls. The most
deserving process (which may be and often is a different process from the last one interrupted) runs next. Not

shown in this diagram are interrupts that occur while the kernel itself is running.

In every case interrupts are disabled when _restart is reached. By line 6690 the next process to run has been
definitively chosen, and with interrupts disabled it cannot be changed. The process table was carefully
constructed so it begins with a stack frame, and the instruction on this line,

mov esp, (_proc_ptr)

points the CPU's stack pointer register at the stack frame. The

lldt P_LDT_SEL(esp)

instruction then loads the processor's local descriptor table register from the stack frame. This prepares the
processor to use the memory segments belonging to the next process to be run. The following instruction sets
the address in the next process' process table entry to that where the stack for the next interrupt will be set up,

43

43

and the following instruction stores this address into the TSS.

[Page 177]

The first part of _restart would not be necessary if an interrupt occured when kernel code (including interrupt
service code) were executing, since the kernel stack would be in use and termination of the interrupt service
would allow the kernel code to continue. But, in fact, the kernel is not reentrant in MINIX 3, and ordinary
interrupts cannot occur this way. However, disabling interrupts does not disable the ability of the processor to
detect exceptions. The label restart1 (line 6694) marks the point where execution resumes if an exception
occurs while executing kernel code (something we hope will never happen). At this point k_reenter is
decremented to record that one level of possibly nested interrupts has been disposed of, and the remaining
instructions restore the processor to the state it was in when the next process executed last. The penultimate
instruction modifies the stack pointer so the return address that was pushed when save was called is ignored.
If the last interrupt occurred when a process was executing, the final instruction, iretd, completes the return
to execution of whatever process is being allowed to run next, restoring its remaining registers, including its
stack segment and stack pointer. If, however, this encounter with the iretd came via restart1, the kernel
stack in use is not a stackframe, but the kernel stack, and this is not a return to an interrupted process, but the
completion of handling an exception that occurred while kernel code was executing. The CPU detects this
when the code segment descriptor is popped from the stack during execution of the iretd, and the complete
action of the iretd in this case is to retain the kernel stack in use.

Now it is time to say something more about exceptions. An exception is caused by various error conditions
internal to the CPU. Exceptions are not always bad. They can be used to stimulate the operating system to
provide a service, such as providing more memory for a process to use, or swapping in a currently
swapped-out memory page, although such services are not implemented in MINIX 3. They also can be caused
by programming errors. Within the kernel an exception is very serious, and grounds to panic. When an
exception occurs in a user program the program may need to be terminated, but the operating system should
be able to continue. Exceptions are handled by the same mechanism as interrupts, using descriptors in the
interrupt descriptor table. These entries in the table point to the sixteen exception handler entry points,
beginning with _divide_error and ending with _copr_error, found near the end of mpx386.s, on lines 6707 to
6769. These all jump to exception (line 6774) or errexception (line 6785) depending upon whether the
condition pushes an error code onto the stack or not. The handling here in the assembly code is similar to what
we have already seen, registers are pushed and the C routine _exception (note the underscore) is called to
handle the event. The consequences of exceptions vary. Some are ignored, some cause panics, and some result
in sending signals to processes. We will examine _exception in a later section.

[Page 178]

One other entry point is handled like an interrupt: _level0_call (line 6714). It is used when code must be run
with privilege level 0, the most privileged level. The entry point is here in mpx386.s with the interrupt and
exception entry points because it too is invoked by execution of an int <nnn> instruction. Like the
exception routines, it calls save, and thus the code that is jumped to eventually will terminate with a ret that
leads to _restart. Its usage will be described in a later section, when we encounter some code that needs
privileges normally not available, even to the kernel.

Finally, some data storage space is reserved at the end of the assembly language file. Two different data
segments are defined here. The

.sect .rom

44

44

declaration at line 6822 ensures that this storage space is allocated at the very beginning of the kernel's data
segment and that it is the start of a read-only section of memory. The compiler puts a magic number here so
boot can verify that the file it loads is a valid kernel image. When compiling the complete system various
string constants will be stored following this. The other data storage area defined at the

.sect .bss

(line 6825) declaration reserves space in the kernel's normal uninitialized variable area for the kernel stack,
and above that some space is reserved for variables used by the exception handlers. Servers and ordinary
processes have stack space reserved when an executable file is linked and depend upon the kernel to properly
set the stack segment descriptor and the stack pointer when they are executed. The kernel has to do this for
itself.

2.6.9. Interprocess Communication in MINIX 3

Processes in MINIX 3 communicate by messages, using the rendezvous principle. When a process does a
send, the lowest layer of the kernel checks to see if the destination is waiting for a message from the sender
(or from ANY sender). If so, the message is copied from the sender's buffer to the receiver's buffer, and both
processes are marked as runnable. If the destination is not waiting for a message from the sender, the sender is
marked as blocked and put onto a queue of processes waiting to send to the receiver.

When a process does a receive, the kernel checks to see if any process is queued trying to send to it. If so,
the message is copied from the blocked sender to the receiver, and both are marked as runnable. If no process
is queued trying to send to it, the receiver blocks until a message arrives.

In MINIX 3, with components of the operating system running as totally separate processes, sometimes the
rendezvous method is not quite good enough. The notify primitive is provided for precisely these
occasions. A notify sends a bare-bones message. The sender is not blocked if the destination is not waiting
for a message. The notify is not lost, however. The next time the destination does a receive pending
notifications are delivered before ordinary messages. Notifications can be used in situations where using
ordinary messages could cause deadlocks. Earlier we pointed out that a situation where process A blocks
sending a message to process B and process B blocks sending a message to process A must be avoided. But if
one of the messages is a nonblocking notification there is no problem.

[Page 179]

In most cases a notification informs the recipient of its origin, and little more. Sometimes that is all that is
needed, but there are two special cases where a notification conveys some additional information. In any case,
the destination process can send a message to the source of the notification to request more information.

The high-level code for interprocess communication is found in proc.c. The kernel's job is to translate either a
hardware interrupt or a software interrupt into a message. The former are generated by hardware and the latter
are the way a request for system services, that is, a system call, is communicated to the kernel. These cases are
similar enough that they could have been handled by a single function, but it was more efficient to create
specialized functions.

One comment and two macro definitions near the beginning of this file deserve mention. For manipulating
lists, pointers to pointers are used extensively, and a comment on lines 7420 to 7436 explains their advantages
and use. Two useful macros are defined. BuildMess (lines 7458 to 7471), although its name implies more
generality, is used only for constructing the messages used by notify. The only function call is to
get_uptime, which reads a variable maintained by the clock task so the notification can include a time-stamp.

45

45

The apparent calls to a function named priv are expansions of another macro, defined in priv.h,

#define priv(rp) ((rp)->p_priv)

The other macro, CopyMess, is a programmer-friendly interface to the assembly language routine cp_mess in
klib386.s.

More should be said about BuildMess. The priv macro is used for two special cases. If the origin of a
notification is HARDWARE, it carries a payload, a copy of the destination process' bitmap of pending
interrupts. If the origin is SYSTEM, the payload is the bitmap of pending signals. Because these bitmaps are
available in the priv table slot of the destination process, they can be accessed at any time. Notifications can
be delivered later if the destination process is not blocked waiting for them at the time they are sent. For
ordinary messages this would require some kind of buffer in which an undelivered message could be stored.
To store a notification all that is required is a bitmap in which each bit corresponds to a process that can send
a notification. When a notification cannot be sent the bit corresponding to the sender is set in the recipient's
bitmap. When a receive is done the bitmap is checked and if a bit is found to have been set the message is
regenerated. The bit tells the origin of the message, and if the origin is HARDWARE or SYSTEM, the
additional content is added. The only other item needed is the timestamp, which is added when the message is
regenerated. For the purposes for which they are used, timestamps do not need to show when a notification
was first attempted, the time of delivery is sufficient.

[Page 180]

The first function in proc.c is sys_call (line 7480). It converts a software interrupt (the int
SYS386_VECTOR instruction by which a system call is initiated) into a message. There are a wide range of
possible sources and destinations, and the call may require either sending or receiving or both sending and
receiving a message. A number of tests must be made. On lines 7480 and 7481 the function code SEND),
RECEIVE, etc.,) and the flags are extracted from the first argument of the call. The first test is to see if the
calling process is allowed to make the call. Iskerneln, used on line 7501, is a macro defined in proc.h (line
5584). The next test is to see that the specified source or destination is a valid process. Then a check is made
that the message pointer points to a valid area of memory. MINIX 3 privileges define which other processes
any given process is allowed to send to, and this is tested next (lines 7537 to 7541). Finally, a test is made to
verify that the destination process is running and has not initiated a shutdown (lines 7543 to 7547). After all
the tests have been passed one of the functions mini_send, mini_receive, or mini_notify is called to do the real
work. If the function was ECHO the CopyMess macro is used, with identical source and destination. ECHO is
meant only for testing, as mentioned earlier.

The errors tested for in sys_call are unlikely, but the tests are easily done, as ultimately they compile into code
to perform comparisons of small integers. At this most basic level of the operating system testing for even the
most unlikely errors is advisable. This code is likely to be executed many times each second during every
second that the computer system on which it runs is active.

The functions mini_send, mini_rec, and mini_notify are the heart of the normal-message passing mechanism
of MINIX 3 and deserve careful study.

Mini_send (line 7591) has three parameters: the caller, the process to be sent to, and a pointer to the buffer
where the message is. After all the tests performed by sys_call, only one more is necessary, which is to detect
a send deadlock. The test on lines 7606 to 7610 verifies that the caller and destination are not trying to send to
each other. The key test in mini_send is on lines 7615 and 7616. Here a check is made to see if the destination
is blocked on a receive, as shown by the RECEIVING bit in the p_rts_flags field of its process table entry.
If it is waiting, then the next question is: "Who is it waiting for?" If it is waiting for the sender, or for ANY,
the CopyMess macro is used to copy the message and the receiver is unblocked by resetting its RECEIVING

46

46

bit. Then enqueue is called to give the receiver an opportunity to run (line 7620).

If, on the other hand, the receiver is not blocked, or is blocked but waiting for a message from someone else,
the code on lines 7623 to 7632 is executed to block and dequeue the sender. All processes wanting to send to a
given destination are strung together on a linked list, with the destination's p_callerq field pointing to the
process table entry of the process at the head of the queue. The example of Fig. 2-42(a) shows what happens
when process 3 is unable to send to process 0. If process 4 is subsequently also unable to send to process 0, we
get the situation of Fig. 2-42(b).

[Page 181]

Figure 2-42. Queueing of processes trying to send to process 0.

Mini_receive (line 7642) is called by sys_call when its function parameter is RECEIVE or BOTH. As we
mentioned earlier, notifications have a higher priority than ordinary messages. However, a notification will
never be the right reply to a send, so the bitmaps are checked to see if there are pending notifications only if
the SENDREC_BUSY flag is not set. If a notification is found it is marked as no longer pending and
delivered (lines 7670 to 7685). Delivery uses both the BuildMess and CopyMess macros defined near the top
of proc.c.

One might have thought that, because a timestamp is part of a notify message, it would convey useful
information, for instance, if the recipient had been unable to do a receive for a while the timestamp would
tell how long it had been undelivered. But the notification message is generated (and timestamped) at the time
it is delivered, not at the time it was sent. There is a purpose behind constructing the notification messages at
the time of delivery, however. The code is unnecessary to save notification messages that cannot be delivered
immediately. All that is necessary is to set a bit to remember that a notification should be generated when
delivery becomes possible. You cannot get more economical storage than that: one bit per pending
notification.

It is also the case that the current time is usually what is needed. For instance, notification is used to deliver a
SYN_ALARM message to the process manager, and if the timestamp were not generated when the message
was delivered the PM would need to ask the kernel for the correct time before checking its timer queue.

Note that only one notification is delivered at a time, mini_send returns on line 7684 after delivery of a
notification. But the caller is not blocked, so it is free to do another receive immediately after getting the
notification. If there are no notifications, the caller queues are checked to see if a message of any other type is
pending (lines 7690 to 7699. If such a message is found it is delivered by the CopyMess macro and the
originator of the message is then unblocked by the call to enqueue on line 7694. The caller is not blocked in

47

47

this case.

[Page 182]

If no notifications or other messages were available, the caller will be blocked by the call to dequeue on line
7708.

Mini_notify (line 7719) is used to effectuate a notification. It is similar to mini_send, and can be discussed
quickly. If the recipient of a message is blocked and waiting to receive, the notification is generated by
BuildMess and delivered. The recipient's RECEIVING flag is turned off and it is then enqueue-ed (lines 7738
to 7743). If the recipient is not waiting a bit is set in its s_notify_pending map, which indicates that a
notification is pending and identifies the sender. The sender then continues its own work, and if another
notification to the same recipient is needed before an earlier one has been received, the bit in the recipient's
bitmap is overwritteneffectively, multiple notifications from the same sender are merged into a single
notification message. This design eliminates the need for buffer management while offering asynchronous
message passing.

When mini_notify is called because of a software interrupt and a subsequent call to sys_call, interrupts will be
disabled at the time. But the clock or system task, or some other task that might be added to MINIX 3 in the
future might need to send a notification at a time when interrupts are not disabled. Lock_notify (line 7758) is a
safe gateway to mini_notify. It checks k_reenter to see if interrupts are already disabled, and if they are, it just
calls mini_notify right away. If interrupts are enabled they are disabled by a call to lock, mini_notify is called,
and then interrupts are reenabled by a call to unlock.

2.6.10. Scheduling in MINIX 3

MINIX 3 uses a multilevel scheduling algorithm. Processes are given initial priorities that are related to the
structure shown in Fig. 2-29, but there are more layers and the priority of a process may change during its
execution. The clock and system tasks in layer 1 of Fig. 2-29 receive the highest priority. The device drivers
of layer 2 get lower priority, but they are not all equal. Server processes in layer 3 get lower priorities than
drivers, but some less than others. User processes start with less priority than any of the system processes, and
initially are all equal, but the nice command can raise or lower the priority of a user process.

The scheduler maintains 16 queues of runnable processes, although not all of them may be used at a particular
moment. Fig. 2-43 shows the queues and the processes that are in place at the instant the kernel completes
initialization and begins to run, that is, at the call to restart at line 7252 in main.c. The array rdy_head has one
entry for each queue, with that entry pointing to the process at the head of the queue. Similarly, rdy_tail is an
array whose entries point to the last process on each queue. Both of these arrays are defined with the
EXTERN macro in proc.h (lines 5595 and 5596). The initial queueing of processes during system startup is
determined by the image table in table.c (lines 6095 to 6109).

[Page 183]

Figure 2-43. The scheduler maintains sixteen queues, one per priority level. Shown here is the initial queuing of
processes as MINIX 3 starts up.

48

48

Scheduling is round robin in each queue. If a running process uses up its quantum it is moved to the tail of its
queue and given a new quantum. However, when a blocked process is awakened, it is put at the head of its
queue if it had any part of its quantum left when it blocked. It is not given a complete new quantum, however;
it gets only what it had left when it blocked. The existence of the array rdy_tail makes adding a process to the
end of a queue efficient. Whenever a running process becomes blocked, or a runnable process is killed by a
signal, that process is removed from the scheduler's queues. Only runnable processes are queued.

Given the queue structures just described, the scheduling algorithm is simple: find the highest priority queue
that is not empty and pick the process at the head of that queue. The IDLE process is always ready, and is in
the lowest priority queue. If all the higher priority queues are empty, IDLE is run.

We saw a number of references to enqueue and dequeue in the last section. Now let us look at them. Enqueue
is called with a pointer to a process table entry as its argument (line 7787). It calls another function, sched,
with pointers to variables that determine which queue the process should be on and whether it is to be added
to the head or the tail of that queue. Now there are three possibilities. These are classic data structures
examples. If the chosen queue is empty, both rdy_head and rdy_tail are made to point to the process being
added, and the link field, p_nextready, gets the special pointer value that indicates nothing follows,
NIL_PROC. If the process is being added to the head of a queue, its p_nextready gets the current value of
rdy_head, and then rdy_head is pointed to the new process. If the process is being added to the tail of a queue,
the p_nextready of the current occupant of the tail is pointed to the new process, as is rdy_tail. The
p_nextready of the newly-ready process then is pointed to NIL_PROC. Finally, pick_proc is called to
determine which process will run next.

[Page 184]

When a process must be made unready dequeue line 7823 is called. A process-must be running in order to
block, so the process to be removed is likely to be at the head of its queue. However, a signal could have been
sent to a process that was not running. So the queue is traversed to find the victim, with a high likelihood it
will be found at the head. When it is found all pointers are adjusted appropriately to take it out of the chain. If

49

49

it was running, pick_proc must also be called.

One other point of interest is found in this function. Because tasks that run in the kernel share a common
hardware-defined stack area, it is a good idea to check the integrity of their stack areas occasionally. At the
beginning of dequeue a test is made to see if the process being removed from the queue is one that operates in
kernel space. If it is, a check is made to see that the distinctive pattern written at the end of its stack area has
not been overwritten (lines 7835 to 7838).

Now we come to sched, which picks which queue to put a newly-ready process-on, and whether to put it on
the head or the tail of that queue. Recorded in the process table for each process are its quantum, the time left
on its quantum, its priority, and the maximum priority it is allowed. On lines 7880 to 7885 a check is made to
see if the entire quantum was used. If not, it will be restarted with whatever it had left from its last turn. If the
quantum was used up, then a check is made to see if the process had two turns in a row, with no other process
having run. This is taken as a sign of a possible infinite, or at least, excessively long, loop, and a penalty of +1
is assigned. However, if the entire quantum was used but other processes have had a chance to run, the penalty
value becomes 1. Of course, this does not help if two or more processes are executing in a loop together. How
to detect that is an open problem.

Next the queue to use is determined. Queue 0 is highest priority; queue 15 is lowest. One could argue it
should be the other way around, but this way is consistent with the traditional "nice" values used by UNIX,
where a positive "nice" means a process runs with lower priority. Kernel processes (the clock and system
tasks) are immune, but all other processes may have their priority reduced, that is, be moved to a
higher-numbered queue, by adding a positive penalty. All processes start with their maximum priority, so a
negative penalty does not change anything until positive penalties have been assigned. There is also a lower
bound on priority, ordinary processes never can be put on the same queue as IDLE.

Now we come to pick_proc (line 7910). This function's major job is to set next_ptr. Any change to the queues
that might affect the choice of which process to run next requires pick_proc to be called again. Whenever the
current process blocks, pick_proc is called to reschedule the CPU. In essence, pick_proc is the scheduler.

[Page 185]

Pick_proc is simple. Each queue is tested. TASK_Q is tested first, and if a process on this queue is ready,
pick_proc sets proc_ptr and returns immediately. Otherwise, the next lower priority queue is tested, all the
way down to IDLE_Q. The pointer bill_ptr is changed to charge the user process for the CPU time it is about
to be given (line 7694). This assures that the last user process to run is charged for work done on its behalf by
the system.

The remaining procedures in proc.c are lock_send, lock_enqueue, and lock_dequeue. These all provide access
to their basic functions using lock and unlock, in the same way we discussed for lock_notify.

In summary, the scheduling algorithm maintains multiple priority queues. The first process on the highest
priority queue is always run next. The clock task monitors the time used by all processes. If a user process
uses up its quantum, it is put at the end of its queue, thus achieving a simple round-robin scheduling among
the competing user processes. Tasks, drivers, and servers are expected to run until they block, and are given
large quanta, but if they run too long they may also be preempted. This is not expected to happen very often,
but it is a mechanism to prevent a high-priority process with a problem from locking up the system. A process
that prevents other processes from running may also be moved to a lower priority queue temporarily.

50

50

2.6.11. Hardware-Dependent Kernel Support

Several functions written in C are nevertheless hardware specific. To facilitate porting MINIX 3 to other
systems these functions are segregated in the files to be discussed in this section, exception.c, i8259.c, and
protect.c, rather than being included in the same files with the higher-level code they support.

Exception.c contains the exception handler, exception (line 8012), which is called (as _exception) by the
assembly language part of the exception handling code in mpx386.s. Exceptions that originate from user
processes are converted to signals. Users are expected to make mistakes in their own programs, but an
exception originating in the operating system indicates something is seriously wrong and causes a panic. The
array ex_data (lines 8022 to 8040) determines the error message to be printed in case of panic, or the signal to
be sent to a user process for each exception. Earlier Intel processors do not generate all the exceptions, and the
third field in each entry indicates the minimum processor model that is capable of generating each one. This
array provides an interesting summary of the evolution of the Intel family of processors upon which MINIX 3
has been implemented. On line 8065 an alternate message is printed if a panic results from an interrupt that
would not be expected from the processor in use.

[Page 186]

Hardware-Dependent Interrupt Support

The three functions in i8259.c are used during system initialization to initialize the Intel 8259 interrupt
controller chips. The macro on line 8119 defines a dummy function (the real one is needed only when MINIX
3 is compiled for a 16-bit Intel platform). Intr_init (line 8124) initializes the controllers. Two steps ensure that
no interrupts will occur before all the initialization is complete. First intr_disable is called at line 8134. This is
a C language call to an assembly language function in the library that executes a single instruction, cli,
which disables the CPU's response to interrupts. Then a sequence of bytes is written to registers on each
interrupt controller, the effect of which is to inhibit response of the controllers to external input. The byte
written at line 8145 is all ones, except for a zero at the bit that controls the cascade input from the slave
controller to the master controller (see Fig. 2-39). A zero enables an input, a one disables. The byte written to
the secondary controller at line 8151 is all ones.

A table stored in the i8259 interrupt controller chip generates an 8-bit index that the CPU uses to find the
correct interrupt gate descriptor for each possible interrupt input (the signals on the right-hand side of Fig.
2-39). This is initialized by the BIOS when the computer starts up, and these values can almost all be left in
place. As drivers that need interrupts start up, changes can be made where necessary. Each driver can then
request that a bit be reset in the interrupt controller chip to enable its own interrupt input. The argument mine
to intr_init is used to determine whether MINIX 3 is starting up or shutting down. This function can be used
both to initialize at startup and to restore the BIOS settings when MINIX 3 shuts down.

After initialization of the hardware is complete, the last step in intr_init is to copy the BIOS interrupt vectors
to the MINIX 3 vector table.

The second function in 8259.c is put_irq_handler (line 8162). At initialization put_irq_handler is called for
each process that must respond to an interrupt. This puts the address of the handler routine into the interrupt
table, irq_handlers, defined as EXTERN in glo.h. With modern computers 15 interrupt lines is not always
enough (because there may be more than 15 I/O devices) so two I/O devices may need to share an interrupt
line. This will not occur with any of the basic devices supported by MINIX 3 as described in this text, but
when network interfaces, sound cards, or more esoteric I/O devices must be supported they may need to share
interrupt lines. To allow for this, the interrupt table is not just a table of addresses.
Irq_handlers[NR_IRQ_VECTORS] is an array of pointers to irq_hook structs, a type defined in kernel/type.h.
These structures contain a field which is a pointer to another structure of the same type, so a linked list can be
built, starting with one of the elements of irq_handlers. Put_irq_handler adds an entry to one of these lists.

51

51

The most important element of such an entry is a pointer to an interrupt handler, the function to be executed
when an interrupt is generated, for example, when requested I/O has completed.

[Page 187]

Some details of put_irq_handler deserve mention. Note the variable id which is set to 1 just before the
beginning of the while loop that scans through the linked list (lines 8176 to 8180). Each time through the
loop id is shifted left 1 bit. The test on line 8181 limits the length of the chain to the size of id, or 32 handlers
for a 32-bit system. In the normal case the scan will result in finding the end of the chain, where a new handler
can be linked. When this is done, id is also stored in the field of the same name in the new item on the chain.
Put_irq_handler also sets a bit in the global variable irq_use, to record that a handler exists for this IRQ.

If you fully understand the MINIX 3 design goal of putting device drivers in user-space, the preceding
discussion of how interrupt handlers are called will have left you slightly confused. The interrupt handler
addresses stored in the hook structures cannot be useful unless they point to functions within the kernel's
address space. The only interrupt-driven device in the kernel's address space is the clock. What about device
drivers that have their own address spaces?

The answer is, the system task handles it. Indeed, that is the answer to most questions regarding
communication between the kernel and processes in user-space. A user space device driver that is to be
interrupt driven makes a sys_irqctl call to the system task when it needs to register as an interrupt
handler. The system task then calls put_irq_handler, but instead of the address of an interrupt handler in the
driver's address space, the address of generic_handler, part of the system task, is stored in the interrupt handler
field. The process number field in the hook structure is used by generic_handler to locate the priv table entry
for the driver, and the bit in the driver's pending interrupts bitmap corresponding to the interrupt is set. Then
generic_handler sends a notification to the driver. The notification is identified as being from HARDWARE,
and the pending interrupts bitmap for the driver is included in the message. Thus, if a driver must respond to
interrupts from more than one source, it can learn which one is responsible for the current notification. In fact,
since the bitmap is sent, one notification provides information on all pending interrupts for the driver. Another
field in the hook structure is a policy field, which determines whether the interrupt is to be reenabled
immediately, or whether it should remain disabled. In the latter case, it will be up to the driver to make a
sys_irqenable kernel call when service of the current interrupt is complete.

One of the goals of MINIX 3 design is to support run-time reconfiguration of I/O devices. The next function,
rm_irq_handler, removes a handler, a necessary step if a device driver is to be removed and possibly replaced
by another. Its action is just the opposite of put_irq_handler.

The last function in this file, intr_handle (line 8221), is called from the hwint_master and hwint_slave macros
we saw in mpx386.s. The element of the array of bitmaps irq_actids which corresponds the interrupt being
serviced is used to keep track of the current status of each handler in a list. For each function in the list,
intr_handle sets the corresponding bit in irq_actids, and calls the handler. If a handler has nothing to do or if it
completes its work immediately, it returns "true" and the corresponding bit in irq_actids is cleared. The entire
bitmap for an interrupt, considered as an integer, is tested near the end of the hwint_master and hwint_slave
macros to determine if that interrupt can be reenabled before another process is restarted.

[Page 188]

Intel Protected Mode Support

Protect.c contains routines related to protected mode operation of Intel processors. The Global Descriptor
Table (GDT), Local Descriptor Tables (LDTs), and the Interrupt Descriptor Table, all located in memory,

52

52

provide protected access to system resources. The GDT and IDT are pointed to by special registers within the
CPU, and GDT entries point to LDTs. The GDT is available to all processes and holds segment descriptors for
memory regions used by the operating system. Normally, there is one LDT for each process, holding segment
descriptors for the memory regions used by the process. Descriptors are 8-byte structures with a number of
components, but the most important parts of a segment descriptor are the fields that describe the base address
and the limit of a memory region. The IDT is also composed of 8-byte descriptors, with the most important
part being the address of the code to be executed when the corresponding interrupt is activated.

Cstart in start.c calls prot_init (line 8368), which sets up the GDT on lines 8421 to 8438. The IBM PC BIOS
requires that it be ordered in a certain way, and all the indices into it are defined in protect.h. Space for an
LDT for each process is allocated in the process table. Each contains two descriptors, for a code segment and
a data segmentrecall we are discussing here segments as defined by the hardware; these are not the same as
the segments managed by the operating system, which considers the hardware-defined data segment to be
further divided into data and stack segments. On lines 8444 to 8450 descriptors for each LDT are built in the
GDT. The functions init_dataseg and init_codeseg build these descriptors. The entries in the LDTs themselves
are initialized when a process' memory map is changed (i.e., when an exec system call is made).

Another processor data structure that needs initialization is the Task State Segment (TSS). The structure is
defined at the start of this file (lines 8325 to 8354) and provides space for storage of processor registers and
other information that must be saved when a task switch is made. MINIX 3 uses only the fields that define
where a new stack is to be built when an interrupt occurs. The call to init_dataseg on line 8460 ensures that it
can be located using the GDT.

To understand how MINIX 3 works at the lowest level, perhaps the most important thing is to understand how
exceptions, hardware interrupts, or int <nnn> instructions lead to the execution of the various pieces of
code that has been written to service them. These events are processed by means of the interrupt gate
descriptor table. The array gate_table (lines 8383 to 8418), is initialized by the compiler with the addresses of
the routines that handle exceptions and hardware interrupts and then is used in the loop at lines 8464 to 8468
to initialize this table, using calls to the int_gate function.

[Page 189]

There are good reasons for the way the data are structured in the descriptors, based on details of the hardware
and the need to maintain compatibility between advanced processors and the 16-bit 286 processor.
Fortunately, we can usually leave these details to Intel's processor designers. For the most part, the C language
allows us to avoid the details. However, in implementing a real operating system the details must be faced at
some point. Figure 2-44 shows the internal structure of one kind of segment descriptor. Note that the base
address, which C programs can refer to as a simple 32-bit unsigned integer, is split into three parts, two of
which are separated by a number of 1-, 2-, and 4-bit quantities. The limit is a 20-bit quantity stored as separate
16-bit and 4-bit chunks. The limit is interpreted as either a number of bytes or a number of 4096-byte pages,
based on the value of the G (granularity) bit. Other descriptors, such as those used to specify how interrupts
are handled, have different, but equally complex structures. We discuss these structures in more detail in
Chap. 4.

Figure 2-44. The format of an Intel segment descriptor.

[View full size image]

53

53

Most of the other functions defined in protect.c are devoted to converting between variables used in C
programs and the rather ugly forms these data take in the machine readable descriptors such as the one in Fig.
2-44. Init_codeseg (line 8477) and init_dataseg (line 8493) are similar in operation and are used to convert the
parameters passed to them into segment descriptors. They each, in turn, call the next function, sdesc (line
8508), to complete the job. This is where the messy details of the structure shown in Fig. 2-44 are dealt with.
Init_codeseg and init_data_seg are not used just at system initialization. They are also called by the system
task whenever a new process is started up, in order to allocate the proper memory segments for the process to
use. Seg2phys (line 8533), called only from start.c, performs an operation which is the inverse of that of
sdesc, extracting the base address of a segment from a segment descriptor. Phys2seg (line 8556), is no longer
needed, the sys_segctl kernel call now handles access to remote memory segments, for instance, memory
in the PC's reserved area between 640K and 1M. Int_gate (line 8571) performs a similar function to
init_codeseg and init_dataseg in building entries for the interrupt descriptor table.

[Page 190]

Now we come to a function in protect.c, enable_iop (line 8589), that can perform a dirty trick. It changes the
privilege level for I/O operations, allowing the current process to execute instructions which read and write
I/O ports. The description of the purpose of the function is more complicated than the function itself, which
just sets two bits in the word in the stack frame entry of the calling process that will be loaded into the CPU
status register when the process is next executed. A function to undo this is not needed, as it will apply only to
the calling process. This function is not currently used and no method is provided for a user space function to
activate it.

The final function in protect.c is alloc_segments (line 8603). It is called by do_newmap. It is also called by the
main routine of the kernel during initialization. This definition is very hardware dependent. It takes the
segment assignments that are recorded in a process table entry and manipulates the registers and descriptors
the Pentium processor uses to support protected segments at the hardware level. Multiple assignments like
those on lines 8629 to 8633 are a feature of the C language.

2.6.12. Utilities and the Kernel Library

Finally, the kernel has a library of support functions written in assembly language that are included by
compiling klib.s and a few utility programs, written in C, in the file misc.c. Let us first look at the assembly
language files. Klib.s (line 8700) is a short file similar to mpx.s, which selects the appropriate
machine-specific version based upon the definition of WORD_SIZE. The code we will discuss is in klib386.s
(line 8800). This contains about two dozen utility routines that are in assembly code, either for efficiency or
because they cannot be written in C at all.

_Monitor (line 8844) makes it possible to return to the boot monitor. From the point of view of the boot
monitor, all of MINIX 3 is just a subroutine, and when MINIX 3 is started, a return address to the monitor is
left on the monitor's stack. _Monitor just has to restore the various segment selectors and the stack pointer that
was saved when MINIX 3 was started, and then return as from any other subroutine.

Int86 (line 8864) supports BIOS calls. The BIOS is used to provide alternative-disk drivers which are not
described here. Int86 transfers control to the boot monitor, which manages a transfer from protected mode to
real mode to execute a BIOS call, then back to protected mode for the return to 32-bit MINIX 3. The boot
monitor also returns the number of clock ticks counted during the BIOS call. How this is used will be seen in
the discussion of the clock task.

Although _phys_copy (see below) could have been used for copying messages, _cp_mess (line 8952), a faster

54

54

specialized procedure, has been provided for that purpose. It is called by

cp_mess(source, src_clicks, src_offset, dest_clicks, dest_offset);

[Page 191]

where source is the sender's process number, which is copied into the m_source field of the receiver's buffer.
Both the source and destination addresses are specified by giving a click number, typically the base of the
segment containing the buffer, and an offset from that click. This form of specifying the source and
destination is more efficient than the 32-bit addresses used by _phys_copy.

_Exit,__exit, and ___exit (lines 9006 to 9008) are defined because some library routines that might be used in
compiling MINIX 3 make calls to the standard C function exit. An exit from the kernel is not a meaningful
concept; there is nowhere to go. Consequently, the standard exit cannot be used here. The solution here is to
enable interrupts and enter an endless loop. Eventually, an I/O operation or the clock will cause an interrupt
and normal system operation will resume. The entry point for ___main (line 9012) is another attempt to deal
with a compiler action which, while it might make sense while compiling a user program, does not have any
purpose in the kernel. It points to an assembly language ret (return from subroutine) instruction.

_Phys_insw (line 9022), _phys_insb (line 9047), _phys_outsw (line 9072), and _phys_outsb (line 9098),
provide access to I/O ports, which on Intel hardware occupy a separate address space from memory and use
different instructions from memory reads and writes. The I/O instructions used here, ins, insb, outs, and
outsb, are designed to work efficiently with arrays (strings), and either 16-bit words or 8-bit bytes. The
additional instructions in each function set up all the parameters needed to move a given number of bytes or
words between a buffer, addressed physically, and a port. This method provides the speed needed to service
disks, which must be serviced more rapidly than could be done with simpler byte- or word-at-a-time I/O
operations.

A single machine instruction can enable or disable the CPU's response to all interrupts. _Enable_irq (line
9126) and _disable_irq (line 9162) are more complicated. They work at the level of the interrupt controller
chips to enable and disable individual hardware interrupts.

_Phys_copy (line 9204) is called in C by

phys_copy(source_address, destination_address, bytes);

and copies a block of data from anywhere in physical memory to anywhere else. Both addresses are absolute,
that is, address 0 really means the first byte in the entire address space, and all three parameters are unsigned
longs.

For security, all memory to be used by a program should be wiped clean of any data remaining from a
program that previously occupied that memory. This is done by the MINIX 3 exec call, ultimately using the
next function in klib386.s, phys_memset (line 9248).

The next two short functions are specific to Intel processors. _Mem_rdw (line 9291) returns a 16-bit word
from anywhere in memory. The result is zero-extended into the 32-bit eax register. The _reset function (line
9307) resets the processor. It does this by loading the processor's interrupt descriptor table register with a null
pointer and then executing a software interrupt. This has the same effect as a hardware reset.

55

55

[Page 192]

The idle_task (line 9318) is called when there is nothing else to do. It is written-as an endless loop, but it is
not just a busy loop (which could have been used to have the same effect). Idle_task takes advantage of the
availability of a hlt instruction, which puts the processor into a power-conserving mode until an interrupt is
received. However, hlt is a privileged instruction and executing hlt when the current privilege level is not
0 will cause an exception. So idle_task pushes the address of a subroutine containing a hlt and then calls
level0 (line 9322). This function retrieves the address of the halt subroutine, and copies it to a reserved storage
area (declared in glo.h and actually reserved in table.c).

_Level0 treats whatever address is preloaded to this area as the functional part of an interrupt service routine
to be run with the most privileged permission level, level zero.

The last two functions are read_tsc and read_flags. The former reads a CPU register which executes an
assembly language instruction known as rdtsc, read time stamp counter. This counts CPU cycles and is
intended for benchmarking or debugging. This instruction is not supported by the MINIX 3 assembler, and is
generated by coding the opcode in hexadecimal. Finally, read_flags reads the processor flags and returns them
as a C variable. The programmer was tired and the comment about the purpose of this function is incorrect.

The last file we will consider in this chapter is utility.c which provides three important functions. When
something goes really, really wrong in the kernel, panic (line 9429) is invoked. It prints a message and calls
prepare_shutdown. When the kernel needs to print a message it cannot use the standard library printf, so a
special kprintf is defined here (line 9450). The full range of formatting options available in the library version
are not needed here, but much of the functionality is available. Because the kernel cannot use the file system
to access a file or a device, it passes each character to another function, kputc (line 9525), which appends each
character to a buffer. Later, when kputc receives the END_OF_KMESS code it informs the process which
handles such messages. This is defined in include/minix/config.h, and can be either the log driver or the
console driver. If it is the log driver the message will be passed on to the console as well.

56

56

[Page 192 (continued)]

2.7. The System Task in MINIX 3

A consequence of making major system components independent processes outside
the kernel is that they are forbidden from doing actual I/O, manipulating kernel tables
and doing other things operating system functions normally do. For example, the
fork system call is handled by the process manager. When a new process is created,
the kernel must know about it, in order to schedule it. How can the process manager
tell the kernel?

[Page 193]

The solution to this problem is to have a kernel offer a set of services to the drivers
and servers. These services, which are not available to ordinary user processes, allow
the drivers and servers to do actual I/O, access kernel tables, and do other things they
need to, all without being inside the kernel.

These special services are handled by the system task, which is shown in layer 1 in
Fig. 2-29. Although it is compiled into the kernel binary program, it is really a
separate process and is scheduled as such. The job of the system task is to accept all
the requests for special kernel services from the drivers and servers and carry them
out. Since the system task is part of the kernel's address space, it makes sense to study
it here.

Earlier in this chapter we saw an example of a service provided by the system task. In
the discussion of interrupt handling we described how a user-space device driver uses
sys_irqctl to send a message to the system task to ask for installation of an
interrupt handler. A user-space driver cannot access the kernel data structure where
addresses of interrupt service routines are placed, but the system task is able to do
this. Furthermore, since the interrupt service routine must also be in the kernel's
address space, the address stored is the address of a function provided by the system
task, generic_handler. This function responds to an interrupt by sending a notification
message to the device driver.

This is a good place to clarify some terminology. In a conventional operating system
with a monolithic kernel, the term system call is used to refer to all calls for services
provided by the kernel. In a modern UNIX-like operating system the POSIX standard
describes the system calls available to processes. There may be some nonstandard
extensions to POSIX, of course, and a programmer taking advantage of a system call
will generally reference a function defined in the C libraries, which may provide an
easy-to-use programming interface. Also, sometimes separate library functions that
appear to the programmer to be distinct "system calls" actually use the same access to
the kernel.

In MINIX 3 the landscape is different; components of the operating system run in user
space, although they have special privileges as system processes. We will still use the
name "system call" for any of the POSIX-defined system calls (and a few MINIX
extensions) listed in Fig. 1-9, but user processes do not request services directly of the
kernel. In MINIX 3 system calls by user processes are transformed into messages to
server processes. Server processes communicate with each other, with device drivers,

1

1

and with the kernel by messages. The subject of this section, the system task, receives
all requests for kernel services. Loosely speaking, we could call these requests system
calls, but to be more exact we will refer to them as kernel calls. Kernel calls cannot be
made by user processes. In many cases a system call that originates with a user
process results in a kernel call with a similar name being made by a server. This is
always because some part of the service being requested can only be dealt with by the
kernel. For instance a fork system call by a user process goes to the process
manager, which does some of the work. But a fork requires changes in the kernel part
of the process table, and to complete the action the process manager makes a
sys_fork call to the system task, which can manipulate data in kernel space. Not all
kernel calls have such a clear connection to a single system call. For instance, there is
a sys_devio kernel call to read or write I/O ports. This kernel call comes from a
device driver. More than half of all the system calls listed in Fig. 1-9 could result in a
device driver being activated and making one or more sys_devio calls.

[Page 194]

Technically speaking, a third category of calls (besides system calls and kernel-calls)
should be distinguished. The message primitives used for interprocess communication
such as send, receive, and notify can be thought of as system-call-like. We
have probably called them that in various places in this bookafter all, they do call the
system. But they should properly be called something different from both system calls
and kernel calls. Other terms may be used. IPC primitive is sometimes used, as well as
trap, and both of these may be found in some comments in the source code. You can
think of a message primitive as being like the carrier wave in a radio communications
system. Modulation is usually needed to make a radio wave useful; the message type
and other components of a message structure allow the message call to convey
information. In a few cases an unmodulated radio wave is useful; for instance, a radio
beacon to guide airplanes to an airport. This is analogous to the notify message
primitive, which conveys little information other than its origin.

2.7.1. Overview of the System Task

The system task accepts 28 kinds of messages, shown in Fig. 2-45. Each of these can
be considered a kernel call, although, as we shall see, in some cases there are multiple
macros defined with different names that all result in just one of the message types
shown in the figure. And in some other cases more than one of the message types in
the figure are handled by a single procedure that does the work.

Figure 2-45. The message types accepted by the system task. "Any" means any system
process; user processes cannot call the system task directly. (This item is displayed on
page 195 in the print version)

Message type From Meaning
sys_fork PM A process has

forked
sys_exec PM Set stack

pointer after
EXEC call

sys_exit PM A process has
exited

sys_nice PM Set scheduling
priority

2

2

sys_privctl RS Set or change
privileges

sys_trace PM Carry out an
operation of
the PTRACE
call

sys_kill PM, FS,
TTY

Send signal to
a process after
KILL call

sys_getksig PM PM is
checking for
pending
signals

sys_endksig PM PM has
finished
processing
signal

sys_sigsend PM Send a signal
to a process

sys_sigreturn PM Cleanup after
completion of
a signal

sys_irqctl Drivers Enable,
disable, or
configure
interrupt

sys_devio Drivers Read from or
write to an I/O
port

sys_sdevio Drivers Read or write
string from/to
I/O port

sys_vdevio Drivers Carry out a
vector of I/O
requests

sys_int86 Drivers Do a
real-mode
BIOS call

sys_newmap PM Set up a
process
memory map

sys_segctl Drivers Add segment
and get
selector (far
data access)

sys_memset PM Write char to
memory area

sys_umap Drivers Convert virtual
address to
physical
address

sys_vircopy FS,
Drivers

Copy using
pure virtual
addressing

3

3

sys_physcopy Drivers Copy using
physical
addressing

sys_virvcopy Any Vector of
VCOPY
requests

sys_physvcopy Any Vector of
PHYSCOPY
requests

sys_times PM Get uptime
and process
times

sys_setalarm PM, FS,
Drivers

Schedule a
synchronous
alarm

sys_abort PM,
TTY

Panic: MINIX
is unable to
continue

sys_getinfo Any Request
system
information

The main program of the system task is structured like other tasks. After doing necessary initialization it runs
in a loop. It gets a message, dispatches to the appropriate service procedure, and then sends a reply. A few
general support functions are found in the main file, system.c, but the main loop dispatches to a procedure in a
separate file in the kernel/system/ directory to process each kernel call. We will see how this works and the
reason for this organization when we discuss the implementation of the system task.

First we will briefly describe the function of each kernel call. The message types in Fig. 2-45 fall into several
categories. The first few are involved with process management. Sys_fork, sys_exec, sys_exit, and
sys_trace are obviously closely related to standard POSIX system calls. Although nice is not a
POSIX-required system call, the command ultimately results in a sys_nice kernel call to change the
priority of a process. The only one of this group that is likely to be unfamiliar is sys_privctl. It is used by
the reincarnation server (RS), the MINIX 3 component responsible for converting processes started as
ordinary user processes into system processes. Sys_privctl changes the privileges of a process, for
instance, to allow it to make kernel calls. Sys_privctl is used when drivers and servers that are not part of
the boot image are started by the /etc/rc script. MINIX 3 drivers also can be started (or restarted) at any time;
privilege changes are needed whenever this is done.

[Page 195]

[Page 196]

The next group of kernel calls are related to signals. Sys_kill is related to the user-accessible (and
misnamed) system call kill. The others in this group, sys_getksig, sys_endksig, sys_sigsend,
and sys_sigreturn are all used by the process manager to get the kernel's help in handling signals.

The sys_irqctl, sys_devio, sys_sdevio, and sys_vdevio kernel calls are unique to MINIX 3.
These provide the support needed for user-space device drivers. We mentioned sys_irqctl at the start of
this section. One of its functions is to set a hardware interrupt handler and enable interrupts on behalf of a
user-space driver. Sys_devio allows a user-space driver to ask the system task to read or write from an I/O

4

4

port. This is obviously essential; it also should be obvious that it involves more overhead than would be the
case if the driver were running in kernel space. The next two kernel calls offer a higher level of I/O device
support. Sys_sdevio can be used when a sequence of bytes or words, i.e., a string, is to be read from or
written to a single I/O address, as might be the case when accessing a serial port. Sys_vdevio is used to
send a vector of I/O requests to the system task. By a vector is meant a series of (port, value) pairs. Earlier in
this chapter, we described the intr_init function that initializes the Intel i8259 interrupt controllers. On lines
8140 to 8152 a series of instructions writes a series of byte values. For each of the two i8259 chips, there is a
control port that sets the mode and another port that receives a sequence of four bytes in the initialization
sequence. Of course, this code executes in the kernel, so no support from the system task is needed. But if this
were being done by a user-space process a single message passing the address to a buffer containing 10 (port,
value) pairs would be much more efficient than 10 messages each passing one port address and a value to be
written.

The next three kernel calls shown in Fig. 2-45 involve memory in distinct ways. The first, sys_newmap, is
called by the process manager when the memory used by a process changes, so the kernel's part of the process
table can be updated. Sys_segctl and sys_memset provide a safe way to provide a process with access
to memory outside its own data space. The memory area from 0xa0000 to 0xfffff is reserved for I/O devices,
as we mentioned in the discussion of startup of the MINIX 3 system. Some devices use part of this memory
region for I/Ofor instance, video display cards expect to have data to be displayed written into memory on the
card which is mapped here. Sys_segctl is used by a device driver to obtain a segment selector that will
allow it to address memory in this range. The other call, sys_memset, is used when a server wants to write
data into an area of memory that does not belong to it. It is used by the process manager to zero out memory
when a new process is started, to prevent the new process from reading data left by another process.

The next group of kernel calls is for copying memory. Sys_umap converts virtual addresses to physical
addresses. Sys_vircopy and sys_physcopy copy regions of memory, using either virtual or physical
addresses. The next two calls, sys_virvcopy and sys_physvcopy are vector versions of the previous
two. As with vectored I/O requests, these allow making a request to the system task for a series of memory
copy operations.

[Page 197]

Sys_times obviously has to do with time, and corresponds to the POSIX times system call.
Sys_setalarm is related to the POSIX alarm system call, but the relation is a distant one. The POSIX
call is mostly handled by the process manager, which maintains a queue of timers on behalf of user processes.
The process manager uses a sys_setalarm kernel call when it needs to have a timer set on its behalf in the
kernel. This is done only when there is a change at the head of the queue managed by the PM, and does not
necessarily follow every alarm call from a user process.

The final two kernel calls listed in Fig. 2-45 are for system control. Sys_abort can originate in the process
manager, after a normal request to shutdown the system or after a panic. It can also originate from the tty
device driver, in response to a user pressing the Ctrl-Alt-Del key combination.

Finally, sys_getinfo is a catch-all that handles a diverse range of requests for information from the kernel.
If you search through the MINIX 3 C source files you will, in fact, find very few references to this call by its
own name. But if you extend your search to the header directories you will find no less than 13 macros in
include/minix/syslib.h that give another name to Sys_getinfo. An example is

sys_getkinfo(dst) sys_getinfo(GET_KINFO, dst, 0, 0, 0)

which is used to return the kinfo structure (defined in include/minix/type.h on lines 2875 to 2893) to the
process manager for use during system startup. The same information may be needed at other times. For

5

5

instance, the user command ps needs to know the location of the kernel's part of the process table to display
information about the status of all processes. It asks the PM, which in turn uses the sys_getkinfo variant of
sys_getinfo to get the information.

Before we leave this overview of kernel call types, we should mention that sys_getinfo is not the only
kernel call that is invoked by a number of different names defined as macros in include/minix/syslib.h. For
example, the sys_sdevio call is usually invoked by one of the macros sys_insb, sys_insw,
sys_outsb, or sys_outsw. The names were devised to make it easy to see whether the operation is input
or output, with data types byte or word. Similarly, the sys_irqctl call is usually invoked by a macro like
sys_irqenable, sys_irqdisable, or one of several others. Such macros make the meaning clearer to
a person reading the code. They also help the programmer by automatically generating constant arguments.

2.7.2. Implementation of the System Task

The system task is compiled from a header, system.h, and a C source file, system.c, in the main kernel/
directory. In addition there is a specialized library built from source files in a subdirectory, kernel/system/.
There is a reason for this organization. Although MINIX 3 as we describe it here is a general-purpose
operating system, it is also potentially useful for special purposes, such as embedded support in a portable
device. In such cases a stripped-down version of the operating system might be adequate. For instance, a
device without a disk might not need a file system. We saw in kernel/config.h that compilation of kernel calls
can be selectively enabled and disabled. Having the code that supports each kernel call linked from the library
as the last stage of compilation makes it easier to build a customized system.

[Page 198]

Putting support for each kernel call in a separate file simplifies maintenance of the software. But there is some
redundancy between these files, and listing all of them would add 40 pages to the length of this book. Thus we
will list in Appendix B and describe in the text only a few of the files in the kernel/system/ directory.
However, all the files are on the CD-ROM and the MINIX 3 Web site.

We will begin by looking at the header file, kernel/system.h (line 9600). It provides prototypes for functions
corresponding to most of the kernel calls listed in Fig. 2-45. In addition there is a prototype for do_unused, the
function that is invoked if an unsupported kernel call is made. Some of the message types in Fig. 2-45
correspond to macros defined here. These are on lines 9625 to 9630. These are cases where one function can
handle more than one call.

Before looking at the code in system.c, note the declaration of the call vector call_vec, and the definition of
the macro map on lines 9745 to 9749. Call_vec is an array of pointers to functions, which provides a
mechanism for dispatching to the function needed to service a particular message by using the message type,
expressed as a number, as an index into the array. This is a technique we will see used elsewhere in MINIX 3.
The map macro is a convenient way to initialize such an array. The macro is defined in such a way that trying
to expand it with an invalid argument will result in declaring an array with a negative size, which is, of course,
impossible, and will cause a compiler error.

The top level of the system task is the procedure sys_task. After a call to initialize an array of pointers to
functions, sys_task runs in a loop. It waits for a message, makes a few tests to validate the message,
dispatches to the function that handles the call that corresponds to the message type, possibly generating a
reply message, and repeats the cycle as long as MINIX 3 is running (lines 9768 to 9796). The tests consists of
a check of the priv table entry for the caller to determine that it is allowed to make this type of call and
making sure that this type of call is valid. The dispatch to the function that does the work is done on line 9783.
The index into the call_vec array is the call number, the function called is the one whose address is in that cell
of the array, the argument to the function is a pointer to the message, and the return value is a status code. A

6

6

function may return a EDONTREPLY status, meaning no reply message is required, otherwise a reply
message is sent at line 9792.

As you may have noticed in Fig. 2-43, when MINIX 3 starts up the system task is at the head of the highest
priority queue, so it makes sense that the system task's initialize function initializes the array of interrupt
hooks and the list of alarm timers (lines 9808 to 9815). In any case, as we noted earlier, the system task is
used to enable interrupts on behalf of user-space drivers that need to respond to interrupts, so it makes sense to
have it prepare the table. The system task is used to set up timers when synchronous alarms are requested by
other system processes, so initializing the timer lists is also appropriate here.

[Page 199]

Continuing with initialization, on lines 9822 to 9824 all slots in the call_vec array are filled with the address
of the procedure do_unused, called if an unsupported kernel call is made. Then the rest of the file lines 9827
to 9867, consists of multiple expansions of the map macro, each one of which installs the address of a
function into the proper slot in call_vec.

The rest of system.c consists of functions that are declared PUBLIC and that may be used by more than one of
the routines that service kernel calls, or by other parts of the kernel. For instance, the first such function,
get_priv (line 9872), is used by do_privctl, which supports the sys_privctl kernel call. It is also called by
the kernel itself while constructing process table entries for processes in the boot image. The name is a
perhaps a bit misleading. Get_priv does not retrieve information about privileges already assigned, it finds an
available priv structure and assigns it to the caller. There are two casessystem processes each get their own
entry in the priv table. If one is not available then the process cannot become a system process. User processes
all share the same entry in the table.

Get_randomness (line 9899) is used to get seed numbers for the random number generator, which is a
implemented as a character device in MINIX 3. The newest Pentium-class processors include an internal cycle
counter and provide an assembly language instruction that can read it. This is used if available, otherwise a
function is called which reads a register in the clock chip.

Send_sig generates a notification to a system process after setting a bit in the s_sig_pending bitmap of the
process to be signaled. The bit is set on line 9942. Note that because the s_sig_pending bitmap is part of a priv
structure, this mechanism can only be used to notify system processes. All user processes share a common
priv table entry, and therefore fields like the s_sig_pending bitmap cannot be shared and are not used by user
processes. Verification that the target is a system process is made before send_sig is called. The call comes
either as a result of a sys_kill kernel call, or from the kernel when kprintf is sending a string of characters. In
the former case the caller determines whether or not the target is a system process. In the latter case the kernel
only prints to the configured output process, which is either the console driver or the log driver, both of which
are system processes.

The next function, cause_sig (line 9949), is called to send a signal to a user process. It is used when a sys_kill
kernel call targets a user process. It is here in system.c because it also may be called directly by the kernel in
response to an exception triggered by the user process. As with send_sig a bit must be set in the recipient's
bitmap for pending signals, but for user processes this is not in the priv table, it is in the process table. The
target process must also be made not ready by a call to lock_dequeue, and its flags (also in the process table)
updated to indicate it is going to be signaled. Then a message is sentbut not to the target process. The message
is sent to the process manager, which takes care of all of the aspects of signaling a process that can be dealt
with by a user-space system process.

[Page 200]

7

7

Next come three functions which all support the sys_umap kernel call. Processes normally deal with virtual
addresses, relative to the base of a particular segment. But sometimes they need to know the absolute
(physical) address of a region of memory, for instance, if a request is going to be made for copying between
memory regions belonging to two different segments. There are three ways a virtual memory address might be
specified. The normal one for a process is relative to one of the memory segments, text, data, or stack,
assigned to a process and recorded in its process table slot. Requesting conversion of virtual to physical
memory in this case is done by a call to umap_local (line 9983).

The second kind of memory reference is to a region of memory that is outside the text, data, or stack areas
allocated to a process, but for which the process has some responsibility. Examples of this are a video driver
or an Ethernet driver, where the video or Ethernet card might have a region of memory mapped in the region
from 0xa0000 to 0xfffff which is reserved for I/O devices. Another example is the memory driver, which
manages the ramdisk and also can provide access to any part of the memory through the devices /dev/mem
and /dev/kmem. Requests for conversion of such memory references from virtual to physical are handled by
umap_remote (line 10025).

Finally, a memory reference may be to memory that is used by the BIOS. This is considered to include both
the lowest 2 KB of memory, below where MINIX 3 is loaded, and the region from 0x90000 to 0xfffff, which
includes some RAM above where MINIX 3 is loaded plus the region reserved for I/O devices. This could also
be handled by umap_remote, but using the third function, umap_bios (line 10047), ensures that a check will
be made that the memory being referenced is really in this region.

The last function defined in system.c is virtual_copy (line 10071). Most of this function is a C switch which
uses one of the three umap_* functions just described to convert virtual addresses to physical addresses. This
is done for both the source and destination addresses. The actual copying is done (on line 10121) by a call to
the assembly language routine phys_copy in klib386.s.

2.7.3. Implementation of the System Library

Each of the functions with a name of the form do_xyz has its source code in a file in a subdirectory,
kernel/system/do_xyz.c. In the kernel/ directory the Makefile contains a line

cd system && $(MAKE) $(MAKEFLAGS) $@

[Page 201]

which causes all of the files in kernel/system/ to be compiled into a library, system.a in the main kernel/
directory. When control returns to the main kernel directory another line in the Makefile cause this local
library to be searched first when the kernel object files are linked.

We have listed two files from the kernel/system/ directory in Appendix B. These were chosen because they
represent two general classes of support that the system task provides. One category of support is access to
kernel data structures on behalf of any user-space system process that needs such support. We will describe
system/do_setalarm.c as an example of this category. The other general category is support for specific system
calls that are mostly managed by user-space processes, but which need to carry out some actions in kernel
space. We have chosen system/do_exec.c as our example.

The sys_setalarm kernel call is somewhat similar to sys_irqenable, which we mentioned in the
discussion of interrupt handling in the kernel. Sys_irqenable sets up an address to an interrupt handler to
be called when an IRQ is activated. The handler is a function within the system task, generic_handler. It
generates a notify message to the device driver process that should respond to the interrupt.

8

8

System/do_setalarm.c (line 10200) contains code to manage timers in a way similar to how interrupts are
managed. A sys_setalarm kernel call initializes a timer for a user-space system process that needs to
receive a synchronous alarm, and it provides a function to be called to notify the user-space process when the
timer expires. It can also ask for cancellation of a previously scheduled alarm by passing zero in the expiration
time field of its request message. The operation is simpleon lines 10230 to 10232 information from the
message is extracted. The most important items are the time when the timer should go off and the process that
needs to know about it. Every system process has its own timer structure in the priv table. On lines 10237 to
10239 the timer structure is located and the process number and the address of a function, cause_alarm, to be
executed when the timer expires, are entered.

If the timer was already active, sys_setalarm returns the time remaining in its reply message. A return
value of zero means the timer is not active. There are several possibilities to be considered. The timer might
previously have been deactivateda timer is marked inactive by storing a special value, TMR_NEVER in its
exp_time field . As far as the C code is concerned this is just a large integer, so an explicit test for this value is
made as part of checking whether the expiration time has passed. The timer might indicate a time that has
already passed. This is unlikley to happen, but it is easy to check. The timer might also indicate a time in the
future. In either of the first two cases the reply value is zero, otherwise the time remaining is returned (lines
10242 to 10247).

Finally, the timer is reset or set. At this level this is done putting the desired expiration time into the correct
field of the timer structure and calling another function to do the work. Of course, resetting the timer does not
require storing a value. We will see the functions reset and set soon, their code is in the source file for the
clock task. But since the system task and the clock task are both compiled into the kernel image all functions
declared PUBLIC are accessible.

[Page 202]

There is one other function defined in do_setalarm.c. This is cause_alarm, the watchdog function whose
address is stored in each timer, so it can be called when the timer expires. It is simplicity itselfit generates a
notify message to the process whose process number is also stored in the timer structure. Thus the
synchronous alarm within the kernel is converted into a message to the system process that asked for an
alarm.

As an aside, note that when we talked about the initialization of timers a few pages back (and in this section as
well) we referred to synchronous alarms requested by system processes. If that did not make complete sense at
this point, and if you are wondering what is a synchronous alarm or what about timers for nonsystem
processes, these questions will be dealt with in the next section, when we discuss the clock task. There are so
many interconnected parts in an operating system that it is almost impossible to order all topics in a way that
does not occasionally require a reference to a part that has not been already been explained. This is
particularly true when discussing implementation. If we were not dealing with a real operating system we
could probably avoid bringing up messy details like this. For that matter, a totally theoretical discussion of
operating system principles would probably never mention a system task. In a theory book we could just wave
our arms and ignore the problems of giving operating system components in user space limited and controlled
access to privileged resources like interrupts and I/O ports.

The last file in the kernel/system/ directory which we will discuss in detail is do_exec.c (line 10300). Most of
the work of the exec system call is done within the process manager. The process manager sets up a stack for
a new program that contains the arguments and the environment. Then it passes the resulting stack pointer to
the kernel using sys_exec, which is handled by do_exec (line 10618). The stack pointer is set in the kernel
part of the process table, and if the process being exec-ed is using an extra segment the assembly language
phys_memset function defined in klib386.s is called to erase any data that might be left over from previous
use of that memory region (line 10330).

9

9

An exec call causes a slight anomaly. The process invoking the call sends a message to the process manager
and blocks. With other system calls, the resulting reply would unblock it. With exec there is no reply,
because the newly loaded core image is not expecting a reply. Therefore, do_exec unblocks the process itself
on line 10333 The next line makes the new image ready to run, using the lock_enqueue function that protects
against a possible race condition. Finally, the command string is saved so the process can be identified when
the user invokes the ps command or presses a function key to display data from the process table.

To finish our discussion of the system task, we will look at its role in handling a typical operating service,
providing data in response to a read system call. When a user does a read call, the file system checks its
cache to see if it has the block needed. If not, it sends a message to the appropriate disk driver to load it into
the cache. Then the file system sends a message to the system task telling it to copy the block to the user
process. In the worst case, eleven messages are needed to read a block; in the best case, four messages are
needed. Both cases are shown in Fig. 2-46. In Fig. 2-46 (a), message 3 asks the system task to execute I/O
instructions; 4 is the ACK. When a hardware interrupt occurs the system task tells the waiting driver about
this event with message 5. Messages 6 and 7 are a request to copy the data to the FS cache and the reply,
message 8 tells the FS the data is ready, and messages 9 and 10 are a request to copy the data from the cache
to the user, and the reply. Finally message 11 is the reply to the user. In Fig. 2-46 (b), the data is already in the
cache, messages 2 and 3 are the request to copy it to the user and the reply. These messages are a source of
overhead in MINIX 3 and are the price paid for the highly modular design.

[Page 203]

Figure 2-46. (a) Worst case for reading a block requires eleven messages. (b) Best case for reading a block
requires four messages.

[View full size image]

Kernel calls to request copying of data are probably the most heavily used ones in MINIX 3. We have already
seen the part of the system task that ultimately does the work, the function virtual_copy. One way to deal with
some of the inefficiency of the message passing mechanism is to pack multiple requests into a message. The
sys_virvcopy and sys_physvcopy kernel calls do this. The content of a message that invokes one of these call
is a pointer to a vector specifying multiple blocks to be copied between memory locations. Both are supported
by do_vcopy, which executes a loop, extracting source and destination addresses and block lengths and
calling phys_copy repeatedly until all the copies are complete. We will see in the next chapter that disk

10

10

devices have a similar ability to handle multiple transfers based on a single request.

[Page 204]

11

11

12

12

[Page 204 (continued)]

2.8. The Clock Task in MINIX 3

Clocks (also called timers) are essential to the operation of any timesharing system for a
variety of reasons. For example, they maintain the time of day and prevent one process
from monopolizing the CPU. The MINIX 3 clock task has some resemblance to a device
driver, in that it is driven by interrupts generated by a hardware device. However, the
clock is neither a block device, like a disk, nor a character device, like a terminal. In fact,
in MINIX 3 an interface to the clock is not provided by a file in the /dev/ directory.
Furthermore, the clock task executes in kernel space and cannot be accessed directly by
user-space processes. It has access to all kernel functions and data, but user-space
processes can only access it via the system task. In this section we will first a look at
clock hardware and software in general, and then we will see how these ideas are applied
in MINIX 3.

2.8.1. Clock Hardware

Two types of clocks are used in computers, and both are quite different from the clocks
and watches used by people. The simpler clocks are tied to the 110- or 220-volt power
line, and cause an interrupt on every voltage cycle, at 50 or 60 Hz. These are essentially
extinct in modern PCs.

The other kind of clock is built out of three components: a crystal oscillator, a counter,
and a holding register, as shown in Fig. 2-47. When a piece of quartz crystal is properly
cut and mounted under tension, it can be made to generate a periodic signal of very high
accuracy, typically in the range of 5 to 200 MHz, depending on the crystal chosen. At
least one such circuit is usually found in any computer, providing a synchronizing signal
to the computer's various circuits. This signal is fed into the counter to make it count
down to zero. When the counter gets to zero, it causes a CPU interrupt. Computers
whose advertised clock rate is higher than 200 MHz normally use a slower clock and a
clock multiplier circuit.

Figure 2-47. A programmable clock. (This item is displayed on page 205 in the print
version)

[View full size image]

Programmable clocks typically have several modes of operation. In one-shot mode,

1

1

when the clock is started, it copies the value of the holding register into the counter and
then decrements the counter at each pulse from the crystal. When the counter gets to
zero, it causes an interrupt and stops until it is explicitly started again by the software. In
square-wave mode, after getting to zero and causing the interrupt, the holding register is
automatically copied into the counter, and the whole process is repeated again
indefinitely. These periodic interrupts are called clock ticks.

[Page 205]

The advantage of the programmable clock is that its interrupt frequency can be
controlled by software. If a 1-MHz crystal is used, then the counter is pulsed every
microsecond. With 16-bit registers, interrupts can be programmed to occur at intervals
from 1 microsecond to 65.536 milliseconds. Programmable clock chips usually contain
two or three independently programmable clocks and have many other options as well
(e.g., counting up instead of down, interrupts disabled, and more).

To prevent the current time from being lost when the computer's power is turned off,
most computers have a battery-powered backup clock, implemented with the kind of
low-power circuitry used in digital watches. The battery clock can be read at startup. If
the backup clock is not present, the software may ask the user for the current date and
time. There is also a standard protocol for a networked system to get the current time
from a remote host. In any case the time is then translated into the number of seconds
since 12 A.M. Universal Coordinated Time (UTC) (formerly known as Greenwich Mean
Time) on Jan. 1, 1970, as UNIX and MINIX 3 do, or since some other benchmark.
Clock ticks are counted by the running system, and every time a full second has passed
the real time is incremented by one count. MINIX 3 (and most UNIX systems) do not
take into account leap seconds, of which there have been 23 since 1970. This is not
considered a serious flaw. Usually, utility programs are provided to manually set the
system clock and the backup clock and to synchronize the two clocks.

We should mention here that all but the earliest IBM-compatible computers have a
separate clock circuit that provides timing signals for the CPU, internal data busses, and
other components. This is the clock that is meant when people speak of CPU clock
speeds, measured in Megahertz on the earliest personal computers, and in Gigahertz on
modern systems. The basic circuitry of quartz crystals, oscillators and counters is the
same, but the requirements are so different that modern computers have independent
clocks for CPU control and timekeeping.

[Page 206]

2.8.2. Clock Software

All the clock hardware does is generate interrupts at known intervals. Everything else
involving time must be done by the software, the clock driver. The exact duties of the
clock driver vary among operating systems, but usually include most of the following:

1. Maintaining the time of day.

2. Preventing processes from running longer than they are allowed to.

2

2

3. Accounting for CPU usage.

4. Handling the alarm system call made by user processes.

5. Providing watchdog timers for parts of the system itself.

6. Doing profiling, monitoring, and statistics gathering.

The first clock function, maintaining the time of day (also called the real time) is not
difficult. It just requires incrementing a counter at each clock tick, as mentioned before.
The only thing to watch out for is the number of bits in the time-of-day counter. With a
clock rate of 60 Hz, a 32-bit counter will overflow in just over 2 years. Clearly the
system cannot store the real time as the number of ticks since Jan. 1, 1970 in 32 bits.

Three approaches can be taken to solve this problem. The first way is to use a 64-bit
counter, although doing so makes maintaining the counter more expensive since it has to
be done many times a second. The second way is to maintain the time of day in seconds,
rather than in ticks, using a subsidiary counter to count ticks until a whole second has
been accumulated. Because 232 seconds is more than 136 years, this method will work
until well into the twenty-second century.

The third approach is to count ticks, but to do that relative to the time the system was
booted, rather than relative to a fixed external moment. When the backup clock is read
or the user types in the real time, the system boot time is calculated from the current
time-of-day value and stored in memory in any convenient form. When the time of day
is requested, the stored time of day is added to the counter to get the current time of day.
All three approaches are shown in Fig. 2-48.

Figure 2-48. Three ways to maintain the time of day.

[View full size image]

[Page 207]

The second clock function is preventing processes from running too long. Whenever a
process is started, the scheduler should initialize a counter to the value of that process'
quantum in clock ticks. At every clock interrupt, the clock driver decrements the
quantum counter by 1. When it gets to zero, the clock driver calls the scheduler to set up
another process.

The third clock function is doing CPU accounting. The most accurate way to do it is to
start a second timer, distinct from the main system timer, whenever a process is started.

3

3

When that process is stopped, the timer can be read out to tell how long the process has
run. To do things right, the second timer should be saved when an interrupt occurs and
restored afterward.

A less accurate, but much simpler, way to do accounting is to maintain a pointer to the
process table entry for the currently running process in a global variable. At every clock
tick, a field in the current process' entry is incremented. In this way, every clock tick is
"charged" to the process running at the time of the tick. A minor problem with this
strategy is that if many interrupts occur during a process' run, it is still charged for a full
tick, even though it did not get much work done. Properly accounting for the CPU
during interrupts is too expensive and is rarely done.

In MINIX 3 and many other systems, a process can request that the operating system
give it a warning after a certain interval. The warning is usually a signal, interrupt,
message, or something similar. One application requiring such warnings is networking,
in which a packet not acknowledged within a certain time interval must be retransmitted.
Another application is computer-aided instruction, where a student not providing a
response within a certain time is told the answer.

If the clock driver had enough clocks, it could set a separate clock for each request. This
not being the case, it must simulate multiple virtual clocks with a single physical clock.
One way is to maintain a table in which the signal time for all pending timers is kept, as
well as a variable giving the time of the next one. Whenever the time of day is updated,
the driver checks to see if the closest signal has occurred. If it has, the table is searched
for the next one to occur.

If many signals are expected, it is more efficient to simulate multiple clocks by chaining
all the pending clock requests together, sorted on time, in a linked list, as shown in Fig.
2-49. Each entry on the list tells how many clock ticks following the previous one to
wait before causing a signal. In this example, signals are pending for 4203, 4207, 4213,
4215, and 4216.

Figure 2-49. Simulating multiple timers with a single clock. (This item is displayed on page
208 in the print version)

In Fig. 2-49, a timer has just expired. The next interrupt occurs in 3 ticks, and 3 has just
been loaded. On each tick, Next signal is decremented. When it gets to 0, the signal
corresponding to the first item on the list is caused, and that item is removed from the
list. Then Next signal is set to the value in the entry now at the head of the list, in this
example, 4. Using absolute times rather than relative times is more convenient in many
cases, and that is the approach used by MINIX 3.

Note that during a clock interrupt, the clock driver has several things to do. These things
include incrementing the real time, decrementing the quantum and checking for 0, doing

4

4

CPU accounting, and decrementing the alarm counter. However, each of these
operations has been carefully arranged to be very fast because they have to be repeated
many times a second.

[Page 208]

Parts of the operating system also need to set timers. These are called watchdog timers.
When we study the hard disk driver, we will see that a wakeup call is scheduled each
time the disk controller is sent a command, so an attempt at recovery can be made if the
command fails completely. Floppy disk drivers use timers to wait for the disk motor to
get up to speed and to shut down the motor if no activity occurs for a while. Some
printers with a movable print head can print at 120 characters/sec (8.3 msec/character)
but cannot return the print head to the left margin in 8.3 msec, so the terminal driver
must delay after typing a carriage return.

The mechanism used by the clock driver to handle watchdog timers is the same as for
user signals. The only difference is that when a timer goes off, instead of causing a
signal, the clock driver calls a procedure supplied by the caller. The procedure is part of
the caller's code. This presented a problem in the design of MINIX 3, since one of the
goals was to remove drivers from the kernel's address space. The short answer is that the
system task, which is in kernel space, can set alarms on behalf of some user-space
processes, and then notify them when a timer goes off. We will elaborate on this
mechanism further on.

The last thing in our list is profiling. Some operating systems provide a mechanism by
which a user program can have the system build up a histogram of its program counter,
so it can see where it is spending its time. When profiling is a possibility, at every tick
the driver checks to see if the current process is being profiled, and if so, computes the
bin number (a range of addresses) corresponding to the current program counter. It then
increments that bin by one. This mechanism can also be used to profile the system itself.

2.8.3. Overview of the Clock Driver in MINIX 3

The MINIX 3 clock driver is contained in the file kernel/clock.c. It can be considered to
have three functional parts. First, like the device drivers that we will see in the next
chapter, there is a task mechanism which runs in a loop, waiting for messages and
dispatching to subroutines that perform the action requested in each message. However,
this structure is almost vestigial in the clock task. The message mechanism is expensive,
requiring all the overhead of a context switch. So for the clock this is used only when
there is a substantial amount of work to be done. Only one kind of message is received,
there is only one subroutine to service the message, and a reply message is not sent when
the job is done.

[Page 209]

The second major part of the clock software is the interrupt handler that is activated 60
times each second. It does basic timekeeping, updating a variable that counts clock ticks
since the system was booted. It compares this with the time for the next timer expiration.
It also updates counters that register how much of the quantum of the current process has
been used and how much total time the current process has used. If the interrupt handler
detects that a process has used its quantum or that a timer has expired it generates the

5

5

message that goes to the main task loop. Otherwise no message is sent. The strategy here
is that for each clock tick the handler does as little as necessary, as fast as possible. The
costly main task is activated only when there is substantial work to do.

The third general part of the clock software is a collection of subroutines that provide
general support, but which are not called in response to clock interrupts, either by the
interrupt handler or by the main task loop. One of these subroutines is coded as
PRIVATE, and is called before the main task loop is entered. It initializes the clock,
which entails writing data to the clock chip to cause it to generate interrupts at the
desired intervals. The initialization routine also puts the address of the interrupt handler
in the right place to be found when the clock chip triggers the IRQ 8 input to the
interrupt controller chip, and then enables that input to respond.

The rest of the subroutines in clock.c are declared PUBLIC, and can be called from
anywhere in the kernel binary. In fact none of them are called from clock.c itself. They
are mostly called by the system task in order to service system calls related to time.
These subroutines do such things as reading the time-since-boot counter, for timing with
clock-tick resolution, or reading a register in the clock chip itself, for timing that requires
microsecond resolution. Other subroutines are used to set and reset timers. Finally, a
subroutine is provided to be called when MINIX 3 shuts down. This one resets the
hardware timer parameters to those expected by the BIOS.

The Clock Task

The main loop of the clock task accepts only a single kind of message, HARD_INT,
which comes from the interrupt handler. Anything else is an error. Furthermore, it does
not receive this message for every clock tick interrupt, although the subroutine called
each time a message is received is named do_clocktick. A message is received, and
do_clocktick is called only if process scheduling is needed or a timer has expired.

[Page 210]

The Clock Interrupt Handler

The interrupt handler runs every time the counter in the clock chip reaches zero and
generates an interrupt. This is where the basic timekeeping work is done. In MINIX 3
the time is kept using the method of Fig. 2-48(c). However, in clock.c only the counter
for ticks since boot is maintained; records of the boot time are kept elsewhere. The clock
software supplies only the current tick count to aid a system call for the real time.
Further processing is done by one of the servers. This is consistent with the MINIX 3
strategy of moving functionality to processes that run in user space.

In the interrupt handler the local counter is updated for each interrupt received. When
interrupts are disabled ticks are lost. In some cases it is possible to correct for this effect.
A global variable is available for counting lost ticks, and it is added to the main counter
and then reset to zero each time the handler is activated. In the implementation section
we will see an example of how this is used.

The handler also affects variables in the process table, for billing and process control
purposes. A message is sent to the clock task only if the current time has passed the
expiration time of the next scheduled timer or if the quantum of the running process has
been decremented to zero. Everything done in the interrupt service is a simple integer

6

6

operationarithmetic, comparison, logical AND/OR, or assignmentwhich a C compiler
can translate easily into basic machine operations. At worst there are five additions or
subtractions and six comparisons, plus a few logical operations and assignments in
completing the interrupt service. In particular there is no subroutine call overhead.

Watchdog Timers

A few pages back we left hanging the question of how user-space processes can be
provided with watchdog timers, which ordinarily are thought of as user-supplied
procedures that are part of the user's code and are executed when a timer expires.
Clearly, this can not be done in MINIX 3. But we can use a synchronous alarm to bridge
the gap from the kernel to user space.

This is a good time to explain what is meant by a synchronous alarm. A signal may
arrive or a conventional watchdog may be activated without any relation to what part of
a process is currently executing, so these mechanisms are asynchronous. A synchronous
alarm is delivered as a message, and thus can be received only when the recipient has
executed receive. So we say it is synchronous because it will be received only when
the receiver expects it. If the notify method is used to inform a recipient of an alarm,
the sender does not have to block, and the recipient does not have to be concerned with
missing the alarm. Messages from notify are saved if the recipient is not waiting. A
bitmap is used, with each bit representing a possible source of a notification.

[Page 211]

Watchdog timers take advantage of the timer_t type s_alarm_timer field that exists in
each element of the priv table. Each system process has a slot in the priv table. To set a
timer, a system process in user space makes a sys_setalarm call, which is handled
by the system task. The system task is compiled in kernel space, and thus can initialize a
timer on behalf of the calling process. Initialization entails putting the address of a
procedure to execute when the timer expires into the correct field, and then inserting the
timer into a list of timers, as in Fig. 2-49.

The procedure to execute has to be in kernel space too, of course. No problem. The
system task contains a watchdog function, cause_alarm, which generates a notify
when it goes off, causing a synchronous alarm for the user. This alarm can invoke the
user-space watchdog function. Within the kernel binary this is a true watchdog, but for
the process that requested the timer, it is a synchronous alarm. It is not the same as
having the timer execute a procedure in the target's address space. There is a bit more
overhead, but it is simpler than an interrupt.

What we wrote above was qualified: we said that the system task can set alarms on
behalf of some user-space processes. The mechanism just described works only for
system processes. Each system process has a copy of the priv structure, but a single copy
is shared by all non-system (user) processes. The parts of the priv table that cannot be
shared, such as the bitmap of pending notifications and the timer, are not usable by user
processes. The solution is this: the process manager manages timers on behalf of user
processes in a way similar to the way the system task manages timers for system
processes. Every process has a timer_t field of its own in the process manager's part of
the process table.

When a user process makes an alarm system call to ask for an alarm to be set, it is
handled by the process manager, which sets up the timer and inserts it into its list of

7

7

timers. The process manager asks the system task to send it a notification when the first
timer in the PM's list of timers is scheduled to expire. The process manager only has to
ask for help when the head of its chain of timers changes, either because the first timer
has expired or has been cancelled, or because a new request has been received that must
go on the chain before the current head. This is used to support the POSIX-standard
alarm system call. The procedure to execute is within the address space of the process
manager. When executed, the user process that requested the alarm is sent a signal,
rather than a notification.

Millisecond Timing

A procedure is provided in clock.c that provides microsecond resolution timing. Delays
as short as a few microseconds may be needed by various I/O devices. There is no
practical way to do this using alarms and the message passing interface. The counter that
is used for generating the clock interrupts can be read directly. It is decremented
approximately every 0.8 microseconds, and reaches zero 60 times a second, or every
16.67 milliseconds. To be useful for I/O timing it would have to be polled by a
procedure running in kernel-space, but much work has gone into moving drivers out of
kernel-space. Currently this function is used only as a source of randomness for the
random number generator. More use might be made of it on a very fast system, but this
is a future project

[Page 212]

Summary of Clock Services

Figure 2-50 summarizes the various services provided directly or indirectly by clock.c.
There are several functions declared PUBLIC that can be called from the kernel or the
system task. All other services are available only indirectly, by system calls ultimately
handled by the system task. Other system processes can ask the system task directly, but
user processes must ask the process manager, which also relies on the system task.

Figure 2-50. The time-related services supported by the clock driver.
Service Access Response Clients

get_uptime Function
call

Ticks Kernel
or
system
task

set_timer Function
call

None Kernel
or
system
task

reset_timer Function
call

None Kernel
or
system
task

read_clock Function
call

Count Kernel
or
system
task

clock_stop None

8

8

Function
call

Kernel
or
system
task

Synchronous alarm System
call

NotificationServer
or
driver,
via
system
task

POSIX alarm System
call

Signal User
process,
via PM

Time System
call

Message Any
process,
via PM

The kernel or the system task can get the current uptime, or set or reset a timer without the overhead of a
message. The kernel or the system task can also call read_clock, which reads the counter in the timer chip, to
get time in units of approximately 0.8 microseconds. The clock_stop function is intended to be called only
when MINIX 3 shuts down. It restores the BIOS clock rate. A system process, either a driver or a server, can
request a synchronous alarm, which causes activation of a watchdog function in kernel space and a
notification to the requesting process. A POSIX-alarm is requested by a user process by asking the process
manager, which then asks the system task to activate a watchdog. When the timer expires, the system task
notifies the process manager, and the process manager delivers a signal to the user process.

2.8.4. Implementation of the Clock Driver in MINIX 3

The clock task uses no major data structures, but several variables are used to keep track of time. The variable
realtime (line 10462) is basicit counts all clockticks. A global variable, lost_ticks, is defined in glo.h (line
5333). This variable is provided for the use of any function that executes in kernel space that might disable
interrupts long enough that one or more clock ticks could be lost. It currently is used by the int86 function in
klib386.s. Int86 uses the boot monitor to manage the transfer of control to the BIOS, and the monitor returns
the number of clock ticks counted while the BIOS call was busy in the ecx register just before the return to
the kernel. This works because, although the clock chip is not triggering the MINIX 3 clock interrupt handler
when the BIOS request is handled, the boot monitor can keep track of the time with the help of the BIOS.

[Page 213]

The clock driver accesses several other global variables. It uses proc_ptr, prev_ptr, and bill_ptr to reference
the process table entry for the currently running process, the process that ran previously, and the process that
gets charged for time. Within these process table entries it accesses various fields, including p_user_time and
p_sys_time for accounting and p_ticks_left for counting down the quantum of a process.

When MINIX 3 starts up, all the drivers are called. Most of them do some initialization then try to get a
message and block. The clock driver, clock_task (line 10468), does that too. First it calls init_clock to
initialize the programmable clock frequency to 60 Hz. When a message is received, it calls do_clocktick if the
message was a HARD_INT (line 10486). Any other kind of message is unexpected and treated as an error.

Do_clocktick (line 10497) is not called on each tick of the clock, so its name is not an exact description of its
function. It is called when the interrupt handler has determined there might be something important to do. One

9

9

of the conditions that results in running do_clocktick is the current process using up all of its quantum. If the
process is preemptable (the system and clock tasks are not) a call to lock_dequeue followed immediately by a
call to lock_enqueue (lines 10510 to 10512) removes the process from its queue, then makes it ready again
and reschedules it. The other thing that activates do_clocktick is expiration of a watchdog timer. Timers and
linked lists of timers are used so much in MINIX 3 that a library of functions to support them was created.
The library function tmrs_exptimers called on line 10517 runs the watchdog functions for all expired timers
and deactivates them.

Init_clock (line 10529) is called only once, when the clock task is started. There are several places one could
point to and say, "This is where MINIX 3 starts running." This is a candidate; the clock is essential to a
preemptive multitasking system. Init_clock writes three bytes to the clock chip that set its mode and set the
proper count into the master register. Then it registers its process number, IRQ, and handler address so
interrupts will be directed properly. Finally, it enables the interrupt controller chip to accept clock interrupts.

The next function, clock_stop, undoes the initialization of the clock chip. It is declared PUBLIC and is not
called from anywhere in clock.c. It is placed here because of the obvious similarity to init_clock. It is only
called by the system task when MINIX 3 is shut down and control is to be returned to the boot monitor.

[Page 214]

As soon as (or, more accurately, 16.67 milliseconds after) init_clock runs, the first clock interrupt occurs, and
clock interrupts repeat 60 times a second as long as MINIX 3 runs. The code in clock_handler (line 10556)
probably runs more frequently than any other part of the MINIX 3 system. Consequently, clock_handler was
built for speed. The only subroutine calls are on line 10586; they are only needed if running on an obsolete
IBM PS/2 system. The update of the current time (in ticks) is done on lines 10589 to 10591. Then user and
accounting times are updated.

Decisions were made in the design of the handler that might be questioned. Two tests are done on line 10610
and if either condition is true the clock task is notified. The do_clocktick function called by the clock task
repeats both tests to decide what needs to be done. This is necessary because the notify call used by the
handler cannot pass any information to distinguish different conditions. We leave it to the reader to consider
alternatives and how they might be evaluated.

The rest of clock.c contains utility functions we have already mentioned. Get_uptime (line 10620) just returns
the value of realtime, which is visible only to functions in clock.c. Set_timer and reset_timer use other
functions from the timer library that take care of all the details of manipulating a chain of timers. Finally,
read_clock reads and returns the current count in the clock chip's countdown register.

10

10

[Page 214 (continued)]

2.9. Summary

To hide the effects of interrupts, operating systems provide a conceptual model consisting of sequential
processes running in parallel. Processes can communicate with each other using interprocess communication
primitives, such as semaphores, monitors, or messages. These primitives are used to ensure that no two
processes are ever in their critical sections at the same time. A process can be running, runnable, or blocked
and can change state when it or another process executes one of the interprocess communication primitives.

Interprocess communication primitives can be used to solve such problems as the producer-consumer, dining
philosophers, and reader-writer. Even with these primitives, care has to be taken to avoid errors and
deadlocks. Many scheduling algorithms are known, including round-robin, priority scheduling, multilevel
queues, and policy-driven schedulers.

MINIX 3 supports the process concept and provides messages for interprocess communication. Messages are
not buffered, so a send succeeds only when the receiver is waiting for it. Similarly, a receive succeeds
only when a message is already available. If either operation does not succeed, the caller is blocked. MINIX 3
also provides a nonblocking supplement to messages with a notify primitive. An attempt to send a
notify to a receiver that is not waiting results in a bit being set, which triggers notification when a
receive is done later.

[Page 215]

As an example of the message flow, consider a user doing a read. The user process sends a message to the
FS requesting it. If the data are not in the FS' cache, the FS asks the driver to read it from the disk. Then the
FS blocks waiting for the data. When the disk interrupt happens, the system task is notified, allowing it to
reply to the disk driver, which then replies to the FS. At this point, the FS asks the system task to copy the
data from its cache, where the newly requested block has been placed, to the user. These steps are illustrated
in Fig. 2-46.

Process switching may follow an interrupt. When a process is interrupted, a stack is created within the process
table entry of the process, and all the information needed to restart it is put on the new stack. Any process can
be restarted by setting the stack pointer to point to its process table entry and initiating a sequence of
instructions to restore the CPU registers, culminating with an iretd instruction. The scheduler decides
which process table entry to put into the stack pointer.

Interrupts cannot occur when the kernel itself is running. If an exception occurs when the kernel is running,
the kernel stack, rather than a stack within the process table, is used. When an interrupt has been serviced, a
process is restarted.

The MINIX 3 scheduling algorithm uses multiple priority queues. System processes normally run in the
highest priority queues and user processes in lower priority queues, but priorities are assigned on a
process-by-process basis. A process stuck in a loop may have its priority temporarily reduced; the priority can
be restored when other processes have had a chance to run. The nice command can be used to change the
priority of a process within defined limits. Processes are run round robin for a quantum that can vary per
process. However, after a process has blocked and becomes ready again it will be put on the head of its queue
with just the unused part of its quantum. This is intended to give faster response to processes doing I/O.
Device drivers and servers are allowed a large quantum, as they are expected to run until they block.
However, even system processes can be preempted if they run too long.

1

1

The kernel image includes a system task which facilitates communication of user-space processes with the
kernel. It supports the servers and device drivers by performing privileged operations on their behalf. In
MINIX 3, the clock task is also compiled with the kernel. It is not a device driver in the ordinary sense.
User-space processes cannot access the clock as a device.

2

2

[Page 215 (continued)]

Problems

1. Why is multiprogramming central to the operation of a modern operating system?

2. What are the three main states that a process can be in? Describe the meaning of each
one briefly.

[Page 216]

3. Suppose that you were to design an advanced computer architecture that did process
switching in hardware, instead of having interrupts. What information would the CPU
need? Describe how the hardware process switching might work.

4. On all current computers, at least part of the interrupt handlers are written in assembly
language. Why?

5. Redraw Fig. 2-2 adding two new states: New and Terminated. When a process is created,
it is initially in the New state. When it exits, it is in the Terminated state.

6. In the text it was stated that the model of Fig. 2-6(a) was not suited to a file server using
a cache in memory. Why not? Could each process have its own cache?

7. What is the fundamental difference between a process and a thread?

8. In a system with threads, is there normally one stack per thread or one stack per process?
Explain.

9. What is a race condition?

10. Give an example of a race condition that could possibly occur when buying airplane
tickets for two people to go on a trip together.

11. Write a shell script that produces a file of sequential numbers by reading the last number
in the file, adding 1 to it, and then appending to the file. Run one instance of the script in
the background and one in the foreground, each accessing the same file. How long does
it take before a race condition manifests itself? What is the critical section? Modify the
script to prevent the race(Hint: use

In file file.lock

to lock the data file).

12. Is a statement like

In file file.lock

1

1

an effective locking mechanism for a user program like the scripts used in the previous
problem? Why (or why not)?

13. Does the busy waiting solution using the turn variable (Fig. 2-10) work when the two
processes are running on a shared-memory multiprocessor, that is, two CPUs, sharing a
common memory?

14. Consider a computer that does not have a TEST AND SET LOCK instruction but does
have an instruction to swap the contents of a register and a memory word in a single
indivisible action. Can that be used to write a routine enter_region such as the one found
in Fig. 2-12?

15. Give a sketch of how an operating system that can disable interrupts could implement
semaphores.

16. Show how counting semaphores (i.e., semaphores that can hold an arbitrarily large
value) can be implemented using only binary semaphores and ordinary machine
instructions.

[Page 217]

17. In Sec. 2.2.4, a situation with a high-priority process, H, and a low-priority process, L,
was described, which led to H looping forever. Does the same problem occur if
round-robin scheduling is used instead of priority scheduling? Discuss.

18. Synchronization within monitors uses condition variables and two special operations,
WAIT and SIGNAL. A more general form of synchronization would be to have a single
primitive, WAITUNTIL, that had an arbitrary Boolean predicate as parameter. Thus, one
could say, for example,

WAITUNTIL x < 0 or y + z < n

The SIGNAL primitive would no longer be needed. This scheme is clearly more general
than that of Hoare or Brinch Hansen, but it is not used. Why not? (Hint: think about the
implementation.)

19. A fast food restaurant has four kinds of employees: (1) order takers, who take customer's
orders; (2) cooks, who prepare the food; (3) packaging specialists, who stuff the food
into bags; and (4) cashiers, who give the bags to customers and take their money. Each
employee can be regarded as a communicating sequential process. What form of
interprocess communication do they use? Relate this model to processes in MINIX 3.

20. Suppose that we have a message-passing system using mailboxes. When sending to a
full mailbox or trying to receive from an empty one, a process does not block. Instead, it
gets an error code back. The process responds to the error code by just trying again, over
and over, until it succeeds. Does this scheme lead to race conditions?

21. In the solution to the dining philosophers problem (Fig. 2-20), why is the state variable
set to HUNGRY in the procedure take_forks?

22. Consider the procedure put_forks in Fig. 2-20. Suppose that the variable state[i] was set
to THINKING after the two calls to test, rather than before. How would this change
affect the solution for the case of 3 philosophers? For 100 philosophers?

23.

2

2

The readers and writers problem can be formulated in several ways with regard to which
category of processes can be started when. Carefully describe three different variations
of the problem, each one favoring (or not favoring) some category of processes. For each
variation, specify what happens when a reader or a writer becomes ready to access the
data base, and what happens when a process is finished using the data base.

24. The CDC 6600 computers could handle up to 10 I/O processes simultaneously using an
interesting form of round-robin scheduling called processor sharing. A process switch
occurred after each instruction, so instruction 1 came from process 1, instruction 2 came
from process 2, etc. The process switching was done by special hardware, and the
overhead was zero. If a process needed T sec to complete in the absence of competition,
how much time would it need if processor sharing was used with n processes?

25. Round- robin schedulers normally maintain a list of all runnable processes, with each
process occurring exactly once in the list. What would happen if a process occurred
twice in the list? Can you think of any reason for allowing this?

[Page 218]

26. Measurements of a certain system have shown that the average process runs for a time T
before blocking on I/O. A process switch requires a time S, which is effectively wasted
(overhead). For round-robin scheduling with quantum Q, give a formula for the CPU
efficiency for each of the following:

(a) Q =

(b) Q > T

(c) S < Q < T

(d) Q = S

(e) Q nearly 0

27. Five jobs are waiting to be run. Their expected run times are 9, 6, 3, 5, and X. In what
order should they be run to minimize average response time? (Your answer will depend
on X.)

28. Five batch jobs A through E, arrive at a computer center at almost the same time. They
have estimated running times of 10, 6, 2, 4, and 8 minutes. Their (externally determined)
priorities are 3, 5, 2, 1, and 4, respectively, with 5 being the highest priority. For each of
the following scheduling algorithms, determine the mean process turnaround time.
Ignore process switching overhead.

(a) Round robin.

(b) Priority scheduling.

(c) First-come, first-served (run in order 10, 6, 2, 4, 8).

(d) Shortest job first.

For (a), assume that the system is multiprogrammed, and that each job gets its fair share
of the CPU. For (b) through (d) assume that only one job at a time runs, until it finishes.

3

3

All jobs are completely CPU bound.

29. A process running on CTSS needs 30 quanta to complete. How many times must it be
swapped in, including the very first time (before it has run at all)?

30. The aging algorithm with a = 1/2 is being used to predict run times. The previous four
runs, from oldest to most recent, are 40, 20, 40, and 15 msec. What is the prediction of
the next time?

31. In Fig. 2-25 we saw how three-level scheduling works in a batch system. Could this idea
be applied to an interactive system without newly-arriving jobs? How?

32. Suppose that the threads of Fig. 2-28(a) are run in the order: one from A, one from B,
one from A, one from B, etc. How many possible thread sequences are there for the first
four times scheduling is done?

33. A soft real-time system has four periodic events with periods of 50, 100, 200, and 250
msec each. Suppose that the four events require 35, 20, 10, and x msec of CPU time,
respectively. What is the largest value of x for which the system is schedulable?

34. During execution, MINIX 3 maintains a variable proc_ptr that points to the process table
entry for the current process. Why?

35. MINIX 3 does not buffer messages. Explain how this design decision causes problems
with clock and keyboard interrupts.

[Page 219]

36. When a message is sent to a sleeping process in MINIX 3, the procedure ready is called
to put that process on the proper scheduling queue. This procedure starts out by disabling
interrupts. Explain.

37. The MINIX 3 procedure mini_rec contains a loop. Explain what it is for.

38. MINIX 3 essentially uses the scheduling method in Fig. 2-43, with different priorities for
classes. The lowest class (user processes) has round-robin scheduling, but the tasks and
servers always are allowed to run until they block. Is it possible for processes in the
lowest class to starve? Why (or why not)?

39. Is MINIX 3 suitable for real-time applications, such as data logging? If not, what could
be done to make it so?

40. Assume that you have an operating system that provides semaphores. Implement a
message system. Write the procedures for sending and receiving messages.

41. A student majoring in anthropology and minoring in computer science has embarked on
a research project to see if African baboons can be taught about deadlocks. He locates a
deep canyon and fastens a rope across it, so the baboons can cross handover-hand.
Several baboons can cross at the same time, provided that they are all going in the same
direction. If eastward moving and westward moving baboons ever get onto the rope at
the same time, a deadlock will result (the baboons will get stuck in the middle) because it
is impossible for one baboon to climb over another one while suspended over the
canyon. If a baboon wants to cross the canyon, he must check to see that no other baboon
is currently crossing in the opposite direction. Write a program using semaphores that
avoids deadlock. Do not worry about a series of eastward moving baboons holding up

4

4

the westward moving baboons indefinitely.

42. Repeat the previous problem, but now avoid starvation. When a baboon that wants to
cross to the east arrives at the rope and finds baboons crossing to the west, he waits until
the rope is empty, but no more westward moving baboons are allowed to start until at
least one baboon has crossed the other way.

43. Solve the dining philosophers problem using monitors instead of semaphores.

44. Add code to the MINIX 3 kernel to keep track of the number of messages sent from
process (or task) i to process (or task) j. Print this matrix when the F4 key is hit.

45. Modify the MINIX 3 scheduler to keep track of how much CPU time each user process
has had recently. When no task or server wants to run, pick the user process that has had
the smallest share of the CPU.

46. Modify MINIX 3 so that each process can explicitly set the scheduling priority of its
children using a new system call setpriority with parameters pid and priority.

47. Modify the hwint_master and hwint_slave macros in mpx386.s so the operations now
performed by the save function are performed inline. What is the cost in code size? Can
you measure an increase in performance?

48. Explain all of the items displayed by the MINIX 3 sysenv command on your MINIX 3
system. If you do not have access to a running MINIX 3 system, explain the items in Fig.
2-37.

[Page 220]

49. In the discussion of initialization of the process table we mentioned that some C
compilers may generate slightly better code if you add a constant to the array instead of
the index. Write a pair of short C programs to test this hypothesis.

50. Modify MINIX 3 to collect statistics about messages sent by whom to whom and write a
program to collect and print these statistics in a useful way.

5

5

6

6

[Page 221]

3. Input/Output

One of the main functions of an operating system is to control all the computer's I/O (Input/Output) devices. It
must issue commands to the devices, catch interrupts, and handle errors. It should also provide an interface
between the devices and the rest of the system that is simple and easy to use. To the extent possible, the
interface should be the same for all devices (device independence). The I/O code represents a significant
fraction of the total operating system. Thus to really understand what an operating system does, you have to
understand how I/O works. How the operating system manages I/O is the main subject of this chapter.

This chapter is organized as follows. First we will look at some of the principles of how I/O hardware is
organized. Then we will look at I/O software in general. I/O software can be structured in layers, with each
layer having a well-defined task to perform. We will look at these layers to see what they do and how they fit
together.

After that comes a section on deadlocks. We will define deadlocks precisely, show how they are caused, give
two models for analyzing them, and discuss some algorithms for preventing their occurrence.

Then we will move on to look at MINIX 3 We will start with a bird's-eye view of I/O in MINIX 3, including
interrupts, device drivers, device-dependent I/O and device-independent I/O. Following that introduction, we
will look at several I/O devices in detail: disks, keyboards, and displays. For each device we will look at its
hardware and software.

1

1

2

2

[Page 222]

3.1. Principles of I/O Hardware

Different people look at I/O hardware in different ways. Electrical engineers look at it in terms of
chips, wires, power supplies, motors, and all the other physical components that make up the
hardware. Programmers look at the interface presented to the softwarethe commands the hardware
accepts, the functions it carries out, and the errors that can be reported back. In this book we are
concerned with programming I/O devices, not designing, building, or maintaining them, so our
interest will be restricted to how the hardware is programmed, not how it works inside.
Nevertheless, the programming of many I/O devices is often intimately connected with their
internal operation. In the next three subsections we will provide a little general background on I/O
hardware as it relates to programming.

3.1.1. I/O Devices

I/O devices can be roughly divided into two categories: block devices and character devices. A
block device is one that stores information in fixed-size blocks, each one with its own address.
Common block sizes range from 512 bytes to 32,768 bytes. The essential property of a block device
is that it is possible to read or write each block independently of all the other ones. Disks are the
most common block devices.

If you look closely, the boundary between devices that are block addressable and those that are not
is not well defined. Everyone agrees that a disk is a block addressable device because no matter
where the arm currently is, it is always possible to seek to another cylinder and then wait for the
required block to rotate under the head. Now consider a tape drive used for making disk backups.
Tapes contain a sequence of blocks. If the tape drive is given a command to read block N, it can
always rewind the tape and go forward until it comes to block N. This operation is analogous to a
disk doing a seek, except that it takes much longer. Also, it may or may not be possible to rewrite
one block in the middle of a tape. Even if it were possible to use tapes as random access block
devices, that is stretching the point somewhat: they are not normally used that way.

The other type of I/O device is the character device. A character device delivers or accepts a stream
of characters, without regard to any block structure. It is not addressable and does not have any seek
operation. Printers, network interfaces, mice (for pointing), rats (for psychology lab experiments),
and most other devices that are not disk-like can be seen as character devices.

This classification scheme is not perfect. Some devices just do not fit in. Clocks, for example, are
not block addressable. Nor do they generate or accept character streams. All they do is cause
interrupts at well-defined intervals. Still, the model of block and character devices is general
enough that it can be used as a basis for making some of the operating system software dealing with
I/O device independent. The file system, for example, deals only with abstract block devices and
leaves the device-dependent part to lower-level software called device drivers.

[Page 223]

I/O devices cover a huge range in speeds, which puts considerable pressure on the software to
perform well over many orders of magnitude in data rates. Fig. 3-1 shows the data rates of some
common devices. Most of these devices tend to get faster as time goes on.

1

1

Figure 3-1. Some typical device, network, and bus data rates.
Device Data rate

Keyboard 10
bytes/sec

Mouse 100
bytes/sec

56K modem 7 KB/sec
Scanner 400

KB/sec
Digital camcorder 4 MB/sec
52x CD-ROM 8 MB/sec
FireWire (IEEE 1394) 50

MB/sec
USB 2.0 60

MB/sec
XGA Monitor 60

MB/sec
SONET OC-12 network 78

MB/sec
Gigabit Ethernet 125

MB/sec
Serial ATA disk 200

MB/sec
SCSI Ultrawide 4 disk 320

MB/sec
PCI bus 528

MB/sec

3.1.2. Device Controllers

I/O units typically consist of a mechanical component and an electronic component. It is often possible to
separate the two portions to provide a more modular and general design. The electronic component is called
the device controller or adapter. On personal computers, it often takes the form of a printed circuit card that
can be inserted into an expansion slot. The mechanical component is the device itself. This arrangement is
shown in Fig. 3-2

Figure 3-2. A model for connecting the CPU, memory, controllers, and I/O devices. (This item is displayed on
page 224 in the print version)

[View full size image]

2

2

The controller card usually has a connector on it, into which a cable leading to the device itself can be
plugged. Many controllers can handle two, four, or even eight identical devices. If the interface between the
controller and device is a standard interface, either an official ANSI, IEEE, or ISO standard or a de facto one,
then companies can make controllers or devices that fit that interface. Many companies, for example, make
disk drives that match the IDE (Integrated Drive Electronics) and SCSI (Small Computer System Interface)
interfaces.

[Page 224]

We mention this distinction between controller and device because the operating system nearly always deals
with the controller, not the device. Most personal computers and servers use the bus model of Fig. 3-2 for
communication between the CPU and the controllers. Large mainframes often use a different model, with
specialized I/O computers called I/O channels taking some of the load off the main CPU.

The interface between the controller and the device is often low-level. A disk, for example, might be
formatted with 1024 sectors of 512 bytes per track. What actually comes off the drive, however, is a serial bit
stream, starting with a preamble, then the 4096 bits in a sector, and finally a checksum, also called an
Error-Correcting Code (ECC). The preamble is written when the disk is formatted and contains the cylinder
and sector number, the sector size, and similar data.

The controller's job is to convert the serial bit stream into a block of bytes and perform any error correction
necessary. The block of bytes is typically first assembled, bit by bit, in a buffer inside the controller. After its
checksum has been verified and the block declared to be free of errors, it can then be copied to main memory.

The controller for a monitor also works as a bit serial device at an equally low level. It reads bytes containing
the characters to be displayed from memory and generates the signals used to modulate the CRT beam. The
controller also generates the signals for making a CRT beam do a horizontal retrace after it has finished a scan
line, as well as the signals for making it do a vertical retrace after the entire screen has been scanned. On an
LCD screen these signals select individual pixels and control their brightness, simulating the effect of the
electron beam in a CRT. If it were not for the video controller, the operating system programmer would have
to program the scanning explicitly. With the controller, the operating system initializes the controller with a
few parameters, such as the number of characters or pixels per line and number of lines per screen, and lets
the controller take care of actually driving the display.

[Page 225]

Controllers for some devices, especially disks, are becoming extremely sophisticated. For example, modern
disk controllers often have many megabytes of memory inside the controller. As a result, when a read is being
processed, as soon as the arm gets to the correct cylinder, the controller begins reading and storing data, even
if it has not yet reached the sector it needs. This cached data may come in handy for satisfying subsequent
requests. Furthermore, even after the requested data has been obtained, the controller may continue to cache
data from subsequent sectors, since they are likely to be needed later. In this manner, many disk reads can be
handled without any disk activity at all.

3.1.3. Memory-Mapped I/O

Each controller has a few registers that are used for communicating with the CPU. By writing into these
registers, the operating system can command the device to deliver data, accept data, switch itself on or off, or
otherwise perform some action. By reading from these registers, the operating system can learn what the

3

3

device's state is, whether it is prepared to accept a new command, and so on.

In addition to the control registers, many devices have a data buffer that the operating system can read and
write. For example, a common way for computers to display pixels on the screen is to have a video RAM,
which is basically just a data buffer, available for programs or the operating system to write into.

The issue thus arises of how the CPU communicates with the control registers and the device data buffers.
Two alternatives exist. In the first approach, each control register is assigned an I/O port number, an 8- or
16-bit integer. Using a special I/O instruction such as

IN REG,PORT

the CPU can read in control register PORT and store the result in CPU register REG. Similarly, using

OUT PORT,REG

the CPU can write the contents of REG to a control register. Most early computers, including nearly all
mainframes, such as the IBM 360 and all of its successors, worked this way.

In this scheme, the address spaces for memory and I/O are different, as shown in Fig. 3-3(a).

Figure 3-3. (a) Separate I/O and memory space. (b) Memory-mapped I/O. (c) Hybrid. (This item is displayed on
page 226 in the print version)

[View full size image]

On other computers, I/O registers are part of the regular memory address space, as shown in Fig. 3-3(b). This
scheme is called memory-mapped I/O, and was introduced with the PDP-11 minicomputer. Each control
register is assigned a unique memory address to which no memory is assigned. Usually, the assigned
addresses are at the top of the address space. A hybrid scheme, with memory-mapped I/O data buffers and
separate I/O ports for the control registers is shown in Fig. 3-3(c). The Pentium uses this architecture, with
addresses 640K to 1M being reserved for device data buffers in IBM PC compatibles, in addition to I/O ports
0 through 64K.

[Page 226]

How do these schemes work? In all cases, when the CPU wants to read a word, either from memory or from
an I/O port, it puts the address it needs on the address lines of the bus and then asserts a READ signal on a bus

4

4

control line. A second signal line is used to tell whether I/O space or memory space is needed. If it is memory
space, the memory responds to the request. If it is I/O space, the I/O device responds to the request. If there is
only memory space [as in Fig. 3-3(b)], every memory module and every I/O device compares the address
lines to the range of addresses that it services. If the address falls in its range, it responds to the request. Since
no address is ever assigned to both memory and an I/O device, there is no ambiguity and no conflict.

3.1.4. Interrupts

Usually, controller registers have one or more status bits that can be tested to determine if an output operation
is complete or if new data is available from an input device. A CPU can execute a loop, testing a status bit
each time until a device is ready to accept or provide new data. This is called polling or busy waiting. We saw
this concept in Sec. 2.2.3 as a possible method to deal with critical sections, and in that context it was
dismissed as something to be avoided in most circumstances. In the realm of I/O, where you might have to
wait a very long time for the outside world to accept or produce data, polling is not acceptable except for very
small dedicated systems not running multiple processes.

[Page 227]

In addition to status bits, many controllers use interrupts to tell the CPU when they are ready to have their
registers read or written. We saw how interrupts are handled by the CPU in Sec. 2.1.6. In the context of I/O,
all you need to know is that most interface devices provide an output which is logically the same as the
"operation complete" or "data ready" status bit of a register, but which is meant to be used to drive one of the
IRQ (Interrupt ReQuest) lines of the system bus. Thus when an interrupt-enabled operation completes, it
interrupts the CPU and starts the interrupt handler running. This piece of code informs the operating system
that I/O is complete. The operating system may then check the status bits to verify that all went well, and
either harvest the resulting data or initiate a retry.

The number of inputs to the interrupt controller may be limited; Pentium-class PCs have only 15 available for
I/O devices. Some controllers are hard-wired onto the system parentboard, for example, the disk and keyboard
controllers of an IBM PC. On older systems, the IRQ used by the device was set by a switch or jumper
associated with the controller. If a user bought a new plug-in board, he had to manually set the IRQ to avoid
conflicts with existing IRQs. Few users could do this correctly, which led the industry to develop Plug 'n Play,
in which the BIOS can automatically assign IRQs to devices at boot time to avoid conflicts.

3.1.5. Direct Memory Access (DMA)

Whether or not a system has memory-mapped I/O, its CPU needs to address the device controllers to
exchange data with them. The CPU can request data from an I/O controller one byte at a time but doing so for
a device like a disk that produces a large block of data wastes the CPU's time, so a different scheme, called
DMA (Direct Memory Access) is often used. The operating system can only use DMA if the hardware has a
DMA controller, which most systems do. Sometimes this controller is integrated into disk controllers and
other controllers, but such a design requires a separate DMA controller for each device. More commonly, a
single DMA controller is available (e.g., on the parentboard) for regulating transfers to multiple devices, often
concurrently.

No matter where it is physically located, the DMA controller has access to the system bus independent of the
CPU, as shown in Fig. 3-4. It contains several registers that can be written and read by the CPU. These
include a memory address register, a byte count register, and one or more control registers. The control
registers specify the I/O port to use, the direction of the transfer (reading from the I/O device or writing to the
I/O device), the transfer unit (byte at a time or word at a time), and the number of bytes to transfer in one
burst.

5

5

Figure 3-4. Operation of a DMA transfer. (This item is displayed on page 228 in the print version)

[View full size image]

To explain how DMA works, let us first look at how disk reads occur when DMA is not used. First the
controller reads the block (one or more sectors) from the drive serially, bit by bit, until the entire block is in
the controller's internal buffer. Next, it computes the checksum to verify that no read errors have occurred.
Then the controller causes an interrupt. When the operating system starts running, it can read the disk block
from the controller's buffer a byte or a word at a time by executing a loop, with each iteration reading one byte
or word from a controller device register, storing it in main memory, incrementing the memory address, and
decrementing the count of items to be read until it reaches zero.

[Page 228]

When DMA is used, the procedure is different. First the CPU programs the DMA controller by setting its
registers so it knows what to transfer where (step 1 in Fig. 3-4). It also issues a command to the disk controller
telling it to read data from the disk into its internal buffer and verify the checksum. When valid data are in the
disk controller's buffer, DMA can begin.

The DMA controller initiates the transfer by issuing a read request over the bus to the disk controller (step 2).
This read request looks like any other read request, and the disk controller does not know or care whether it
came from the CPU or from a DMA controller. Typically, the memory address to write to is on the address
lines of the bus so when the disk controller fetches the next word from its internal buffer, it knows where to
write it. The write to memory is another standard bus cycle (step 3). When the write is complete, the disk
controller sends an acknowledgement signal to the disk controller, also over the bus (step 4). The DMA
controller then increments the memory address to use and decrements the byte count. If the byte count is still
greater than 0, steps 2 through 4 are repeated until the count reaches 0. At this point the controller causes an
interrupt. When the operating system starts up, it does not have to copy the block to memory; it is already
there.

You may be wondering why the controller does not just store the bytes in main memory as soon as it gets
them from the disk. In other words, why does it need an internal buffer? There are two reasons. First, by doing
internal buffering, the disk controller can verify the checksum before starting a transfer. If the checksum is
incorrect, an error is signaled and no transfer to memory is done.

[Page 229]

6

6

The second reason is that once a disk transfer has started, the bits keep arriving from the disk at a constant
rate, whether the controller is ready for them or not. If the controller tried to write data directly to memory, it
would have to go over the system bus for each word transferred. If the bus were busy due to some other
device using it, the controller would have to wait. If the next disk word arrived before the previous one had
been stored, the controller would have to store it somewhere. If the bus were very busy, the controller might
end up storing quite a few words and having a lot of administration to do as well. When the block is buffered
internally, the bus is not needed until the DMA begins, so the design of the controller is much simpler because
the DMA transfer to memory is not time critical.

Not all computers use DMA. The argument against it is that the main CPU is often far faster than the DMA
controller and can do the job much faster (when the limiting factor is not the speed of the I/O device). If there
is no other work for it to do, having the (fast) CPU wait for the (slow) DMA controller to finish is pointless.
Also, getting rid of the DMA controller and having the CPU do all the work in software saves money,
important on low-end (embedded) computers.

7

7

8

8

[Page 229 (continued)]

3.2. Principles of I/O Software

Let us now turn away from the I/O hardware and look at the I/O software. First we will look at the goals of the
I/O software and then at the different ways I/O can be done from the point of view of the operating system.

3.2.1. Goals of the I/O Software

A key concept in the design of I/O software is device independence. What this means is that it should be
possible to write programs that can access any I/O device without having to specify the device in advance. For
example, a program that reads a file as input should be able to read a file on a floppy disk, on a hard disk, or
on a CD-ROM, without having to modify the program for each different device. Similarly, one should be able
to type a command such as

sort <input >output

and have it work with input coming from a floppy disk, an IDE disk, a SCSI disk, or the keyboard, and the
output going to any kind of disk or the screen. It is up to the operating system to take care of the problems
caused by the fact that these devices really are different and require very different command sequences to read
or write.

Closely related to device independence is the goal of uniform naming. The name of a file or a device should
simply be a string or an integer and not depend on the device in any way. In UNIX and MINIX 3, all disks can
be integrated into the file system hierarchy in arbitrary ways so the user need not be aware of which name
corresponds to which device. For example, a floppy disk can be mounted on top of the directory
/usr/ast/backup so that copying a file to that directory copies the file to the diskette. In this way, all files and
devices are addressed the same way: by a path name.

[Page 230]

Another important issue for I/O software is error handling. In general, errors should be handled as close to the
hardware as possible. If the controller discovers a read error, it should try to correct the error itself if it can. If
it cannot, then the device driver should handle it, perhaps by just trying to read the block again. Many errors
are transient, such as read errors caused by specks of dust on the read head, and will go away if the operation
is repeated. Only if the lower layers are not able to deal with the problem should the upper layers be told about
it. In many cases, error recovery can be done transparently at a low level without the upper levels even
knowing about the error.

Still another key issue is synchronous (blocking) versus asynchronous (interrupt-driven) transfers. Most
physical I/O is asynchronousthe CPU starts the transfer and goes off to do something else until the interrupt
arrives. User programs are much easier to write if the I/O operations are blockingafter a receive system call
the program is automatically suspended until the data are available in the buffer. It is up to the operating
system to make operations that are actually interrupt-driven look blocking to the user programs.

Another issue for the I/O software is buffering. Often data that come off a device cannot be stored directly in
its final destination. For example, when a packet comes in off the network, the operating system does not
know where to put it until it has stored the packet somewhere and examined it. Also, some devices have

1

1

severe real-time constraints (for example, digital audio devices), so the data must be put into an output buffer
in advance to decouple the rate at which the buffer is filled from the rate at which it is emptied, in order to
avoid buffer under-runs. Buffering involves considerable copying and often has a major impact on I/O
performance.

The final concept that we will mention here is sharable versus dedicated devices. Some I/O devices, such as
disks, can be used by many users at the same time. No problems are caused by multiple users having open
files on the same disk at the same time. Other devices, such as tape drives, have to be dedicated to a single
user until that user is finished. Then another user can have the tape drive. Having two or more users writing
blocks intermixed at random to the same tape will definitely not work. Introducing dedicated (unshared)
devices also introduces a variety of problems, such as deadlocks. Again, the operating system must be able to
handle both shared and dedicated devices in a way that avoids problems.

I/O software is often organized in four layers, as shown in Fig. 3-5. In the following subsections we will look
at each in turn, starting at the bottom. The emphasis in this chapter is on the device drivers (layer 2), but we
will summarize the rest of the I/O software to show how the pieces of the I/O system fit together.

[Page 231]

Figure 3-5. Layers of the I/O software system.

3.2.2. Interrupt Handlers

Interrupts are an unpleasant fact of life; although they cannot be avoided, they should be hidden away, deep in
the bowels of the operating system, so that as little of the operating system as possible knows about them. The
best way to hide them is to have the driver starting an I/O operation block until the I/O has completed and the
interrupt occurs. The driver can block itself by doing a down on a semaphore, a wait on a condition
variable, a receive on a message, or something similar, for example.

When the interrupt happens, the interrupt procedure does whatever it has to in order to handle the interrupt.
Then it can unblock the driver that started it. In some cases it will just complete up on a semaphore. In others
it will do a signal on a condition variable in a monitor. In still others, it will send a message to the blocked
driver. In all cases the net effect of the interrupt will be that a driver that was previously blocked will now be
able to run. This model works best if drivers are structured as independent processes, with their own states,
stacks, and program counters.

2

2

3.2.3. Device Drivers

Earlier in this chapter we saw that each device controller has registers used to give it commands or to read out
its status or both. The number of registers and the nature of the commands vary radically from device to
device. For example, a mouse driver has to accept information from the mouse telling how far it has moved
and which buttons are currently depressed. In contrast, a disk driver has to know about sectors, tracks,
cylinders, heads, arm motion, motor drives, head settling times, and all the other mechanics of making the
disk work properly. Obviously, these drivers will be very different.

Thus, each I/O device attached to a computer needs some device-specific code for controlling it. This code,
called the device driver, is generally written by the device's manufacturer and delivered along with the device
on a CD-ROM. Since each operating system needs its own drivers, device manufacturers commonly supply
drivers for several popular operating systems.

[Page 232]

Each device driver normally handles one device type, or one class of closely related devices. For example, it
would probably be a good idea to have a single mouse driver, even if the system supports several different
brands of mice. As another example, a disk driver can usually handle multiple disks of different sizes and
different speeds, and perhaps a CD-ROM as well. On the other hand, a mouse and a disk are so different that
different drivers are necessary.

In order to access the device's hardware, meaning the controller's registers, the device driver traditionally has
been part of the system kernel. This approach gives the best performance and the worst reliability since a bug
in any device driver can crash the entire system. MINIX 3 departs from this model in order to enhance
reliability. As we shall see, in MINIX 3 each device driver is now a separate user-mode process.

As we mentioned earlier, operating systems usually classify drivers as block devices, such as disks, or
character devices, such as keyboards and printers. Most operating systems define a standard interface that all
block drivers must support and a second standard interface that all character drivers must support. These
interfaces consist of a number of procedures that the rest of the operating system can call to get the driver to
do work for it.

In general terms, the job of a device driver is to accept abstract requests from the device-independent software
above it and see to it that the request is executed. A typical request to a disk driver is to read block n. If the
driver is idle at the time a request comes in, it starts carrying out the request immediately. If, however, it is
already busy with a request, it will normally enter the new request into a queue of pending requests to be dealt
with as soon as possible.

The first step in actually carrying out an I/O request is to check that the input parameters are valid and to
return an error if they are not. If the request is valid the next step is to translate it from abstract to concrete
terms. For a disk driver, this means figuring out where on the disk the requested block actually is, checking to
see if the drive's motor is running, determining if the arm is positioned on the proper cylinder, and so on. In
short, the driver must decide which controller operations are required and in what sequence.

Once the driver has determined which commands to issue to the controller, it starts issuing them by writing
into the controller's device registers. Simple controllers can handle only one command at a time. More
sophisticated controllers are willing to accept a linked list of commands, which they then carry out by
themselves without further help from the operating system.

After the command or commands have been issued, one of two situations will apply. In many cases the device
driver must wait until the controller does some work for it, so it blocks itself until the interrupt comes in to
unblock it. In other cases, however, the operation finishes without delay, so the driver need not block. As an

3

3

example of the latter situation, scrolling the screen on some graphics cards requires just writing a few bytes
into the controller's registers. No mechanical motion is needed, so the entire operation can be completed in a
few microseconds.

[Page 233]

In the former case, the blocked driver will be awakened by the interrupt. In the latter case, it will never go to
sleep. Either way, after the operation has been completed, it must check for errors. If everything is all right,
the driver may have data to pass to the device-independent software (e.g., a block just read). Finally, it returns
some status information for error reporting back to its caller. If any other requests are queued, one of them can
now be selected and started. If nothing is queued, the driver blocks waiting for the next request.

Dealing with requests for reading and writing is the main function of a driver, but there may be other
requirements. For instance, the driver may need to initialize a device at system startup or the first time it is
used. Also, there may be a need to manage power requirements, handle Plug 'n Play, or log events.

3.2.4. Device-Independent I/O Software

Although some of the I/O software is device specific, a large fraction of it is device independent. The exact
boundary between the drivers and the device-independent software is system dependent, because some
functions that could be done in a device-independent way may actually be done in the drivers, for efficiency
or other reasons. The functions shown in Fig. 3-6 are typically done in the device-independent software. In
MINIX 3, most of the device-independent software is part of the file system. Although we will study the file
system in Chap. 5, we will take a quick look at the device-independent software here, to provide some
perspective on I/O and show better where the drivers fit in.

Figure 3-6. Functions of the device-independent I/O software.
Uniform interfacing for device drivers
Buffering
Error reporting
Allocating and releasing dedicated devices
Providing a device-independent block size

The basic function of the device-independent software is to perform the I/O functions that are common to all
devices and to provide a uniform interface to the user-level software. Below we will look at the above issues
in more detail.

Uniform Interfacing for Device Drivers

A major issue in an operating system is how to make all I/O devices and drivers look more-or-less the same. If
disks, printers, monitors, keyboards, etc., are all interfaced in different ways, every time a new peripheral
device comes along, the operating system must be modified for the new device. In Fig. 3-7(a) we illustrate
symbolically a situation in which each device driver has a different interface to the operating system. In
contrast, in Fig. 3-7(b), we show a different design in which all drivers have the same interface.

[Page 234]

4

4

Figure 3-7. (a) Without a standard driver interface. (b) With a standard driver interface.

[View full size image]

With a standard interface it is much easier to plug in a new driver, providing it conforms to the driver
interface. It also means that driver writers know what is expected of them (e.g., what functions they must
provide and what kernel functions they may call). In practice, not all devices are absolutely identical, but
usually there are only a small number of device types and even these are generally almost the same. For
example, even block and character devices have many functions in common.

Another aspect of having a uniform interface is how I/O devices are named. The device-independent software
takes care of mapping symbolic device names onto the proper driver. For example, in UNIX and MINIX 3 a
device name, such as /dev/disk0, uniquely specifies the i-node for a special file, and this i-node contains the
major device number, which is used to locate the appropriate driver. The inode also contains the minor device
number, which is passed as a parameter to the driver in order to specify the unit to be read or written. All
devices have major and minor numbers, and all drivers are accessed by using the major device number to
select the driver.

Closely related to naming is protection. How does the system prevent users from accessing devices that they
are not entitled to access? In UNIX, MINIX 3, and also in later Windows versions such as Windows 2000 and
Windows XP, devices appear in the file system as named objects, which means that the usual protection rules
for files also apply to I/O devices. The system administrator can then set the proper permissions (i.e., in UNIX
the rwx bits) for each device.

[Page 235]

Buffering

Buffering is also an issue for both block and character devices. For block devices, the hardware generally
insists upon reading and writing entire blocks at once, but user processes are free to read and write in arbitrary
units. If a user process writes half a block, the operating system will normally keep the data around internally
until the rest of the data are written, at which time the block can go out to the disk. For character devices,
users can write data to the system faster than it can be output, necessitating buffering. Keyboard input that
arrives before it is needed also requires buffering.

Error Reporting

Errors are far more common in the context of I/O than in any other context. When they occur, the operating
system must handle them as best it can. Many errors are device-specific, so only the driver knows what to do

5

5

(e.g., retry, ignore, or panic). A typical error is caused by a disk block that has been damaged and cannot be
read any more. After the driver has tried to read the block a certain number of times, it gives up and informs
the device-independent software. How the error is treated from here on is device independent. If the error
occurred while reading a user file, it may be sufficient to report the error back to the caller. However, if it
occurred while reading a critical system data structure, such as the block containing the bitmap showing
which blocks are free, the operating system may have to display an error message and terminate.

Allocating and Releasing Dedicated Devices

Some devices, such as CD-ROM recorders, can be used only by a single process at any given moment. It is up
to the operating system to examine requests for device usage and accept or reject them, depending on whether
the requested device is available or not. A simple way to handle these requests is to require processes to
perform opens on the special files for devices directly. If the device is unavailable, the open fails. Closing
such a dedicated device then releases it.

Device-Independent Block Size

Not all disks have the same sector size. It is up to the device-independent software to hide this fact and
provide a uniform block size to higher layers, for example, by treating several sectors as a single logical
block. In this way, the higher layers only deal with abstract devices that all use the same logical block size,
independent of the physical sector size. Similarly, some character devices deliver their data one byte at a time
(e.g., modems), while others deliver theirs in larger units (e.g., network interfaces). These differences may
also be hidden.

[Page 236]

3.2.5. User-Space I/O Software

Although most of the I/O software is within the operating system, a small portion of it consists of libraries
linked together with user programs, and even whole programs running outside the kernel. System calls,
including the I/O system calls, are normally made by library procedures. When a C program contains the call

count = write(fd, buffer, nbytes);

the library procedure write will be linked with the program and contained in the binary program present in
memory at run time. The collection of all these library procedures is clearly part of the I/O system.

While these procedures do little more than put their parameters in the appropriate place for the system call,
there are other I/O procedures that actually do real work. In particular, formatting of input and output is done
by library procedures. One example from C is printf, which takes a format string and possibly some variables
as input, builds an ASCII string, and then calls write to output the string. As an example of printf, consider
the statement

printf("The square of %3d is %6d\n", i, i*i);

It formats a string consisting of the 14-character string "The square of" followed by the value i as a
3-character string, then the 4-character string "is", then i2 as six characters, and finally a line feed.

6

6

An example of a similar procedure for input is scanf which reads input and stores it into variables described in
a format string using the same syntax as printf. The standard I/O library contains a number of procedures that
involve I/O and all run as part of user programs.

Not all user-level I/O software consists of library procedures. Another important category is the spooling
system. Spooling is a way of dealing with dedicated I/O devices in a multiprogramming system. Consider a
typical spooled device:a printer. Although it would be technically simple to let any user process open the
character special file for the printer, suppose a process opened it and then did nothing for hours? No other
process could print anything.

Instead what is done is to create a special process, called a daemon, and a special directory, called a spooling
directory. To print a file, a process first generates the entire file to be printed and puts it in the spooling
directory. It is up to the daemon, which is the only process having permission to use the printer's special file,
to print the files in the directory. By protecting the special file against direct use by users, the problem of
having someone keeping it open unnecessarily long is eliminated.

Spooling is used not only for printers, but also in various other situations. For example, electronic mail
usually uses a daemon. When a message is submitted it is put in a mail spool directory. Later on the mail
daemon tries to send it. At any given instant of time a particular destination may be temporarily unreachable,
so the daemon leaves the message in the spool with status information indicating it should be tried again in a
while. The daemon may also send a message back to the sender saying delivery is delayed, or, after a delay of
hours or days, saying the message cannot be delivered. All of this is outside the operating system.

[Page 237]

Figure 3-8 summarizes the I/O system, showing the layers and principal functions of each layer. Starting at
the bottom, the layers are the hardware, interrupt handlers, device drivers, device-independent software, and
the user processes.

Figure 3-8. Layers of the I/O system and the main functions of each layer.

[View full size image]

The arrows in Fig. 3-8 show the flow of control. When a user program tries to read a block from a file, for
example, the operating system is invoked to carry out the call. The device-independent software looks for it in
the buffer cache, for example. If the needed block is not there, it calls the device driver to issue the request to
the hardware to go get it from the disk. The process is then blocked until the disk operation has been
completed.

7

7

When the disk is finished, the hardware generates an interrupt. The interrupt handler is run to discover what
has happened, that is, which device wants attention right now. It then extracts the status from the device and
wakes up the sleeping process to finish off the I/O request and let the user process continue.

8

8

[Page 237 (continued)]

3.3. Deadlocks

Computer systems are full of resources that can only be used by one process at a time. Common
examples include printers, tape drives, and slots in the system's internal tables. Having two
processes simultaneously writing to the printer leads to gibberish. Having two processes using
the same file system table slot will invariably lead to a corrupted file system. Consequently, all
operating systems have the ability to (temporarily) grant a process exclusive access to certain
resources, both hardware and software.

[Page 238]

For many applications, a process needs exclusive access to not one resource, but several.
Suppose, for example, two processes each want to record a scanned document on a CD. Process
A requests permission to use the scanner and is granted it. Process B is programmed differently
and requests the CD recorder first and is also granted it. Now A asks for the CD recorder, but the
request is denied until B releases it. Unfortunately, instead of releasing the CD recorder B asks
for the scanner. At this point both processes are blocked and will remain so forever. This
situation is called a deadlock.

Deadlocks can occur in a variety of situations besides requesting dedicated I/O devices. In a
database system, for example, a program may have to lock several records it is using, to avoid
race conditions. If process A locks record R1 and process B locks record R2, and then each
process tries to lock the other one's record, we also have a deadlock. Thus deadlocks can occur
on hardware resources or on software resources.

In this section, we will look at deadlocks more closely, see how they arise, and study some ways
of preventing or avoiding them. Although this material is about deadlocks in the context of
operating systems, they also occur in database systems and many other contexts in computer
science, so this material is actually applicable to a wide variety of multiprocess systems.

3.3.1. Resources

Deadlocks can occur when processes have been granted exclusive access to devices, files, and so
forth. To make the discussion of deadlocks as general as possible, we will refer to the objects
granted as resources. A resource can be a hardware device (e.g., a tape drive) or a piece of
information (e.g., a locked record in a database). A computer will normally have many different
resources that can be acquired. For some resources, several identical instances may be available,
such as three tape drives. When interchangeable copies of a resource are available, called
fungible resources[], any one of them can be used to satisfy any request for the resource. In
short, a resource is anything that can be used by only a single process at any instant of time.

[] This is a legal and financial term. Gold is fungible: one gram of gold is as
good as any other.

Resources come in two types: preemptable and nonpreemptable.A preemptable resource is one
that can be taken away from the process owning it with no ill effects. Memory is an example of a
preemptable resource. Consider, for example, a system with 64 MB of user memory, one printer,
and two 64-MB processes that each want to print something. Process A requests and gets the

1

1

printer, then starts to compute the values to print. Before it has finished with the computation, it
exceeds its time quantum and is swapped or paged out.

Process B now runs and tries, unsuccessfully, to acquire the printer. Potentially, we now have a
deadlock situation, because A has the printer and B has the memory, and neither can proceed
without the resource held by the other. Fortunately, it is possible to preempt (take away) the
memory from B by swapping it out and swapping A in. Now A can run, do its printing, and then
release the printer. No deadlock occurs.

[Page 239]

A nonpreemptable resource, in contrast, is one that cannot be taken away from its current owner
without causing the computation to fail. If a process has begun to burn a CD-ROM, suddenly
taking the CD recorder away from it and giving it to another process will result in a garbled CD.
CD recorders are not preemptable at an arbitrary moment.

In general, deadlocks involve nonpreemptable resources. Potential deadlocks that involve
preemptable resources can usually be resolved by reallocating resources from one process to
another. Thus our treatment will focus on nonpreemptable resources.

The sequence of events required to use a resource is given below in an abstract form.

1. Request the
resource.

2. Use the resource.

3. Release the
resource.

If the resource is not available when it is requested, the requesting process is forced to wait. In
some operating systems, the process is automatically blocked when a resource request fails, and
awakened when it becomes available. In other systems, the request fails with an error code, and it
is up to the calling process to wait a little while and try again.

3.3.2. Principles of Deadlock

Deadlock can be defined formally as follows:

A set of processes is deadlocked if each process in the set is waiting for an event
that only another process in the set can cause.

Because all the processes are waiting, none of them will ever cause any of the events that could
wake up any of the other members of the set, and all the processes continue to wait forever. For
this model, we assume that processes have only a single thread and that there are no interrupts
possible to wake up a blocked process. The no-interrupts condition is needed to prevent an
otherwise deadlocked process from being awakened by, say, an alarm, and then causing events
that release other processes in the set.

In most cases, the event that each process is waiting for is the release of some resource currently
possessed by another member of the set. In other words, each member of the set of deadlocked

2

2

processes is waiting for a resource that is owned by a deadlocked process. None of the processes
can run, none of them can release any resources, and none of them can be awakened. The number
of processes and the number and kind of resources possessed and requested are unimportant. This
result holds for any kind of resource, including both hardware and software.

[Page 240]

Conditions for Deadlock

Coffman et al. (1971) showed that four conditions must hold for there to be a deadlock:

1. Mutual exclusion condition. Each resource is either currently assigned to exactly one
process or is available.

2. Hold and wait condition. Processes currently holding resources that were granted
earlier can request new resources.

3. No preemption condition. Resources previously granted cannot be forcibly taken away
from a process. They must be explicitly released by the process holding them.

4. Circular wait condition. There must be a circular chain of two or more processes, each
of which is waiting for a resource held by the next member of the chain.

All four of these conditions must be present for a deadlock to occur. If one of them is absent, no
deadlock is possible.

In a series of papers, Levine (2003a, 2003b, 2005) points out there are various situations called
deadlock in the literature, and that Coffman et al.'s conditions apply only to what should properly
be called resource deadlock. The literature contains examples of "deadlock" that do not really
meet all of these conditions. For instance, if four vehicles arrive simultaneously at a crossroad
and try to obey the rule that each should yield to the vehicle on the right, none can proceed, but
this is not a case where one process already has possession of a unique resource. Rather, this
problem is a "scheduling deadlock" which can be resolved by a decision about priorities imposed
from outside by a policeman.

It is worth noting that each condition relates to a policy that a system can have or not have. Can a
given resource be assigned to more than one process at once? Can a process hold a resource and
ask for another? Can resources be preempted? Can circular waits exist? Later on we will see how
deadlocks can be attacked by trying to negate some of these conditions.

Deadlock Modeling

Holt (1972) showed how these four conditions can be modeled using directed graphs. The graphs
have two kinds of nodes: processes, shown as circles, and resources, shown as squares. An arc
from a resource node (square) to a process node (circle) means that the resource has previously
been requested by, granted to, and is currently held by that process. In Fig. 3-9(a), resource R is
currently assigned to process A.

[Page 241]

3

3

Figure 3-9. Resource allocation graphs. (a) Holding a resource. (b) Requesting a resource. (c)
Deadlock.

An arc from a process to a resource means that the process is currently blocked waiting for that
resource. In Fig. 3-9(b), process B is waiting for resource S. In Fig. 3-9(c) we see a deadlock:
process C is waiting for resource T, which is currently held by process D. Process D is not about
to release resource T because it is waiting for resource U, held by C. Both processes will wait
forever. A cycle in the graph means that there is a deadlock involving the processes and
resources in the cycle (assuming that there is one resource of each kind). In this example, the
cycle is CTDUC.

Now let us see how resource graphs can be used. Imagine that we have three processes, A, B, and
C, and three resources, R, S, and T. The requests and releases of the three processes are given in
Fig. 3-10(a)-(c). The operating system is free to run any unblocked process at any instant, so it
could decide to run A until A finished all its work, then run B to completion, and finally run C.

Figure 3-10. An example of how deadlock occurs and how it can be avoided. (This item is displayed
on page 243 in the print version)

[View full size image]

4

4

This ordering does not lead to any deadlocks (because there is no competition for resources) but
it also has no parallelism at all. In addition to requesting and releasing resources, processes
compute and do I/O. When the processes are run sequentially, there is no possibility that while
one process is waiting for I/O, another can use the CPU. Thus running the processes strictly
sequentially may not be optimal. On the other hand, if none of the processes do any I/O at all,
shortest job first is better than round robin, so under some circumstances running all processes
sequentially may be the best way.

Let us now suppose that the processes do both I/O and computing, so that round robin is a
reasonable scheduling algorithm. The resource requests might occur in the order of Fig. 3-10(d).

5

5

If these six requests are carried out in that order, the six resulting resource graphs are shown in
Fig. 3-10(e)-(j). After request 4 has been made, A blocks waiting for S, as shown in Fig. 3-10(h).
In the next two steps B and C also block, ultimately leading to a cycle and the deadlock of Fig.
3-10(j). From this point on, the system is frozen.

[Page 242]

However, as we have already mentioned, the operating system is not required to run the
processes in any special order. In particular, if granting a particular request might lead to
deadlock, the operating system can simply suspend the process without granting the request (i.e.,
just not schedule the process) until it is safe. In Fig. 3-10, if the operating system knew about the
impending deadlock, it could suspend B instead of granting it S. By running only A and C, we
would get the requests and releases of Fig. 3-10(k) instead of Fig. 3-10(d). This sequence leads to
the resource graphs of Fig. 3-10(l)-(q), which do not lead to deadlock.

After step (q), process B can be granted S because A is finished and C has everything it needs.
Even if B should eventually block when requesting T, no deadlock can occur. B will just wait
until C is finished.

Later in this chapter we will study a detailed algorithm for making allocation decisions that do
not lead to deadlock. For the moment, the point to understand is that resource graphs are a tool
that let us see if a given request/release sequence leads to deadlock. We just carry out the
requests and releases step by step, and after every step check the graph to see if it contains any
cycles. If so, we have a deadlock; if not, there is no deadlock. Although our treatment of resource
graphs has been for the case of a single resource of each type, resource graphs can also be
generalized to handle multiple resources of the same type (Holt, 1972). However, Levine (2003a,
2003b) points out that with fungible resources this can get very complicated indeed. If even one
branch of the graph is not part of a cycle, that is, if one process which is not deadlocked holds a
copy of one of the resources, then deadlock may not occur.

In general, four strategies are used for dealing with deadlocks.

1. Just ignore the problem altogether. Maybe if you ignore it, it will ignore you.

2. Detection and recovery. Let deadlocks occur, detect them, and take action.

3. Dynamic avoidance by careful resource allocation.

4. Prevention, by structurally negating one of the four conditions necessary to cause a
deadlock.

We will examine each of these methods in turn in the next four sections.

3.3.3. The Ostrich Algorithm

The simplest approach is the ostrich algorithm: stick your head in the sand and pretend there is
no problem at all.[] Different people react to this strategy in very different ways.
Mathematicians find it completely unacceptable and say that deadlocks must be prevented at all
costs. Engineers ask how often the problem is expected, how often the system crashes for other
reasons, and how serious a deadlock is. If deadlocks occur on the average once every five years,

6

6

but system crashes due to hardware failures, compiler errors, and operating system bugs occur
once a week, most engineers would not be willing to pay a large penalty in performance or
convenience to eliminate deadlocks.

[] Actually, this bit of folklore is nonsense. Ostriches can run at 60 km/hour and
their kick is powerful enough to kill any lion with visions of a big chicken
dinner.

[Page 244]

To make this contrast more specific, UNIX (and MINIX 3) potentially suffer from deadlocks that
are not even detected, let alone automatically broken. The total number of processes in a system
is determined by the number of entries in the process table. Thus process table slots are finite
resources. If a fork fails because the table is full, a reasonable approach for the program doing
the fork is to wait a random time and try again.

Now suppose that a MINIX 3 system has 100 process slots. Ten programs are running, each of
which needs to create 12 (sub)processes. After each process has created 9 processes, the 10
original processes and the 90 new processes have exhausted the table. Each of the 10 original
processes now sits in an endless loop forking and failinga deadlock. The probability of this
happening is minuscule, but it could happen. Should we abandon processes and the fork call to
eliminate the problem?

The maximum number of open files is similarly restricted by the size of the inode table, so a
similar problem occurs when it fills up. Swap space on the disk is another limited resource. In
fact, almost every table in the operating system represents a finite resource. Should we abolish all
of these because it might happen that a collection of n processes might each claim 1 /n of the
total, and then each try to claim another one?

Most operating systems, including UNIX, MINIX 3, and Windows, just ignore the problem on
the assumption that most users would prefer an occasional deadlock to a rule restricting all users
to one process, one open file, and one of everything. If deadlocks could be eliminated for free,
there would not be much discussion. The problem is that the price is high, mostly in terms of
putting inconvenient restrictions on processes, as we will see shortly. Thus we are faced with an
unpleasant trade-off between convenience and correctness, and a great deal of discussion about
which is more important, and to whom. Under these conditions, general solutions are hard to
find.

3.3.4. Detection and Recovery

A second technique is detection and recovery. When this technique is used, the system does not
do anything except monitor the requests and releases of resources. Every time a resource is
requested or released, the resource graph is updated, and a check is made to see if any cycles
exist. If a cycle exists, one of the processes in the cycle is killed. If this does not break the
deadlock, another process is killed, and so on until the cycle is broken.

[Page 245]

A somewhat cruder method is not even to maintain the resource graph but instead periodically to
check to see if there are any processes that have been continuously blocked for more than say, 1
hour. Such processes are then killed.

7

7

Detection and recovery is the strategy often used on large mainframe computers, especially batch
systems in which killing a process and then restarting it is usually acceptable. Care must be taken
to restore any modified files to their original state, however, and undo any other side effects that
may have occurred.

3.3.5. Deadlock Prevention

The third deadlock strategy is to impose suitable restrictions on processes so that deadlocks are
structurally impossible. The four conditions stated by Coffman et al. (1971) provide a clue to
some possible solutions.

First let us attack the mutual exclusion condition. If no resource were ever assigned exclusively
to a single process, we would never have deadlocks. However, it is equally clear that allowing
two processes to write on the printer at the same time will lead to chaos. By spooling printer
output, several processes can generate output at the same time. In this model, the only process
that actually requests the physical printer is the printer daemon. Since the daemon never requests
any other resources, we can eliminate deadlock for the printer.

Unfortunately, not all devices can be spooled (the process table does not lend itself well to being
spooled). Furthermore, competition for disk space for spooling can itself lead to deadlock. What
would happen if two processes each filled up half of the available spooling space with output and
neither was finished producing output? If the daemon was programmed to begin printing even
before all the output was spooled, the printer might lie idle if an output process decided to wait
several hours after the first burst of output. For this reason, daemons are normally programmed to
print only after the complete output file is available. In this case we have two processes that have
each finished part, but not all, of their output, and cannot continue. Neither process will ever
finish, so we have a deadlock on the disk.

The second of the conditions stated by Coffman et al. looks slightly more promising. If we can
prevent processes that hold resources from waiting for more resources, we can eliminate
deadlocks. One way to achieve this goal is to require all processes to request all their resources
before starting execution. If everything is available, the process will be allocated whatever it
needs and can run to completion. If one or more resources are busy, nothing will be allocated and
the process would just wait.

An immediate problem with this approach is that many processes do not know how many
resources they will need until after they have started running. Another problem is that resources
will not be used optimally with this approach. Take, as an example, a process that reads data
from an input tape, analyzes it for an hour, and then writes an output tape as well as plotting the
results. If all resources must be requested in advance, the process will tie up the output tape drive
and the plotter for an hour.

[Page 246]

A slightly different way to break the hold-and-wait condition is to require a process requesting a
resource to first temporarily release all the resources it currently holds. Then it tries to get
everything it needs all at once.

Attacking the third condition (no preemption) is even less promising than attacking the second
one. If a process has been assigned the printer and is in the middle of printing its output, forcibly
taking away the printer because a needed plotter is not available is tricky at best and impossible
at worst.

8

8

Only one condition is left. The circular wait can be eliminated in several ways. One way is
simply to have a rule saying that a process is entitled only to a single resource at any moment. If
it needs a second one, it must release the first one. For a process that needs to copy a huge file
from a tape to a printer, this restriction is unacceptable.

Another way to avoid the circular wait is to provide a global numbering of all the resources, as
shown in Fig. 3-11(a). Now the rule is this: processes can request resources whenever they want
to, but all requests must be made in numerical order. A process may request first a scanner and
then a tape drive, but it may not request first a plotter and then a scanner.

Figure 3-11. (a) Numerically ordered resources. (b) A resource graph.

With this rule, the resource allocation graph can never have cycles. Let us see why this is true for
the case of two processes, in Fig. 3-11(b). We can get a deadlock only if A requests resource j
and B requests resource i. Assuming i and j are distinct resources, they will have different
numbers. If i > j, then A is not allowed to request j because that is lower than what it already has.
If i < j, then B is not allowed to request i because that is lower than what it already has. Either
way, deadlock is impossible.

With multiple processes, the same logic holds. At every instant, one of the assigned resources
will be highest. The process holding that resource will never ask for a resource already assigned.
It will either finish, or at worst, request even higher numbered resources, all of which are
available. Eventually, it will finish and free its resources. At this point, some other process will
hold the highest resource and can also finish. In short, there exists a scenario in which all
processes finish, so no deadlock is present.

[Page 247]

A minor variation of this algorithm is to drop the requirement that resources be acquired in
strictly increasing sequence and merely insist that no process request a resource lower than what
it is already holding. If a process initially requests 9 and 10, and then releases both of them, it is
effectively starting all over, so there is no reason to prohibit it from now requesting resource 1.

Although numerically ordering the resources eliminates the problem of deadlocks, it may be
impossible to find an ordering that satisfies everyone. When the resources include process table
slots, disk spooler space, locked database records, and other abstract resources, the number of
potential resources and different uses may be so large that no ordering could possibly work. Also,
as Levine (2005) points out, ordering resources negates fungibilitya perfectly good and available
copy of a resource could be inaccessible with such a rule.

The various approaches to deadlock prevention are summarized in Fig. 3-12.

9

9

Figure 3-12. Summary of approaches to deadlock prevention.
Condition Approach

Mutual exclusion Spool
everything

Hold and wait Request all
resources
initially

No preemption Take
resources
away

Circular wait Order
resources
numerically

3.3.6. Deadlock Avoidance

In Fig. 3-10 we saw that deadlock was avoided not by imposing arbitrary rules on processes but by carefully
analyzing each resource request to see if it could be safely granted. The question arises: is there an algorithm
that can always avoid deadlock by making the right choice all the time? The answer is a qualified yes we can
avoid deadlocks, but only if certain information is available in advance. In this section we examine ways to
avoid deadlock by careful resource allocation.

The Banker's Algorithm for a Single Resource

A scheduling algorithm that can avoid deadlocks is due to Dijkstra (1965) and is known as the banker's
algorithm. It is modeled on the way a small-town banker might deal with a group of customers to whom he
has granted lines of credit. The banker does not necessarily have enough cash on hand to lend every customer
the full amount of each one's line of credit at the same time. In Fig. 3-13(a) we see four customers, A, B, C,
and D, each of whom has been granted a certain number of credit units (e.g., 1 unit is 1K dollars). The banker
knows that not all customers will need their maximum credit immediately, so he has reserved only 10 units
rather than 22 to service them. He also trusts every customer to be able to repay his loan soon after receiving
his total line of credit (it is a small town), so he knows eventually he can service all the requests. (In this
analogy, customers are processes, units are, say, tape drives, and the banker is the operating system.)

[Page 248]

Figure 3-13. Three resource allocation states: (a) Safe. (b) Safe. (c) Unsafe.

10

10

Each part of the figure shows a state of the system with respect to resource allocation, that is, a list of
customers showing the money already loaned (tape drives already assigned) and the maximum credit available
(maximum number of tape drives needed at once later). A state is safe if there exists a sequence of other states
that leads to all customers getting loans up to their credit limits (all processes getting all their resources and
terminating).

The customers go about their respective businesses, making loan requests from time to time (i.e., asking for
resources). At a certain moment, the situation is as shown in Fig. 3-13(b). This state is safe because with two
units left, the banker can delay any requests except C's, thus letting C finish and release all four of his
resources. With four units in hand, the banker can let either D or B have the necessary units, and so on.

Consider what would happen if a request from B for one more unit were granted in Fig. 3-13(b). We would
have situation Fig. 3-13(c), which is unsafe. If all the customers suddenly asked for their maximum loans, the
banker could not satisfy any of them, and we would have a deadlock. An unsafe state does not have to lead to
deadlock, since a customer might not need the entire credit line available, but the banker cannot count on this
behavior.

The banker's algorithm considers each request as it occurs, and sees if granting it leads to a safe state. If it
does, the request is granted; otherwise, it is postponed until later. To see if a state is safe, the banker checks to
see if he has enough resources to satisfy some customer. If so, those loans are assumed to be repaid, and the
customer now closest to the limit is checked, and so on. If all loans can eventually be repaid, the state is safe
and the initial request can be granted.

[Page 249]

Resource Trajectories

The above algorithm was described in terms of a single resource class (e.g., only tape drives or only printers,
but not some of each). In Fig. 3-14 we see a model for dealing with two processes and two resources, for
example, a printer and a plotter. The horizontal axis represents the number of instructions executed by process
A. The vertical axis represents the number of instructions executed by process B. At I1 A requests a printer; at
I2 it needs a plotter. The printer and plotter are released at I3 and I4, respectively. Process B needs the plotter
from I5 to I7 and the printer from I6 to I8.

Figure 3-14. Two process resource trajectories.

[View full size image]

11

11

Every point in the diagram represents a joint state of the two processes. Initially, the state is at p, with neither
process having executed any instructions. If the scheduler chooses to run A first, we get to the point q, in
which A has executed some number of instructions, but B has executed none. At point q the trajectory
becomes vertical, indicating that the scheduler has chosen to run B. With a single processor, all paths must be
horizontal or vertical, never diagonal. Furthermore, motion is always to the north or east, never to the south or
west (processes cannot run backward).

When A crosses the I1 line on the path from r to s, it requests and is granted the printer. When B reaches point
t, it requests the plotter.

The regions that are shaded are especially interesting. The region with lines slanting from southwest to
northeast represents both processes having the printer. The mutual exclusion rule makes it impossible to enter
this region. Similarly, the region shaded the other way represents both processes having the plotter, and is
equally impossible. Under no conditions can the system enter the shaded regions.

[Page 250]

If the system ever enters the box bounded by I1 and I2 on the sides and I5 and I6 top and bottom, it will
eventually deadlock when it gets to the intersection of I2 and I6. At this point, A is requesting the plotter and B
is requesting the printer, and both are already assigned. The entire box is unsafe and must not be entered. At
point t the only safe thing to do is run process A until it gets to I4 . Beyond that, any trajectory to u will do.

The important thing to see here is at point t B is requesting a resource. The system must decide whether to
grant it or not. If the grant is made, the system will enter an unsafe region and eventually deadlock. To avoid
the deadlock, B should be suspended until A has requested and released the plotter.

The Banker's Algorithm for Multiple Resources

This graphical model is difficult to apply to the general case of an arbitrary number of processes and an
arbitrary number of resource classes, each with multiple instances (e.g., two plotters, three tape drives).
However, the banker's algorithm can be generalized to do the job. Figure 3-15 shows how it works.

12

12

Figure 3-15. The banker's algorithm with multiple resources.

In Fig. 3-15 we see two matrices. The one on the left shows how many of each resource are currently assigned
to each of the five processes. The matrix on the right shows how many resources each process still needs in
order to complete. As in the single resource case, processes must state their total resource needs before
executing, so that the system can compute the right-hand matrix at each instant.

The three vectors at the right of the figure show the existing resources, E, the possessed resources, P, and the
available resources, A, respectively. From E we see that the system has six tape drives, three plotters, four
printers, and two CD-ROM drives. Of these, five tape drives, three plotters, two printers, and two CD-ROM
drives are currently assigned. This fact can be seen by adding up the four resource columns in the left-hand
matrix. The available resource vector is simply the difference between what the system has and what is
currently in use.

[Page 251]

The algorithm for checking to see if a state is safe can now be stated.

1. Look for a row, R, whose unmet resource needs are all smaller than or equal to A. If no such row exists,
the system will eventually deadlock since no process can run to completion.

2. Assume the process of the row chosen requests all the resources it needs (which is guaranteed to be
possible) and finishes. Mark that process as terminated and add all its resources to the A vector.

3. Repeat steps 1 and 2 until either all processes are marked terminated, in which case the initial state was
safe, or until a deadlock occurs, in which case it was not.

If several processes are eligible to be chosen in step 1, it does not matter which one is selected: the pool of
available resources either gets larger or stays the same.

Now let us get back to the example of Fig. 3-15. The current state is safe. Suppose that process B now
requests a printer. This request can be granted because the resulting state is still safe (process D can finish,
and then processes A or E, followed by the rest).

13

13

Now imagine that after giving B one of the two remaining printers, E wants the last printer. Granting that
request would reduce the vector of available resources to (1 0 0 0), which leads to deadlock. Clearly E's
request must be deferred for a while.

The banker's algorithm was first published by Dijkstra in 1965. Since that time, nearly every book on
operating systems has described it in detail. Innumerable papers have been written about various aspects of it.
Unfortunately, few authors have had the audacity to point out that although in theory the algorithm is
wonderful, in practice it is essentially useless because processes rarely know in advance what their maximum
resource needs will be. In addition, the number of processes is not fixed, but dynamically varying as new
users log in and out. Furthermore, resources that were thought to be available can suddenly vanish (tape drives
can break). Thus in practice, few, if any, existing systems use the banker's algorithm for avoiding deadlocks.

In summary, the schemes described earlier under the name "prevention" are overly restrictive, and the
algorithm described here as "avoidance" requires information that is usually not available. If you can think of
a general-purpose algorithm that does the job in practice as well as in theory, write it up and send it to your
local computer science journal.

Although both avoidance and prevention are not terribly promising in the general case, for specific
applications, many excellent special-purpose algorithms are known. As an example, in many database
systems, an operation that occurs frequently is requesting locks on several records and then updating all the
locked records. When multiple processes are running at the same time, there is a real danger of deadlock. To
eliminate this problem, special techniques are used.

[Page 252]

The approach most often used is called two-phase locking. In the first phase, the process tries to lock all the
records it needs, one at a time. If it succeeds, it begins the second phase, performing its updates and releasing
the locks. No real work is done in the first phase.

If during the first phase, some record is needed that is already locked, the process just releases all its locks and
starts the first phase all over. In a certain sense, this approach is similar to requesting all the resources needed
in advance, or at least before anything irreversible is done. In some versions of two-phase locking, there is no
release and restart if a lock is encountered during the first phase. In these versions, deadlock can occur.

However, this strategy is not applicable in general. In real-time systems and process control systems, for
example, it is not acceptable to just terminate a process partway through because a resource is not available
and start all over again. Neither is it acceptable to start over if the process has read or written messages to the
network, updated files, or anything else that cannot be safely repeated. The algorithm works only in those
situations where the programmer has very carefully arranged things so that the program can be stopped at any
point during the first phase and restarted. Many applications cannot be structured this way.

14

14

[Page 252 (continued)]

3.4. Overview of I/O in MINIX 3

MINIX 3 I/O is structured as shown in Fig. 3-8. The top four layers of that figure correspond to the
four-layered structure of MINIX 3 shown in Fig. 2-29. In the following sections we will look briefly at each
of the layers, with an emphasis on the device drivers. Interrupt handling was covered in Chap. 2 and the
device-independent I/O will be discussed when we come to the file system, in Chap. 5.

3.4.1. Interrupt Handlers and I/O Access in MINIX 3

Many device drivers start some I/O device and then block, waiting for a message to arrive. That message is
usually generated by the interrupt handler for the device. Other device drivers do not start any physical I/O
(e.g., reading from RAM disk and writing to a memory-mapped display), do not use interrupts, and do not
wait for a message from an I/O device. In the previous chapter the mechanisms in the kernel by which
interrupts generate messages and cause task switches has been presented in great detail, and we will say no
more about it here. Here we will discuss in a general way interrupts and I/O in device drivers. We will return
to the details when we look at the code for various devices.

For disk devices, input and output is generally a matter of commanding a device to perform its operation, and
then waiting until the operation is complete. The disk controller does most of the work, and very little is
required of the interrupt handler. Life would be simple if all interrupts could be handled so easily.

[Page 253]

However, there is sometimes more for the low-level handler to do. The message passing mechanism has a
cost. When an interrupt may occur frequently but the amount of I/O handled per interrupt is small, it may pay
to make the handler itself do somewhat more work and to postpone sending a message to the driver until a
subsequent interrupt, when there is more for the driver to do. In MINIX 3 this is not possible for most I/O,
because the low level handler in the kernel is a general purpose routine used for almost all devices.

In the last chapter we saw that the clock is an exception. Because it is compiled with the kernel the clock can
have its own handler that does extra work. On many clock ticks there is very little to be done, except for
maintaining the time. This is done without sending a message to the clock task itself. The clock's interrupt
handler increments a variable, appropriately named realtime, possibly adding a correction for ticks counted
during a BIOS call. The handler does some additional very simple arithmeticit increments counters for user
time and billing time, decrements the ticks_left counter for the current process, and tests to see if a timer has
expired. A message is sent to the clock task only if the current process has used up its quantum or a timer has
expired.

The clock interrupt handler is unique in MINIX 3, because the clock is the only interrupt driven device that
runs in kernel space. The clock hardware is integral to the PCin fact, the clock interrupt line does not connect
to any pin on the sockets where add-on I/O controllers can be plugged inso it is impossible to install a clock
upgrade package with replacement clock hardware and a driver provided by the manufacturer. It is reasonable,
then, for the clock driver to be compiled into the kernel and have access to any variable in kernel space. But a
key design goal of MINIX 3 is to make it unnecessary for any other device driver to have that kind of access.

Device drivers that run in user space cannot directly access kernel memory or I/O ports. Although possible, it
would also violate the design principles of MINIX 3 to allow an interrupt service routine to make a far call to
execute a service routine within the text segment of a user process. This would be even more dangerous than

1

1

letting a user space process call a function within kernel space. In that case we would at least be sure the
function was written by a competent, security-aware operating system designer, possibly one who had read
this book. But the kernel should not trust code provided by a user program.

There are several different levels of I/O access that might be needed by a user-space device driver.

A driver might need access to memory outside its normal data space. The memory driver, which
manages the RAM disk, is an example of a driver which needs only this kind of access.

1.

A driver may need to read and write to I/O ports. The machine-level instructions for these operations
are available only in kernel mode. As we will soon see, the hard disk driver needs this kind of access.

2.

[Page 254]

A driver may need to respond to predictable interrupts. For example, the hard disk driver writes
commands to the disk controller, which causes an interrupt to occur when the desired operation is
complete.

3.

A driver may need to respond to unpredictable interrupts. The keyboard driver is in this category. This
could be considered a subclass of the preceding item, but unpredictability complicates things.

4.

All of these cases are supported by kernel calls handled by the system task.

The first case, access to extra memory segments, takes advantage of the hardware segmentation support
provided by Intel processors. Although a normal process has access only to its own text, data, and stack
segments, the system task allows other segments to be defined and accessed by user-space processes. Thus the
memory driver can access a memory region reserved for use as a RAM disk, as well as other regions
designated for special access. The console driver accesses memory on a video display adapter in the same
way.

For the second case, MINIX 3 provides kernel calls to use I/O instructions. The system task does the actual
I/O on behalf of a less-privileged process. Later in this chapter we will see how the hard disk driver uses this
service. We will present a preview here. The disk driver may have to write to a single output port to select a
disk, then read from another port in order to verify the device is ready. If response is normally expected to be
very quick, polling can be done. There are kernel calls to specify a port and data to be written or a location for
receipt of data read. This requires that a call to read a port be nonblocking, and in fact, kernel calls do not
block.

Some insurance against device failure is useful. A polling loop could include a counter that terminates the
loop if the device does not become ready after a certain number of iterations. This is not a good idea in
general because the loop execution time will depend upon the CPU speed. One way around this is to start the
counter with a value that is related to CPU time, possibly using a global variable initialized when the system
starts. A better way is provided by the MINIX 3 system library, which provides a getuptime function. This
uses a kernel call to retrieve a counter of clock ticks since system startup maintained by the clock task. The
cost of using this information to keep track of time spent in a loop is the overhead of an additional kernel call
on each iteration. Another possibility is to ask the system task to set a watchdog timer. But to receive a
notification from a timer a receive operation, which will block, is required. This is not a good solution if a
fast response is expected.

The hard disk also makes use of variants of the kernel calls for I/O that make it possible to send a list of ports
and data to write or variables to be altered to the system task. This is very usefulthe hard disk driver we will
examine requires writing a sequence of byte values to seven output ports to initiate an operation. The last byte
in the sequence is a command, and the disk controller generates an interrupt when it completes a command.
All this can be accomplished with a single kernel call, greatly reducing the number of messages needed.

2

2

[Page 255]

This brings us to the third item in the list: responding to an expected interrupt. As noted in the discussion of
the system task, when an interrupt is initialized on behalf of a user space program (using a sys_irqctl
kernel call), the handler routine for the interrupt is always generic_handler, a function defined as part of the
system task. This routine converts the interrupt into a notification message to the process on whose behalf the
interrupt was set. The device driver therefore must initiate a receive operation after the kernel call that
issues the command to the controller. When the notification is received the device driver can proceed to do
what must be done to service the interrupt.

Although in this case an interrupt is expected, it is prudent to hedge against the possibility that something
might go wrong sometime. To prepare for the possibility that the interrupt might fail to be triggered, a process
can request the system task to set up a watchdog timer. Watchdog timers also generate notification messages,
and thus the receive operation could get a notification either because an interrupt occurred or because a
timer expired. This is not a problem because, although a notification does not convey much information, the
notification message indicates its origin. Although both notifications are generated by the system task,
notification of an interrupt will appear to come from HARDWARE, and notification of a timer expiring will
appear to come from CLOCK.

There is another problem. If an interrupt is received in a timely way and a watchdog timer has been set,
expiration of the timer at some future time will be detected by another receive operation, possibly in the
main loop of the driver. One solution is to make a kernel call to disable the timer when the notification from
HARDWARE is received. Alternatively, if it is likely that the next receive operation will be one where a
message from CLOCK is not expected, such a message could be ignored and receive called again.
Although less likely, it is conceivable that a disk operation could occur after an unexpectedly long delay,
generating the interrupt only after the watchdog has timed out. The same solutions apply here. When a
timeout occurs a kernel call can be made to disable an interrupt, or a receive operation that does not expect
an interrupt could ignore any message from HARDWARE.

This is a good time to mention that when an interrupt is first enabled, a kernel call can be made to set a
"policy" for the interrupt. The policy is simply a flag that determines whether the interrupt should be
automatically reenabled or whether it should remain disabled until the device driver it serves makes a kernel
call to reenable it. For the disk driver there may be a substantial amount of work to be done after an interrupt,
and thus it may be best to leave the interrupt disabled until all data has been copied.

The fourth item in our list is the most problematic. Keyboard support is part of the tty driver, which provides
output as well as input. Furthermore, multiple devices may be supported. So input may come from a local
keyboard, but it can also come from a remote user connected by a serial line or a network connection. And
several processes may be running, each producing output for a different local or remote terminal. When you
do not know when, if ever, an interrupt might occur, you cannot just make a blocking receive call to accept
input from a single source if the same process may need to respond to other input and output sources.

[Page 256]

MINIX 3 uses several techniques to deal with this problem. The principal technique used by the terminal
driver for dealing with keyboard input is to make the interrupt response as fast as possible, so characters will
not be lost. The minimum possible amount of work is done to get characters from the keyboard hardware to a
buffer. Additionally, when data has been fetched from the keyboard in response to an interrupt, as soon as the
data is buffered the keyboard is read again before returning from the interrupt. Interrupts generate notification
messages, which do not block the sender; this helps to prevent loss of input. A nonblocking receive
operation is available, too, although it is only used to handle messages during a system crash. Watchdog
timers are also used to activate the routine that checks the keyboard.

3

3

3.4.2. Device Drivers in MINIX 3

For each class of I/O device present in a MINIX 3 system, a separate I/O device driver is present. These
drivers are full-fledged processes, each one with its own state, registers, stack, and so on. Device drivers
communicate with the file system using the standard message passing mechanism used by all MINIX 3
processes. A simple device driver may be written as a single source file. For the RAM disk, hard disk, and
floppy disk there is a source file to support each type of device, as well as a set of common routines in driver.c
and drvlib.c to support all blcok device types. This separation of the hardware-dependent and
hardware-independent parts of the software makes for easy adaptation to a variety of different hardware
configurations. Although some common source code is used, the driver for each disk type runs as a separate
process, in order to support rapid data transfers and isolate drivers from each other.

The terminal driver source code is organized in a similar way, with the hardware-independent code in tty.c
and source code to support different devices, such as memory-mapped consoles, the keyboard, serial lines,
and pseudo terminals in separate files. In this case, however, a single process supports all of the different
device types.

For groups of devices such as disk devices and terminals, for which there are several source files, there are
also header files. Driver.h supports all the block device drivers. Tty.h provides common definitions for all the
terminal devices.

The MINIX 3 design principle of running components of the operating system as completely separate
processes in user space is highly modular and moderately efficient. It is also one of the few places where
MINIX 3 differs from UNIX in an essential way. In MINIX 3 a process reads a file by sending a message to
the file system process. The file system, in turn, may send a message to the disk driver asking it to read the
needed block. The disk driver uses kernel calls to ask the system task to do the actual I/O and to copy data
between processes. This sequence (slightly simplified from reality) is shown in Fig. 3-16(a). By making these
interactions via the message mechanism, we force various parts of the system to interface in standard ways
with other parts.

[Page 257]

Figure 3-16. Two ways of structuring user-system communication.

[View full size image]

4

4

In UNIX all processes have two parts: a user-space part and a kernel-space part, as shown in Fig. 3-16(b).
When a system call is made, the operating system switches from the user-space part to the kernel-space part in
a somewhat magical way. This structure is a remnant of the MULTICS design, in which the switch was just
an ordinary procedure call, rather than a trap followed by saving the state of the user-part, as it is in UNIX.

Device drivers in UNIX are simply kernel procedures that are called by the kernel-space part of the process.
When a driver needs to wait for an interrupt, it calls a kernel procedure that puts it to sleep until some
interrupt handler wakes it up. Note that it is the user process itself that is being put to sleep here, because the
kernel and user parts are really different parts of the same process.

Among operating system designers, arguments about the merits of monolithic systems, as in UNIX, versus
process-structured systems, as in MINIX 3, are endless. The MINIX 3 approach is better structured (more
modular), has cleaner interfaces between the pieces, and extends easily to distributed systems in which the
various processes run on different computers. The UNIX approach is more efficient, because procedure calls
are much faster than sending messages. MINIX 3 was split into many processes because we believe that with
increasingly powerful personal computers available, cleaner software structure was worth making the system
slightly slower. The performance loss due to having most of the operating system run in user space is typically
in the range of 510%. Be warned that some operating system designers do not share the belief that it is worth
sacrificing a little speed for a more modular and more reliable system.

[Page 258]

In this chapter, drivers for RAM disk, hard disk, clock, and terminal are discussed. The standard MINIX 3
configuration also includes drivers for the floppy disk and the printer, which are not discussed in detail. The
MINIX 3 software distribution contains source code for additional drivers for RS-232 serial lines, CD-ROMs,
various Ethernet adapter, and sound cards. These may be compiled separately and started on the fly at any
time.

5

5

All of these drivers interface with other parts of the MINIX 3 system in the same way: request messages are
sent to the drivers. The messages contain a variety of fields used to hold the operation code (e.g., READ or
WRITE) and its parameters. A driver attempts to fulfill a request and returns a reply message.

For block devices, the fields of the request and reply messages are shown in Fig. 3-17. The request message
includes the address of a buffer area containing data to be transmitted or in which received data are expected.
The reply includes status information so the requesting process can verify that its request was properly carried
out. The fields for the character devices are basically similar but can vary slightly from driver to driver.
Messages to the terminal driver can contain the address of a data structure which specifies all of the many
configurable aspects of a terminal, such as the characters to use for the intraline editing functions
erase-character and kill-line.

Figure 3-17. Fields of the messages sent by the file system to the block device drivers and fields of the replies
sent back. (This item is displayed on page 259 in the print version)

Requests

Field Type Meaning

m.m_type int Operation requested

m.DEVICE int Minor device to use

m.PROC_NR int Process requesting the I/O

m.COUNT int Byte count or ioctl code

m.POSITION long Position on device

m.ADDRESS char* Address within requesting process

Replies

Field Type Meaning

m.m_type int Always DRIVER_REPLY

m.REP_PROC_NR int Same as PROC_NR in request

m.REP_STATUS int Bytes transferred or error number

The function of each driver is to accept requests from other processes, normally the file system, and carry
them out. All the block device drivers have been written to get a message, carry it out, and send a reply.
Among other things, this decision means that these drivers are strictly sequential and do not contain any
internal multiprogramming, to keep them simple. When a hardware request has been issued, the driver does a
receive operation specifying that it is interested only in accepting interrupt messages, not new requests for
work. Any new request messages are just kept waiting until the current work has been done (rendezvous
principle). The terminal driver is slightly different, since a single driver services several devices. Thus, it is
possible to accept a new request for input from the keyboard while a request to read from a serial line is still
being fulfilled. Nevertheless, for each device a request must be completed before beginning a new one.

The main program for each block device driver is structurally the same and is outlined in Fig. 3-18. When the
system first comes up, each one of the drivers is started up in turn to give each a chance to initialize internal
tables and similar things. Then each device driver blocks by trying to get a message. When a message comes
in, the identity of the caller is saved, and a procedure is called to carry out the work, with a different procedure

6

6

invoked for each operation available. After the work has been finished, a reply is sent back to the caller, and
the driver then goes back to the top of the loop to wait for the next request.

[Page 259]

Figure 3-18. Outline of the main procedure of an I/O device driver. (This item is displayed on page 260 in the print
version)

message mess; /* message buffer*/

void io_driver() {
 initialize(); /* only done once, during system init.*/
 while (TRUE) {
 receive(ANY, &mess); /* wait for a request for work*/
 caller = mess.source; /* process from whom message came*/
 switch(mess.type) {
 case READ: rcode = dev_read(&mess); break;
 case WRITE: rcode = dev_write(&mess); break;
 /* Other cases go here, including OPEN, CLOSE, and IOCTL*/
 default: rcode = ERROR;
 }
 mess.type = DRIVER_REPLY;
 mess.status = rcode; /* result code*/
 send(caller,&mess); /* send reply message back to caller*/
 }
}

Each of the dev_XXX procedures handles one of the operations of which the driver is capable. It returns a
status code telling what happened. The status code, which is included in the reply message as the field
REP_STATUS, is the count of bytes transferred (zero or positive) if all went well, or the error number
(negative) if something went wrong. This count may differ from the number of bytes requested. When the end
of a file is reached, the number of bytes available may be less than number requested. On terminals at most
one line is returned (except in raw mode), even if the count requested is larger.

3.4.3. Device-Independent I/O Software in MINIX 3

In MINIX 3 the file system process contains all the device-independent I/O code. The I/O system is so closely
related to the file system that they were merged into one process. The functions performed by the file system
are those shown in Fig. 3-6, except for requesting and releasing dedicated devices, which do not exist in
MINIX 3 as it is presently configured. They could, however, easily be added to the relevant device drivers
should the need arise in the future.

[Page 260]

In addition to handling the interface with the drivers, buffering, and block allocation, the file system also
handles protection and the management of i-nodes, directories, and mounted file systems. This will be covered
in detail in Chap. 5.

7

7

3.4.4. User-Level I/O Software in MINIX 3

The general model outlined earlier in this chapter also applies here. Library procedures are available for
making system calls and for all the C functions required by the POSIX standard, such as the formatted input
and output functions printf and scanf. The standard MINIX 3 configuration contains one spooler daemon,
lpd, which spools and prints files passed to it by the lp command. The standard MINIX 3 software
distribution also provides a number of daemons that support various network functions. The MINIX 3
configuration described in this book supports most network operations, all that is needed is to enable the
network server and drivers for ethernet adapters at startup time. Recompiling the terminal driver with pseudo
terminals and serial line support will add support for logins from remote terminals and networking over serial
lines (including modems). The network server runs at the same priority as the memory manager and the file
system, and like them, it runs as a user process.

3.4.5. Deadlock Handling in MINIX 3

True to its heritage, MINIX 3 follows the same path as UNIX with respect to deadlocks of the types described
earlier in this chapter: it just ignores the problem. Normally, MINIX 3 does not contain any dedicated I/O
devices, although if someone wanted to hang an industry standard DAT tape drive on a PC, making the
software for it would not pose any special problems. In short, the only place deadlocks can occur are with the
implicit shared resources, such as process table slots, i-node table slots, and so on. None of the known
deadlock algorithms can deal with resources like these that are not requested explicitly.

[Page 261]

Actually, the above is not strictly true. Accepting the risk that user processes could deadlock is one thing, but
within the operating system itself a few places do exist where considerable care has been taken to avoid
problems. The main one is the message-passing interaction between processes. For instance, user processes
are only allowed to use the sendrec messaging method, so a user process should never lock up because it
did a receive when there was no process with an interest in sending to it. Servers only use send or
sendrec to communicate with device drivers, and device drivers only use send or sendrec to
communicate with the system task in the kernel layer. In the rare case where servers must communicate
between themselves, such as exchanges between the process manager and the file system as they initialize
their parts of the process table, the order of communication is very carefully designed to avoid deadlock. Also,
at the very lowest level of the message passing system there is a check to make sure that when a process is
about to do a send that the destination process is not trying to the same thing.

In addition to the above restrictions, in MINIX 3 the new notify message primitive is provided to handle
those situations in which a message must be sent in the "upstream" direction. Notify is nonblocking, and
notifications are stored when a recipient is not immediately available. As we examine the implementation of
MINIX 3 device drivers in this chapter we will see that notify is used extensively.

Locks are another mechanism that can prevent deadlocks. It is possible to lock devices and files even without
operating system support. A file name can serve as a truly global variable, whose presence or absence can be
noted by all other processes. A special directory, /usr/spool/locks/, is usually present on MINIX 3 systems, as
on most UNIX-like systems, where processes can create lock files, to mark any resources they are using. The
MINIX 3 file system also supports POSIX-style advisory file locking. But neither of these mechanisms is
enforceable. They depend upon the good behavior of processes, and there is nothing to prevent a program
from trying to use a resource that is locked by another process. This is not exactly the same thing as
preemption of the resource, because it does not prevent the first process from attempting to continue its use of
the resource. In other words, there is no mutual exclusion. The result of such an action by an ill-behaved
process is likely to be a mess, but no deadlock results.

8

8

9

9

10

10

[Page 261 (continued)]

3.5. Block Devices in MINIX 3

MINIX 3 supports several different block devices, so we will begin by discussing common aspects of all
block devices. Then we will discuss the RAM disk, the hard disk, and the floppy disk. Each of these is
interesting for a different reason. The RAM disk is a good example to study because it has all the properties of
block devices in general except the actual I/Obecause the "disk" is actually just a portion of memory. This
simplicity makes it a good place to start. The hard disk shows what a real disk driver looks like. One might
expect the floppy disk to be easier to support than the hard disk, but, in fact, it is not. We will not discuss all
the details of the floppy disk, but we will point out several of the complications to be found in the floppy disk
driver.

[Page 262]

Looking ahead, after the discussion of block drivers, we will discuss the terminal (keyboard + display) driver,
which is important on all systems, and, furthermore is a good example of a character device driver.

Each of these sections describes the relevant hardware, the software principles behind the driver, an overview
of the implementation, and the code itself. This structure may make the sections useful reading even for
readers who are not interested in the details of the code itself.

3.5.1. Overview of Block Device Drivers in MINIX 3

We mentioned earlier that the main procedures of all I/O drivers have a similar structure. MINIX 3 always has
at least two block device drivers compiled into the system: the RAM disk driver, and either one of several
possible hard disk drivers or a floppy disk driver. Usually, there are three block devicesboth the floppy disk
driver and an IDE (Integrated Drive Electronics) hard disk driver are present. The driver for each block device
driver is compiled independently, but a common library of source code is shared by all of them.

In older versions of MINIX a separate CD-ROM driver was sometimes present, and could be added if
necessary. Separate CD-ROM drivers are now obsolete. They used to be necessary to support the proprietary
interfaces of different drive manufacturers, but modern CD-ROM drives are usually connected to the IDE
controller, although on notebook computers some CD-ROMs are USB. The full version of the MINIX 3 hard
disk device driver includes CD-ROM support, but we have taken the CD-ROM support out of the driver as
described in this text and listed in Appendix B.

Each block device driver has to do some initialization, of course. The RAM disk driver has to reserve some
memory, the hard disk driver has to determine the parameters of the hard disk hardware, and so on. All of the
disk drivers are called individually for hardware-specific initialization. After doing whatever may be
necessary, each driver then calls the function containing its main loop. This loop is executed forever; there is
no return to the caller. Within the main loop a message is received, a function to perform the operation needed
by each message is called, and then a reply message is generated.

The common main loop called by each disk driver process is compiled when drivers/libdriver/driver.c and the
other files in its directory are compiled, and then a copy of the object file driver.o is linked into each disk
driver's executable file. The technique used is to have each driver pass to the main loop a parameter consisting
of a pointer to a table of the addresses of the functions that driver will use for each operation and then to call
these functions indirectly.

1

1

[Page 263]

If the drivers were compiled together in a single executable file only one copy of the main loop would be
needed. This code was, in fact, first written for an earlier version of MINIX in which all the drivers were
compiled together. The emphasis in MINIX 3 is on making individual operating system components as
independent as possible, but using common source code for separate programs is still a good way to increase
reliability. Assuming you get it right once, it will be right for all the drivers. Or, a bug found in one use might
very well exist unnoticed in other uses. Thus, shared source code gets tested more thoroughly.

A number of other functions potentially useful to multiple disk drivers are defined in
drivers/libdriver/drvlib.c, and linking drvlib.o makes these available. All of the functionality could have been
provided in a single file, but not all of it is needed by every disk driver. For instance, the memory driver,
which is simpler than other drivers, links in only driver.o. The at_wini driver links in both driver.o and
drvlib.o.

Figure 3-19 shows an outline of the main loop, in a form similar to that of Fig. 3-18. Statements like

code = (*entry_points->dev_read)(&mess);

are indirect function calls. A different dev_read function is called by each driver, even though each driver is
executing a main loop compiled from the same source file. But some other operations, for example close,
are simple enough that more than one device can call the same function.

Figure 3-19. An I/O driver main procedure using indirect calls. (This item is displayed on page 264 in the print
version)

message mess; /* message buffer*/

void shared_io_driver(struct driver_table *entry_points){
/* initialization is done by each driver before calling this */
 while (TRUE) {
 receive(ANY, &mess);
 caller = mess.source;
 switch(mess.type) {
 case READ: rcode = (*entry_points->dev_read)(&mess); break;
 case WRITE: rcode = (*entry_points->dev_write)(&mess); break;
 /* Other cases go here, including OPEN, CLOSE, and IOCTL */
 default: rcode = ERROR;
 }
 mess.type = DRIVER_REPLY;
 mess.status = rcode; /* result code* /
 send(caller, &mess);
 }
}

There are six possible operations that can be requested of any device driver. These correspond to the possible
values that can be found in the m.m_type field of the message of Fig. 3-17. They are:

1. OPEN

2.

2

2

CLOSE

3. READ

4. WRITE

5. IOCTL

6. SCATTERED_IO

Many of these operations are most likely familiar to readers with programming experience. At the device
driver level most operations are related to system calls with the same name. For instance, the meanings of
READ and WRITE should be fairly clear. For each of these operations, a block of data is transferred from the
device to the memory of the process that initiated the call, or vice versa. A READ operation normally does not
result in a return to the caller until the data transfer is complete, but an operating system may buffer data
transferred during a WRITE for actual transfer to the destination at a later time, and return to the caller
immediately. That is fine as far as the caller is concerned; it is then free to reuse the buffer from which the
operating system has copied the data to write. OPEN and CLOSE for a device have similar meanings to the
way the open and close system calls apply to operations on files: an OPEN operation should verify that the
device is accessible, or return an error message if not, and a CLOSE should guarantee that any buffered data
that were written by the caller are completely transferred to their final destination on the device.

[Page 264]

The IOCTL operation may not be so familiar. Many I/O devices have operational parameters which
occasionally must be examined and perhaps changed. IOCTL operations do this. A familiar example is
changing the speed of transmission or the parity of a communications line. For block devices, IOCTL
operations are less common. Examining or changing the way a disk device is partitioned is done using an
IOCTL operation in MINIX 3 (although it could just as well have been done by reading and writing a block of
data).

The SCATTERED_IO operation is no doubt the least familiar of these. Except with exceedingly fast disk
devices (for example, the RAM disk), satisfactory disk I/O performance is difficult to obtain if all disk
requests are for individual blocks, one at a time. A SCATTERED_IO request allows the file system to make a
request to read or write multiple blocks. In the case of a READ operation, the additional blocks may not have
been requested by the process on whose behalf the call is made; the operating system attempts to anticipate
future requests for data. In such a request not all the transfers requested are necessarily honored by the device
driver. The request for each block may be modified by a flag bit that tells the device driver that the request is
optional. In effect the file system can say: "It would be nice to have all these data, but I do not really need
them all right now." The device can do what is best for it. The floppy disk driver, for instance, will return all
the data blocks it can read from a single track, effectively saying, "I will give you these, but it takes too long
to move to another track; ask me again later for the rest."

[Page 265]

When data must be written, there is no question of its being optional; every write is mandatory. Nevertheless,
the operating system may buffer a number of write requests in the hope that writing multiple blocks can be
done more efficiently than handling each request as it comes in. In a SCATTERED_IO request, whether for
reading or writing, the list of blocks requested is sorted, and this makes the operation more efficient than
handling the requests randomly. In addition, making only one call to the driver to transfer multiple blocks
reduces the number of messages sent within MINIX 3.

3

3

3.5.2. Common Block Device Driver Software

Definitions that are needed by all of the block device drivers are located in drivers/libdriver/driver.h. The most
important thing in this file is the driver structure, on lines 10829 to 10845, which is used by each driver to
pass a list of the addresses of the functions it will use to perform each part of its job. Also defined here is the
device structure (lines 10856 to 10859) which holds the most important information about partitions, the base
address, and the size, in byte units. This format was chosen so no conversions are necessary when working
with memorybased devices, maximizing speed of response. With real disks there are so many other factors
delaying access that converting to sectors is not a significant inconvenience.

The source of the main loop and common functions of all the block device drivers are in driver.c. After doing
whatever hardware-specific initialization may be necessary, each driver calls driver_task, passing a driver
structure as the argument to the call. After obtaining the address of a buffer to use for DMA operations the
main loop (lines 11071 to 11120) is entered.

In the switch statement in the main loop, the first five message types, DEV_OPEN, DEV_CLOSE,
DEV_IOCTL, DEV_CANCEL, and DEV_SELECT result in indirect calls using addresses passed in the
driver structure. The DEV_READ and DEV_WRITE messages both result in direct calls to do_rdwt;
DEV_GATHER and DEV_SCATTER messages both result in direct calls to do_vrdwt. The driver structure is
passed as an argument by all the calls from within the switch, whether direct or indirect, so all called
functions can make further use of it as needed. Do_rdwt and do_vrdwt do some preliminary processing, but
then they too make indirect calls to device-specific routines.

[Page 266]

The other cases, HARD_INT, SYS_SIG, and SYN_ALARM, respond to notifications. These also result in
indirect calls, but upon completion each of these executes a continue statement. This causes control to
return to the top of the loop, bypassing the cleanup and reply message steps.

After doing whatever is requested in the message, some sort of cleanup may be necessary, depending upon the
nature of the device. For a floppy disk, for instance, this might involve starting a timer to turn off the disk
drive motor if another request does not arrive soon. An indirect call is used for this as well. Following the
cleanup, a reply message is constructed and sent to the caller (lines 11113 to 11119). It is possible for a
routine that services one of the message types to return a EDONTREPLY value to suppress the reply message,
but none of the current drivers use this option.

The first thing each driver does after entering the main loop is to make a call to init_buffer (line 11126),
which assigns a buffer for use in DMA operations. That this initialization is even necessary at all is due to a
quirk of the hardware of the original IBM PC, which requires that the DMA buffer not cross a 64K boundary.
That is, a 1-KB DMA buffer may begin at 64510, but not at 64514, because a buffer starting at the latter
address extends just beyond the 64K boundary at 65536.

This annoying rule occurs because the IBM PC used an old DMA chip, the Intel 8237A, which contains a
16-bit counter. A bigger counter is needed because DMA uses absolute addresses, not addresses relative to a
segment register. On older machines that can address only 1M of memory, the low-order 16 bits of the DMA
address are loaded into the 8237A, and the high-order 4 bits are loaded into a 4-bit latch. Newer machines use
an 8-bit latch and can address 16M. When the 8237A goes from 0xFFFF to 0x0000, it does not generate a
carry into the latch, so the DMA address suddenly jumps down by 64K in memory.

A portable C program cannot specify an absolute memory location for a data structure, so there is no way to
prevent the compiler from placing the buffer in an unusable location. The solution is to allocate an array of
bytes twice as large as necessary at buffer (line 11044) and to reserve a pointer tmp_buf (line 11045) to use
for actually accessing this array. Init_buffer makes a trial setting of tmp_buf pointing to the beginning of

4

4

buffer, then tests to see if that allows enough space before a 64K boundary is hit. If the trial setting does not
provide enough space, tmp_buf is incremented by the number of bytes actually required. Thus some space is
always wasted at one end or the other of the space allocated in buffer, but there is never a failure due to the
buffer falling on a 64K boundary.

Newer computers of the IBM PC family have better DMA controllers, and this code could be simplified, and a
small amount of memory reclaimed, if one could be sure that one's machine were immune to this problem. If
you are considering this, however, consider how the bug will manifest itself if you are wrong. If a 1K DMA
buffer is desired, the chance is 1 in 64 that there will be a problem on a machine with the old DMA chip.
Every time the kernel source code is modified in a way that changes the size of the compiled kernel, there is
the same probability that the problem will manifest itself. Most likely, when the failure occurs next month or
next year, it will be attributed to the code that was last modified. Unexpected hardware "features" like this can
cause weeks of time spent looking for exceedingly obscure bugs (all the more so when, like this one, the
technical reference manual says nary a word about them).

[Page 267]

Do_rdwt (line 11148) is the next function in driver.c. It, in turn calls two device-dependent functions pointed
to by the dr_prepare and dr_transfer fields in the driver structure. Here and in what follows we will use the C
language-like notation (*function_pointer) to indicate we are talking about the function pointed to by
function_pointer.

After checking to see that the byte count in the request is positive, do_rdwt calls (*dr_prepare). This operation
fills in the base and size of the disk, partition, or subpartition being accessed in a device structure. For the
memory driver, which does not support partitions, it just checks that the minor device number is valid. For the
hard disk it uses the minor device number to get the size of the partition or subpartition indicated by the minor
device number. This should succeed, since (*dr_prepare) can fail only if an invalid device is specified in an
open operation. Next, an iovec_t structure (which is defined on lines 2856 to 2859 in include/minix/type.h),
iovec1, is filled in. This structure specifies the virtual address and size of the local buffer to or from which
data will be copied by the system task. This is the same structure that is used as an element of an array of
requests when the call is for multiple blocks. The address of a variable and the address of the first element of
an array of the same type of variable can be handled exactly the same way. Then comes another indirect call,
this time to (*dr_transfer), which performs the data copy and I/O operations required. The routines that handle
transfers all expect to receive an array of requests. In do_rdwt the last argument to the call is 1, specifying an
array of one element.

As we will see in the discussion of disk hardware in the next section, responding to disk requests in the order
they are received can be inefficient, and this routine allows a particular device to handle requests in the way
that is best for the device. The indirection here masks much possible variation in the way individual devices
perform. For the RAM disk, dr_transfer points to a routine that makes a kernel call to ask the system task to
copy data from one part of physical memory to another, if the minor device being accessed is /dev/ram,
/dev/mem, /dev/kmem, /dev/boot, or /dev/zero. (No copying is required to access /dev/null, of course.) For a
real disk, the code pointed to by dr_transfer also has to ask the system task for a data transfer. But before the
copy operation (for a read) or after it (for a write) a kernel call must also be made to ask the system task to do
actual I/O, writing bytes to registers that are part of the disk controller to select the location on the disk and
the size and direction of the transfer.

In the transfer routine the iov_size count in the iovec1 structure is modified, returning an error code (a
negative number) if there was an error or a positive number indicating the number of bytes transferred. It is
not necessarily an error if no bytes are transferred; this indicates that the end of the device has been reached.
Upon returning to the main loop, the error code or the byte count is returned in the REP_STATUS field in the
reply message from driver_task.

5

5

[Page 268]

The next function, do_vrdwt (line 11182), handles scattered I/O requests. A message that requests a scattered
I/O request uses the ADDRESS field to point to an array of iovec_t structures, each of which specifies the
address of a buffer and the number of bytes to transfer. In MINIX 3 such a request can be made only for
contiguous blocks on the disk; the initial offset on the device and whether the operation is a read or a write are
in the message. So all the operations in one request will be for either reading or writing, and they will be
sorted into block order on the device. On line 11198 a check is done to see if this call is being done on behalf
of a kernel-space I/O task; this is a vestige of an early phase of the development of MINIX 3 before all the
disk drivers had been rewritten to run in user space.

Fundamentally, the code for this operation is very similar to that for the simple read or write performed by
do_rdwt. The same indirect calls to the device-dependent (*dr_prepare) and (*dr_transfer) routines are made.
The looping in order to handle multiple requests is all done internal to the function pointed to by
(*dr_transfer). The last argument in this case is not 1, it is the size of the array of iovec_t elements. After
termination of the loop the array of requests is copied back where it came from. The io_size field of each
element in the array will show the number of bytes transferred for that request, and although the total is not
passed back directly in the reply message that driver_task constructs, the caller can extract the total from this
array.

The next few routines in driver.c are for general support of the above operations. A (*dr_name) call can be
used to return the name of a device. For a device with no specific name the no_name function returns the
string "noname". Some devices may not require a particular service, for instance, a RAM disk does not require
that anything special be done upon a DEV_CLOSE request. The do_nop function fills in here, returning
various codes depending upon the kind of request made. Additional functions, nop_signal, nop_alarm,
nop_prepare, nop_cleanup, and nop_cancel, are similar dummy routines for devices that do not need these
services.

Finally, do_diocntl (line 11216) carries out DEV_IOCTL requests for a block device. It is an error if any
DEV_IOCTL operation other than reading (DIOCGETP) or writing (DIOCSETP) partition information is
requested. Do_diocntl calls the device's (*dr_prepare) function to verify the device is valid and to get a
pointer to the device structure that describes the partition base and size in byte units. On a request to read, it
calls the device's (*dr_geometry) function to get the last cylinder, head, and sector information about the
partition. In each case a sys_datacopy kernel call is made to request that the system task copy the data
between the memory spaces of the driver and the requesting process.

[Page 269]

3.5.3. The Driver Library

The files drvlib.h and drvlib.c contain system-dependent code that supports disk partitions on IBM PC
compatible computers.

Partitioning allows a single storage device to be divided up into subdevices. It is most commonly used with
hard disks, but MINIX 3 provides support for partitioning floppy disks, as well. Some reasons to partition a
disk device are:

1. Disk capacity is cheaper per unit in large disks. If two or more operating systems with different file
systems are used, it is more economical to partition a single large disk than to install multiple smaller
disks for each operating system.

6

6

2. Operating systems may have limits to the device size they can handle. The version of MINIX 3 discussed
here can handle a 4-GB file system, but older versions are limited to 256 MB. Any disk space beyond
that is wasted.

3. Two or more different file systems may be used by an operating system. For example, a standard file
system may be used for ordinary files and a differently structured file system may be used for virtual
memory swap space.

4. It may be convenient to put a portion of a system's files on a separate logical device. Putting the MINIX 3
root file system on a small device makes it easy to back up and facilitates copying it to a RAM disk at
boot time.

Support for disk partitions is platform specific. This specificity is not related to the hardware. Partition
support is device independent. But if more than one operating system is to run on a particular set of hardware,
all must agree on a format for the partition table. On IBM PCs the standard is set by the MS-DOS fdisk
command, and other OSs, such as MINIX 3, Windows, and Linux, use this format so they can coexist with
MS-DOS. When MINIX 3 is ported to another machine type, it makes sense to use a partition table format
compatible with other operating systems used on the new hardware. Thus the MINIX 3 source code to support
partitions on IBM computers is put in drvlib.c, rather than being included in driver.c, for two reasons. First,
not all disk types support partitions. As noted earlier, the memory driver links to driver.o but does not use the
functions compiled into drvlib.o. Second, this makes it easier to port MINIX 3 to different hardware. It is
easier to replace one small file than to edit a large one with many sections to be conditionally compiled for
different environments.

The basic data structure inherited from the firmware designers is defined in include/ibm/partition.h, which is
included by a #include statement in drvlib.h (line 10900). This includes information on the
cylinder-head-sector geometry of each partition, as well as codes identifying the type of file system on the
partition and an active flag indicating if it is bootable. Most of this information is not needed by MINIX 3
once the file system is verified.

[Page 270]

The partition function (in drvlib.c, line 11426) is called the first time a block device is opened. Its arguments
include a driver structure, so it can call device-specific functions, an initial minor device number, and a
parameter indicating whether the partitioning style is floppy disk, primary partition, or subpartition. It calls
the device-specific (*dr_prepare) function to verify the device is valid and to get the base address and the size
into a device structure of the type mentioned in the previous section. Then it calls get_part_table to determine
if a partition table is present and, if so, to read it. If there is no partition table, the work is done. Otherwise the
minor device number of the first partition is computed, using the rules for numbering minor devices that apply
to the style of partitioning specified in the original call. In the case of primary partitions the partition table is
sorted so the order of the partitions is consistent with that used by other operating systems.

At this point another call is made to (*dr_prepare), this time using the newly calculated device number of the
first partition. If the subdevice is valid, then a loop is made over all the entries in the table, checking that the
values read from the table on the device are not out of the range obtained earlier for the base and size of the
entire device. If there is a discrepancy, the table in memory is adjusted to conform. This may seem paranoid,
but since partition tables may be written by different operating systems, a programmer using another system
may have cleverly tried to use the partition table for something unexpected or there could be garbage in the
table on disk for some other reason. We put the most trust in the numbers we calculate using MINIX 3. Better
safe than sorry.

7

7

Still within the loop, for all partitions on the device, if the partition is identified as a MINIX 3 partition,
partition is called recursively to gather subpartition information. If a partition is identified as an extended
partition, the next function, extpartition, is called instead.

Extpartition (line 11501) has nothing to do with MINIX 3 itself, so we will not discuss details. Some other
operating systems (e.g., Windows) use extended partitions. These use linked lists rather than fixed-size arrays
to support subpartitions. For simplicity MINIX 3 uses the same mechanism for subpartitions as for primary
partitions. However, minimal support for extended partitions is provided to support MINIX 3 commands to
read and write files and directories of other operating systems. These operations are easy; providing full
support for mounting and otherwise using extended partitions in the same way as primary partitions would be
much more complicated.

Get_part_table (line 11549) calls do_rdwt to get the sector on a device (or subdevice) where a partition table
is located. The offset argument is zero if it is called to get a primary partition or nonzero for a subpartition. It
checks for the magic number (0xaa55) and returns true or false status to indicate whether a valid partition
table was found. If a table is found, it copies it to the table address that was passed as an argument.

[Page 271]

Finally, sort (line 11582) sorts the entries in a partition table by lowest sector. Entries that are marked as
having no partition are excluded from the sort, so they come at the end, even though they may have a zero
value in their low sector field. The sort is a simple bubble sort; there is no need to use a fancy algorithm to
sort a list of four items.

8

8

[Page 271 (continued)]

3.6. RAM Disks

Now we will get back to the individual block device drivers and study several of them in detail. The first one
we will look at is the memory driver. It can be used to provide access to any part of memory. Its primary use
is to allow a part of memory to be reserved for use like an ordinary disk, and we will also refer to it as the
RAM disk driver. A RAM disk does not provide permanent storage, but once files have been copied to this
are a they can be accessed extremely quickly.

A RAM disk is also useful for initial installation of an operating system on a computer with only one
removable storage device, whether a floppy disk, CD-ROM, or some other device. By putting the root device
on the RAM disk, removable storage devices can be mounted and unmounted as needed to transfer data to the
hard disk. Putting the root device on a floppy disk would make it impossible to save files on floppies, since
the root device (the only floppy) cannot be unmounted. RAM disks also are used with "live" CD-ROMs that
allow one to run an operating system for tests and demonstrations, without copying any files onto the hard
disk. Having the root device on the RAM disk makes the system highly flexible: any combination of floppy
disks or hard disks can be mounted on it. MINIX 3 and many other operating systems are distributed on live
CD-ROMs.

As we shall see, the memory driver supports several other functions in addition to a RAM disk. It supports
straightforward random access to any part of memory, byte by byte or in chunks of any size. Used this way it
acts as a character device rather than as a block device. Other character devices supported by the memory
driver are /dev/zero, and /dev/null, otherwise known as the great bit bucket in the sky.

3.6.1. RAM Disk Hardware and Software

The idea behind a RAM disk is simple. A block device is a storage medium with two commands: write a
block and read a block. Normally, these blocks are stored on rotating memories, such as floppy disks or hard
disks. A RAM disk is simpler. It just uses a preallocated portion of main memory for storing the blocks. A
RAM disk has the advantage of having instant access (no seek or rotational delay), making it suitable for
storing programs or data that are frequently accessed.

[Page 272]

As an aside, it is worth briefly pointing out a difference between systems that support mounted file systems
and those that do not (e.g., MS-DOS and Windows). With mounted file systems, the root device is always
present and in a fixed location, and removable file systems (i.e., disks) can be mounted in the file tree to form
an integrated file system. Once everything has been mounted, the user need not worry at all about which
device a file is on.

In contrast, with systems like MS-DOS, the user must specify the location of each file, either explicitly as in
B: \ DIR \ FILE or by using certain defaults (current device, current directory, and so on). With only one or
two floppy disks, this burden is manageable, but on a large computer system, with dozens of disks, having to
keep track of devices all the time would be unbearable. Remember that UNIX-like operating systems run on
hardware ranging from small home and office machines to supercomputers such as the IBM Blue Gene/L
supercomputer, the world's fastest computer as of this writing; MS-DOS runs only on small systems.

Figure 3-20 shows the idea behind a RAM disk. The RAM disk is split up into n blocks, depending on how
much memory has been allocated for it. Each block is the same size as the block size used on the real disks.

1

1

When the driver receives a message to read or write a block, it just computes where in the RAM disk memory
the requested block lies and reads from it or writes to it, instead of from or to a floppy or hard disk. Ultimately
the system task is called to carry out the transfer. This is done by phys_copy, an assembly language procedure
in the kernel that copies to or from the user program at the maximum speed of which the hardware is capable.

Figure 3-20. A RAM disk.

A RAM disk driver may support several areas of memory used as RAM disk, each distinguished by a different
minor device number. Usually, these areas are distinct, but in some fairly specific situations it may be
convenient to have them overlap, as we shall see in the next section.

[Page 273]

3.6.2. Overview of the RAM Disk Driver in MINIX 3

The MINIX 3 RAM disk driver is actually six closely related drivers in one. Each message to it specifies a
minor device as follows:

0: /dev/ram 2: /dev/kmem 4:
/dev/boot

1: /dev/mem 3: /dev/null 5:
/dev/zero

The first special file listed above, /dev/ram, is a true RAM disk. Neither its size nor its origin is built into the
driver. They are determined by the file system when MINIX 3 is booted. If the boot parameters specify that
the root file system is to be on the RAM disk but the RAM disk size is not specified, a RAM disk of the same
size as the root file system image device is created. A boot parameter can be used to specify a RAM disk
larger than the root file system, or if the root is not to be copied to the RAM, the specified size may be any

2

2

value that fits in memory and leaves enough memory for system operation. Once the size is known, a block of
memory big enough is found and removed from the memory pool by the process manager during its
initialization. This strategy makes it possible to increase or reduce the amount of RAM disk present without
having to recompile the operating system.

The next two minor devices are used to read and write physical memory and kernel memory, respectively.
When /dev/mem is opened and read, it yields the contents of physical memory locations starting at absolute
address zero (the real-mode interrupt vectors). Ordinary user programs never do this, but a system program
concerned with debugging the system might possibly need this facility. Opening /dev/mem and writing on it
will change the interrupt vectors. Needless to say, this should only be done with the greatest of caution by an
experienced user who knows exactly what he is doing.

The special file /dev/kmem is like /dev/mem, except that byte 0 of this file is byte 0 of the kernel's data
memory, a location whose absolute address varies, depending on the size of the MINIX 3 kernel text segment.
It too is used mostly for debugging and very special programs. Note that the RAM disk areas covered by these
two minor devices overlap. If you know exactly how the kernel is placed in memory, you can open /dev/mem,
seek to the beginning of the kernel's data area, and see exactly the same thing as reading from the beginning of
/dev/kmem. But, if you recompile the kernel, changing its size, or if in a subsequent version of MINIX 3 the
kernel is moved somewhere else in memory, you will have to seek a different amount in /dev/mem to see the
same thing you now see at the start of /dev/kmem. Both of these special files should be protected to prevent
everyone except the superuser from using them.

The next file in this group, /dev/null, is a special file that accepts data and throws them away. It is commonly
used in shell commands when the program being called generates output that is not needed. For example,

a.out >/dev/null

[Page 274]

runs the program a.out but discards its output. The RAM disk driver effectively treats this minor device as
having zero size, so no data are ever copied to or from it. If you read from it you will get an immediate EOF
(End of File).

If you have looked at the directory entries for these files in /dev/ you may have noticed that, of those
mentioned so far, only /dev/ram is a block special file. All the others are character devices. There is one more
block device supported by the memory driver. This is /dev/boot. From the point of view of the device driver it
is another block device implemented in RAM, just like /dev/ram. However, it is meant to be initialized by
copying a file appended to the boot image after init into memory, rather than starting with an empty block of
memory, as is done for /dev/ram. Support for this device is provided for future use and it is not used in
MINIX 3 as described in this text.

Finally, the last device supported by the memory driver is another character special file, /dev/zero. It is
sometimes convenient to have a source of zeros. Writing to /dev/zero is like writing to /dev/null; it throws
data away. But reading /dev/zero gives you zeros, in any quantity you want, whether a single character or a
disk full.

At the driver level, the code for handling /dev/ram, /dev/mem, /dev/kmem, and /dev/boot is identical. The
only difference among them is that each one corresponds to a different region of memory, indicated by the
arrays ram_origin and ram_limit, each indexed by minor device number. The file system manages devices at a
higher level. The file system interprets devices as character or block devices, and thus can mount /dev/ram
and /dev/boot and manage directories and files on these devices. For the devices defined as character devices
the file system can only read and write streams of data (although a stream read from /dev/null gets only EOF).

3

3

3.6.3. Implementation of the RAM Disk Driver in MINIX 3

As with other disk drivers, the main loop of the RAM disk driver is in the file driver.c. The device-specific
support for memory devices is in memory.c (line 10800). When the memory driver is compiled, a copy of the
object file called drivers/libdriver/driver.o, produced by compiling drivers/libdriver/driver.c, is linked with the
object file drivers/memory/memory.o, the product of compiling drivers/memory/memory.c.

It may be worth taking a moment to consider how the main loop is compiled. The declaration of the driver
structure in driver.h (lines 10829 to 10845) defines a data structure, but does not create one. The declaration
of m_dtab on lines 11645 to 11660 creates an instance of this with each part of the structure filled in with a
pointer to a function. Some of these functions are generic code compiled when driver.c is compiled, for
instance, all of the nop functions. Others are code compiled when memory.c is compiled, for instance,
m_do_open. Note that for the memory driver seven of the entries are do-little or do-nothing routines and the
last two are defined as NULL (which means these functions will never be called, there is no need even for a
do_nop). All this is a sure clue that the operation of a RAM disk is not terribly complicated.

[Page 275]

The memory device does not require definition of a large number of data structures, either. The array
m_geom[NR_DEVS] (line 11627) holds the base and size of each of the six memory devices in bytes, as 64
bit unsigned integers, so there is no immediate danger of MINIX 3 not being able to have a big enough RAM
disk. The next line defines an interesting structure that will not be seen in other drivers. M_seg[NR_DEVS] is
apparently just an aray of integers, but these integers are indices that allow segment descriptors to be found.
The memory device driver is unusual among user-space processes in having the ability to access regions of
memory outside of the ordinary text, data, and stack segments every process owns. This array holds the
information that allows access to the designated additional memory regions. The variable m_device just holds
the index into these arrays of the currently active minor device.

To use /dev/ram as the root device the memory driver must be initialized very early during startup of MINIX
3. The kinfo and machine structures that are defined next will hold data retrieved from the kernel during
startup that is necessary for initializing the memory driver.

One other data structure is defined before the executable code begins. This is dev_zero, an array of 1024
bytes, used to supply data when a read call is made to /dev/zero.

The main procedure main (line 11672) calls one function to do some local initialization. After that, it calls the
main loop, which gets messages, dispatches to the appropriate procedures, and sends the replies. There is no
return to main upon completion.

The next function, m_name, is trivial. It returns the string "memory" when called.

On a read or write operation, the main loop makes three calls: one to prepare a device, one to do the actual
data transfer, and one to do cleanup. For a memory device, a call to m_prepare is the first of these. It checks
that a valid minor device has been requested and then returns the address of the structure that holds the base
address and size of the requested RAM area. The second call is for m_transfer (line 11706). This does all the
work. As we saw in driver.c, all calls to read or write data are transformed into calls to read or write multiple
contiguous blocks of dataif only one block is needed the request is passed on as a request for multiple blocks
with a count of one. So only two kinds of transfer requests are passed on to the driver, DEV_GATHER,
requesting a read of one or more blocks, and DEV_SCATTER, a request to write one or more blocks. Thus,
after getting the minor device number, m_transfer enters a loop, repeated for the number of transfers
requested. Within the loop there is a switch on the device type.

The first case is for /dev/null, and the action is to return immediately on a DEV_GATHER request or on a

4

4

DEV_SCATTER request to fall through to the end of the switch. This is so the number of bytes transferred
(although this number is zero for /dev/null) can be returned, as would be done for any write operation.

[Page 276]

For all of the device types that refer to real locations in memory the action is similar. The requested offset is
checked against the size of the device to determine that the request is within the bounds of the memory
allocated to the device. Then a kernel call is made to copy data either to or from the memory of the caller.
There are two chunks of code that do this, however. For /dev/ram, /dev/kmem, and /dev/boot virtual addresses
are used, which requires retrieving the segment address of the memory region to be accessed from the m_seg
array, and then making a sys_vircopy kernel call (lines 11640 to 11652). For /dev/mem a physical address
is used and the call is to sys_physcopy.

The remaining operation is a read or write to /dev/zero. For reading the data is taken from the dev_zero array
mentioned earlier. You might ask, why not just generate zero values as needed, rather than copying from a
buffer full of them? Since the copying of the data to its destination has to be done by a kernel call, such a
method would require either an inefficient copying of single bytes from the memory driver to the system task,
or building code to generate zeros into the system task. The latter approach would increase the complexity of
kernel-space code, something that we would like to avoid in MINIX 3.

A memory device does not need a third step to finish a read or write operation, and the corresponding slot in
m_dtab is a call to nop_finish.

Opening a memory device is done by m_do_open (line 11801). The job is done by calling m_prepare to check
that a valid device is being referenced. More interesting than the code that exists is a comment about code that
was found here in older versions of MINIX. Previously a trick was hidden here. A call by a user process to
open /dev/mem or /dev/kmem would also magically confer upon the caller the ability to execute instructions
which access I/O ports. Pentium-class CPUs implement four privilege levels, and user processes normally run
at the least-privileged level. The CPU generates a general protection exception when an process tries to
execute an instruction not allowed at its privilege level. Providing a way to get around this was considered
safe because the memory devices could only be accessed by a user with root privileges. In any case, this
possibly risky "feature" is absent from MINIX 3 because kernel calls that allow I/O access via the system task
are now available. The comment remains, to point out that if MINIX 3 is ported to hardware that uses
memory-mapped I/O such a feature might need to be reintroduced. The function to do this, enable_iop,
remains in the kernel code to show how this can be done, although it is now an orphan.

The next function, m_init (line 11817), is called only once, when mem_task is called for the first time. This
routine uses a number of kernel calls, and is worth study to see how MINIX 3 drivers interact with kernel
space by using system task services. First a sys_getkinfo kernel call is made to get a copy of the kernel's
kinfo data. From this data it copies the base address and size of /dev/kmem into the corresponding fields of the
m_geom data structure. A different kernel call, sys_segctl, converts the physical address and size of
/dev/kmem into the segment descriptor information needed to treat the kernel memory as a virtual memory
space. If an image of a boot device has been compiled into the system boot image, the field for the base
address of /dev/boot will be non-zero. If this is so, then information to access the memory region for this
device is set up in exactly the same way it was done for /dev/kme m. Next the array used to supply data when
/dev/zero is accessed is explicitly filled with zeros. This is probably unnecessary; C compilers are supposed to
initialize newly created static variables to all zeros.

[Page 277]

Finally, m_init uses a sys_getmachine kernel call to get another set of data from the kernel, the machine
structure which flags various possible hardware alternatives. In this case the information needed is whether or

5

5

not the CPU is capable of protected mode operation. Based on this information the size of /dev/mem is set to
either 1 MB, or 4 GB - 1, depending upon whether MINIX 3 is running in 8088 or 80386 mode. These sizes
are the maximum sizes supported by MINIX 3 and do not have anything to do with how much RAM is
installed in the machine. Only the size of the device is set; the compiler is trusted to set the base address
correctly to zero. Also, since /dev/mem is accessed as physical (not virtual) memory there is no need to make
a sys_segctl kernel call to set up a segment descriptor.

Before we leave m_init we should mention another kernel call used here, although it is not obvious in the
code. Many of the actions taken during initialization of the memory driver are essential to proper functioning
of MINIX 3, and thus several tests are made and panic is called if a test fails. In this case panic is a library
routine which ultimately results in a sys_exit kernel call. The kernel and (as we shall see) the process
manager and the file system have their own panic routines. The library routine is provided for device drivers
and other small system components.

Surprisingly, the function we just examined, m_init, does not initialize the quintessential memory device,
/dev/ram. This is taken care of in the next function, m_ioctl (line 11863). In fact, there is only one ioctl
operation defined for the RAM disk; this is MIOCRAMSIZE, which is used by the file system to set the RAM
disk size. Much of the job is done without requiring any services from the kernel. The call to allocmem on
line 11887 is a system call, but not a kernel call. It is handled by the process manager, which maintains all of
the information necessary to find an available region of memory. However, at the end one kernel call is
needed. At line 11894 a sys_segctl call is made to convert the physical address and size returned by
allocmem into the segment information needed for further access.

The last function defined in memory.c is m_geometry. This is a fake. Obviously, cylinders, heads, and sectors
are irrelevant in addressing semiconductor memory, but if a request is made for such information for a
memory device this function pretends it has 64 heads and 32 sectors per track, and calculates from the size
how many cylinders there are.

6

6

[Page 278]

3.7. Disks

All modern computers except embedded ones have disk drives. For that reason, we will now study them,
starting with the hardware, then moving on to say some general things about disk software. After that we will
delve into the way MINIX 3 controls its disks.

3.7.1. Disk Hardware

All real disks are organized into cylinders, each one containing as many tracks as there are heads stacked
vertically. The tracks are divided into sectors, with the number of sectors around the circumference typically
being 8 to 32 on floppy disks, and up to several hundred on some hard disks. The simplest designs have the
same number of sectors on each track. All sectors contain the same number of bytes, although a little thought
will make it clear that sectors close to the outer rim of the disk will be physically longer than those close to
the hub. The time to read or write each sector will be same, however. The data density is obviously higher on
the innermost cylinders, and some disk designs require a change in the drive current to the read-write heads
for the inner tracks. This is handled by the disk controller hardware and is not visible to the user (or the
implementer of an operating system).

The difference in data density between inner and outer tracks means a sacrifice in capacity, and more
sophisticated systems exist. Floppy disk designs that rotate at higher speeds when the heads are over the outer
tracks have been tried. This allows more sectors on those tracks, increasing disk capacity. Such disks are not
supported by any system for which MINIX 3 is currently available, however. Modern large hard drives also
have more sectors per track on outer tracks than on inner tracks. These are IDE (Integrated Drive Electronics)
drives, and the sophisticated processing done by the drive's built-in electronics masks the details. To the
operating system they appear to have a simple geometry with the same number of sectors on each track.

The drive and controller electronics are as important as the mechanical hardware. The main element of the
disk controller is a specialized integrated circuit, really a small microcomputer. Once this would have been on
a card plugged into the computer's backplane, but on modern systems, the disk controller is on the
parentboard. For a modern hard disk this disk controller circuitry may be simpler than for a floppy disk, since
a hard drive has a powerful electronic controller integrated into the drive itself.

A device feature that has important implications for the disk driver is the possibility of a controller doing
seeks on two or more drives at the same time. These are known as overlapped seeks. While the controller and
software are waiting for a seek to complete on one drive, the controller can initiate a seek on another drive.
Many controllers can also read or write on one drive while seeking on one or more other drives, but a floppy
disk controller cannot read or write on two drives at the same time. (Reading or writing requires the controller
to move bits on a microsecond time scale, so one transfer uses up most of its computing power.) The situation
is different for hard disks with integrated controllers, and in a system with more than one of these hard drives
they can operate simultaneously, at least to the extent of transferring between the disk and the controller's
buffer memory. Only one transfer between the controller and the system memory is possible at once, however.
The ability to perform two or more operations at the same time can reduce the average access time
considerably.

[Page 279]

One thing to be aware of in looking at the specifications of modern hard disks is that the geometry specified,
and used by the driver software, is almost always different from the physical format. In fact, if you look up the

1

1

"recommended setup parameters" for a large hard disk, you are likely to find it specified as 16383 cylinders,
16 heads, and 63 sectors per track, no matter what the size of the disk. These numbers correspond to a disk
size of 8 GB, but are used for all disks this size or larger. The designers of the original IBM PC ROM BIOS
allotted a 6-bit field for the sector count, 4 bits to specify the head, and 14 bits to select a cylinder. With 512
byte sectors this comes out to 8 GB. So if you try to install a large hard drive into a very old computer you
may find you can access only 8 GB, even though you have a much bigger disk. The usual way around this
limitation is to use logical block addressing in which disk sectors are just numbered consecutively starting at
zero, without regard to the disk geometry.

The geometry of a modern disk is a fiction, anyway. On a modern disk the surface is divided into 20 or more
zones. Zones closer to the center of the disk have fewer sectors per track than zones nearer the periphery.
Thus sectors have approximately the same physical length no matter where they are located on the disk,
making more efficient use of the disk surface. Internally, the integrated controller addresses the disk by
calculating the zone, cylinder, head, and sector. But this is never visible to the user, and the details are rarely
found in published specifications. The bottom line is, there is no point to using cylinder, head, sector
addressing of a disk unless you are working with a very old computer that does not support logical block
addressing. Also, it does not make sense to buy a new 400 GB drive for the PC-XT you bought in 1983; you
will get no more than 8 GB use out of it.

This is a good place to mention a confusing point about disk capacity specifications. Computer professionals
are accustomed to using powers of 2a Kilobyte (KB) is 210= 1024 bytes, a Megabyte (MB) is 220= 10242
bytes, etc., to express the size of memory devices. A Gigabyte (GB), then, should be 10243, or 230 bytes.
However, disk manufacturers have adopted the habit of using the term "Gigabyte" to mean 109, which (on
paper) instantly increases the size of their products. Thus the 8 GB limit mentioned above is an 8.4 GB disk in
the language of the disk salesman. Recently there has been a move toward using the term Gibibyte (GiB) to
mean 230. However, in this text the authors, being set in their ways and in protest of the hijacking of tradition
for advertising purposes, will continue to use terms like Megabyte and Gigabyte to mean what they have
always meant.

[Page 280]

3.7.2. RAID

Although modern disks are much faster than older ones, improvements in CPU performance have far
exceeded improvements in disk performance. It has occurred to various people over the years that parallel
disk I/O might be helpful. Thus has come about a new class of I/O device called a RAID, an acronym for
Redundant Array of Independent Disks. Actually, the designers of RAID (at Berkeley) originally used the
acronym RAID to stand for "Redundant Array of Inexpensive Disks" to contrast this design with a SLED
(Single Large Expensive Disk). However, when RAID became commercially popular, disk manufacturers
changed the meaning of the acronym because it was tough to sell an expensive product whose name stood for
"inexpensive." The basic idea behind a RAID is to install a box full of disks next to the computer, typically a
large server, replace the disk controller card with a RAID controller, copy the data over to the RAID, and then
continue normal operation.

The independent disks can be used together in a variety of ways. We do not have space for an exhaustive
description of all of these, and MINIX 3 does not (yet) support RAID, but an introduction to operating
systems should at least mention some of the possibilities. RAID can be used both to speed disk access and to
make data more secure.

For example, consider a very simple RAID of two drives. When multiple sectors of data are to be written to
the "disk" the RAID controller sends sectors 0, 2, 4, etc., to the first drive, and sectors 1, 3, 5, etc., to the
second drive. The controller divides up the data and the two disks are written simultaneously, doubling the

2

2

writing speed. When reading, both drives are read simultaneously, but the controller reassembles the data in
the proper order, and to the rest of the system it just looks like the reading speed is twice as fast. This
technique is called striping. This is a simple example of RAID level 0. In practice four or more drives would
be used. This works best when data are usually read or written in large blocks. Obviously, nothing is gained if
a typical disk request is for a single sector at a time.

The previous example shows how multiple drives can increase speed. What about reliability? RAID level 1
works like RAID level 0, except the data is duplicated. Again, a very simple array of two drives could be
used, and all of the data could be written to both of them. This provides no speedup, but there is 100%
redundancy. If an error is detected during reading there is no need for a retry if the other drive reads the data
correctly. The controller just has to make sure the correct data is passed on to the system. It probably would
not be a good idea to skip retries if errors are detected while writing, however. And if errors occur frequently
enough that skipping retries actually makes reading noticeably faster it is probably time to decide complete
failure is imminent. Typically the drives used for RAIDs are hot-swappable, meaning they can be replaced
without powering down the system.

[Page 281]

More complex arrays of multiple disks can increase both speed and reliability. Consider, for instance, an array
of 7 disks. Bytes could be split into 4-bit nybbles, with each bit being recorded on one of four drives and with
the other three drives being used to record a three bit error-correcting code. If a drive goes bad and needs to be
hot-swapped for a new one, a missing drive is equivalent to one bad bit, so the system can keep running while
maintenance is done. For the cost of seven drives you get reliable performance that is four times as fast as one
drive, and no downtime.

3.7.3. Disk Software

In this section we will look at some issues related to disk drivers in general. First, consider how long it takes
to read or write a disk block. The time required is determined by three factors:

1. The seek time (the time to move the arm to the proper cylinder).

2. The rotational delay (the time for the proper sector to rotate under the head).

3. The actual data transfer time.

For most disks, the seek time dominates the other two times, so reducing the mean seek time can improve
system performance substantially.

Disk devices are prone to errors. Some kind of error check, a checksum or a cyclic redundancy check, is
always recorded along with the data in each sector on a disk. Even the sector addresses recorded when the
disk is formatted have check data. Floppy disk controller hardware can usually report when an error is
detected, but the software must then decide what to do about it. Hard disk controllers often take on much of
this burden.

Particularly with hard disks, the transfer time for consecutive sectors within a track can be very fast. Thus
reading more data than requested and caching it in memory can be very effective in speeding disk access.

3

3

Disk Arm Scheduling Algorithms

If the disk driver accepts requests one at a time and carries them out in that order, that is, First-Come,
First-Served (FCFS), little can be done to optimize seek time. However, another strategy is possible when the
disk is heavily loaded. It is likely that while the arm is seeking on behalf of one request, other disk requests
may be generated by other processes. Many disk drivers maintain a table, indexed by cylinder number, with
all pending requests for each cylinder chained together in a linked list headed by the table entries.

[Page 282]

Given this kind of data structure, we can improve upon the first-come, first-served scheduling algorithm. To
see how, consider a disk with 40 cylinders.A request comes in to read a block on cylinder 11. While the seek
to cylinder 11 is in progress, new requests come in for cylinders 1, 36, 16, 34, 9, and 12, in that order. They
are entered into the table of pending requests, with a separate linked list for each cylinder. The requests are
shown in Fig. 3-21.

Figure 3-21. Shortest Seek First (SSF) disk scheduling algorithm.

[View full size image]

When the current request (for cylinder 11) is finished, the disk driver has a choice of which request to handle
next. Using FCFS, it would go next to cylinder 1, then to 36, and so on. This algorithm would require arm
motions of 10, 35, 20, 18, 25, and 3, respectively, for a total of 111 cylinders.

Alternatively, it could always handle the closest request next, to minimize seek time. Given the requests of
Fig. 3-21, the sequence is 12, 9, 16, 1, 34, and 36, as shown as the jagged line at the bottom of Fig. 3-21. With
this sequence, the arm motions are 1, 3, 7, 15, 33, and 2, for a total of 61 cylinders. This algorithm, Shortest
Seek First (SSF), cuts the total arm motion almost in half compared to FCFS.

Unfortunately, SSF has a problem. Suppose that more requests keep coming in while the requests of Fig. 3-21
are being processed. For example, if, after going to cylinder 16, a new request for cylinder 8 is present, that
request will have priority over cylinder 1. If a request for cylinder 13 then comes in, the arm will next go to
13, instead of 1. With a heavily loaded disk, the arm will tend to stay in the middle of the disk most of the
time, so requests at either extreme will have to wait until a statistical fluctuation in the load causes there to be
no requests near the middle. Requests far from the middle may get poor service. The goals of minimal
response time and fairness are in conflict here.

Tall buildings also have to deal with this trade-off. The problem of scheduling an elevator in a tall building is
similar to that of scheduling a disk arm. Requests come in continuously calling the elevator to floors
(cylinders) at random. The microprocessor running the elevator could easily keep track of the sequence in
which customers pushed the call button and service them using FCFS. It could also use SSF.

4

4

[Page 283]

However, most elevators use a different algorithm to reconcile the conflicting goals of efficiency and fairness.
They keep moving in the same direction until there are no more outstanding requests in that direction, then
they switch directions. This algorithm, known both in the disk world and the elevator world as the elevator
algorithm, requires the software to maintain 1 bit: the current direction bit, UP or DOWN. When a request
finishes, the disk or elevator driver checks the bit. If it is UP, the arm or cabin is moved to the next highest
pending request. If no requests are pending at higher positions, the direction bit is reversed. When the bit is set
to DOWN, the move is to the next lowest requested position, if any.

Figure 3-22 shows the elevator algorithm using the same seven requests as Fig. 3-21, assuming the direction
bit was initially UP. The order in which the cylinders are serviced is 12, 16, 34, 36, 9, and 1, which yields arm
motions of 1, 4, 18, 2, 27, and 8, for a total of 60 cylinders. In this case the elevator algorithm is slightly better
than SSF, although it is usually worse. One nice property that the elevator algorithm has is that given any
collection of requests, the upper bound on the total motion is fixed: it is just twice the number of cylinders.

Figure 3-22. The elevator algorithm for scheduling disk requests.

[View full size image]

A slight modification of this algorithm that has a smaller variance in response times is to always scan in the
same direction (Teory, 1972). When the highest numbered cylinder with a pending request has been serviced,
the arm goes to the lowest-numbered cylinder with a pending request and then continues moving in an upward
direction. In effect, the lowest-numbered cylinder is thought of as being just above the highest-numbered
cylinder.

Some disk controllers provide a way for the software to inspect the current sector number under the head.
With such a controller, another optimization is possible. If two or more requests for the same cylinder are
pending, the driver can issue a request for the sector that will pass under the head next. Note that when
multiple tracks are present in a cylinder, consecutive requests can be for different tracks with no penalty. The
controller can select any of its heads instantaneously, because head selection involves neither arm motion nor
rotational delay.

[Page 284]

With a modern hard disk, the data transfer rate is so much faster than that of a floppy disk that some kind of
automatic caching is necessary. Typically any request to read a sector will cause that sector and up to the rest
of the current track to be read, depending upon how much space is available in the controller's cache memory.
Current caches are often 8 MB or more.

5

5

When several drives are present, a pending request table should be kept for each drive separately. Whenever
any drive is idle, a seek should be issued to move its arm to the cylinder where it will be needed next
(assuming the controller allows overlapped seeks). When the current transfer finishes, a check can be made to
see if any drives are positioned on the correct cylinder. If one or more are, the next transfer can be started on a
drive that is already on the right cylinder. If none of the arms is in the right place, the driver should issue a
new seek on the drive that just completed a transfer and wait until the next interrupt to see which arm gets to
its destination first.

Error Handling

RAM disks do not have to worry about seek or rotational optimization: at any instant all blocks can be read or
written without any physical motion. Another area in which RAM disks are simpler than real disks is error
handling. RAM disks always work; real ones do not always work. They are subject to a wide variety of errors.
Some of the more common ones are:

1. Programming error (e.g., request for nonexistent sector).

2. Transient checksum error (e.g., caused by dust on the head).

3. Permanent checksum error (e.g., disk block physically damaged).

4. Seek error (e.g., the arm was sent to cylinder 6 but it went to 7).

5. Controller error (e.g., controller refuses to accept commands).

It is up to the disk driver to handle each of these as best it can.

Programming errors occur when the driver tells the controller to seek to a nonexistent cylinder, read from a
nonexistent sector, use a nonexistent head, or transfer to or from nonexistent memory. Most controllers check
the parameters given to them and complain if they are invalid. In theory, these errors should never occur, but
what should the driver do if the controller indicates that one has happened? For a home-grown system, the
best thing to do is stop and print a message like "Call the programmer" so the error can be tracked down and
fixed. For a commercial software product in use at thousands of sites around the world, this approach is less
attractive. Probably the only thing to do is terminate the current disk request with an error and hope it will not
recur too often.

[Page 285]

Transient checksum errors are caused by specks of dust in the air that get between the head and the disk
surface. Most of the time they can be eliminated by just repeating the operation a few times. If the error
persists, the block has to be marked as a bad block and avoided.

One way to avoid bad blocks is to write a very special program that takes a list of bad blocks as input and
carefully hand crafts a file containing all the bad blocks. Once this file has been made, the disk allocator will
think these blocks are occupied and never allocate them. As long as no one ever tries to read the bad block
file, no problems will occur.

Not reading the bad block file is easier said than done. Many disks are backed up by copying their contents a
track at a time to a backup tape or disk drive. If this procedure is followed, the bad blocks will cause trouble.
Backing up the disk one file at a time is slower but will solve the problem, provided that the backup program

6

6

knows the name of the bad block file and refrains from copying it.

Another problem that cannot be solved with a bad block file is the problem of a bad block in a file system data
structure that must be in a fixed location. Almost every file system has at least one data structure whose
location is fixed, so it can be found easily. On a partitioned file system it may be possible to repartition and
work around a bad track, but a permanent error in the first few sectors of either a floppy or hard disk generally
means the disk is unusable.

"Intelligent" controllers reserve a few tracks not normally available to user programs. When a disk drive is
formatted, the controller determines which blocks are bad and automatically substitutes one of the spare tracks
for the bad one. The table that maps bad tracks to spare tracks is kept in the controller's internal memory and
on the disk. This substitution is transparent (invisible) to the driver, except that its carefully worked out
elevator algorithm may perform poorly if the controller is secretly using cylinder 800 whenever cylinder 3 is
requested. The technology of manufacturing disk recording surfaces is better than it used to be, but it is still
not perfect. However, the technology of hiding the imperfections from the user has also improved. Many
controllers also manage new errors that may develop with use, permanently assigning substitute blocks when
they determine that an error is unrecoverable. With such disks the driver software rarely sees any indication
that there any bad blocks.

Seek errors are caused by mechanical problems in the arm. The controller keeps track of the arm position
internally. To perform a seek, it issues a series of pulses to the arm motor, one pulse per cylinder, to move the
arm to the new cylinder. When the arm gets to its destination, the controller reads the actual cylinder number
(written when the drive was formatted). If the arm is in the wrong place, a seek error has occurred and some
corrective action is required.

[Page 286]

Most hard disk controllers correct seek errors automatically, but many floppy controllers (including the IBM
PCs) just set an error bit and leave the rest to the driver. The driver handles this error by issuing a
recalibrate command, to move the arm as far out as it will go and reset the controller's internal idea of
the current cylinder to 0. Usually, this solves the problem. If it does not, the drive must be repaired.

As we have seen, the controller is really a specialized little computer, complete with software, variables,
buffers, and occasionally, bugs. Sometimes an unusual sequence of events such as an interrupt on one drive
occurring simultaneously with a recalibrate command for another drive will trigger a bug and cause the
controller to go into a loop or lose track of what it was doing. Controller designers usually plan for the worst
and provide a pin on the chip which, when asserted, forces the controller to forget whatever it was doing and
reset itself. If all else fails, the disk driver can set a bit to invoke this signal and reset the controller. If that
does not help, all the driver can do is print a message and give up.

Track-at-a-Time Caching

The time required to seek to a new cylinder is usually much more than the rotational delay, and always vastly
more than the transfer time to read or write one sector. In other words, once the driver has gone to the trouble
of moving the arm somewhere, it hardly matters whether it reads one sector or a whole track. This effect is
especially true if the controller provides rotational sensing, so the driver can see which sector is currently
under the head and issue a request for the next sector, thereby making it possible to read an entire disk track in
a single rotation time. (Normally it takes half a rotation plus one sector time just to read a single sector, on the
average.)

Some disk drivers take advantage of these timing properties by maintaining a secret track-at-a-time cache,
unknown to the device-independent software. If a sector that is in the cache is needed, no disk transfer is
required. A disadvantage of track-at-a-time caching (in addition to the software complexity and buffer space

7

7

needed) is that transfers from the cache to the calling program will have to be done by the CPU using a
programmed loop, rather than letting the DMA hardware do the job.

Some controllers take this process a step further, and do track-at-a-time caching in their own internal memory,
transparent to the driver, so that transfer between the controller and memory can use DMA. If the controller
works this way, there is little point in having the disk driver do it as well. Note that both the controller and the
driver are in a good position to read and write entire tracks in one command, but that the device-independent
software cannot, because it regards a disk as a linear sequence of blocks, without regard to how they are
divided up into tracks and cylinders. Only the controller knows the true geometry for sure.

[Page 287]

3.7.4. Overview of the Hard Disk Driver in MINIX 3

The hard disk driver is the first part of MINIX 3 we have looked at that has to deal with a range of different
types of hardware. Before we discuss the driver, we will briefly consider some of the problems hardware
differences can cause.

The "PC" is really a family of different computers. Not only are different processors used in different
members of the family, there are also some major differences in the basic hardware. MINIX 3 has been
developed on and for newer systems with Pentium-class CPUs, but even among these there are differences.
For instance, the oldest Pentium systems use the 16-bit AT bus originally designed for the 80286 processor. A
feature of the AT bus is that it was cleverly designed so older 8-bit peripherals could still be used. Later
systems added a 32-bit PCI bus for peripherals, while still providing AT bus slots. The newest designs have
dropped AT-bus support, providing only a PCI bus. But it is reasonable to expect that users with computers of
a certain age may want to be able to use MINIX 3 with a mix of 8-bit, 16-bit, and 32-bit peripherals.

For every bus there is a different family of I/O adapters. On older systems these are separate circuit boards
which plug into the system parentboard. On newer systems many standard adapters, especially disk
controllers, are integrated parts of the parentboard chipset. In itself this is not a problem for the programmer,
as integrated adapters usually have a software interface identical to that of removable devices. Also, integrated
controllers can usually be disabled. This allows use of a more advanced add-on device, such as a SCSI
controller, in place of a built-in device. To take advantage of this flexibility the operating system should not
be restricted to using just one kind of adapter.

In the IBM PC family, as in most other computer systems, each bus design also comes with firmware in the
Basic I/O System Read-Only Memory (the BIOS ROM) which is designed to bridge the gap between the
operating system and the peculiarities of the hardware. Some peripheral devices may even provide extensions
to the BIOS in ROM chips on the peripheral cards themselves. The difficulty faced by an operating system
implementer is that the BIOS in IBM-type computers (certainly the early ones) was designed for an operating
system, MSDOS, that does not support multiprogramming and that runs in 16-bit real mode, the lowest
common denominator of the various modes of operation available from the 80x86 family of CPUs.

The implementer of a new operating system for the IBM PC is thus faced with several choices. One is whether
to use the driver support for peripherals in the BIOS or to write new drivers from scratch. This was not a hard
choice in the design of early versions of MINIX, since the BIOS was in many ways not suitable to its needs.
Of course, to start MINIX 3 the boot monitor uses the BIOS to do the initial loading of the system, whether
from hard disk, CD-ROM, or floppy disk there is no practical alternative to doing it this way. Once we have
loaded the system, including our own I/O drivers, we can do better than the BIOS.

[Page 288]

8

8

The second choice then must be faced: without the BIOS support how are we going to make our drivers adapt
to the varied kinds of hardware on different systems? To make the discussion concrete, consider that there are
two fundamentally different types of hard disk controller usable on the modern 32-bit Pentium systems for
which MINIX 3 has been designed: the integrated IDE controller and add-on SCSI controllers for the PCI bus.
If you would like to take advantage of older hardware and adapt MINIX 3 to work on the hardware targeted
by earlier versions of MINIX, there are four hard disk controller types to consider: the original 8-bit XT-type
controller, the 16-bit AT-type controller, and two different controllers for two different types of IBM PS/2
series computers. There are several possible ways to deal with all these alternatives:

1. Recompile a unique version of the operating system for each type of hard disk controller we need to
accommodate.

2. Compile several different hard disk drivers into the boot image and have the system automatically
determine at startup time which one to use.

3. Compile several different hard disk drivers into the boot image and provide a way for the user to
determine which one to use.

As we shall see, these are not mutually exclusive.

The first way is really the best way in the long run. For use on a particular installation there is no need to use
up disk and memory space with code for alternative drivers that will never be used. However, it is a nightmare
for the distributor of the software. Supplying four different startup disks and advising users on how to use
them is expensive and difficult. Thus, another method is advisable, at least for the initial installation.

The second method is to have the operating system probe the peripherals, by reading the ROM on each card or
writing and reading I/O ports to identify each card. This is possible (and works better on newer IBM-type
systems than on older ones), but it does not accommodate nonstandard I/O devices. Also, probing I/O ports to
identify one device sometimes can activate another device which seizes control and disables the system. This
method complicates the startup code for each device, and yet still does not work very well. Operating systems
that do use this method generally have to provide some kind of override, typically a mechanism such as we
use with MINIX 3.

The third method, used in MINIX 3, is to allow inclusion of several drivers in the boot image. The MINIX 3
boot monitor allows various boot parameters to be read at startup time. These can be entered by hand, or
stored permanently on the disk. At startup time, if a boot parameter of the form

label = AT

is found, this forces the IDE disk controller (at_wini) to be used when MINIX 3 is started. This depends upon
the at_wini driver being assigned this label. Labels are assigned when the boot image is compiled.

[Page 289]

There are two other things MINIX 3 does to try to minimize problems with multiple hard disk drivers. One is
that there is, after all, a driver that interfaces between MINIX 3 and the ROM BIOS hard disk support. This
driver is almost guaranteed to work on any system and can be selected by use of a

label=BIOS

9

9

boot parameter. Generally, this should be a last resort, however. MINIX 3 as described here runs only in
protected mode on systems with an 80386 or better processor, but the BIOS code always runs in real (8086)
mode. Switching out of protected mode and back again whenever a routine in the BIOS is called is very slow.

The other strategy MINIX 3 uses in dealing with drivers is to postpone initialization until the last possible
moment. Thus, if on some hardware configuration none of the hard disk drivers work, we can still start
MINIX 3 from a floppy disk and do some useful work. MINIX 3 will have no problems as long as no attempt
is made to access the hard disk. This may not seem like a major breakthrough in user friendliness, but
consider this: if all the drivers try to initialize immediately on system startup, the system can be totally
paralyzed by improper configuration of some device we do not need anyway. By postponing initialization of
each driver until it is needed, the system can continue with whatever does work, while the user tries to resolve
the problems.

We learned this lesson the hard way: earlier versions of MINIX tried to initialize the hard disk as soon as the
system was booted. If no hard disk was present, the system hung. This behavior was especially unfortunate
because MINIX would run quite happily on a system without a hard disk, albeit with restricted storage
capacity and reduced performance.

In the discussion in this section and the next, we will take as our model the AT-style hard disk driver, which is
the default driver in the standard MINIX 3 distribution. This is a versatile driver that handles hard disk
controllers from the ones used in the earliest 80286 systems to modern EIDE (Extended Integrated Drive
Electronics) controllers that handle gigabyte capacity hard disks. Modern EIDE controllers also support
standard CD-ROM drives. However, in order to simplify our discussion the extensions that support
CD-ROMs have been taken out of the code listed in Appendix B. The general aspects of hard disk operation
we discuss in this section apply to the other supported drivers as well.

The main loop of the hard disk driver is the same common code we have already discussed, and supports the
standard nine kinds of requests that can be made. A DEV_OPEN request can entail a substantial amount of
work, as there are always partitions and may be subpartitions on a hard disk. These must be read when a
device is opened, (i.e., when it is first accessed). When CD-ROMs are supported, on a DEV_OPEN the
presence of the medium must be verified, since it is removable. On a CD-ROM a DEV_CLOSE operation
also has meaning: it requires that the door be unlocked and the CD-ROM ejected. There are other
complications of removable media that are more applicable to floppy drives, so we will discuss these in a later
section. For CD-ROMs a DEV_IOCTL operation is used to set a flag to mark that the medium should be
ejected from the drive upon a DEV_CLOSE. A DEV_IOCTL operation is also used to read and write partition
tables.

[Page 290]

DEV_READ, DEV_WRITE, DEV_GATHER and DEV_SCATTER requests are each handled in two phases,
prepare and transfer, as we saw previously. For the hard disk DEV_CANCEL and DEV_SELECT calls are
ignored.

No scheduling is done by the hard disk device driver at all, that is done by the file system, which assembles
the vector requests for gather/scatter I/O. Requests come from the file system cache as DEV_GATHER or
DEV_SCATTER requests for multiples of blocks (4-KB in the default configuration of MINIX 3), but the
hard disk driver is able to handle requests for any multiple of a sector (512 bytes). In any case, as we have
seen, the main loop of all disk drivers transforms requests for single blocks of data into one element vector
requests.

Requests for reading and writing are not mixed in a vector of requests, nor can requests be marked as optional.

10

10

The elements of a request vector are for contiguous disk sectors, and the vector is sorted by the file system
before being passed to the device driver, so it suffices to specify just the starting position on the disk for an
entire array of requests.

The driver is expected to succeed in reading or writing at least the first request in a request vector, and to
return when a request fails. It is up to the file system to decide what to do; the file system will try to complete
a write operation but will return to the calling process only as much data as it can get on a read.

The file system itself, by using scattered I/O, can implement something similar to Teory's version of the
elevator algorithmrecall that in a scattered I/O request the list of requests is sorted on the block number. The
second step in scheduling takes place in the controller of a modern hard disk. Such controllers are "smart" and
can buffer large quantities of data, using internally programmed algorithms to retrieve data in the most
efficient order, irrespective of the order of receipt of the requests.

3.7.5. Implementation of the Hard Disk Driver in MINIX 3

Small hard disks used on microcomputers are sometimes called "winchester" disks. The term was IBM's code
name for the project that developed the disk technology in which the read/write heads fly on a thin cushion of
air and land on the recording medium when the disk stops spinning. The explanation of the name is that an
early model had two data modules, a 30-Mbyte fixed and a 30-Mbyte removable one. Supposedly this
reminded the developers of the Winchester 30-30 firearm which figures in many tales of the United States'
western frontier. Whatever the origin of the name, the basic technology remains the same, although today's
typical PC disk is much smaller and the capacity is much larger than the 14-inch disks that were typical of the
early 1970s when the winchester technology was developed.

[Page 291]

The MINIX 3 AT-style hard disk driver is in at_wini.c (line 12100). This is a complicated driver for a
sophisticated device, and there are several pages of macro definitions specifying controller registers, status
bits and commands, data structures, and prototypes. As with other block device drivers, a driver structure,
w_dtab (lines 12316 to 12331), is initialized with pointers to the functions that actually do the work. Most of
them are defined in at_wini.c, but as the hard disk requires no special cleanup operation, its dr_cleanup entry
points to the common nop_cleanup in driver.c, shared with other drivers that have no special cleanup
requirement. Several other possible functions are also irrelevant for this driver and also are initialized to point
to nop_functions. The entry function, called at_winchester_task (line 12336), calls a procedure that does
hardware-specific initialization and then calls the main loop in driver.c, passing the address of w_dtab. The
main loop, driver_task in libdriver/driver.c, runs forever, dispatching calls to the various functions pointed to
by the driver table.

Since we are now dealing with real electromechanical storage devices, there is a substantial amount of work to
be done by init_params (line 12347) to initialize the hard disk driver. Various parameters about the hard disks
are kept in the wini table defined on lines 12254 to 12276, which has an element for each of the
MAX_DRIVES (8) drives supported, up to four conventional IDE drives, and up to four drives on the PCI
bus, either plug-in IDE controllers or SATA (Serial AT Attachment) controllers.

Following the policy of postponing initialization steps that could fail until the first time they are truly
necessary, init_params does not do anything that requires accessing the disk devices themselves. The main
thing it does is to copy information about the hard disk logical configuration into the wini array. The ROM
BIOS on a Pentium-class computer retrieves basic configuration information from the CMOS memory used to
preserve basic configuration data. The BIOS does this when the computer is first turned on, before the first
part of the MINIX 3 loading process begins. On lines 12366 to 12392 the information is copied from the
BIOS. Many of the constants used here, such as NR_HD_DRIVES_ADDR are defined in include/ibm/bios.h,

11

11

a file which is not listed in Appendix B but which can be found on the MINIX 3 CD-ROM. It is not
necessarily fatal if this information cannot be retrieved. If the disk is a modern one, the information can be
retrieved directly from the disk when it is accessed for the first time. Following the entry of data obtained
from the BIOS, additional disk information is filled in for each drive using a call to the next function,
init_drive.

On older systems with IDE controllers, the disk functions as if it were an ATstyle peripheral card, even
though it may be integrated on the parentboard. Modern drive controllers usually function as PCI devices,
with a 32-bit data path to the CPU, rather than the 16-bit AT bus. Fortunately for us, once initialization is
complete, the interface to both generations of disk controller appears the same to the programmer. To make
this work, init_params_pci (line 12437) is called if necessary to get the parameters of the PCI devices. We
will not describe the details of this routine, but a few points should be mentioned. First, the boot parameter
ata_instance is used on line 12361 to set the value of the variable w_instance. If the boot parameter is not
explicitly set the value will be zero. If it is set and greater than zero the test on line 12365 causes querying the
BIOS and initialization of standard IDE drives to be skipped. In this case only drives found on the PCI bus
will be registered.

[Page 292]

The second point is that a controller found on the PCI bus will be identified as controlling devices c0d4
through c0d7. If w_instance is non-zero the drive identifiers c0d0 through c0d3 will be skipped, unless a PCI
bus controller identifies itself as "compatible." Drives handled by a compatible PCI bus controller will be
designated c0d0 through c0d3. For most MINIX 3 users all of these complications can probably be ignored. A
computer with less than four drives (including the CD-ROM drive), will most likely appear to the user to have
the classical configuration, with drives designated c0d0 to c0d3, whether they are connected to IDE or PCI
controllers, and whether or not they use the classic 40-pin parallel connectors or the newer serial connectors.
But the programming required to create this illusion is complicated.

After the call to the common main loop, nothing may happen for a while until the first attempt is made to
access the hard disk. When the first attempt to access a disk is made a message requesting a DEV_OPEN
operation will be received by the main loop and w_do_open (line 12521) will be indirectly called. In turn,
w_do_open calls w_prepare to determine if the device requested is valid, and then w_identify to identify the
type of device and initialize some more parameters in the wini array. Finally, a counter in the wini array is
used to test whether this is first time the device has been opened since MINIX 3 was started. After being
examined, the counter is incremented. If it is the first DEV_OPEN operation, the partition function (in
drvlib.c) is called.

The next function, w_prepare (line 12577), accepts an integer argument, device, which is the minor device
number of the drive or partition to be used, and returns a pointer to the device structure that indicates the base
address and size of the device. In the C language, the use of an identifier to name a structure does not preclude
use of the same identifier to name a variable. Whether a device is a drive, a partition, or a subpartition can be
determined from the minor device number. Once w_prepare has completed its job, none of the other functions
used to read or write the disk need to concern themselves with partitioning. As we have seen, w_prepare is
called when a DEV_OPEN request is made; it is also one phase of the prepare/transfer cycle used by all data
transfer requests.

Software-compatible AT-style disks have been in use for quite a while, and w_identify (line 12603) has to
distinguish between a number of different designs that have been introduced over the years. The first step is to
see that a readable and writeable I/O port exists where one should exist on all disk controllers in this family.
This is the first example we have seen of I/O port access by a user-space driver, and the operation merits a
description. For a disk device I/O is done using a command structure, defined on lines 12201 to 12208, which
is filled in with a series of byte values. We will describe this in a bit more detail later; for the moment note
that two bytes of this structure are filled in, one with a value ATA_IDENTIFY, interpreted as a command that

12

12

asks an ATA (AT Attached) drive to identify itself, and another with a bit pattern that selects the drive. Then
com_simple is called.

[Page 293]

This function hides all the work of constructing a vector of seven I/O port addresses and bytes to be written to
them, sending this information to the system task, waiting for an interrupt, and checking the status returned.
This tests that the drive is alive and allows a string of 16-bit values to be read by the sys_insw kernel call
on line 12629. Decoding this information is a messy process, and we will not describe it in detail. Suffice it to
say that a considerable amount of information is retrieved, including a string that identifies the model of the
disk, and the preferred physical cylinder, head, and sector parameters for the device. (Note that the "physical"
configuration reported may not be the true physical configuration, but we have no alternative to accepting
what the disk drive claims.) The disk information also indicates whether or not the disk is capable of Logical
Block Addressing (LBA). If it is, the driver can ignore the cylinder, head, and sector parameters and can
address the disk using absolute sector numbers, which is much simpler.

As we mentioned earlier, it is possible that init_params may not recover the logical disk configuration
information from the BIOS tables. If that happens, the code at lines 12666 to 12674 tries to create an
appropriate set of parameters based on what it reads from the drive itself. The idea is that the maximum
cylinder, head, and sector numbers can be 1023, 255, and 63 respectively, due to the number of bits allowed
for these fields in the original BIOS data structures.

If the ATA_IDENTIFY command fails, it may simply mean that the disk is an older model that does not
support the command. In this case the logical configuration values previously read by init_params are all we
have. If they are valid, they are copied to the physical parameter fields of wini; otherwise an error is returned
and the disk is not usable.

Finally, MINIX 3 uses a u32_t variable to count addresses in bytes. This limits the size of a partition to 4 GB.
However, the device structure used to record the base and size of a partition (defined in
drivers/libdriver/driver.h on lines 10856 to 10858) uses u64_t numbers, and a 64 bit multiplication operation
is used to calculate the size of the drive on (line 12688), and the base and size of the whole drive are then
entered into the wini array, and w_specify is called, twice if necessary, to pass the parameters to be used back
to the disk controller (line 12691). Finally, more kernel calls are made:a sys_irqsetpolicy call (line
12699) ensures that when a disk controller interrupt occurs and is serviced the interrupt will be automatically
reenabled in preparation for the next one. Following that, a sys_irqenable call actually enables the
interrupt.

[Page 294]

W_name (line 12711) returns a pointer to a string containing the device name, which will be either "AT-D0,"
"AT-D1" "AT-D2," or "AT-D3." When an error message must be generated this function tells which drive
produced it.

It is possible that a drive will turn out to be incompatible with MINIX 3 for some reason. The function
w_io_test (line 12723) is provided to test each drive the first time an attempt is made to open it. This routine
tries to read the first block on the drive, with shorter timeout values than are used in normal operation. If the
test fails the drive is permanently marked as unavailable.

W_specify (line 12775), in addition to passing the parameters to the controller, also recalibrates the drive (if it
is an older model), by doing a seek to cylinder zero.

13

13

Do_transfer (line 12814) does what its name implies, it assembles a command structure with all the byte
values needed to request transfer of a chunk of data (possibly as many as 255 disk sectors), and then it calls
com_out, which sends the command to the disk controller. The data must be formatted differently depending
upon how the disk is to be addressed, that is, whether by cylinder, head, and sector or by LBA. Internally
MINIX 3 addresses disk blocks linearly, so if LBA is supported the first three byte-wide fields are filled in by
shifting the sector count an appropriate number of bits to the right and then masking to get 8-bit values. The
sector count is a 28 bit number, so the last masking operation uses a 4-bit mask (line 12830). If the disk does
not support LBA then cylinder, head, and sector values are calculated, based on the parameters of the disk in
use (lines 12833 to 12835).

The code contains a hint of a future enhancement. LBA addressing with a 28-bit sector count limits MINIX 3
to fully utilizing disks of 128 GB or smaller size. (You can use a bigger disk, but MINIX 3 can only access the
first 128 GB). The programmers have been thinking about, but have not yet implemented, use of the newer
LBA48 method, which uses 48 bits to address disk blocks. On line 12824 a test is made for whether this is
enabled. The test will always fail with the version of MINIX 3 described here. This is good, because no code
is provided to be executed if the test succeeds. Keep in mind if you decide to modify MINIX 3 yourself to use
LBA48 that you need to do more than just add some code here. You will have to make changes in many
places to handle the 48-bit addresses. You might find it easier to wait until MINIX 3 has been ported to a
64-bit processor, too. But if a 128 GB disk is not big enough for you, LBA48 will give you access to 128 PB
(Petabytes).

Now we will briefly look at how a data transfer takes place at a higher level. W_prepare, which we have
already discussed, is called first. If the transfer operation requested was for multiple blocks (that is, a
DEV_GATHER or DEV_SCATTER request), w_transfer line 12848 is called immediately afterward. If the
transfer is for a single block (a DEV_READ or DEV_WRITE request), a one element scatter/gather vector is
created, and then w_transfer is called. Accordingly, w_transfer is written to expect a vector of iovec_t
requests. Each element of the request vector consists of a buffer address and the size of the buffer, constrained
that the size must be a multiple of the size of a disk sector. All other information needed is passed as an
argument to the call, and applies to the entire request vector.

[Page 295]

The first thing done is a simple test to see if the disk address requested for the start of the transfer is aligned
on a sector boundary (line 12863). Then the outer loop of the function is entered. This loop repeats for each
element of the request vector. Within the loop, as we have seen many times before, a number of tests are made
before the real work of the function is done. First the total number of bytes remaining in the request is
calculated by summing the iov_size fields of each element of the request vector. This result is checked to be
sure it is an exact multiple of the size of a sector. Other tests check that the starting position is not at or
beyond the end of the device, and if the request would end past the end of the device the size of the request is
truncated. All calculations so far have been in bytes, but on line 12876 a calculation is made of the block
position on the disk, using 64 bit arithmetic. Note that although the variable used is named block, this is a
number of disk blocks, that is, 512 byte sectors, not the "block" used internally by MINIX 3, normally 4096
bytes. After this one more adjustment is made. Every drive has a maximum number of bytes that can be
requested at one time, and the request is scaled back to this quantity if necessary. After verifying that the disk
has been initialized, and doing so again if necessary, a request for a chunk of data is made by calling
do_transfer (line 12887).

After a transfer request has been made the inner loop is entered, which repeats for each sector. For a read or
write operation an interrupt will be generated for each sector. On a read the interrupt signifies data is ready
and can be transferred. The sys_insw kernel call on line 12913 asks the system task to read the specified I/O
port repeatedly, transferring the data to a virtual address in the data space of the specified process. For a write
operation the order is reversed. The sys_outsw call a few lines further down writes a string of data to the
controller, and the interrupt comes from the disk controller when the transfer to the disk is complete. In the

14

14

case of either a read or a write, at_intr_wait is called to receive the interrupt, for example, on line 12920
following the write operation. Although the interrupt is expected, this function provides a way to abort the
wait if a malfunction occurs and the interrupt never arrives. At_intr_wait also reads the disk controller's status
register and returns various codes. This is tested on line 12933. On an error when either reading or writing,
there is a break which skips over the section where results are recorded and poiners and counters adjusted
for the next sector, so the next time through the inner loop will be a retry of the same sector, if another try is
allowed. If the disk controller reports a bad sector w_transfer terminates immediately. For other errors a
counter is incremented and the function is allowed to continue if max_errors has not been reached.

[Page 296]

The next function we will discuss is com_out, which sends the command to the disk controller, but before we
look at its code let us first look at the controller as it is seen by the software. The disk controller is controlled
through a set of registers, which could be memory mapped on some systems, but on an IBM compatible
appear as I/O ports. We will look at these registers and discuss a few aspects of how they (and I/O control
registers in general) are used. In MINIX 3 there is the added complication that drivers run in user space and
cannot execute the instructions that read or write registers. This will provide an opportunity to look at how
kernel calls are used to work around this restriction.

The registers used by a standard IBM-AT class hard disk controller are shown in Fig. 3-23.

Figure 3-23. (a) The control registers of an IDE hard disk controller. The numbers in parentheses are the bits of
the logical block address selected by each register in LBA mode. (b) The fields of the Select Drive/Head register.

Register Read Function Write Function

0 Data Data

1 Error Write Precompensation

2 Sector Count Sector Count

3 Sector Number (0-7) Sector Number (0-7)

4 Cylinder Low (8-15) Cylinder Low (8-15)

5 Cylinder High (16-23) Cylinder High (16-23)

6 Select Drive/Head (24-27) Select Drive/Head (24-27)

7 Status Command

(a)

7 6 5 4 3 2 1 0

1 LBA 1 D HS3 HS2 HS1 HS0

LBA: 0 = Cylinder/Head/Sector Mode

1 = Logical Block Addressing Mode

D: 0 = master drive

15

15

1 = slave drive

HSn: CHS mode: Head select in CHS mode

LBA mode: Block select bits 24 - 27

(b)

We have mentioned several times reading and writing to I/O ports, but we tacitly treated them just like
memory addresses. In fact, I/O ports often behave differently from memory addresses. For one thing, input
and output registers that happen to have the same I/O port address are not the same register. Thus, the data
written to a particular address cannot necessarily be retrieved by a subsequent read operation. For example,
the last register address shown in Fig. 3-23 shows the status of the disk controller when read and is used to
issue commands to the controller when written to. It is also common that the very act of reading or writing an
I/O device register causes an action to occur, independently of the details of the data transferred. This is true
of the command register on the AT disk controller. In use, data are written to the lower-numbered registers to
select the disk address to be read from or written to, and then the command register is written last with an
operation code. The data written to the command register determines what the operation will be. The act of
writing the operation code into the command register starts the operation.

[Page 297]

It is also the case that the use of some registers or fields in the registers may vary with different modes of
operation. In the example given in the figure, writing a 0 or a 1 to the LBA bit, bit 6 of register 6, selects
whether CHS (Cylinder-Head-Sector) or LBA (Logical Block Addressing) mode is used. The data written to
or read from registers 3, 4, and 5, and the low four bits of register 6 are interpreted differently according to the
setting of the LBA bit.

Now let us take a look at how a command is sent to the controller by calling com_out (line 12947). This
function is called after setting up a cmd structure (with do_transfer, which we saw earlier). Before changing
any registers, the status register is read to determine that the controller is not busy. This is done by testing the
STATUS_BSY bit. Speed is important here, and normally the disk controller is ready or will be ready in a
short time, so busy waiting is used. On line 12960 w_waitfor is called to test STATUS_BSY. W_waitfor uses
a kernel call to ask the system task to read an I/O port so w_waitfor can test a bit in the status register. It loops
until the bit is ready or until there is a timeout. The loop is programmed for a quick return when the disk is
ready. Thus the returned value will be true with the minimum possible delay if the controller is ready, true
after a delay if it is temporarily unavailable, or false if it is not ready after the timeout period. We will have
more to say about the timeout when we discuss w_waitfor itself.

A controller can handle more than one drive, so once it is determined that the controller is ready, a byte is
written to select the drive, head, and mode of operation (line 12966) and w_waitfor is called again. A disk
drive sometimes fails to carry out a command or to properly return an error codeit is, after all, a mechanical
device that can stick, jam, or break internallyand as insurance a sys_setalarm kernel call is made to have
the system task schedule a call to a wakeup routine. Following this, the command is issued by first writing all
the parameters to the various registers and finally writing the command code itself to the command register.
This is done with a sys_voutb kernel call, which sends a vector of (value, address) pairs to the system task.
The system task writes each value to the I/O port specified by the address in order. The vector of data for the
sys_voutb call is constructed by use of a macro, pv_set, which is defined in include/minix/devio.h. The act
of writing the operation code to the command register makes the operation begin. When it is complete, an
interrupt is generated and a notification message is sent. If the command times out the alarm will expire and a
synchronous alarm notification will wake up the disk driver.

16

16

[Page 298]

The next several functions are short. W_need_reset (line 12999) is called when timeouts occur while waiting
for the disk to interrupt or become ready. The action of w_need_reset is just to mark the state variable for
every drive in the wini array to force initialization on the next access.

W_do_close (line 13016) has very little to do for a conventional hard disk. Additional code is needed to
support CD-ROMs.

Com_simple is called to issue controller commands that terminate immediately without a data transfer phase.
Commands that fall into this category include those that retrieve the disk identification, setting of some
parameters, and recalibration. We saw an example of its use in w_identify. Before it is called the command
structure must be correctly initialized. Note that immediately after the call to com_out a call to at_intr_wait is
made. This eventually does a receive which blocks until a notification arrives signifying that an interrupt
has occurred.

We noted that com_out does a sys_setalarm kernel call before asking the system task to write the
registers which set up and execute a command. As we mentioned in the overview section, the next receive
operation normally should receive a notification indicating an interrupt. If an alarm has been set and no
interrupt occurs, the next message will be a SYN_ALARM. In this case w_timeout line 13046 is called. What
needs to be done depends on the current command in w_command. The timeout might have been left over
from a previous operation, and w_command may have the value CMD_IDLE, meaning the disk completed its
operation. In that case there is nothing to do. If the command does not complete and the operation is a read or
write, it may help to reduce the size of I/O requests. This is done in two steps, first reducing the maximum
number of sectors that can be requested to 8, and then to 1. For all timeouts a message is printed and
w_need_reset is called to force re-initialization of all drives on the next attempted access.

When a reset is required, w_reset (line 13076) is called. This function makes use of a library function,
tickdelay, that sets a watchdog timer and then waits for it to expire. After an initial delay to give the drive time
to recover from previous operations, a bit in the disk controller's control register is strobedthat is, set to a
logical 1 level for a definite period, then returned to the logical 0 level. Following this operation, w_waitfor is
called to give the drive a reasonable period to signal it is ready. In case the reset does not succeed, a message
is printed and an error status returned.

Commands to the disk that involve data transfer normally terminate by generating an interrupt, which sends a
message back to the disk driver. In fact, an interrupt is generated for each sector read or written. The function
w_intr_wait (line 13123) calls receive in a loop, and if a SYN_ALARM message is received w_timeout is
called. The only other message type this function should see is HARD_INT. When this is received the status
register is read and ack_args is called to reinitialize the interrupt.

[Page 299]

W_intr_wait is not called directly; when an interrupt is expected the function called is the next one,
at_intr_wait (line 13152). After an interrupt is received by at_intr_wait a quick check is made of the drive
status bits. All is OK if the bits corresponding to busy, write fault, and error are all clear. Otherwise a closer
look is taken. If the register could not be read at all, it is panic time. If the problem was a bad sector a specific
error is returned, any other problem results in a general error code. In all cases the STATUS_ADMBSY bit is
set, to be reset later by the caller.

We have seen several places where w_waitfor (line 13177) is called to do busy waiting on a bit in the disk
controller status register. This is used in situations where it is expected the bit might be clear on the first test,
and a quick test is desirable. For the sake of speed, a macro that read the I/O port directly was used in earlier
versions of MINIXthis is, of course, not allowable for a user-space driver in MINIX 3. The solution here is to

17

17

use a do ... while loop with a minimum of overhead before the first test is made. If the bit being tested
is clear there is an immediate return from within the loop. To deal with the possibility of failure a timeout is
implemented within the loop by keeping track of clock ticks. If a timeout does occur w_need_reset is called.

The timeout parameter that is used by the w_waitfor function is defined by DEF_TIMEOUT_TICKS on line
12228 as 300 ticks, or 5 seconds. A similar parameter, WAKEUP (line 12216), used to schedule wakeups
from the clock task, is set to 31 seconds. These are very long periods of time to spend busy waiting, when you
consider that an ordinary process only gets 100 msec to run before it will be evicted. But, these numbers are
based upon the published standard for interfacing disk devices to AT-class computers, which states that up to
31 seconds must be allowed for a disk to "spin up" to speed. The fact is, of course, that this is a worst-case
specification, and that on most systems spin up will only occur at power-on time, or possibly after long
periods of inactivity, at least for hard disks. For CD-ROMs or other devices which must spin up frequently
this may be a more important issue.

There are a few more functions in at_wini.c. W_geometry returns the logical maximum cylinder, head, and
sector values of the selected hard disk device. In this case the numbers are real ones, not made up as they were
for the RAM disk driver. W_other is a catch-all for unrecognized commands and ioctls. In fact, it is not used
in the current release of MINIX 3, and we should probably have removed it from the Appendix B listing.
W_hw_int is called when a hardware interrupt is received when it is not expected. In the overview we
mentioned that this can happen when a timeout expires before an expected interrupt occurs. This will satisfy a
receive operation that was blocked waiting for the interrupt, but the interrupt notification may then be
found by a subsequent receive. The only thing to be done is to reenable the interrupt, which is done by
calling the next function, ack_irqs (line 13297). It cycles through all the known drives and uses the
sys_irqenable kernel call to ensure all interrupts are enabled. Finally, at the end of at_wini.c two strange
little functions are found, strstatus and strerr. These use macros defined just ahead of them on lines 13313 and
13314 to concatenate error codes into strings. These functions are not used in MINIX 3 as described here.

[Page 300]

3.7.6. Floppy Disk Handling

The floppy disk driver is longer and more complicated than the hard disk driver. This may seem paradoxical,
since floppy disk mechanisms are simpler than those of hard disks, but the simpler mechanism has a more
primitive controller that requires more attention from the operating system. Also, the fact that the medium is
removable adds complications. In this section we will describe some of the things an implementer must
consider in dealing with floppy disks. However, we will not go into the details of the MINIX 3 floppy disk
driver code. In fact, we have not listed the floppy disk driver in Appendix B. The most important parts are
similar to those for the hard disk.

One of the things we do not have to worry about with the floppy driver is the multiple types of controller to
support that we had to deal with in the case of the hard disk driver. Although the high-density floppy disks
currently used were not supported in the design of the original IBM PC, the floppy disk controllers of all
computers in the IBM PC family are supported by a single software driver. The contrast with the hard disk
situation is probably due to lack of motivation to increase floppy disk performance. Floppy disks are rarely
used as working storage during operation of a computer system; their speed and data capacity are too limited
compared to those of hard disks. Floppy disks at one time were important for distribution of new software and
for backup, but as networks and larger-capacity removable storage devices have become common, PCs rarely
come standard with a floppy disk drives any more.

The floppy disk driver does not use the SSF or the elevator algorithm. It is strictly sequential, accepting a
request and carrying it out before even accepting another request. In the original design of MINIX it was felt
that, since MINIX was intended for use on personal computers, most of the time there would be only one

18

18

process active. Thus the chance of a disk request arriving while another was being carried out was small.
There would be little to gain from the considerable increase in software complexity that would be required for
queueing requests. Complexity is even less worthwhile now, since floppy disks are rarely used for anything
but transferring data into or out of a system with a hard disk.

That said, the floppy driver, like any other block driver, can handle a request for scattered I/O. However, in
the case of the floppy driver the array of requests is smaller than for the hard disk, limited to the maximum
number of sectors per track on a floppy diskette.

[Page 301]

The simplicity of the floppy disk hardware is responsible for some of the complications in floppy disk driver
software. Cheap, slow, low-capacity floppy drives do not justify the sophisticated integrated controllers that
are part of modern hard drives, so the driver software has to deal explicitly with aspects of disk operation that
are hidden in the operation of a hard drive. As an example of a complication caused by the simplicity of
floppy drives, consider positioning the read/write head to a particular track during a SEEK operation. No hard
disk has ever required the driver software to explicitly call for a SEEK. For a hard disk the cylinder, head, and
sector geometry visible to the programmer often do not correspond to the physical geometry. In fact, the
physical geometry may be quite complicated. Typically there are multiple zones (groups of cylinders) with
more sectors per track on outer zones than on inner ones. This is not visible to the user, however. Modern hard
disks accept Logical Block Addressing (LBA), addressing by the absolute sector number on the disk, as an
alternative to cylinder, head, and sector addressing. Even if addressing is done by cylinder, head, and sector,
any geometry that does not address nonexistent sectors may be used, since the integrated controller on the disk
calculates where to move the read/write heads and does a seek operation when required.

For a floppy disk, however, explicit programming of SEEK operations is needed. In case a SEEK fails, it is
necessary to provide a routine to perform a RECALIBRATE operation, which forces the heads to cylinder 0.
This makes it possible for the controller to advance them to a desired track position by stepping the heads a
known number of times. Similar operations are necessary for the hard drive, of course, but the controller
handles them without detailed guidance from the device driver software.

Some characteristics of a floppy disk drive that complicate its driver are:

Removable media.1.
Multiple disk formats.2.
Motor control.3.

Some hard disk controllers provide for removable media, for instance, on a CD-ROM drive, but the drive
controller is generally able to handle any complications without support in the device driver software. With a
floppy disk, however, the built-in support is not there, and yet it is needed more. Some of the most common
uses for floppy disksinstalling new software or backing up filesare likely to require switching of disks in and
out of the drives. It will cause grief if data intended for one diskette are written onto another. The device
driver should do what it can to prevent this. This is not always possible, as not all floppy drive hardware
allows determination of whether the drive door has been opened since the last access. Another problem that
can be caused by removable media is that a system can become hung up if an attempt is made to access a
floppy drive that currently has no diskette inserted. This can be solved if an open door can be detected, but
since this is not always possible some provision must be made for a timeout and an error return if an operation
on a floppy disk does not terminate in a reasonable time.

[Page 302]

19

19

Removable media can be replaced with other media, and in the case of floppy disks there are many different
possible formats. IBM compatible hardware supports both 3.5-inch and 5.25-inch disk drives and the diskettes
can be formatted in a variety of ways to hold from 360 KB up to 1.2 MB (on a 5.25-inch diskette) or 1.44 MB
(on a 3.5-inch diskette).

MINIX 3 supports seven different floppy disk formats. Two possible solutions are possible for the problem
this causes. One way is to refer to each possible format as a distinct drive and provide multiple minor devices.
Older versions of MINIX did this. Fourteen different devices were defined, ranging from /dev/pc0, a 360 KB
5.25-inch diskette in the first drive, to /dev/PS1, a 1.44 MB 3.5-inch diskette in the second drive. This was a
cumbersome solution. MINIX 3 uses another method: when the first floppy disk drive is addressed as
/dev/fd0, or the second as /dev/fd1, the floppy disk driver tests the diskette currently in the drive when it is
accessed, in order to determine the format. Some formats have more cylinders, and others have more sectors
per track than other formats. Determination of the format of a diskette is done by attempting to read the higher
numbered sectors and tracks. By a process of elimination the format can be determined. This takes time, but
on modern computers only 1.44 MB 3.5-inch diskettes are likely to be found, and this format is probed first.
Another possible problem is that a disk with bad sectors could be misidentified. A utility program is available
for testing disks; doing so automatically in the operating system would be too slow.

The final complication of the floppy disk driver is motor control. Diskettes cannot be read or written unless
they are revolving. Hard disks are designed to run for thousands of hours on end without wearing out, but
leaving the motors on all the time causes a floppy drive and diskette to wear out quickly. If the motor is not
already on when a drive is accessed, it is necessary to issue a command to start the drive and then to wait
about a half second before attempting to read or write data. Turning the motors on or off is slow, so MINIX 3
leaves a drive motor on for a few seconds after a drive is used. If the drive is used again within this interval,
the timer is extended for another few seconds. If the drive is not used in this interval, the motor is turned off.

20

20

[Page 302 (continued)]

3.8. Terminals

For decades, users have communicated with computers using devices consisting of a
keyboard for user input and a display for computer output. For many years, these were
combined into free-standing devices called terminals, which were connected to the
computer by a wire. Large mainframes used in the financial and travel industries
sometimes still use these terminals, typically connected to the mainframe via a modem,
especially when they are far from the mainframe. However, with the emergence of the
personal computer, the keyboard and display have become separate peripherals rather
than a single device, but they are so closely interrelated that we will discuss them
together here under the combined name of "terminal."

[Page 303]

Historically, terminals have come in a variety of forms. It is up to the terminal driver to
hide all these differences, so that the device-independent part of the operating system
and the user programs do not have to be rewritten for each kind of terminal. In the
following sections we will follow our now-standard approach of first discussing terminal
hardware and software in general, and then discussing the MINIX 3 software.

3.8.1. Terminal Hardware

From the operating system's point of view, terminals can be divided into three broad
categories based on how the operating system communicates with them as well as their
actual hardware characteristics. The first category consists of memory mapped terminals,
which consist of a keyboard and a display, both of which are hardwired to the computer.
This model is used in all personal computers for the keyboard and the monitor. The
second category consists of terminals that interface via a serial communication line using
the RS-232 standard, most frequently over a modem. This model is still used on some
mainframes, but PCs also have serial line interfaces. The third category consists of
terminals that are connected to the computer via a network. This taxonomy is shown in
Fig. 3-24.

Figure 3-24. Terminal types.

1

1

[Page 304]

Memory-Mapped Terminals

The first broad category of terminals named in Fig. 3-24 consists of memory-mapped
terminals. These are an integral part of the computers themselves, especially personal
computers. They consist of a display and a keyboard. Memory-mapped displays are
interfaced via a special memory called a video RAM, which forms part of the computer's
address space and is addressed by the CPU the same way as the rest of memory (see Fig.
3-25).

Figure 3-25. Memory-mapped terminals write directly into video RAM.

Also on the video RAM card is a chip called a video controller. This chip pulls bytes out
of the video RAM and generates the video signal used to drive the display. Displays are
usually one of two types: CRT monitors or flat panel displays. A CRT monitor generates
a beam of electrons that scans horizontally across the screen, painting lines on it.
Typically the screen has 480 to 1200 lines from top to bottom, with 640 to 1920 points
per line. These points are called pixels. The video controller signal modulates the
intensity of the electron beam, determining whether a given pixel will be light or dark.
Color monitors have three beams, for red, green, and blue, which are modulated
independently.

2

2

A flat panel display works very differently internally, but a CRT-compatible flat-panel
display accepts the same synchronization and video signals as a CRT and uses these to
control a liquid crystal element at each pixel position.

A simple monochrome display might fit each character in a box 9 pixels wide by 14
pixels high (including the space between characters), and have 25 lines of 80 characters.
The display would then have 350 scan lines of 720 pixels each. Each of these frames is
redrawn 45 to 70 times a second. The video controller could be designed to fetch the
first 80 characters from the video RAM, generate 14 scan lines, fetch the next 80
characters from the video RAM, generate the following 14 scan lines, and so on. In fact,
most fetch each character once per scan line to eliminate the need for buffering in the
controller. The 9-by-14 bit patterns for the characters are kept in a ROM used by the
video controller. (RAM may also be used to support custom fonts.) The ROM is
addressed by a 12-bit address, 8 bits from the character code and 4 bits to specify a scan
line. The 8 bits in each byte of the ROM control 8 pixels; the 9th pixel between
characters is always blank. Thus 14 x 80 = 1120 memory references to the video RAM
are needed per line of text on the screen. The same number of references are made to the
character generator ROM.

[Page 305]

The original IBM PC had several modes for the screen. In the simplest one, it used a
character-mapped display for the console. In Fig. 3-26(a) we see a portion of the video
RAM. Each character on the screen of Fig. 3-26(b) occupied two characters in the RAM.
The low-order character was the ASCII code for the character to be displayed. The
high-order character was the attribute byte, which was used to specify the color, reverse
video, blinking, and so on. The full screen of 25 by 80 characters required 4000 bytes of
video RAM in this mode. All modern displays still support this mode of operation.

Figure 3-26. (a) A video RAM image for the IBM monochrome display. The xs are attribute
bytes. (b) The corresponding screen.

Contemporary bitmap displays use the same principle, except that each pixel on the
screen is individually controlled. In the simplest configuration, for a monochrome
display, each pixel has a corresponding bit in the video RAM. At the other extreme, each
pixel is represented by a 24-bit number, with 8 bits each for red, green, and blue. A 768
x 1024 color display with 24 bits per pixel requires 2 MB of RAM to hold the image.

3

3

With a memory-mapped display, the keyboard is completely decoupled from the screen.
It may be interfaced via a serial or parallel port. On every key action the CPU is
interrupted, and the keyboard driver extracts the character typed by reading an I/O port.

On a PC, the keyboard contains an embedded microprocessor which communicates
through a specialized serial port with a controller chip on the main board. An interrupt is
generated whenever a key is struck and also when one is released. Furthermore, all that
the keyboard hardware provides is the key number, not the ASCII code. When the A key
is struck, the key code (30) is put in an I/O register. It is up to the driver to determine
whether it is lower case, upper case, CTRL-A, ALT-A, CTRL-ALT-A, or some other
combination. Since the driver can tell which keys have been depressed but not yet
released (e.g., shift), it has enough information to do the job. Although this keyboard
interface puts the full burden on the software, it is extremely flexible. For example, user
programs may be interested in whether a digit just typed came from the top row of keys
or the numeric key pad on the side. In principle, the driver can provide this information.

[Page 306]

RS-232 Terminals

RS-232 terminals are devices containing a keyboard and a display that communicate
using a serial interface, one bit at a time (see Fig. 3-27). These terminals use a 9-pin or
25-pin connector, of which one pin is used for transmitting data, one pin is for receiving
data, and one pin is ground. The other pins are for various control functions, most of
which are not used. To send a character to an RS-232 terminal, the computer must
transmit it 1 bit at a time, prefixed by a start bit, and followed by 1 or 2 stop bits to
delimit the character. A parity bit which provides rudimentary error detection may also
be inserted preceding the stop bits, although this is commonly required only for
communication with mainframe systems. Common transmission rates are 14,400 and
56,000 bits/sec, the former being for fax and the latter for data. RS-232 terminals are
commonly used to communicate with a remote computer using a modem and a
telephone line.

Figure 3-27. An RS-232 terminal communicates with a computer over a communication line,
one bit at a time. The computer and the terminal are completely independent.

[View full size image]

Since both computers and terminals work internally with whole characters but must
communicate over a serial line a bit at a time, chips have been developed to do the
character-to-serial and serial-to-character conversions. They are called UART s

4

4

(Universal Asynchronous Receiver Transmitters). UARTs are attached to the computer
by plugging RS-232 interface cards into the bus as illustrated in Fig. 3-27. On modern
computers the UART and RS-232 interface is frequently part of the parentboard chipset.
It may be possible disable the on-board UART to allow use of a modem interface card
plugged into the bus or two of them may be able to coexist. A modem also provides a
UART (although it may be integrated with other functions in a multi-purpose chip), and
the communication channel is a telephone line rather than a serial cable. However, to the
computer the UART looks the same whether the medium is a dedicated serial cable or a
telephone line.

[Page 307]

RS-232 terminals are gradually dying off, being replaced by PCs, but they are still
encountered on older mainframe systems, especially in banking, airline reservation, and
similar applications. Terminal programs that allow a remote computer to simulate a
terminal are still widely used, however.

To print a character, the terminal driver writes the character to the interface card, where
it is buffered and then shifted out over the serial line one bit at a time by the UART.
Even at 56,000 bps, it takes just over 140 microsec to send a character. As a result of this
slow transmission rate, the driver generally outputs a character to the RS-232 card and
blocks, waiting for the interrupt generated by the interface when the character has been
transmitted and the UART is able to accept another character. The UART can
simultaneously send and receive characters, as its name implies. An interrupt is also
generated when a character is received, and usually a small number of input characters
can be buffered. The terminal driver must check a register when an interrupt is received
to determine the cause of the interrupt. Some interface cards have a CPU and memory
and can handle multiple lines, taking over much of the I/O load from the main CPU.

RS-232 terminals can be subdivided into categories, as mentioned above. The simplest
ones were hardcopy (printing) terminals. Characters typed on the keyboard were
transmitted to the computer. Characters sent by the computer were typed on the paper.
These terminals are obsolete and rarely seen any more.

Dumb CRT terminals work the same way, only with a screen instead of paper. These are
frequently called "glass ttys" because they are functionally the same as hardcopy ttys.
(The term "tty" is an abbreviation for Teletype,® a former company that pioneered in the
computer terminal business; "tty" has come to mean any terminal.) Glass ttys are also
obsolete.

Intelligent CRT terminals are in fact miniature, specialized computers. They have a CPU
and memory and contain software, usually in ROM. From the operating system's
viewpoint, the main difference between a glass tty and an intelligent terminal is that the
latter understands certain escape sequences. For example, by sending the ASCII ESC
character (033), followed by various other characters, it may be possible to move the
cursor to any position on the screen, insert text in the middle of the screen, and so forth.

3.8.2. Terminal Software

The keyboard and display are almost independent devices, so we will treat them
separately here. (They are not quite independent, since typed characters must be
displayed on the screen.) In MINIX 3 the keyboard and screen drivers are part of the

5

5

same process; in other systems they may be split into distinct drivers.

[Page 308]

Input Software

The basic job of the keyboard driver is to collect input from the keyboard and pass it to
user programs when they read from the terminal. Two possible philosophies can be
adopted for the driver. In the first one, the driver's job is just to accept input and pass it
upward unmodified. A program reading from the terminal gets a raw sequence of ASCII
codes. (Giving user programs the key numbers is too primitive, as well as being highly
machine dependent.)

This philosophy is well suited to the needs of sophisticated screen editors such as emacs,
which allow the user to bind an arbitrary action to any character or sequence of
characters. It does, however, mean that if the user types dste instead of date and then
corrects the error by typing three backspaces and ate, followed by a carriage return, the
user program will be given all 11 ASCII codes typed.

Most programs do not want this much detail. They just want the corrected input, not the
exact sequence of how it was produced. This observation leads to the second philosophy:
the driver handles all the intraline editing, and just delivers corrected lines to the user
programs. The first philosophy is character-oriented; the second one is line-oriented.
Originally they were referred to as raw mode and cooked mode, respectively. The
POSIX standard uses the less-picturesque term canonical mode to describe line-oriented
mode. On most systems canonical mode refers to a well-defined configuration.
Noncanonical mode is equivalent to raw mode, although many details of terminal
behavior can be changed. POSIX-compatible systems provide several library functions
that support selecting either mode and changing many aspects of terminal configuration.
In MINIX 3 the ioctl system call supports these functions.

The first task of the keyboard driver is to collect characters. If every keystroke causes an
interrupt, the driver can acquire the character during the interrupt. If interrupts are turned
into messages by the low-level software, it is possible to put the newly acquired
character in the message. Alternatively, it can be put in a small buffer in memory and the
message used to tell the driver that something has arrived. The latter approach is actually
safer if a message can be sent only to a waiting process and there is some chance that the
keyboard driver might still be busy with the previous character.

Once the driver has received the character, it must begin processing it. If the keyboard
delivers key numbers rather than the character codes used by application software, then
the driver must convert between the codes by using a table. Not all IBM "compatibles"
use standard key numbering, so if the driver wants to support these machines, it must
map different keyboards with different tables. A simple approach is to compile a table
that maps between the codes provided by the keyboard and ASCII (American Standard
Code for Information Interchange) codes into the keyboard driver, but this is
unsatisfactory for users of languages other than English. Keyboards are arranged
differently in different countries, and the ASCII character set is not adequate even for
the majority of people in the Western Hemisphere, where speakers of Spanish,
Portuguese, and French need accented characters and punctuation marks not used in
English. To respond to the need for flexibility of keyboard layouts to provide for
different languages, many operating systems provide for loadable keymaps or code
pages, which make it possible to choose the mapping between keyboard codes and codes

6

6

delivered to the application, either when the system is booted or later.

[Page 309]

If the terminal is in canonical (i.e., cooked) mode, characters must be stored until an
entire line has been accumulated, because the user may subsequently decide to erase part
of it. Even if the terminal is in raw mode, the program may not yet have requested input,
so the characters must be buffered to allow type ahead. (System designers who do not
allow users to type far ahead ought to be tarred and feathered, or worse yet, be forced to
use their own system.)

Two approaches to character buffering are common. In the first one, the driver contains
a central pool of buffers, each buffer holding perhaps 10 characters. Associated with
each terminal is a data structure, which contains, among other items, a pointer to the
chain of buffers for input collected from that terminal. As more characters are typed,
more buffers are acquired and hung on the chain. When the characters are passed to a
user program, the buffers are removed and put back in the central pool.

The other approach is to do the buffering directly in the terminal data structure itself,
with no central pool of buffers. Since it is common for users to type a command that will
take a little while (say, a compilation) and then type a few lines ahead, to be safe the
driver should allocate something like 200 characters per terminal. In a large-scale
timesharing system with 100 terminals, allocating 20K all the time for type ahead is
clearly overkill, so a central buffer pool with space for perhaps 5K is probably enough.
On the other hand, a dedicated buffer per terminal makes the driver simpler (no linked
list management) and is to be preferred on personal computers with only one or two
terminals. Figure 3-28 shows the difference between these two methods.

Figure 3-28. (a) Central buffer pool. (b) Dedicated buffer for each terminal. (This item is
displayed on page 310 in the print version)

7

7

Although the keyboard and display are logically separate devices, many users have
grown accustomed to seeing the characters they have just typed appear on the screen.
Some (older) terminals oblige by automatically displaying (in hardware) whatever has
just been typed, which is not only a nuisance when passwords are being entered but
greatly limits the flexibility of sophisticated editors and other programs. Fortunately, PC
keyboards display nothing when keys are struck. It is therefore up to the software to
display the input. This process is called echoing.

Echoing is complicated by the fact that a program may be writing to the screen while the
user is typing. At the very least, the keyboard driver has to figure out where to put the
new input without it being overwritten by program output.

Echoing also gets complicated when more than 80 characters are typed on a terminal
with 80-character lines. Depending on the application, wrapping around to the next line
may be appropriate. Some drivers just truncate lines to 80 characters by throwing away
all characters beyond column 80.

[Page 310]

Another problem is tab handling. All keyboards have a tab key, but displays can handle
tab on output. It is up to the driver to compute where the cursor is currently located,
taking into account both output from programs and output from echoing, and compute
the proper number of spaces to be echoed.

Now we come to the problem of device equivalence. Logically, at the end of a line of
text, one wants a carriage return, to move the cursor back to column 1, and a linefeed, to
advance to the next line. Requiring users to type both at the end of each line would not
sell well (although some old terminals had a key which generated both, with a 50 percent
chance of doing so in the order that the software wanted them). It was (and still is) up to
the driver to convert whatever comes in to the standard internal format used by the
operating system.

If the standard form is just to store a linefeed (the convention in UNIX and all its
descendants), carriage returns should be turned into linefeeds. If the internal format is to
store both, then the driver should generate a linefeed when it gets a carriage return and a
carriage return when it gets a linefeed. No matter what the internal convention, the
terminal may require both a linefeed and a carriage return to be echoed in order to get
the screen updated properly. Since a large computer may well have a wide variety of
different terminals connected to it, it is up to the keyboard driver to get all the different
carriage return/linefeed combinations converted to the internal system standard and
arrange for all echoing to be done right.

A related problem is the timing of carriage return and linefeeds. On some terminals, it
may take longer to display a carriage return or linefeed than a letter or number. If the
microprocessor inside the terminal actually has to copy a large block of text to achieve
scrolling, then linefeeds may be slow. If a mechanical print head has to be returned to
the left margin of the paper, carriage returns may be slow. In both cases it is up to the
driver to insert filler characters (dummy null characters) into the output stream or just
stop outputting long enough for the terminal to catch up. The amount of time to delay is
often related to the terminal speed; for example, at 4800 bps or slower, no delays may be
needed, but at 9600 bps or higher one filler character might be required. Terminals with
hardware tabs, especially hardcopy ones, may also require a delay after a tab.

8

8

[Page 311]

When operating in canonical mode, a number of input characters have special meanings.
Figure 3-29 shows all of the special characters required by POSIX and the additional
ones recognized by MINIX 3. The defaults are all control characters that should not
conflict with text input or codes used by programs, but all except the last two can be
changed using the stty command, if desired. Older versions of UNIX used different
defaults for many of these.

Figure 3-29. Characters that are handled specially in canonical mode.
Character POSIX

name
Comment

CTRL-D EOF End of file
EOL End of line

(undefined)
CTRL-H ERASE Backspace one

character
CTRL-C INTR Interrupt

process
(SIGINT)

CTRL-U KILL Erase entire line
being typed

CTRL-\ QUIT Force core
dump
(SIGQUIT)

CTRL-Z SUSP Suspend
(ignored by
MINIX)

CTRL-Q START Start output
CTRL-S STOP Stop output
CTRL-R REPRINT Redisplay input

(MINIX
extension)

CTRL-V LNEXT Literal next
(MINIX
extension)

CTRL-O DISCARDDiscard output
(MINIX
extension)

CTRL-M CR Carriage return
(unchangeable)

CTRL-J NL Linefeed
(unchangeable)

The ERASE character allows the user to rub out the character just typed. In MINIX 3 it is the backspace
(CTRL-H). It is not added to the character queue but instead removes the previous character from the queue. It
should be echoed as a sequence of three characters, backspace, space, and backspace, in order to remove the
previous character from the screen. If the previous character was a tab, erasing it requires keeping track of
where the cursor was prior to the tab. In most systems, backspacing will only erase characters on the current
line. It will not erase a carriage return and back up into the previous line.

9

9

[Page 312]

When the user notices an error at the start of the line being typed in, it is often convenient to erase the entire
line and start again. The KILL character (in MINIX 3 CTRL-U) erases the entire line. MINIX 3 makes the
erased line vanish from the screen, but some systems echo it plus a carriage return and linefeed because some
users like to see the old line. Consequently, how to echo KILL is a matter of taste. As with ERASE it is
usually not possible to go further back than the current line. When a block of characters is killed, it may or
may not be worth the trouble for the driver to return buffers to the pool, if one is used.

Sometimes the ERASE or KILL characters must be entered as ordinary data. The LNEXT character serves as
an escape character. In MINIX 3 CTRL-V is the default. As an example, older UNIX systems normally used
the @ sign for KILL, but the Internet mail system uses addresses of the form linda@cs.washington.edu.
Someone who feels more comfortable with older conventions might redefine KILL as @, but then need to
enter an @ sign literally to address e-mail. This can be done by typing CTRL-V @. The CTRL-V itself can be
entered literally by typing CTRL-V CTRL-V. After seeing a CTRL-V, the driver sets a flag saying that the
next character is exempt from special processing. The LNEXT character itself is not entered in the character
queue.

To allow users to stop a screen image from scrolling out of view, control codes are provided to freeze the
screen and restart it later. In MINIX 3 these are STOP (CTRL-S) and START (CTRL-Q), respectively. They
are not stored but are used to set and clear a flag in the terminal data structure. Whenever output is attempted,
the flag is inspected. If it is set, no output occurs. Usually, echoing is also suppressed along with program
output.

It is often necessary to kill a runaway program being debugged. The INTR (CTRL-C) and QUIT (CTRL-\)
characters can be used for this purpose. In MINIX 3, CTRL-C sends the SIGINT signal to all the processes
started up from the terminal. Implementing CTRL-C can be quite tricky. The hard part is getting the
information from the driver to the part of the system that handles signals, which, after all, has not asked for
this information. CTRL-\ is similar to CTRL-C, except that it sends the SIGQUIT signal, which forces a core
dump if not caught or ignored.

When either of these keys is struck, the driver should echo a carriage return and linefeed and discard all
accumulated input to allow for a fresh start. Historically, DEL was commonly used as the default value for
INTR on many UNIX systems. Since many programs use DEL interchangeably with the backspace for
editing, CTRL-C is now preferred.

Another special character is EOF (CTRL-D), which in MINIX 3 causes any pending read requests for the
terminal to be satisfied with whatever is available in the buffer, even if the buffer is empty. Typing CTRL-D
at the start of a line causes the program to get a read of 0 bytes, which is conventionally interpreted as
end-of-file and causes most programs to act the same way as they would upon seeing end-of-file on an input
file.

[Page 313]

Some terminal drivers allow much fancier intraline editing than we have sketched here. They have special
control characters to erase a word, skip backward or forward characters or words, go to the beginning or end
of the line being typed, and so forth. Adding all these functions to the terminal driver makes it much larger
and, furthermore, is wasted when using fancy screen editors that work in raw mode anyway.

To allow programs to control terminal parameters, POSIX requires that several functions be available in the
standard library, of which the most important are tcgetattr and tcsetattr. Tcgetattr retrieves a copy of the
structure shown in Fig. 3-30, the termios structure, which contains all the information needed to change

10

10

mailto:linda@cs.washington.edu

special characters, set modes, and modify other characteristics of a terminal. A program can examine the
current settings and modify them as desired. Tcsetattr then writes the structure back to the terminal driver.

Figure 3-30. The termios structure. In MINIX 3 tc_flag_t is a short, speed_t is an int, and cc_t is a char.

struct termios {
 tcflag_t c_iflag; /* input modes* /
 tcflag_t c_oflag; /* output modes* /
 tcflag_t c_cflag; /* control modes* /
 tcflag_t c_lflag; /* local modes* /
 speed_t c_ispeed; /* input speed* /
 speed_t c_ospeed; /* output speed* /
 cc_t c_cc[NCCS]; /* control characters* /
};

The POSIX standard does not specify whether its requirements should be implemented through library
functions or system calls. MINIX 3 provides a system call, ioctl, called by

ioctl(file_descriptor, request, argp);

that is used to examine and modify the configurations of many I/O devices. This call is used to implement the
tcgetattr and tcsetattr functions. The variable request specifies whether the termios structure is to be read or
written, and in the latter case, whether the request is to take effect immediately or should be deferred until all
currently queued output is complete. The variable argp is a pointer to a termios structure in the calling
program. This particular choice of communication between program and driver was chosen for its UNIX
compatibility, rather than for its inherent beauty.

A few notes about the termios structure are in order. The four flag words provide a great deal of flexibility.
The individual bits in c_iflag control various ways input is handled. For instance, the ICRNL bit causes CR
characters to be converted into NL on input. This flag is set by default in MINIX 3. The c_oflag holds bits that
affect output processing. For instance, the OPOST bit enables output processing. It and the ONLCR bit, which
causes NL characters in the output to be converted into a CR NL sequence, are also set by default in MINIX
3. The c_cflag is the control flags word. The default settings for MINIX 3 enable a line to receive 8-bit
characters and cause a modem to hang up if a user logs out on the line. The c_lflag is the local mode flags
field. One bit, ECHO, enables echoing (this can be turned off during a login to provide security for entering a
password). Its most important bit is the ICANON bit, which enables canonical mode. With ICANON off,
several possibilities exist. If all other settings are left at their defaults, a mode identical to the traditional
cbreak mode is entered. In this mode, characters are passed to the program without waiting for a full line, but
the INTR, QUIT, START, and STOP characters retain their effects. All of these can be disabled by resetting
bits in the flags, however, to produce the equivalent of traditional raw mode.

[Page 314]

The various special characters that can be changed, including those which are MINIX 3 extensions, are held in
the c_cc array. This array also holds two parameters which are used in noncanonical mode. The quantity MIN,
stored in c_cc[VMIN], specifies the minimum number of characters that must be received to satisfy a read
call. The quantity TIME in c_cc[VTIME] sets a time limit for such calls. MIN and TIME interact as shown in
Fig. 3-31. A call that asks for N bytes is illustrated. With TIME = 0 and MIN = 1, the behavior is similar to
the traditional raw mode.

11

11

Figure 3-31. MIN and TIME determine when a call to read returns in noncanonical mode. N is the number of bytes
requested.

TIME = 0

TIME > 0

MIN = 0

Return immediately with whatever is available, 0 to N bytes

Timer starts immediately. Return with first byte entered or with 0 bytes after timeout

MIN > 0

Return with at least MIN and up to N bytes. Possible indefinite block

Interbyte timer starts after first byte. Return N bytes if received by timeout, or at least 1 byte at timeout.
Possible indefinite block

Output Software

Output is simpler than input, but drivers for RS-232 terminals are radically different from drivers for
memory-mapped terminals. The method that is commonly used for RS-232 terminals is to have output buffers
associated with each terminal. The buffers can come from the same pool as the input buffers, or be dedicated,
as with input. When programs write to the terminal, the output is first copied to the buffers. Similarly, output
from echoing is also copied to the buffers. After all the output has been copied to the buffers (or the buffers
are full), the first character is output, and the driver goes to sleep. When the interrupt comes in, the next
character is output, and so on.

[Page 315]

With memory-mapped terminals, a simpler scheme is possible. Characters to be printed are extracted one at a
time from user space and put directly in the video RAM. With RS-232 terminals, each character to be output
is just put on the line to the terminal. With memory mapping, some characters require special treatment,
among them, backspace, carriage return, linefeed, and the audible bell (CTRL-G). A driver for a
memory-mapped terminal must keep track in software of the current position in the video RAM, so that
printable characters can be put there and the current position advanced. Backspace, carriage return, and
linefeed all require this position to be updated appropriately. Tabs also require special processing.

In particular, when a linefeed is output on the bottom line of the screen, the screen must be scrolled. To see
how scrolling works, look at Fig. 3-26. If the video controller always began reading the RAM at 0xB0000, the
only way to scroll the screen when in character mode would be to copy 24 x 80 characters (each character
requiring 2 bytes) from 0xB00A0 to 0xB0000, a time-consuming proposition. In bitmap mode, it would be
even worse.

Fortunately, the hardware usually provides some help here. Most video controllers contain a register that
determines where in the video RAM to begin fetching bytes for the top line on the screen. By setting this
register to point to 0xB00A0 instead of 0xB0000, the line that was previously number two moves to the top,

12

12

and the whole screen scrolls up one line. The only other thing the driver must do is copy whatever is needed to
the new bottom line. When the video controller gets to the top of the RAM, it just wraps around and continues
merrily fetching bytes starting at the lowest address. Similar hardware assistance is provided in bitmap mode.

Another issue that the driver must deal with on a memory-mapped terminal is cursor positioning. Again, the
hardware usually provides some assistance in the form of a register that tells where the cursor is to go. Finally,
there is the problem of the bell. It is sounded by outputting a sine or square wave to the loudspeaker, a part of
the computer quite separate from the video RAM.

Screen editors and many other sophisticated programs need to be able to update the screen in more complex
ways than just scrolling text onto the bottom of the display. To accommodate them, many terminal drivers
support a variety of escape sequences. Although some terminals support idiosyncratic escape sesequence sets,
it is advantageous to have a standard to facilitate adapting software from one system to another. The American
National Standards Institute (ANSI) has defined a set of standard escape sequences, and MINIX 3 supports a
subset of the ANSI sequences, shown in Fig. 3-32, that is adequate for many common operations. When the
driver sees the character that starts the escape sequences, it sets a flag and waits until the rest of the escape
sequence comes in. When everything has arrived, the driver must carry it out in software. Inserting and
deleting text require moving blocks of characters around the video RAM. The hardware is of no help with
anything except scrolling and displaying the cursor.

[Page 316]

Figure 3-32. The ANSI escape sequences accepted by the terminal driver on output. ESC denotes the ASCII
escape character (0x1B), and n, m, and s are optional numeric parameters.

Escape sequence

Meaning

ESC [n A

Move up n lines

ESC [n B

Move down n lines

ESC [n C

Move right n spaces

ESC [n D

Move left n spaces

ESC [m; n H

Move cursor to (y = m, x = n)

ESC [s J

Clear screen from cursor (0 to end, 1 from start, 2 all)

13

13

ESC [s K

Clear line from cursor (0 to end, 1 from start, 2 all)

ESC [n L

Insert n lines at cursor

ESC [n M

Delete n lines at cursor

ESC [n P

Delete n chars at cursor

ESC [n @

Insert n chars at cursor

ESC [n m

Enable rendition n (0=normal, 4=bold, 5=blinking, 7=reverse)

ESC M

Scroll the screen backward if the cursor is on the top line

3.8.3. Overview of the Terminal Driver in MINIX 3

The terminal driver is contained in four C files (six if RS-232 and pseudo terminal support are enabled) and
together they far and away constitute the largest driver in MINIX 3. The size of the terminal driver is partly
explained by the observation that the driver handles both the keyboard and the display, each of which is a
complicated device in its own right, as well as two other optional types of terminals. Still, it comes as a
surprise to most people to learn that terminal I/O requires thirty times as much code as the scheduler. (This
feeling is reinforced by looking at the numerous books on operating systems that devote thirty times as much
space to scheduling as to all I/O combined.)

The terminal driver accepts more than a dozen message types. The most important are:

1. Read from the terminal (from FS on behalf of a user process).

2. Write to the terminal (from FS on behalf of a user process).

3. Set terminal parameters for ioctl (from FS on behalf of a user process).

4. A keyboard interrupt has occurred (key pressed or released).

5. Cancel previous request (from FS when a signal occurs).

14

14

6. Open a device.

7. Close a device.

[Page 317]

Other message types are used for special purposes such as generating diagnostic displays when function keys
are pressed or triggering panic dumps.

The messages used for reading and writing have the same format as shown in Fig. 3-17, except that no
POSITION field is needed. With a disk, the program has to specify which block it wants to read. With a
keyboard, there is no choice: the program always gets the next character typed in. Keyboards do not support
seeks.

The POSIX functions tcgetattr and tcgetattr, used to examine and modify terminal attributes (properties), are
supported by the ioctl system call. Good programming practice is to use these functions and others in
include/termios.h and leave it to the C library to convert library calls to ioctl system calls. There are,
however, some control operations needed by MINIX 3 that are not provided for in POSIX, for example,
loading an alternate keymap, and for these the programmer must use ioctl explicitly.

The message sent to the driver by an ioctl system call contains a function request code and a pointer. For
the tcsetattr function, an ioctl call is made with a TCSETS, TCSETSW, or TCSETSF request type, and a
pointer to a termios structure like the one shown in Fig. 3-30. All such calls replace the current set of
attributes with a new set, the differences being that a TCSETS request takes effect immediately, a TCSETSW
request does not take effect until all output has been transmitted, and a TCSETSF waits for output to finish
and discards all input that has not yet been read. Tcgetattr is translated into an ioctl call with a TCGETS
request type and returns a filled in termios structure to the caller, so the current state of a device can be
examined. Ioctl calls that do not correspond to functions defined by POSIX, like the KIOCSMAP request
used to load a new keymap, pass pointers to other kinds of structures, in this case to a keymap_t which is a
1536-byte structure (16-bit codes for 128 keys x 6 modifiers). Figure 3-39 summarizes how standard POSIX
calls are converted into ioctl system calls.

The terminal driver uses one main data structure, tty_table, which is an array of tty structures, one per
terminal. A standard PC has only one keyboard and display, but MINIX 3 can support up to eight virtual
terminals, depending upon the amount of memory on the display adapter card. This permits the person at the
console to log on multiple times, switching the display output and keyboard input from one "user" to another.
With two virtual consoles, pressing ALT-F2 selects the second one and ALT-F1 returns to the first. ALT plus
the arrow keys also can be used. In addition, serial lines can support two users at remote locations, connected
by RS-232 cable or modem, and pseudo terminals can support users connected through a network. The driver
has been written to make it easy to add additional terminals. The standard configuration illustrated in the
source code in this text has two virtual consoles, with serial lines and pseudo terminals disabled.

Each tty structure in tty_table keeps track of both input and output. For input, it holds a queue of all characters
that have been typed but not yet read by the program, information about requests to read characters that have
not yet been received, and timeout information, so input can be requested without the driver blocking
permanently if no character is typed. For output, it holds the parameters of write requests that are not yet
finished. Other fields hold various general variables, such as the termios structure discussed above, which
affects many properties of both input and output. There is also a field in the tty structure to point to
information which is needed for a particular class of devices but is not needed in the tty_table entry for every
device. For instance, the hardware-dependent part of the console driver needs the current position on the
screen and in the video RAM, and the current attribute byte for the display, but this information is not needed
to support an RS-232 line. The private data structures for each device type are also where the buffers that

15

15

receive input from the interrupt service routines are located. Slow devices, such as the keyboard, do not need
buffers as large as those needed by fast devices.

[Page 318]

Terminal Input

To better understand how the driver works, let us first look at how characters typed in on the keyboard work
their way through the system to the program that wants them. Although this section is intended as an overview
we will use line number references to help the reader find each function used. You may find this a wild ride,
getting input exercises code in tty.c, keyboard.c, and console.c, all of which are large files,

When a user logs in on the system console, a shell is created for him with /dev/console as standard input,
standard output, and standard error. The shell starts up and tries to read from standard input by calling the
library procedure read. This procedure sends a message that contains the file descriptor, buffer address, and
count to the file system. This message is shown as (1) in Fig. 3-33. After sending the message, the shell
blocks, waiting for the reply. (User processes execute only the sendrec primitive, which combines a send
with a receive from the process sent to.)

Figure 3-33. Read request from the keyboard when no characters are pending. FS is the file system. TTY is the
terminal driver. The TTY receives a message for every keypress and queues scan codes as they are entered.

Later these are interpreted and assembled into a buffer of ASCII codes which is copied to the user process. (This
item is displayed on page 319 in the print version)

The file system gets the message and locates the i-node corresponding to the specified file descriptor. This
i-node is for the character special file /dev/console and contains the major and minor device numbers for the
terminal. The major device type for terminals is 4; for the console the minor device number is 0.

The file system indexes into its device map, dmap, to find the number of the terminal driver, TTY. Then it
sends a message to TTY, shown as (2) in Fig. 3-33. Normally, the user will not have typed anything yet, so
the terminal driver will be unable to satisfy the request. It sends a reply back immediately to unblock the file
system and report that no characters are available, shown as (3). The file system records the fact that a process

16

16

is waiting for terminal (i.e., keyboard) input in the console's structure in tty_table and then goes off to get the
next request for work. The user's shell remains blocked until the requested characters arrive, of course.

When a character is finally typed on the keyboard, it causes two interrupts, one when the key is depressed and
one when it is released. An important point is that a PC keyboard does not generate ASCII codes; each key
generates a scan code when pressed, and a different code when released. The lower 7 bits of the "press" and
"release" codes are identical. The difference is the most significant bit, which is a 0 when the key is pressed
and a 1 when it is released. This also applies to modifier keys such as CTRL and SHIFT. Although ultimately
these keys do not cause ASCII codes to be returned to the user process, they generate scan codes indicating
which key was pressed (the driver can distinguish between the left and right shift keys if desired), and they
still cause two interrupts per key.

[Page 319]

The keyboard interrupt is IRQ 1. This interrupt line is not accessible on the system bus, and can not be shared
by any other I/O adapter. When _hwint01 (line 6535) calls intr_handle (line 8221) there will not be a long list
of hooks to traverse to find that the TTY should be notified. In Fig. 3-33 we show the system task originating
the notification message (4) because it is generated by generic_handler in system/do_irqctl.c (not listed), but
this routine is called directly by the low-level interrupt processing routines. The system task process is not
activated. Upon receiving a HARD_INT message tty_task (line 13740) dispatches to kbd_interrupt (line
15335) which in turn calls scan_keyboard (line 15800). Scan_keyboard makes three kernel calls (5, 6, 7) to
cause the system task to read from and write to several I/O ports, which ultimately returns the scan code, then
is added to a circular buffer. A tty_events flag is then set to indicate this buffer contains characters and is not
empty.

[Page 320]

No message is needed as of this point. Every time the main loop of tty_task starts another cycle it inspects the
tty_events flag for each terminal device, and, for each device which has the flag set, calls handle_events (line
14358). The tty_events flag can signal various kinds of activity (although input is the most likely), so
handle_events always calls the device-specific functions for both input and output. For input from the
keyboard this results in a call to kb_read (line 15360), which keeps track of keyboard codes that indicate
pressing or releasing of the CTRL, SHIFT, and ALT keys and converts scan codes into ASCII codes. Kb_read
in turn calls in_process (line 14486), which processes the ASCII codes, taking into account special characters
and different flags that may be set, including whether or not canonical mode is in effect. The effect is
normally to add characters to the console's input queue in tty_table, although some codes, for instance
BACKSPACE, have other effects. Normally, also, in_process initiates echoing of the ASCII codes to the
display.

When enough characters have come in, the terminal driver makes another kernel call (8) to ask the system
task to copy the data to the address requested by the shell. The copying of the data is not message passing and
for that reason is shown by dashed lines (9) in Fig. 3-33. More than one such line is shown because there may
be more than one such operation before the user's request has been completely fulfilled. When the operation is
finally complete, the terminal driver sends a message to the file system telling it that the work has been done
(10), and the file system reacts to this message by sending a message back to the shell to unblock it (11).

The definition of when enough characters have come in depends upon the terminal mode. In canonical mode a
request is complete when a linefeed, end-of-line, or end-of-file code is received, and, in order for proper input
processing to be done, a line of input cannot exceed the size of the input queue. In noncanonical mode a read
can request a much larger number of characters, and in_process may have to transfer characters more than
once before a message is returned to the file system to indicate the operation is complete.

17

17

Note that the system task copies the actual characters directly from the TTY's address space to that of the
shell. They do not go through the file system. With block I/O, data pass through the file system to allow it to
maintain a buffer cache of the most recently used blocks. If a requested block happens to be in the cache, the
request can be satisfied directly by the file system, without doing any actual disk I/O.

For keyboard I/O, a cache makes no sense. Furthermore, a request from the file system to a disk driver can
always be satisfied in at most a few hundred milliseconds, so there is no harm in having the file system wait.
Keyboard I/O may take hours to complete, or may never be complete (in canonical mode the terminal driver
waits for a complete line, and it may also wait a long time in noncanonical mode, depending upon the settings
of MIN and TIME). Thus, it is unacceptable to have the file system block until a terminal input request is
satisfied.

[Page 321]

Later on, it may happen that the user has typed ahead, and that characters are available before they have been
requested, from previous interrupts and event 4. In that case, events 1, 2, and 5 through 11 all happen in quick
succession after the read request; 3 does not occur at all.

Readers who are familiar with earlier versions of MINIX may remember that in these versions the TTY driver
(and all other drivers) were compiled together with the kernel. Each driver had its own interrupt handler in
kernel space. In the case of the keyboard driver, the interrupt handler itself could buffer a certain number of
scan codes, and also do some preliminary processing (scan codes for most key releases could be dropped, only
for modifier keys like the shift key is it necessary to buffer the release codes). The interrupt handler itself did
not send messages to the TTY driver, because the probability was high that the TTY would not be blocked on
a receive and able to receive a message at any given time. Instead, the clock interrupt handler awakened
the TTY driver periodically. These techniques were adopted to avoid losing keyboard input.

Earlier we made something of a point of the differences between handling expected interrupts, such as those
generated by a disk controller, and handling unpredictable interrupts like those from a keyboard. But in
MINIX 3 nothing special seems to have been done to deal with the problems of unpredictable interrupts. How
is this possible? One thing to keep in mind is the enormous difference in performance between the computers
for which the earliest versions of MINIX were written and current designs. CPU clock speeds have increased,
and the number of clock cycles needed to execute an instruction has decreased. The minimum processor
recommended for use with MINIX 3 is an 80386. A slow 80386 will execute instructions approximately 20
times as fast as the original IBM PC.A 100 MHz Pentium will execute perhaps 25 times as fast as the slow
80386. So perhaps CPU speed is enough.

Another thing to keep in mind is that keyboard input is very slow by computer standards. At 100 words per
minute a typist enters fewer than 10 characters per second. Even with a fast typist the terminal driver will
probably be sent an interrupt message for each character typed at the keyboard. However, in the case of other
input devices higher data rates are probablerates 1000 or more times faster than those of a typist are possible
from a serial port connected to a 56,000-bps modem. At that speed approximately 120 characters may be
received by the modem between clock ticks, but to allow for data compression on the modem link the serial
port connected to the modem must be able to handle at least twice as many.

One thing to consider with a serial port, however, is that characters, not scan codes, are transmitted, so even
with an old UART that does no buffering, there will be only one interrupt per keypress instead of two. And
newer PCs are equipped with UARTs that typically buffer at least 16, and perhaps as many 128 characters. So
one interrupt per character is not required. For instance, a UART with a 16-character buffer might be
configured to interrupt when 14 characters are in the buffer. Ethernet-based networks can deliver characters at
a rate much faster than a serial line, but ethernet adapters buffer entire packets, and only one interrupt is
necessary per packet.

18

18

[Page 322]

We will complete our overview of terminal input by summarizing the events that occur when the terminal
driver is first activated by a read request and when it is reactivated after receipt of keyboard input (see Fig.
3-34). In the first case, when a message comes in to the terminal driver requesting characters from the
keyboard, the main procedure, tty_task (line 13740) calls do_read (line 13953) to handle the request. Do_read
stores the parameters of the call in the keyboard's entry in tty_table, in case there are insufficient characters
buffered to satisfy the request.

Figure 3-34. Input handling in the terminal driver. The left branch of the tree is taken to process a request to read
characters. The right branch is taken when a keyboard message is sent to the driver before a user has requested

input. [figure 3-X to be revised]

[View full size image]

Then it calls in_transfer (line 14416) to get any input already waiting, and then handle_events (line 14358)
which in turn calls (via the function pointer (*tp->tty_devread)) kb_read (line 15360) and then in_transfer
once again, in order to try to milk the input stream for a few more characters. Kb_read calls several other
procedures not shown in Fig. 3-34 to accomplish its work. The result is that whatever is immediately available
is copied to the user. If nothing is available then, nothing is copied. If the read is completed by in_transfer or
by handle_events, a message is sent to the file system when all characters have been transferred, so the file
system can unblock the caller. If the read was not completed (no characters, or not enough characters) do_read
reports back to the file system, telling it whether it should suspend the original caller, or, if a nonblocking read
was requested, cancel the read.

[Page 323]

The right side of Fig. 3-34 summarizes the events that occur when the terminal driver is awakened subsequent
to an interrupt from the keyboard. When a character is typed, the interrupt "handler" kbd_interrupt (line

19

19

15335) calls scan_keyboard which calls the system task to do the I/O. (We put "handler" in quotes because it
is not a real handler called when an interrupt occurs, it is activated by a message sent to tty_task from
generic_handler in the system task.) Then kbd_interrupt puts the scan code into the keyboard buffer, ibuf, and
sets a flag to identify that the console device has experienced an event. When kbd_interrupt returns control to
tty_task a continue statement results in starting another iteration of the main loop. The event flags of all
terminal devices are checked and handle_events is called for each device with a raised flag. In the case of the
keyboard, handle_events calls kb_read and in_transfer, just as was done on receipt of the original read
request. The events shown on the right side of the figure may occur several times, until enough characters are
received to fulfill the request accepted by do_read after the first message from the FS. If the FS tries to initiate
a request for more characters from the same device before the first request is complete, an error is returned. Of
course, each device is independent; a read request on behalf of a user at a remote terminal is processed
separately from one for a user at the console.

The functions not shown in Fig. 3-34 that are called by kb_read include map_key, (line 15303) which
converts the key codes (scan codes) generated by the hardware into ASCII codes, make_break, (line 15431)
which keeps track of the state of modifier keys such as the SHIFT key, and in_process, (line 14486) which
handles complications such as attempts by the user to backspace over input entered by mistake, other special
characters, and options available in different input modes. In_process also calls tty_echo (line 14647), so the
typed characters will be displayed on the screen.

Terminal Output

In general, console output is simpler than terminal input, because the operating system is in control and does
not need to be concerned with requests for output arriving at inconvenient times. Also, because the MINIX 3
console is a memory-mapped display, output to the console is particularly simple. No interrupts are needed;
the basic operation is to copy data from one memory region to another. On the other hand, all the details of
managing the display, including handling escape sequences, must be handled by the driver software. As we
did with keyboard input in the previous section, we will trace through the steps involved in sending characters
to the console display. We will assume in this example that the active display is being written; minor
complications caused by virtual consoles will be discussed later.

[Page 324]

When a process wants to print something, it generally calls printf. Printf calls write to send a message to the
file system. The message contains a pointer to the characters that are to be printed (not the characters
themselves). The file system then sends a message to the terminal driver, which fetches them and copies them
to the video RAM. Figure 3-35 shows the main procedures involved in output.

Figure 3-35. Major procedures used in terminal output. The dashed line indicates characters copied directly to
ramqueue by cons_write.

20

20

When a message comes in to the terminal driver requesting it to write on the screen, do_write (line 14029) is
called to store the parameters in the console's tty struct in the tty_table. Then handle_events (the same
function called whenever the tty_events flag is found set) is called. On every call this function calls both the
input and output routines for the device selected in its argument. In the case of the console display this means
that any keyboard input that is waiting is processed first. If there is input waiting, characters to be echoed are
added to whatever characters are already awaiting output. Then a call is made to cons_write (line 16036), the
output procedure for memory-mapped displays. This procedure uses phys_copy to copy blocks of characters
from the user process to a local buffer, possibly repeating this and the following steps a number of times,
since the local buffer holds only 64 bytes. When the local buffer is full, each 8-bit byte is transferred to
another buffer, ramqueue. This is an array of 16-bit words. Alternate bytes are filled in with the current value
of the screen attribute byte, which determines foreground and background colors and other attributes. When
possible, characters are transferred directly into ramqueue, but certain characters, such as control characters or
characters that are parts of escape sequences, need special handling. Special handling is also required when a
character's screen position would exceed the width of the screen, or when ramqueue becomes full. In these
cases out_char (line 16119) is called to transfer the characters and take whatever additional action is called
for. For instance, scroll_screen (line 16205) is called when a linefeed character is received while addressing
the last line of the screen, and parse_escape handles characters during an escape sequence. Usually out_char
calls flush (line 16259) which copies the contents of ramqueue to the video display memory, using the
assembly language routine mem_vid_copy. Flush is also called after the last character is transferred into
ramqueue to be sure all output is displayed. The final result of flush is to command the 6845 video controller

21

21

chip to display the cursor in the correct position.

[Page 325]

Logically, the bytes fetched from the user process could be written into the video RAM one per loop iteration.
However, accumulating the characters in ramqueue and then copying the block with a call to mem_vid_copy
are more efficient in the protected memory environment of Pentium-class processors. Interestingly, this
technique was introduced in early versions of MINIX 3 that ran on older processors without protected
memory. The precursor of mem_vid_copy dealt with a timing problemwith older video displays the copy into
the video memory had to be done when the screen was blanked during vertical retrace of the CRT beam to
avoid generating visual garbage all over the screen. MINIX 3 no longer provides this support for obsolete
equipment as the performance penalty is too great. However, the modern version of MINIX 3 benefits in other
ways from copying ramqueue as a block.

The video RAM available to a console is delimited in the console structure by the fields c_start and c_limit.
The current cursor position is stored in the c_column and c_row fields. The coordinate (0, 0) is in the upper
left corner of the screen, which is where the hardware starts to fill the screen. Each video scan begins at the
address given by c_org and continues for 80x 25 characters (4000 bytes). In other words, the 6845 chip pulls
the word at offset c_org from the video RAM and displays the character byte in the upper left-hand corner,
using the attribute byte to control color, blinking, and so forth. Then it fetches the next word and displays the
character at (1, 0). This process continues until it gets to (79, 0), at which time it begins the second line on the
screen, at coordinate (0, 1).

[Page 326]

When the computer is first started, the screen is cleared, output is written into the video RAM starting at
location c_start, and c_org is assigned the same value as c_start. Thus the first line appears on the top line of
the screen. When output must go to a new line, either because the first line is full or because a newline
character is detected by out_char, output is written into the location given by c_start plus 80. Eventually, all
25 lines are filled, and scrolling of the screen is required. Some programs, editors, for example, require
scrolling in the downward direction too, when the cursor is on the top line and further movement upward
within the text is required.

There are two ways scrolling the screen can be managed. In software scrolling, the character to be displayed at
position (0, 0) is always in the first location in video memory, word 0 relative to the position pointed to by
c_start, and the video controller chip is commanded to display this location first by keeping the same address
in c_org. When the screen is to be scrolled, the contents of relative location 80 in the video RAM, the
beginning of the second line on the screen, is copied to relative location 0, word 81 is copied to relative
location 1, and so on. The scan sequence is unchanged, putting the data at location 0 in the memory at screen
position (0, 0) and the image on the screen appears to have moved up one line. The cost is that the CPU has
moved 80 x 24 = 1920 words. In hardware scrolling, the data are not moved in the memory; instead the video
controller chip is instructed to start the display at a different point, for instance, with the data at word 80. The
bookkeeping is done by adding 80 to the contents of c_org, saving it for future reference, and writing this
value into the correct register of the video controller chip. This requires either that the controller be smart
enough to wrap around the video RAM, taking data from the beginning of the RAM (the address in c_start)
when it reaches the end (the address in c_limit), or that the video RAM have more capacity than just the 80 x
2000 words necessary to store a single screen of display.

Older display adapters generally have smaller memory but are able to wrap around and do hardware scrolling.
Newer adapters generally have much more memory than needed to display a single screen of text, but the
controllers are not able to wrap. Thus an adapter with 32,768 bytes of display memory can hold 204 complete
lines of 160 bytes each, and can do hardware scrolling 179 times before the inability to wrap becomes a

22

22

problem. But, eventually a memory copy operation will be needed to move the data for the last 24 lines back
to location 0 in the video memory. Whichever method is used, a row of blanks is copied to the video RAM to
ensure that the new line at the bottom of the screen is empty.

When virtual consoles are enabled, the available memory within a video adapteris divided equally between the
number of consoles desired by properly initializing the c_start and c_limit fields for each console. This has an
effect on scrolling. On any adapter large enough to support virtual consoles, software scrolling takes place
every so often, even though hardware scrolling is nominally in effect. The smaller the amount of memory
available to each console display, the more frequently software scrolling must be used. The limit is reached
when the maximum possible number of consoles is configured. Then every scroll operation will be a software
scroll operation.

[Page 327]

The position of the cursor relative to the start of the video RAM can be derived from c_column and c_row,
but it is faster to store it explicitly (in c_cur). When a character is to be printed, it is put into the video RAM at
location c_cur, which is then updated, as is c_column. Figure 3-36 summarizes the fields of the console
structure that affect the current position and the display origin.

Figure 3-36. Fields of the console structure that relate to the current screen position.

Field

Meaning

c_start

Start of video memory for this console

c_limit

Limit of video memory for this console

c_column

Current column (0-79) with 0 at left

c_row

Current row (0-24) with 0 at top

c_cur

Offset into video RAM for cursor

c_org

Location in RAM pointed to by 6845 base register

The characters that affect the cursor position (e.g., linefeed, backspace) are handled by adjusting the values of
c_column, c_row, and c_cur. This work is done at the end of flush by a call to set_6845 which sets the

23

23

registers in the video controller chip.

The terminal driver supports escape sequences to allow screen editors and other interactive programs to
update the screen in a flexible way. The sequences supported are a subset of an ANSI standard and should be
adequate to allow many programs written for other hardware and other operating systems to be easily ported
to MINIX 3. There are two categories of escape sequences: those that never contain a variable parameter, and
those that may contain parameters. In the first category the only representative supported by MINIX 3 is ESC
M, which reverse indexes the screen, moving the cursor up one line and scrolling the screen downward if the
cursor is already on the first line. The other category can have one or two numeric parameters. Sequences in
this group all begin with ESC [. The "['' is the control sequence introducer. A table of escape sequences
defined by the ANSI standard and recognized by MINIX 3 was shown in Fig. 3-32.

Parsing escape sequences is not trivial. Valid escape sequences in MINIX 3 can be as short as two characters,
as in ESC M, or up to 8 characters long in the case of a sequence that accepts two numeric parameters that
each can have a two-digit values as in ESC [20;60H, which moves the cursor to line 20, column 60. In a
sequence that accepts a parameter, the parameter may be omitted, and in a sequence that accepts two
parameters either or both of them may be omitted. When a parameter is omitted or one that is outside the valid
range is used, a default is substituted. The default is the lowest valid value.

[Page 328]

Consider the following ways a program could construct a sequence to move to the upper-left corner of the
screen:

1. ESC [H is acceptable, because if no parameters are entered the lowest valid parameters are
assumed.

2. ESC [1;1H will correctly send the cursor to row 1 and column 1 (with ANSI, the row and column
numbers start at 1).

3. Both ESC [1;H and ESC [;1H have an omitted parameter, which defaults to 1 as in the first
example.

4. ESC [0;0H will do the same, since each parameter is less than the minimum valid value the
minimum is substituted.

These examples are presented not to suggest one should deliberately use invalid parameters but to show that
the code that parses such sequences is nontrivial.

MINIX 3 implements a finite state automaton to do this parsing. The variable c_esc_state in the console
structure normally has a value of 0. When out_char detects an ESC character, it changes c_esc_state to 1, and
subsequent characters are processed by parse_escape (line 16293). If the next character is the control sequence
introducer, state 2 is entered; otherwise the sequence is considered complete, and do_escape (line 16352) is
called. In state 2, as long as incoming characters are numeric, a parameter is calculated by multiplying the
previous value of the parameter (initially 0) by 10 and adding the numeric value of the current character. The
parameter values are kept in an array and when a semicolon is detected the processing shifts to the next cell in
the array. (The array in MINIX 3 has only two elements, but the principle is the same). When a nonnumeric
character that is not a semicolon is encountered the sequence is considered complete, and again do_escape is
called. The current character on entry to do_escape then is used to select exactly what action to take and how
to interpret the parameters, either the defaults or those entered in the character stream. This is illustrated in
Fig. 3-44.

24

24

Loadable Keymaps

The IBM PC keyboard does not generate ASCII codes directly. The keys are each identified with a number,
starting with the keys that are located in the upper left of the original PC keyboard1 for the "ESC'' key, 2 for
the "1'', and so on. Each key is assigned a number, including modifier keys like the left SHIFT and right
SHIFT keys, numbers 42 and 54. When a key is pressed, MINIX 3 receives the key number as a scan code. A
scan code is also generated when a key is released, but the code generated upon release has the most
significant bit set (equivalent to adding 128 to the key number). Thus a key press and a key release can be
distinguished. By keeping track of which modifier keys have been pressed and not yet released, a large
number of combinations are possible. For ordinary purposes, of course, two-finger combinations, such as
SHIFT-A or CTRL-D, are most manageable for two-handed typists, but for special occasions three-key (or
more) combinations are possible, for instance, CTRL-SHIFT-A, or the wellknown CTRL-ALT-DEL
combination that PC users recognize as the way to reset and reboot the system.

[Page 329]

The complexity of the PC keyboard allows for a great deal of flexibility in how it used. A standard keyboard
has 47 ordinary character keys defined (26 alphabetic, 10 numeric, and 11 punctuation). If we are willing to
use threefingered modifier key combinations, such as CTRL-ALT-SHIFT, we can support a character set of
376 (8 x 47) members. This is by no means the limit of what is possible, but for now let us assume we do not
want to distinguish between the left- and right-hand modifier keys, or use any of the numeric keypad or
function keys. Indeed, we are not limited to using just the CTRL, ALT, and SHIFT keys as modifiers; we
could retire some keys from the set of ordinary keys and use them as modifiers if we desired to write a driver
that supported such a system.

Operating systems that use such keyboards use a keymap to determine what character code to pass to a
program based upon the key being pressed and the modifiers in effect. The MINIX 3 keymap logically is an
array of 128 rows, representing possible scan code values (this size was chosen to accommodate Japanese
keyboards; U.S. and European keyboards do not have this many keys) and 6 columns. The columns represent
no modifier, the SHIFT key, the Control key, the left ALT key, the right ALT key, and a combination of
either ALT key plus the SHIFT key. There are thus 720 ((128 6) x 6) character codes that can be generated by
this scheme, given an adequate keyboard. This requires that each entry in the table be a 16-bit quantity. For
U.S. keyboards the ALT and ALT2 columns are identical. ALT2 is named ALTGR on keyboards for other
languages, and many of these keymaps support keys with three symbols by using this key as a modifier.

A standard keymap (determined by the line

#include keymaps/us-std.src

in keyboard.c) is compiled into the MINIX 3 kernel at compilation time, but an

ioctl(0, KIOCSMAP, keymap)

call can be used to load a different map into the kernel at address keymap. A full keymap occupies 1536 bytes
(128 x 6 x 2). Extra keymaps are stored in compressed form. A program called genmap is used to make a new
compressed keymap. When compiled, genmap includes the keymap.src code for a particular keymap, so the
map is compiled within genmap. Normally, genmap is executed immediately after being compiled, at which
time it outputs the compressed version to a file, and then the genmap binary is deleted. The command
loadkeys reads a compressed keymap, expands it internally, and then calls ioctl to transfer the keymap into
the kernel memory. MINIX 3 can execute loadkeys automatically upon starting, and the program can also be

25

25

invoked by the user at any time.

[Page 330]

The source code for a keymap defines a large initialized array, and in the interest of saving space a keymap
file is not printed in Appendix B. Figure 3-37 shows in tabular form the contents of a few lines of
src/kernel/keymaps/us-std.src which illustrate several aspects of keymaps. There is no key on the IBM-PC
keyboard that generates a scan code of 0. The entry for code 1, the ESC key, shows that the value returned is
unchanged when the SHIFT key or CTRL key are pressed, but that a different code is returned when an ALT
key is pressed simultaneously with the ESC key. The values compiled into the various columns are
determined by macros defined in include/minix/keymap.h:

#define C(c) ((c) & 0x1F) /* Map to control code*/
#define A(c) ((c) | 0x80) /* Set eight bit (ALT)*/
#define CA(c) A(C(c)) /* CTRL-ALT*/
#define L(c) ((c) | HASCAPS) /* Add "Caps Lock has effect" attribute*/

Figure 3-37. A few entries from a keymap source file.

[View full size image]

The first three of these macros manipulate bits in the code for the quoted character to produce the necessary
code to be returned to the application. The last one sets the HASCAPS bit in the high byte of the 16-bit value.
This is a flag that indicates that the state of the capslock variable has to be checked and the code possibly
modified before being returned. In the figure, the entries for scan codes 2, 13, and 16 show how typical
numeric, punctuation, and alphabetic keys are handled. For code 28 a special feature is seennormally the
ENTER key produces a CR (0x0D) code, represented here as C('M'). Because the newline character in
UNIX files is the LF (0x0A) code, and it is sometimes necessary to enter this directly, this keyboard map
provides for a CTRL-ENTER combination, which produces this code, C('J').

[Page 331]

Scan code 29 is one of the modifier codes and must be recognized no matter what other key is pressed, so the
CTRL value is returned regardless of any other key that may be pressed. The function keys do not return
ordinary ASCII values, and the row for scan code 59 shows symbolically the values (defined in
include/minix/keymap.h) that are returned for the F1 key in combination with other modifiers. These values
are F1: 0x0110, SF1: 0x1010, AF1: 0x0810, ASF1: 0x0C10, and CF1: 0x0210. The last entry shown in the
figure, for scan code 127, is typical of many entries near the end of the array. For many keyboards, certainly

26

26

most of those used in Europe and the Americas, there are not enough keys to generate all the possible codes,
and these entries in the table are filled with zeroes.

Loadable Fonts

Early PCs had the patterns for generating characters on a video screen stored only in ROM, but the displays
used on modern systems provide RAM on the video display adapters into which custom character generator
patterns can be loaded. This is supported by MINIX 3 with a

ioctl(0, TIOCSFON, font)

ioctl operation. MINIX 3 supports an 80 lines x 25 rows video mode, and font files contain 4096 bytes.
Each byte represents a line of 8 pixels that are illuminated if the bit value is 1, and 16 such lines are needed to
map each character. However the video display adapter uses 32 bytes to map each character, to provide higher
resolution in modes not currently supported by MINIX 3. The loadfont command is provided to convert these
files into the 8192-byte font structure referenced by the ioctl call and to use that call to load the font. As
with the keymaps, a font can be loaded at startup time, or at any time during normal operation. However,
every video adapter has a standard font built into its ROM that is available by default. There is no need to
compile a font into MINIX 3 itself, and the only font support necessary in the kernel is the code to carry out
the TIOCSFON ioctl operation.

3.8.4. Implementation of the Device-Independent Terminal Driver

In this section we will begin to look at the source code of the terminal driver in detail. We saw when we
studied the block devices that multiple drivers supporting several different devices could share a common
base of software. The case with the terminal devices is similar, but with the difference that there is one
terminal driver that supports several different kinds of terminal device. Here we will start with the
device-independent code. In later sections we will look at the device-dependent code for the keyboard and the
memory-mapped console display.

[Page 332]

Terminal Driver Data Structures

The file tty.h contains definitions used by the C files which implement the terminal drivers. Since this driver
supports many different devices, the minor device numbers must be used to distinguish which device is being
supported on a particular call, and they are defined on lines 13405 to 13409.

Within tty.h, the definitions of the O_NOCTTY and O_NONBLOCK flags (which are optional arguments to
the open call) are duplicates of definitions in include/fcntl.h but they are repeated here so as not to require
including another file. The devfun_t and devfunarg_t types (lines 13423 and 13424) are used to define
pointers to functions, in order to provide for indirect calls using a mechanism similar to what we saw in the
code for the main loop of the disk drivers.

Many variables declared in this file are identified by the prefix tty_. The most important definition in tty.h is
the tty structure (lines 13426 to 13488). There is one such structure for each terminal device (the console
display and keyboard together count as a single terminal). The first variable in the tty structure, tty_events, is
the flag that is set when an interrupt causes a change that requires the terminal driver to attend to the device.

27

27

The rest of the tty structure is organized to group together variables that deal with input, output, status, and
information about incomplete operations. In the input section, tty_inhead and tty_intail define the queue
where received characters are buffered. Tty_incount counts the number of characters in this queue, and
tty_eotct counts lines or characters, as explained below. All device-specific calls are done indirectly, with the
exception of the routines that initialize the terminals, which are called to set up the pointers used for the
indirect calls. The tty_devread and tty_icancel fields hold pointers to device-specific code to perform the read
and input cancel operations. Tty_min is used in comparisons with tty_eotct. When the latter becomes equal to
the former, a read operation is complete. During canonical input, tty_min is set to 1 and tty_eotct counts lines
entered. During noncanonical input, tty_eotct counts characters and tty_min is set from the MIN field of the
termios structure. The comparison of the two variables thus tells when a line is ready or when the minimum
character count is reached, depending upon the mode. Tty_tmr is a timer for this tty, used for the TIME field
of termios.

Since queueing of output is handled by the device-specific code, the output section of tty declares no variables
and consists entirely of pointers to devicespecific functions that write, echo, send a break signal, and cancel
output. In the status section the flags tty_reprint, tty_escaped, and tty_inhibited indicate that the last character
seen has a special meaning; for instance, when a CTRL-V (LNEXT) character is seen, tty_escaped is set to 1
to indicate that any special meaning of the next character is to be ignored.

The next part of the structure holds data about DEV_READ, DEV_WRITE, and DEV_IOCTL operations in
progress. There are two processes involved in each of these operations. The server managing the system call
(normally FS) is identified in tty_incaller (line 13458). The server calls the tty driver on behalf of another
process that needs to do an I/O operation, and this client is identified in tty_inproc (line 13459). As described
in Fig. 3-33, during a read, characters are transferred directly from the terminal driver to a buffer within the
memory space of the original caller. Tty_inproc and tty_in_vir locate this buffer. The next two variables,
tty_inleft and tty_incum, count the characters still needed and those already transferred. Similar sets of
variables are needed for a write system call. For ioctl there may be an immediate transfer of data
between the requesting process and the driver, so a virtual address is needed, but there is no need for variables
to mark the progress of an operation. An ioctl request may be postponed, for instance, until current output
is complete, but when the time is right the request is carried out in a single operation.

[Page 333]

Finally, the tty structure includes some variables that fall into no other category, including pointers to the
functions to handle the DEV_IOCTL and DEV_CLOSE operations at the device level, a POSIX-style termios
structure, and a winsize structure that provides support for window-oriented screen displays. The last part of
the structure provides storage for the input queue itself in the array tty_inbuf. Note that this is an array of
u16_t, not of 8-bit char characters. Although applications and devices use 8-bit codes for characters, the C
language requires the input function getchar to work with a larger data type so it can return a symbolic EOF
value in addition to all 256 possible byte values.

The tty_table, an array of tty structures, is declared as extern on line 13491. There is one array element for
each terminal enabled by the NR_CONS, NR_RS_LINES, and NR_PTYS definitions in
include/minix/config.h. For the configuration discussed in this book, two consoles are enabled, but MINIX 3
may be recompiled to add additional virtual consoles, one or two 2 serial lines, and up to 64 pseudo terminals.

There is one other extern definition in tty.h. Tty_timers (line 13516) is a pointer used by the timer to hold the
head of a linked list of timer_t fields. The tty.h header file is included in many files and storage for tty_table
and tty_timers is allocated during compilation of tty.c.

Two macros, buflen and bufend, are defined on lines 13520 and 13521. These are used frequently in the
terminal driver code, which does much copying of data into and out of buffers.

28

28

The Device-Independent Terminal Driver

The main terminal driver and the device-independent supporting functions are all in tty.c. Following this there
are a number of macro definitions. If a device is not initialized, the pointers to that device's device-specific
functions will contain zeroes put there by the C compiler. This makes it possible to define the tty_active
macro (line 13687) which returns FALSE if a null pointer is found. Of course, the initialization code for a
device cannot be accessed indirectly if part of its job is to initialize the pointers that make indirect access
possible. On lines 13690 to 13696 are conditional macro definitions to equate initialization calls for RS-232 or
pseudo terminal devices to calls to a null function when these devices are not configured. Do_pty may be
similarly disabled in this section. This makes it possible to omit the code for these devices entirely if it is not
needed.

[Page 334]

Since there are so many configurable parameters for each terminal, and there may be quite a few terminals on
a networked system, a termios_defaults structure is declared and initialized with default values (all of which
are defined in include/termios.h) on lines 13720 to 13727. This structure is copied into the tty_table entry for
a terminal whenever it is necessary to initialize or reinitialize it. The defaults for the special characters were
shown in Fig. 3-29. Figure 3-38 shows the default values for the various flags used. On the following line the
winsize_defaults structure is similarly declared. It is left to be initialized to all zeroes by the C compiler. This
is the proper default action; it means "window size is unknown, use /etc/termcap.''

Figure 3-38. Default termios flag values.

Field

Default values

c_iflag

BRKINT ICRNL IXON IXANY

c_oflag

OPOST ONLCR

c_cflag

CREAD CS8 HUPCL

c_lflag

ISIG IEXTEN ICANON ECHO ECHOE

The final set of definitions before executable code begins are the PUBLIC declarations of global variables
previously declared as extern in tty.h (lines 13731 to 13735).

The entry point for the terminal driver is tty_task (line 13740). Before entering the main loop, a call is made to
tty_init (line 13752). Information about the host machine that will be needed to initialize the keyboard and the
console is obtained by a sys_getmachine kernel call, and then the keyboard hardware is initialized. The
routine called for this is kb_init_once. It is so named to distinguish it from another initialization routine which

29

29

is called as part of initialization of each virtual console later on. Finally, a single 0 is printed to exercise the
output system and kick anything that does not get initialized until first use. The source code shows a call to
printf, but this is not the same printf used by user programs, it is a special version that calls a local function in
the console driver called putk.

The main loop on lines 13764 to 13876 is, in principle, like the main loop of any driverit receives a message,
executes a switch on the message type to call the appropriate function, and then generates a return message.
However, there are some complications. The first one is that since the last interrupt additional characters may
have been read or characters to be written to an output device may be ready. Before attempting to receive a
message, the main loop always checks the tp->tty_events flags for all terminals and handle_events is called as
necessary to take care of unfinished business. Only when nothing demands immediate attention is a call made
to receive.

[Page 335]

The diagram showing message types in the comments near the beginning of tty.c shows the most often used
types. A number of message types requesting specialized services from the terminal driver are not shown.
These are not specific to any one device. The tty_task main loop checks for these and handles them before
checking for device-specific messages. First a check is made for a SYN_ALARM message, and, if this is the
message type a call is made to expire_timers to cause a watchdog routine to execute. Then comes a
continue statement. In fact all of the next few cases we will look at are followed by continue. We will
say more about this soon.

The next message type tested for is HARD_INT. This is most likely the result of a key being pressed or
released on the local keyboard. It could also mean bytes have been received by a serial port, if serial ports are
enabledin the configuration we are studying they are not, but we left conditional code in the file here to
illustrate how serial port input would be handled. A bit field in the message is used to determine the source of
the interrupt.

Next a check is made for SYS_SIG. System processes (drivers and servers) are expected to block waiting for
messages. Ordinary signals are received only by active processes, so the standard UNIX signaling method
does not work with system processes.A SYS_SIG message is used to signal a system process. A signal to the
terminal driver can mean the kernel is shutting down (SIGKSTOP), the terminal driver is being shut down
(SIGTERM), or the kernel needs to print a message to the console (SIGKMESS), and appropriate routines are
called for these cases.

The last group of non-device-specific messages are PANIC_DUMPS, DIAGNOSTICS, and
FKEY_CONTROL. We will say more about these when we get to the functions that service them.

Now, about the continue statements: in the C language, a continue statement short-circuits a loop, and
returns control to the top of the loop. So if any one of the message types mentioned so far is detected, as soon
as it is serviced control returns to the top of the main loop, at line 13764, the check for events is repeated, and
receive is called again to await a new message. Particularly in the case of input it is important to be ready
to respond again as quickly as possible. Also, if any of the message-type tests in the first part of the loop
succeeded there is no point in making any of the tests that come after the first switch.

Above we mentioned complications that the terminal driver must deal with. The second complication is that
this driver services several devices. If the interrupt is not a hardware interrupt the TTY_LINE field in the
message is used to determine which device should respond to the message. The minor device number is
decoded by a series of comparisons, by means of which tp is pointed to the correct entry in the tty_table (lines
13834 to 13847). If the device is a pseudo terminal, do_pty (in pty.c) is called and the main loop is restarted.
In this case do_pty generates the reply message. Of course, if pseudo terminals are not enabled, the call to
do_pty uses the dummy macro defined earlier. One would hope that attempts to access nonexistent devices

30

30

would not occur, but it is always easier to add another check than to verify that there are no errors elsewhere
in the system. In case the device does not exist or is not configured, a reply message with an ENXIO error
message is generated and, again, control returns to the top of the loop.

[Page 336]

The rest of this driver resembles what we have seen in the main loop of other drivers, a switch on the
message type (lines 13862 to 13875). The appropriate function for the type of request, do_read, do_write, and
so on, is called. In each case the called function generates the reply message, rather than pass the information
needed to construct the message back to the main loop. A reply message is generated at the end of the main
loop only if a valid message type was not received, in which case an EINVAL error message is sent. Because
reply messages are sent from many different places within the terminal driver a common routine, tty_reply, is
called to handle the details of constructing reply messages.

If the message received by tty_task is a valid message type, not the result of an interrupt, and does not come
from a pseudo terminal, the switch at the end of the main loop will dispatch to one of the functions do_read,
do_write, do_ioctl, do_open, do_close, do_select, or do_cancel. The arguments to each of these calls are tp, a
pointer to a tty structure, and the address of the message. Before looking at each of them in detail, we will
mention a few general considerations. Since tty_task may service multiple terminal devices, these functions
must return quickly so the main loop can continue.

However, do_read, do_write, and do_ioctl may not be able to complete all the requested work immediately. In
order to allow FS to service other calls, an immediate reply is required. If the request cannot be completed
immediately, the SUSPEND code is returned in the status field of the reply message. This corresponds to the
message marked (3) in Fig. 3-33 and suspends the process that initiated the call, while unblocking the FS.
Messages corresponding to (10) and (11) in the figure will be sent later when the operation can be completed.
If the request can be fully satisfied, or an error occurs, either the count of bytes transferred or the error code is
returned in the status field of the return message to the FS. In this case a message will be sent immediately
from the FS back to the process that made the original call, to wake it up.

Reading from a terminal is fundamentally different from reading from a disk device. The disk driver issues a
command to the disk hardware and eventually data will be returned, barring a mechanical or electrical failure.
The computer can display a prompt upon the screen, but there is no way for it to force a person sitting at the
keyboard to start typing. For that matter, there is no guarantee that anybody will be sitting there at all. In order
to make the speedy return that is required, do_read (line 13953) starts by storing information that will enable
the request to be completed later, when and if input arrives. There are a few error checks to be made first. It is
an error if the device is still expecting input to fulfill a previous request, or if the parameters in the message
are invalid (lines 13964 to 13972). If these tests are passed, information about the request is copied into the
proper fields in the device's tp->tty_table entry on lines 13975 to 13979. The last step, setting tp->tty_inleft to
the number of characters requested, is important. This variable is used to determine when the read request is
satisfied. In canonical mode tp->tty_inleft is decremented by one for each character returned, until an end of
line is received, at which point it is suddenly reduced to zero. In noncanonical mode it is handled differently,
but in any case it is reset to zero whenever the call is satisfied, whether by a timeout or by receiving at least
the minimum number of bytes requested. When tp->tty_inleft reaches zero, a reply message is sent. As we
will see, reply messages can be generated in several places. It is sometimes necessary to check whether a
reading process still expects a reply; a nonzero value of tp->tty_inleft serves as a flag for that purpose.

[Page 337]

In canonical mode a terminal device waits for input until either the number of characters asked for in the call
has been received, or the end of a line or the end of the file is reached. The ICANON bit in the termios
structure is tested on line 13981 to see if canonical mode is in effect for the terminal. If it is not set, the

31

31

termios MIN and TIME values are checked to determine what action to take.

In Fig. 3-31 we saw how MIN and TIME interact to provide different ways a read call can behave. TIME is
tested on line 13983. A value of zero corresponds to the left-hand column in Fig. 3-31, and in this case no
further tests are needed at this point. If TIME is nonzero, then MIN is tested. If it is zero, settimer is called to
start the timer that will terminate the DEV_READ request after a delay, even if no bytes have been received.
Tp->tty_min is set to 1 here, so the call will terminate immediately if one or more bytes are received before
the timeout. At this point no check for possible input has yet been made, so more than one character may
already be waiting to satisfy the request. In that case, as many characters as are ready, up to the number
specified in the read call, will be returned as soon as the input is found. If both TIME and MIN are nonzero,
the timer has a different meaning. The timer is used as an inter-character timer in this case. It is started only
after the first character is received and is restarted after each successive character. Tp->tty_eotct counts
characters in noncanonical mode, and if it is zero at line 13993, no characters have been received yet and the
inter-byte timer is inhibited.

In any case, at line 14001, in_transfer is called to transfer any bytes already in the input queue directly to the
reading process. Next there is a call to handle_events, which may put more data into the input queue and
which calls in_transfer again. This apparent duplication of calls requires some explanation. Although the
discussion so far has been in terms of keyboard input, do_read is in the device-independent part of the code
and also services input from remote terminals connected by serial lines. It is possible that previous input has
filled the RS-232 input buffer to the point where input has been inhibited. The first call to in_transfer does not
start the flow again, but the call to handle_events can have this effect. The fact that it then causes a second call
to in_transfer is just a bonus. The important thing is to be sure the remote terminal is allowed to send again.
Either of these calls may result in satisfaction of the request and sending of the reply message to the FS.
Tp->tty_inleft is used as a flag to see if the reply has been sent; if it is still nonzero at line 14004, do_read
generates and sends the reply message itself. This is done on lines 14013 to 14021. (We assume here that no
use has been made of the select system call, and therefore there will be no call to select_retry on line
14006).

[Page 338]

If the original request specified a nonblocking read, the FS is told to pass an EAGAIN error code back to
original caller. If the call is an ordinary blocking read, the FS receives a SUSPEND code, unblocking it but
telling it to leave the original caller blocked. In this case the terminal's tp->tty_inrepcode field is set to
REVIVE. When and if the read is later satisfied, this code will be placed in the reply message to the FS to
indicate that the original caller was put to sleep and needs to be revived.

Do_write (line 14029) is similar to do_read, but simpler, because there are fewer options to be concerned
about in handling a write system call. Checks similar to those made by do_read are made to see that a
previous write is not still in progress and that the message parameters are valid, and then the parameters of the
request are copied into the tty structure. Handle_events is then called, and tp->tty_outleft is checked to see if
the work was done (lines 14058 to 14060). If so, a reply message already has been sent by handle_events and
there is nothing left to do. If not, a reply message is generated. with the message parameters depending upon
whether or not the original write call was called in nonblocking mode.

The next function, do_ioctl (line 14079), is a long one, but not difficult to understand. The body of do_ioctl is
two switch statements. The first determines the size of the parameter pointed to by the pointer in the request
message (lines 14094 to 14125). If the size is not zero, the parameter's validity is tested. The contents cannot
be tested here, but what can be tested is whether a structure of the required size beginning at the specified
address fits within the segment it is specified to be in. The rest of the function is another switch on the type
of ioctl operation requested (lines 14128 to 14225).

Unfortunately, supporting the POSIX-required operations with the ioctl call meant that names for ioctl

32

32

operations had to be invented that suggest, but do not duplicate, names required by POSIX. Figure 3-39 shows
the relationship between the POSIX request names and the names used by the MINIX 3 ioctl call.A
TCGETS operation services a tcgetattr call by the user and simply returns a copy of the terminal device's
tp->tty_termios structure. The next four request types share code. The TCSETSW, TCSETSF, and TCSETS
request types correspond to user calls to the POSIX-defined function tcsetattr, and all have the basic action of
copying a new termios structure into a terminal's tty structure. The copying is done immediately for TCSETS
calls and may be done for TCSETSW and TCSETSF calls if output is complete, by a sys_vircopy kernel call
to get the data from the user, followed by a call to setattr, on lines 14153 to 14156. If tcsetattr was called with
a modifier requesting postponement of the action until completion of current output, the parameters for the
request are placed in the terminal's tty structure for later processing if the test of tp->tty_outleft on line 14139
reveals output is not complete. Tcdrain suspends a program until output is complete and is translated into an
ioct l call of type TCDRAIN. If output is already complete, it has nothing more to do. If output is not
complete, it also must leave information in the tty structure.

[Page 339]

Figure 3-39. POSIX calls and IOCTL operations.

POSIX function

POSIX operation

IOCTL type

IOCTL parameter

tcdrain

(none)

TCDRAIN

(none)

tcflow

TCOOFF

TCFLOW

int=TCOOFF

tcflow

TCOON

TCFLOW

int=TCOON

tcflow

TCIOFF

33

33

TCFLOW

int=TCIOFF

tcflow

TCION

TCFLOW

int=TCION

tcflush

TCIFLUSH

TCFLSH

int=TCIFLUSH

tcflush

TCOFLUSH

TCFLSH

int=TCOFLUSH

tcflush

TCIOFLUSH

TCFLSH

int=TCIOFLUSH

tcgetattr

(none)

TCGETS

termios

tcsetattr

TCSANOW

TCSETS

termios

tcsetattr

34

34

TCSADRAIN

TCSETSW

termios

tcsetattr

TCSAFLUSH

TCSETSF

termios

tcsendbreak

(none)

TCSBRK

int=duration

The POSIX tcflush function discards unread input and/or unsent output data, according to its argument, and
the ioctl translation is straightforward, consisting of a call to the tty_icancel function that services all
terminals, and/or the devicespecific function pointed to by tp->tty_ocancel (lines 14159 to 14167). Tcflow is
similarly translated in a straightforward way into an ioctl call. To suspend or restart output, it sets a TRUE
or FALSE value into tp->tty_inhibited and then sets the tp->tty_events flag. To suspend or restart input, it
sends the appropriate STOP (normally CTRL-S) or START (CTRL-Q) code to the remote terminal, using the
device-specific echo routine pointed to by tp->tty_echo (lines 14181 to 14186).

Most of the rest of the operations handled by do_ioctl are handled in one line of code, by calling an
appropriate function. In the cases of the KIOCSMAP (load keymap) and TIOCSFON (load font) operations, a
test is made to be sure the device really is a console, since these operations do not apply to other terminals. If
virtual terminals are in use the same keymap and font apply to all consoles, the hardware does not permit any
easy way of doing otherwise. The window size operations copy a winsize structure between the user process
and the terminal driver. Note, however, the comment under the code for the TIOCSWINSZ operation. When a
process changes its window size, the kernel is expected to send a SIGWINCH signal to the process group
under some versions of UNIX. The signal is not required by the POSIX standard and is not implemented in
MINIX 3. However, anyone thinking of using these structures should consider adding code here to initiate this
signal.

[Page 340]

The last two cases in do_ioctl support the POSIX required tcgetpgrp and tcsetpgrp functions. There is no
action associated with these cases, and they always return an error. There is nothing wrong with this. These
functions support job control, the ability to suspend and restart a process from the keyboard. Job control is not
required by POSIX and is not supported by MINIX 3. However, POSIX requires these functions, even when
job control is not supported, to ensure portability of programs.

Do_open (line 14234) has a simple basic action to performit increments the variable tp->tty_openct for the
device so it can be verified that it is open. However, there are some tests to be done first. POSIX specifies that

35

35

for ordinary terminalsthe first process to open a terminal is the session leader, and when a session leader dies,
access to the terminal is revoked from other processes in its group. Daemons need to be able to write error
messages, and if their error output is not redirected to a file, it should go to a display that cannot be closed.

For this purpose a device called /dev/log exists in MINIX 3. Physically it is the same device as /dev/console,
but it is addressed by a separate minor device number and is treated differently. It is a write-only device, and
thus do_open returns an EACCESS error if an attempt is made to open it for reading (line 14246). The other
test done by do_open is to test the O_NOCTTY flag. If it is not set and the device is not /dev/log, the terminal
becomes the controlling terminal for a process group. This is done by putting the process number of the caller
into the tp->tty_pgrp field of the tty_table entry. Following this, the tp->tty_openct variable is incremented
and the reply message is sent.

A terminal device may be opened more than once, and the next function, do_close (line 14260), has nothing to
do except decrement tp->tty_openct. The test on line 14266 foils an attempt to close the device if it happens to
be /dev/log. If this operation is the last close, input is canceled by calling tp->tty_icancel. Device-specific
routines pointed to by tp->tty_ocancel and tp->tty_close are also called. Then various fields in the tty structure
for the device are set back to their default values and the reply message is sent.

The last message type handler we will consider is do_cancel (line 14281). This is invoked when a signal is
received for a process that is blocked trying to read or write. There are three states that must be checked:

[Page 341]
1. The process may have been reading when killed.

2. The process may have been writing when killed.

3. The process may have been suspended by tcdrain until its output was complete.

A test is made for each case, and the general tp->tty_icancel, or the devicespecific routine pointed to by
tp->tty_ocancel, is called as necessary. In the last case the only action required is to reset the flag
tp->tty_ioreq, to indicate the ioctl operation is now complete. Finally, the tp->tty_events flag is set and a
reply message is sent.

Terminal Driver Support Code

Now that we have looked at the top-level functions called in the main loop of tty_task, it is time to look at the
code that supports them. We will start with handle_events (line 14358). As mentioned earlier, on each pass
through the main loop of the terminal driver, the tp->tty_events flag for each terminal device is checked and
handle_events is called if it shows that attention is required for a particular terminal. Do_read and do_write
also call handle_events. This routine must work fast. It resets the tp->tty_events flag and then calls
device-specific routines to read and write, using the pointers to the functions tp->tty_devread and tp->tty
devwrite (lines 14382 to 14385).

These functions are called unconditionally, because there is no way to test whether a read or a write caused
the raising of the flaga design choice was made here, that checking two flags for each device would be more
expensive than making two calls each time a device was active. Also, most of the time a character received
from a terminal must be echoed, so both calls will be necessary. As noted in the discussion of the handling of
tcsetattr calls by do_ioctl, POSIX may postpone control operations on devices until current output is
complete, so immediately after calling the device-specific tty_devwrite function is a good time take care of
ioctl operations. This is done on line 14388, where dev_ioctl is called if there is a pending control request.

36

36

Since the tp->tty_events flag is raised by interrupts, and characters may arrive in a rapid stream from a fast
device, there is a chance that by the time the calls to the device-specific read and write routines and dev_ioctl
are completed, another interrupt will have raised the flag again. A high priority is placed on getting input
moved along from the buffer where the interrupt routine places it initially. Thus handle_events repeats the
calls to the device-specific routines as long as the tp->tty_events flag is found raised at the end of the loop
(line 14389). When the flow of input stops (it also could be output, but input is more likely to make such
repeated demands), in_transfer is called to transfer characters from the input queue to the buffer within the
process that called for the read operation. In_transfer itself sends a reply message if the transfer completes the
request, either by transferring the maximum number of characters requested or by reaching the end of a line
(in canonical mode). If it does so, tp->tty_left will be zero upon the return to handle_events. Here a further
test is made and a reply message is sent if the number of characters transferred has reached the minimum
number requested. Testing tp->tty_inleft prevents sending a duplicate message.

[Page 342]

Next we will look at in_transfer (line 14416), which is responsible for moving data from the input queue in
the driver's memory space to the buffer of the user process that requested the input. However, a
straightforward block copy is not possible here. The input queue is a circular buffer and characters have to be
checked to see that the end of the file has not been reached, or, if canonical mode is in effect, that the transfer
only continues up through the end of a line. Also, the input queue is a queue of 16-bit quantities, but the
recipient's buffer is an array of 8-bit characters. Thus an intermediate local buffer is used. Characters are
checked one by one as they are placed in the local buffer, and when it fills up or when the input queue has
been emptied, sys_vircopy is called to move the contents of the local buffer to the receiving process' buffer
(lines 14432 to 14459).

Three variables in the tty structure, tp->tty_inleft, tp->tty_eotct, and tp->tty_min, are used to decide whether
in_transfer has any work to do, and the first two of these control its main loop. As mentioned earlier,
tp->tty_inleft is set initially to the number of characters requested by a read call. Normally, it is decremented
by one whenever a character is transferred but it may be abruptly decreased to zero when a condition signaling
the end of input is reached. Whenever it becomes zero, a reply message to the reader is generated, so it also
serves as a flag to indicate whether or not a message has been sent. Thus in the test on line 14429, finding that
tp->tty_inleft is already zero is a sufficient reason to abort execution of in_transfer without sending a reply.

In the next part of the test, tp->tty_eotct and tp->tty_min are compared. In canonical mode both of these
variables refer to complete lines of input, and in noncanonical mode they refer to characters. Tp->tty_eotct is
incremented whenever a "line break'' or a byte is placed in the input queue and is decremented by in_transfer
whenever a line or byte is removed from the queue. In other words, it counts the number of lines or bytes that
have been received by the terminal driver but not yet passed on to a reader. Tp->tty_min indicates the
minimum number of lines (in canonical mode) or characters (in noncanonical mode) that must be transferred
to complete a read request. Its value is always 1 in canonical mode and may be any value from 0 up to
MAX_INPUT (255 in MINIX 3) in noncanonical mode. The second half of the test on line 14429 causes
in_transfer to return immediately in canonical mode if a full line has not yet been received. The transfer is not
done until a line is complete so the queue contents can be modified if, for instance, an ERASE or KILL
character is subsequently typed in by the user before the ENTER key is pressed. In noncanonical mode an
immediate return occurs if the minimum number of characters is not yet available.

[Page 343]

A few lines later, tp->tty_inleft and tp->tty_eotct are used to control the main loop of in_transfer. In canonical
mode the transfer continues until there is no longer a complete line left in the queue. In noncanonical mode
tp->tty_eotct is a count of pending characters. Tp->tty_min controls whether the loop is entered but is not
used in determining when to stop. Once the loop is entered, either all available characters or the number of

37

37

characters requested in the original call will be transferred, whichever is smaller.

Characters are 16-bit quantities in the input queue. The actual character code to be transferred to the user
process is in the low 8 bits. Fig. 3-40 shows how the high bits are used. Three are used to flag whether the
character is being escaped (by CTRL-V), whether it signifies end-of-file, or whether it represents one of
several codes that signify a line is complete. Four bits are used for a count to show how much screen space is
used when the character is echoed. The test on line 14435 checks whether the IN_EOF bit (D in the figure) is
set. This is tested at the top of the inner loop because an end-of-file (CTRL-D) is not itself transferred to a
reader, nor is it counted in the character count. As each character is transferred, a mask is applied to zero the
upper 8 bits, and only the ASCII value in the low 8 bits is transferred into the local buffer (line 14437).

Figure 3-40. The fields in a character code as it is placed into the input queue.

0 V D N c c c c 7 6 5 4 3 2 1 0

V: IN_ESC, escaped by LNEXT (CTRL-V)

D: IN_EOF, end of file (CTRL-D)

N: IN_EOT, line break (NL and others)

cccc: count of characters echoed

7: Bit 7, may be zeroed if ISTRIP is set

6-0: Bits 0-6, ASCII code

There is more than one way to signal the end of input, but the device-specific input routine is expected to
determine whether a character received is a linefeed, CTRL-D, or other such character and to mark each such
character. In_transfer only needs to test for this mark, the IN_EOT bit (N in Fig. 3-40), on line 14454. If this
is detected, tp->tty_eotct is decremented. In noncanonical mode every character is counted this way as it is put
into the input queue, and every character is also marked with the IN_EOT bit at that time, so tp->tty_eotct
counts characters not yet removed from the queue. The only difference in the operation of the main loop of
in_transfer in the two different modes is found on line 14457. Here tp->tty_inleft is zeroed in response to
finding a character marked as a line break, but only if canonical mode is in effect. Thus when control returns
to the top of the loop, the loop terminates properly after a line break in canonical mode, but in noncanonical
line breaks are ignored.

[Page 344]

When the loop terminates there is usually a partially full local buffer to be transferred (lines 14461 to 14468).
Then a reply message is sent if tp->tty_inleft has reached zero. This is always the case in canonical mode, but
if noncanonical mode is in effect and the number of characters transferred is less than the full request, the
reply is not sent. This may be puzzling if you have a good enough memory for details to remember that where
we have seen calls to in_transfer (in do_read and handle_events), the code following the call to in_transfer
sends a reply message if in_transfer returns having transferred more than the amount specified in tp->tty_min,
which will certainly be the case here. The reason why a reply is not made unconditionally from in_transfer
will be seen when we discuss the next function, which calls in_transfer under a different set of circumstances.

That next function is in_process (line 14486). It is called from the devicespecific software to handle the

38

38

common processing that must be done on all input. Its parameters are a pointer to the tty structure for the
source device, a pointer to the array of 8-bit characters to be processed, and a count. The count is returned to
the caller. In_process is a long function, but its actions are not complicated. It adds 16-bit characters to the
input queue that is later processed by in_transfer.

There are several categories of treatment provided by in_transfer.

1. Normal characters are added to the input queue, extended to 16 bits.

2. Characters which affect later processing modify flags to signal the effect but are not placed in the
queue.

3. Characters which control echoing are acted upon immediately without being placed in the queue.

4. Characters with special significance have codes such as the EOT bit added to their high byte as
they are placed in the input queue.

Let us look first at a completely normal situation: an ordinary character, such as "x'' (ASCII code 0x78), typed
in the middle of a short line, with no escape sequence in effect, on a terminal that is set up with the standard
MINIX 3 default properties. As received from the input device this character occupies bits 0 through 7 in Fig.
3-40. On line 14504 it would have its most significant bit, bit 7, reset to zero if the ISTRIP bit were set, but
the default in MINIX 3 is not to strip the bit, allowing full 8-bit codes to be entered. This would not affect our
"x'' anyway. The MINIX 3 default is to allow extended processing of input, so the test of the IEXTEN bit in
tp->tty_termios.c_lflag (line 14507) passes, but the succeeding tests fail under the conditions we postulate: no
character escape is in effect (line 14510), this input is not itself the character escape character (line 14517),
and this input is not the REPRINT character (line 14524).

Tests on the next several lines find that the input character is not the special_POSIX_VDISABLE character,
nor is it a CR or an NL. Finally, a positive result: canonical mode is in effect, this is the normal default (line
14324). However our "x'' is not the ERASE character, nor is it any of the KILL, EOF (CTRL-D), NL, or EOL
characters, so by line 14576 still nothing will have happened to it. Here it is found that the IXON bit is set, by
default, allowing use of the STOP (CTRL-S) and START (CTRL-Q) characters, but in the ensuing tests for
these no match is found. On line 14597 it is found that the ISIG bit, enabling the use of the INTR and QUIT
characters, is set by default, but again no match is found.

[Page 345]

In fact, the first interesting thing that might happen to an ordinary character occurs on line 14610, where a test
is made to see if the input queue is already full. If this were the case, the character would be discarded at this
point, since canonical mode is in effect, and the user would not see it echoed on the screen. (The continue
statement discards the character, since it causes the outer loop to restart). However, since we postulate
completely normal conditions for this illustration, let us assume the buffer is not full yet. The next test, to see
if special noncanonical mode processing is needed (line 14616), fails, causing a jump forward to line 14629.
Here echo is called to display the character to the user, since the ECHO bit in tp->tty_termios.c_lflag is set by
default.

Finally, on lines 14632 to 14636 the character is disposed of by being put into the input queue. At this time
tp->tty_incount is incremented, but since this is an ordinary character, not marked by the EOT bit,
tp->tty_eotct is not changed.

The last line in the loop calls in_transfer if the character just transferred into the queue fills it. However, under

39

39

the ordinary conditions we postulate for this example, in_transfer would do nothing, even if called, since
(assuming the queue has been serviced normally and previous input was accepted when the previous line of
input was complete) tp->tty_eotct is zero, tp->tty_min is one, and the test at the start of in_transfer (line
14429) causes an immediate return.

Having passed through in_process with an ordinary character under ordinary conditions, let us now go back to
the start of in_process and look at what happens in less ordinary circumstances. First, we will look at the
character escape, which allows a character which ordinarily has a special effect to be passed on to the user
process. If a character escape is in effect, the tp->tty_escaped flag is set, and when this is detected (on line
14510) the flag is reset immediately and the IN_ESC bit, bit V in Fig. 3-40, is added to the current character.
This causes special processing when the character is echoedescaped control characters are displayed as "^"
plus the character to make them visible. The IN_ESC bit also prevents the character from being recognized by
tests for special characters.

The next few lines process the escape character itself, the LNEXT character (CTRL-V by default). When the
LNEXT code is detected the tp->tty_escaped flag is set, and rawecho is called twice to output a "^'' followed
by a backspace. This reminds the user at the keyboard that an escape is in effect, and when the following
character is echoed, it overwrites the "^''. The LNEXT character is an example of one that affects later
characters (in this case, only the very next character). It is not placed in the queue, and the loop restarts after
the two calls to rawecho. The order of these two tests is important, making it possible to enter the LNEXT
character itself twice in a row, in order to pass the second copy on to a process as actual data.

[Page 346]

The next special character processed by in_process is the REPRINT character (CTRL-R). When it is found a
call to reprint ensues (line 14525), causing the current echoed output to be redisplayed. The REPRINT itself is
then discarded with no effect upon the input queue.

Going into detail on the handling of every special character would be tedious, and the source code of
in_process is straightforward. We will mention just a few more points. One is that the use of special bits in the
high byte of the 16-bit value placed in the input queue makes it easy to identify a class of characters that have
similar effects. Thus, EOT (CTRL-D), LF, and the alternate EOL character (undefined by default) are all
marked by the EOT bit, bit D in Fig. 3-40 (lines 14566 to 14573), making later recognition easy.

Finally, we will justify the peculiar behavior of in_transfer noted earlier.A reply is not generated each time it
terminates, although in the calls to in_transfer we have seen previously, it seemed that a reply would always
be generated upon return. Recall that the call to in_transfer made by in_process when the input queue is full
(line 14639) has no effect when canonical mode is in effect. But if noncanonical processing is desired, every
character is marked with the EOT bit on line 14618, and thus every character is counted by tp->tty_eotct on
line 14636. In turn, this causes entry into the main loop of in_transfer when it is called because of a full input
queue in noncanonical mode. On such occasions no message should be sent at the termination of in_transfer,
because there are likely to be more characters read after returning to in_process. Indeed, although in canonical
mode input to a single read is limited by the size of the input queue (255 characters in MINIX 3), in
noncanonical mode a read call must be able to deliver the POSIX-required constant _POSIX_SSIZE_MAX
number of characters. Its value in MINIX 3 is 32767.

The next few functions in tty.c support character input. Tty_echo (line 14647) treats a few characters in a
special way, but most just get displayed on the output side of the same device being used for input. Output
from a process may be going to a device at the same time input is being echoed, which makes things messy if
the user at the keyboard tries to backspace. To deal with this, the tp->tty_reprint flag is always set to TRUE
by the device-specific output routines when normal output is produced, so the function called to handle a
backspace can tell that mixed output has been produced. Since tty_echo also uses the deviceoutput routines,
the current value of tp->tty_reprint is preserved while echoing, using the local variable rp (lines 14668 to

40

40

14701). However, if a new line of input has just begun, rp is set to FALSE instead of taking on the old value,
thus assuring that tp->tty_reprint will be reset when echo terminates.

You may have noticed that tty_echo returns a value, for instance, in the call on line 14629 in in_process:

[Page 347]

ch = tty_echo(tp, ch)

The value returned by echo contains the number of spaces used on the screen for the echo display, which may
be up to eight if the character is a TAB. This count is placed in the cccc field in Fig. 3-40. Ordinary characters
occupy one space on the screen, but if a control character (other than TAB, NL, or CR or a DEL (0x7F) is
echoed, it is displayed as a "^" plus a printable ASCII character and occupies two positions on the screen. On
the other hand an NL or CR occupies zero spaces. The actual echoing must be done by a device-specific
routine, of course, and whenever a character must be passed to the device, an indirect call is made using
tp->tty_echo, as, for instance, on line 14696, for ordinary characters.

The next function, rawecho, is used to bypass the special handling done by echo. It checks to see if the ECHO
flag is set, and if it is, sends the character along to the device-specific tp->tty_echo routine without any special
processing. A local variable rp is used here to prevent rawecho's own call to the output routine from changing
the value of tp->tty_reprint.

When a backspace is found by in_process, the next function, back_over (line 14721), is called. It manipulates
the input queue to remove the previous head of the queue if backing up is possibleif the queue is empty or if
the last character is a line break, then backing up is not possible. Here the tp->tty_reprint flag mentioned in
the discussions of echo and rawecho is tested. If it is TRUE, then reprint is called (line 14732) to put a clean
copy of the output line on the screen. Then the len field of the last character displayed (the cccc field of Fig.
3-40) is consulted to find out how many characters have to be deleted on the display, and for each character a
sequence of backspace-space-backspace characters is sent through rawecho to remove the unwanted character
from the screen and have it replaced by a space.

Reprint is the next function. In addition to being called by back_over, it may be invoked by the user pressing
the REPRINT key (CTRL-R). The loop on lines 14764 to 14769 searches backward through the input queue
for the last line break. If it is found in the last position filled, there is nothing to do and reprint returns.
Otherwise, it echos the CTRL-R, which appears on the display as the two character sequence "^R", and then
moves to the next line and redisplays the queue from the last line break to the end.

Now we have arrived at out_process (line 14789). Like in_process, it is calledby device-specific output
routines, but it is simpler. It is called by the RS-232 and pseudo terminal device-specific output routines, but
not by the console routine. Out_process works upon a circular buffer of bytes but does not remove them from
the buffer. The only change it makes to the array is to insert a CR character ahead of an NL character in the
buffer if the OPOST (enable output processing) and ONLCR (map NL to CR-NL) bits in
tp->tty_termios.oflag are both set. Both bits are set by default in MINIX 3. Its job is to keep the
tp->tty_position variable in the device's tty structure up to date. Tabs and backspaces complicate life.

[Page 348]

The next routine is dev_ioctl (line 14874). It supports do_ioctl in carrying out the tcdrain function and the
tcsetattr function when it is called with either the TCSADRAIN or TCSAFLUSH options. In these cases,
do_ioctl cannot complete the action immediately if output is incomplete, so information about the request is

41

41

stored in the parts of the tty structure reserved for delayed ioctl operations. Whenever handle_events runs,
it first checks the tp->tty_ioreq field after calling the device-specific output routine and calls dev_ioctl if an
operation is pending. Dev_ioctl tests tp->tty_outleft to see if output is complete, and if so, carries out the same
actions that do_ioctl would have carried out immediately if there had been no delay. To service tcdrain, the
only action is to reset the tp->tty_ioreq field and send the reply message to the FS, telling it to wake up the
process that made the original call. The TCSAFLUSH variant of tcsetattr calls tty_icancel to cancel input. For
both variants of tcsetattr, the termios structure whose address was passed in the original call to ioctl is
copied to the device's tp->tty_termios structure. Setattr is then called, followed, as with tcdrain, by sending a
reply message to wake up the blocked original caller.

Setattr (line 14899) is the next procedure. As we have seen, it is called by do_ioctl or dev_ioctl to change the
attributes of a terminal device, and by do_close to reset the attributes back to the default settings. Setattr is
always called after copying a new termio s structure into a device's tty structure, because merely copying the
parameters is not enough. If the device being controlled is now in noncanonical mode, the first action is to
mark all characters currently in the input queue with the IN_EOT bit, as would have been done when these
characters were originally entered in the queue if noncanonical mode had been in effect then. It is easier just
to go ahead and do this (lines 14913 to 14919) than to test whether the characters already have the bit set.
There is no way to know which attributes have just been changed and which still retain their old values.

The next action is to check the MIN and TIME values. In canonical mode tp->tty_min is always 1; that is set
on line 14926. In noncanonical mode the combination of the two values allows for four different modes of
operation, as we saw in Fig. 3-31. On lines 14931 to 14933 tp->tty_min is first set up with the value passed in
tp->tty_termios.cc[VMIN], which is then modified if it is zero and tp->tty_termios.cc[VTIME] is not zero.

Finally, setattr makes sure output is not stopped if XON/XOFF control is disabled, sends a SIGHUP signal if
the output speed is set to zero, and makes an indirect call to the device-specific routine pointed to by
tp->tty_ioctl to do what can only be done at the device level.

The next function, tty_reply (line 14952) has been mentioned many times in the preceding discussion. Its
action is entirely straightforward, constructing a message and sending it. If for some reason the reply fails, a
panic ensues. The following functions are equally simple. Sigchar (line 14973) asks MM to send a signal. If
the NOFLSH flag is not set, queued input is removedthe count of characters or lines received is zeroed and the
pointers to the tail and head of the queue are equated. This is the default action. When a SIGHUP signal is to
be caught, NOFLSH can be set, to allow input and output to resume after catching the signal. Tty_icancel
(line 15000) unconditionally discards pending input in the way described for sigchar, and in addition calls the
device-specific function pointed to by tp->tty_icancel, to cancel input that may exist in the device itself or be
buffered in the low-level code.

[Page 349]

Tty_init (line 15013) is called when tty_task first starts. It loops through all possible terminals and sets up
defaults. Initially, a pointer to tty_devnop, a dummy function that does nothing, is set into the tp->tty_icancel,
tp->tty_ocancel, tp->tty_ioctl, and tp->tty_close variables. Tty_init then calls a device-specific initialization
functions for the appropriate category of terminal (console, serial line, or pseudo terminal). These set up the
real pointers to indirectly called device-specific functions. Recall that if there are no devices at all configured
in a particular device category, a macro that returns immediately is created, so no part of the code for a
nonconfigured device need be compiled. The call to scr_init initializes the console driver and also calls the
initialization routine for the keyboard.

The next three functions support timers. A watchdog timer is initialized with a pointer to a function to run
when the timer expires. Tty_timed_out is that function for most timers set by the terminal task. It sets the
events flag to force processing of input and output. Expire_timers handles the terminal driver's timer queue.
Recall that this is the function called from the main loop of tty_task when a SYN_ALARM message is

42

42

received. A library routine, tmrs_exptimers, is used to traverse the linked list of timers, expiring and calling
the watchdog functions of any that have timed out. On returning from the library function, if the queue is still
active a sys_setalarm kernel call is made to ask for another SYN_ALARM. Finally, settimer (line
15089), sets timers for determining when to return from a read call in noncanonical mode. It is called with
parameters of tty_ptr, a pointer to a tty structure, and enable, an integer which represents TRUE or FALSE.
Library functions tmrs_settimer and tmrs_clrtimer are used to enable or disable a timer as determined by the
enable argument. When a timer is enabled, the watchdog function is always tty_timed_out, described
previously.

A description of tty_devnop (line 15125) is necessarily longer than its executable code, since it has none. It is
a "no-operation" function to be indirectly addressed where a device does not require a service. We have seen
tty_devnop used in tty_init as the default value entered into various function pointers before calling the
initialization routine for a device.

The final item in tty.c needs some explanation. Select is a system call used when multiple I/O devices may
require service at unpredictable times by a single process. A classic example is a communications program
which needs to pay attention to a local keyboard and a remote system, perhaps connected by a modem. The
select call allows opening several device files and monitoring all of them to see when they can be read
from or written to without blocking. Without select it is necessary to use two processes to handle two-way
communication, one acting as a master and handling communication in one direction, the other a slave
handling communication in the other direction. Select is an example of a feature that is very nice to have,
but which substantially complicates the system. One of the design goals of MINIX 3 is to be simple enough to
be understood with reasonable effort in a reasonable time, and we have to set some limits. For that reason we
will not discuss do_select (line 15135) and the support routines select_try (line 14313) and select_retry (line
14348) here.

[Page 350]

3.8.5. Implementation of the Keyboard Driver

Now we turn to the device-dependent code that supports the MINIX 3 console, which consists of an IBM PC
keyboard and a memory-mapped display. The physical devices that support these are entirely separate: on a
standard desktop system the display uses an adapter card (of which there are at least a half-dozen basic types)
plugged into the backplane, while the keyboard is supported by circuitry built into the parentboard which
interfaces with an 8-bit single-chip computer inside the keyboard unit. The two subdevices require entirely
separate software support, which is found in the files keyboard.c and console.c.

The operating system sees the keyboard and console as parts of the same device, /dev/console. If there is
enough memory available on the display adapter, virtual console support may be compiled, and in addition to
/dev/console there may be additional logical devices, /dev/ttyc1, /dev/ttyc2, and so on. Output from only one
goes to the display at any given time, and there is only one keyboard to use for input to whichever console is
active. Logically the keyboard is subservient to the console, but this is manifested in only two relatively minor
ways. First, tty_table contains a tty structure for the console, and where separate fields are provided for input
and output, for instance, the tty_devread and tty_devwrite fields, pointers to functions in keyboard.c and
console.c are filled in at startup time. However, there is only one tty_priv field, and this points to the console's
data structures only. Second, before entering its main loop, tty_task calls each logical device once to initialize
it. The routine called for /dev/console is in console.c, and the initialization code for the keyboard is called
from there. The implied hierarchy could just as well have been reversed, however. We have always looked at
input before output in dealing with I/O devices and we will continue that pattern, discussing keyboard.c in this
section and leaving the discussion of console.c for the following section.

Keyboard.c begins, like most source files we have seen, with several #include statements. One of these is

43

43

unusual, however. The file keymaps/us-std.src (included on line 15218) is not an ordinary header; it is a C
source file that results in compilation of the default keymap within keyboard.o as an initialized array. The
keymap source file is not included in Appendix B because of its size, but some representative entries are
illustrated in Fig. 3-37. Following the #include statements are macros to define various constants. The first
group are used in low-level interaction with the keyboard controller. Many of these are I/O port addresses or
bit combinations that have meaning in these interactions. The next group includes symbolic names for special
keys. On line 15249 the size of the circular keyboard input buffer is symbolically defined as KB_IN_BYTES,
with a value of 32, and the buffer itself and variables to manage it are defined next. Since there is only one of
these buffers care must be taken to make sure all of its contents are processed before virtual consoles are
changed.

[Page 351]

The next group of variables are used to hold various states that must be remembered to properly interpret a
key press. They are used in different ways. For instance, the value of the caps_down flag (line 15266) is
toggled between TRUE and FALSE each time the Caps Lock key is pressed. The shift flag (line 15264) is set
to TRUE when either Shift key is pressed and to FALSE when both Shift keys are released. The esc variable
is set when a scan code escape is received. It is always reset upon receipt of the following character.

Map_key0 (line 15297) is defined as a macro. It returns the ASCII code that corresponds to a scan code,
ignoring modifiers. This is equivalent to the first column (unshifted) in the keymap array. Its big brother is
map_key (line 15303), which performs the complete mapping of a scan code to an ASCII code, including
accounting for (multiple) modifier keys that are depressed at the same time as ordinary keys.

The keyboard interrupt service routine is kbd_interrupt (line 15335), called whenever a key is pressed or
released. It calls scode to get the scan code from the keyboard controller chip. The most significant bit of the
scan code is set when a key release causes the interrupt, such codes could be ignored unless they were one of
the modifier keys. However, in the interest of doing as little as possible in order to service an interrupt as
quickly as possible, all raw scan codes are placed in the circular buffer and the tp->tty_events flag for the
current console is raised (line 15350). For purposes of this discussion we will assume, as we did earlier, that
no select calls have been made, and that kbd_interrupt returns immediately after this. Figure 3-41 shows
scan codes in the buffer for a short line of input that contains two upper case characters, each preceded by the
scan code for depression of a shift key and followed by the code for the release of the shift key. Initially codes
for both key presses and releases are stored.

Figure 3-41. Scan codes in the input buffer, with corresponding key actions below, for a line of text entered at the
keyboard. L and R represent the left and right Shift keys. + and - indicate a key press and a key release. The code
for a release is 128 more than the code for a press of the same key. (This item is displayed on page 352 in the

print version)

[View full size image]

When a HARD_INT from the keyboard is received by tty_task, the complete main loop is not executed. A
continue statement at line 13795 causes a new iteration of the main loop to begin immediately, at line
13764. (This is slightly simplified, we left some conditional code in the listing to show that if the serial line

44

44

driver is enabled its user-space interrupt handler could also be called.) When execution transfers to the top of
the loop the tp->tty_events flag for the console device is now found to be set, and kb_read (line 15360), the
device-specific routine, is called using the pointer in the tp->tty_devread field of the console's tty structure.

[Page 352]

Kb_read takes scan codes from the keyboard's circular buffer and places ASCII codes in its local buffer,
which is large enough to hold the escape sequences that must be generated in response to some scan codes
from the numeric keypad. Then it calls in_process in the hardware-independent code to put the characters into
the input queue. On line 15379 icount is decremented. The call to make_break returns the ASCII code as an
integer. Special keys, such as keypad and function keys, have values greater than 0xFF at this point. Codes in
the range from HOME to INSRT (0x101 to 0x10C, defined in file include/minix/keymap.h) result from
pressing the numeric keypad, and are converted into 3-character escape sequences shown in Fig. 3-42 using
the numpad_map array.

Figure 3-42. Escape codes generated by the numeric keypad. When scan codes for ordinary keys are translated
into ASCII codes the special keys are assigned "pseudo ASCII" codes with values greater than 0xFF. (This item is
displayed on page 353 in the print version)

Key

Scan code

"ASCII"

Escape sequence

Home

71

0x101

ESC[H

Up Arrow

72

0x103

ESC[A

Pg Up

73

0x107

ESC[V

-

45

45

74

0x10A

ESC[S

Left Arrow

75

0x105

ESC[D

5

76

0x109

ESC[G

Right Arrow

77

0x106

ESC[C

+

78

0x10B

ESC[T

End

79

0x102

ESC[Y

Down Arrow

80

0x104

ESC[B

46

46

Pg Dn

81

0x108

ESC[U

Ins

82

0x10C

ESC[@

The sequences are then passed to in_process (lines 15392 to 15397). Higher codes are not passed on to
in_process. Instead, a check is made for the codes for ALT-LEFT-ARROW, ALT-RIGHT-ARROW, and
ALT-F1 through ALT-F12, and if one of these is found, select_console is called to switch virtual consoles.
CTRL-F1 through CTRL-F12 are similarly given special handling. CTRL-F1 shows the mappings of function
keys (more on this later). CTRL-F3 toggles between hardware scrolling and software scrolling of the console
screen. CTRL-F7, CTRL-F8, and CTRL-F9 generate signals with the same effects as CTRL-\, CTRL-C, and
CTRL-U, respectively, except these cannot be changed by the stty command.

Make_break (line 15431) converts scan codes into ASCII and then updates the variables that keep track of the
state of modifier keys. First, however, it checks for the magic CTRL-ALT-DEL combination that PC users all
know as the way to force a reboot under MS-DOS. Note the comment that it would be better to do this at a
lower level. However, the simplicity of MINIX 3 interrupt handling in kernel space makes detecting
CTRL-ALT-DEL impossible there, when an interrupt notification is sent the scan code has not yet been read.

An orderly shutdown is desirable, so rather than try to start the PC BIOS routines, a sys_kill kernel call is
made to initiate sending a SIGKILL signal TO init, the parent process of all other processes (line 15448). Init
is expected to catch this signal and interpret it as a command to begin an orderly process of shutting down,
prior to causing a return to the boot monitor, from which a full restart of the system or a reboot of MINIX 3
can be commanded.

[Page 353]

Of course, it is not realistic to expect this to work every time. Most users understand the dangers of an abrupt
shutdown and do not press CTRL-ALT-DEL until something is really going wrong and normal control of the
system has become impossible. At this point it is likely that the system may be so disrupted that signaling
another process may be impossible. This is why there is a static variable CAD_count in make_break. Most
system crashes leave the interrupt system still functioning, so keyboard input can still be received and the
terminal driver will remain active. Here MINIX 3 takes advantage of the expected behavior of computer users,
who are likely to bang on the keys repeatedly when something does not seem to work correctly (possibly
evidence our ancestors really were apes). If the attempt to kill init fails and the user presses CTRL-ALT-DEL
twice more, a sys_abort kernel call is made, causing a return to the monitor without going through the call
to init.

The main part of make_break is not hard to follow. The variable make records whether the scan code was
generated by a key press or a key release, and then the call to map_key returns the ASCII code to ch. Next is a

47

47

switch on ch (lines 15460 to 15499). Let us consider two cases, an ordinary key and a special key. For an
ordinary key, none of the cases match, and in the default case (line 15498), the key code is returned if make is
true. If somehow an ordinary key code is accepted at key release, a value of 1 is substituted here, and this is
ignored by the caller, kb_read. A special key, for example CTRL, is identified at the appropriate place in the
switch, in this case on line 15461. The corresponding variable, in this case ctrl, records the state of make,
and 1 is substituted for the character code to be returned (and ignored). The handling of the ALT, CALOCK,
NLOCK, and SLOCK keys is more complicated, but for all of these special keys the effect is similar: a
variable records either the current state (for keys that are only effective while pressed) or toggles the previous
state (for the lock keys).

[Page 354]

There is one more case to consider, that of the EXTKEY code and the esc variable. This is not to be confused
with the ESC key on the keyboard, which returns the ASCII code 0x1B. There is no way to generate the
EXTKEY code alone by pressing any key or combination of keys; it is the PC keyboard's extended key prefix,
the first byte of a 2-byte scan code that signifies that a key that was not part of the original PC's complement
of keys but that has the same scan code, has been pressed. In many cases software treats the two keys
identically. For instance, this is almost always the case for the normal "/" key and the gray "/" key on the
numeric keyboard. In other cases, one would like to distinguish between such keys. For instance, many
keyboard layouts for languages other than English treat the left and right ALT keys differently, to support
keys that must generate three different character codes. Both ALT keys generate the same scan code (56), but
the EXTKEY code precedes this when the right-hand ALT is pressed. When the EXTKEY code is returned,
the esc flag is set. In this case, make_break returns from within the switch, thus bypassing the last step
before a normal return, which sets esc to zero in every other case (line 15458). This has the effect of making
the esc effective only for the very next code received. If you are familiar with the intricacies of the PC
keyboard as it is ordinarily used, this will be both familiar and yet a little strange, because the PC BIOS does
not allow one to read the scan code for an ALT key and returns a different value for the extended code than
does MINIX 3.

Set_leds (line 15508) turns on and off the lights that indicate whether the Num Lock, Caps Lock, or Scroll
Lock keys on a PC keyboard have been pressed. A control byte, LED_CODE, is written to an output port to
instruct the keyboard that the next byte written to that port is for control of the lights, and the status of the
three lights is encoded in 3 bits of that next byte. These operations are, of course, carried out by kernel calls
which ask the system task write to the outport ports. The next two functions support this operation. Kb_wait
(line 15530) is called to determine that the keyboard is ready to receive a command sequence, and kb_ack
(line 15552) is called to verify that the command has been acknowledged. Both of these commands use busy
waiting, continually reading until a desired code is seen. This is not a recommended technique for handling
most I/O operations, but turning lights on and off on the keyboard is not going to be done very often and
doing it inefficiently does not waste much time. Note also that both kb_wait and kb_ack could fail, and one
can determine from the return code if this happens. Timeouts are handled by limiting the number of retries by
means of a counter in the loop. But setting the light on the keyboard is not important enough to merit checking
the value returned by either call, and set_leds just proceeds blindly.

[Page 355]

Since the keyboard is part of the console, its initialization routine, kb_init (line 15572), is called from scr_init
in console.c, not directly from tty_init in tty.c. If virtual consoles are enabled, (i.e., NR_CONS in
include/minix/config.h is greater than 1), kb_init is called once for each logical console. The next function,
kb_init_once (line 15583), is called just once, as its name implies. It sets the lights on the keyboard, and scans
the keyboard to be sure no leftover keystroke is read. Then it initializes two arrays, fkey_obs and sfkey_obs
which are used to bind function keys to the processes that must respond to them. When all is ready, it makes
two kernel calls, sys_irqsetpolicy and sys_irqenable to set up the IRQ for the keyboard and

48

48

configure it to automatically reenable, so a notification message will be sent to tty_task whenever a key is
pressed or released.

Although we will soon have more opportunities to discuss how function keys work, this is a good place to
describe the fkey_obs and sfkey_obs arrays. Each has twelve elements, since modern PC keyboards have
twelve F-keys. The first array is for unmodified F-keys, the second is used when a shifted F-key is detected.
They are composed of elements of type obs_t, which is a structure that can hold a process number and an
integer. This structure and these arrays are declared in keyboard.c on lines 15279 to 15281. Initialization
stores a special value, symbolically represented as NONE, in the proc_nr component of the structure to
indicate it is not in use. NONE is a value outside the range of valid process numbers. Note that the process
number is not a pid, it identifies a slot in the process table. This terminology may be confusing. But to send a
notification a process number rather than a pid is used, because process numbers are used to index the priv
table which determines whether a process is allowed to receive notifications. The integer events is also
initially set to zero. It will be used to count events.

The next three functions are all rather simple. Kbd_loadmap (line 15610) is almost trivial. It is called by
do_ioctl in tty.c to do the copying of a keymap from user space to overwrite the default keymap. The default
is compiled by the inclusion of a keymap source file at the start of keyboard.c.

From its first release, MINIX has always provided for dumps of various kinds of system information or other
special actions in response to pressing the function keys F1, F2, etc., on the system console. This is not a
service generally provided in other operating systems, but MINIX was always intended to be a teaching tool.
Users are encouraged to tinker with it, which means users may need extra help for debugging. In many cases
the output produced by pressing one of the F-keys will be available even when the system has crashed. Figure
3-43 summarizes these keys and their effects.

Figure 3-43. The function keys detected by func_key(). (This item is displayed on page 356 in the print version)

Key

Purpose

F1

Kernel process table

F2

Process memory maps

F3

Boot image

F4

Process privileges

F5

Boot monitor parameters

F6

49

49

IRQ hooks and policies

F7

Kernel messages

F10

Kernel parameters

F11

Timing details (if enabled)

F12

Scheduling queues

SF1

Process manager process table

SF2

Signals

SF3

File system process table

SF4

Device/driver mapping

SF5

Print key mappings

SF9

Ethernet statistics (RTL8139 only)

CF1

Show key mappings

CF3

Toggle software/hardware console scrolling

CF7

Send SIGQUIT, same effect as CTRL-\

50

50

CF8

Send SIGINT, same effect as CTRL-C

CF9

Send SIGKILL, same effect as CTRL-U

These keys fall into two categories. As noted earlier, the CTRL-F1 through CTRL-F12 key combinations are
detected by kb_read. These trigger events that can be handled by the terminal driver. These events are not
necessarily display dumps. In fact, currently only CTRL-F1 provides an information display; it lists function
key bindings. CTRL-F3 toggles hardware and software scrolling of the console screen, and the others cause
signals.

[Page 356]

Function keys pressed by themselves or together with the shift key are used to trigger events that cannot be
handled by the terminal driver. They may result in notification messages to a server or driver. Because servers
and drivers can be loaded, enabled, and disabled after MINIX 3 is already running, static binding of these
keys at compilation time is not satisfactory. To enable run-time changes tty_task accepts messages of type
FKEY_CONTROL. Do_fkey_ctl (line 15624) services such requests. Request types are FKEY_MAP,
FKEY_UNMAP, or FKEY_EVENTS. The first two register or unregister a process with a key specified in a
bitmap in the message, and the third message type returns a bitmap of keys belonging to the caller which have
been pressed and resets the events field for these keys. A server process, the information server, (or IS)
initializes the settings for processes in the boot image and also mediates generating responses. But individual
drivers can also register to respond to a function key. Ethernet drivers typically do this, as a dump that shows
packet statistics can be helpful in solving network problems.

[Page 357]

Func_key (line 15715) is called from kb_read to see if a special key meant for local processing has been
pressed. This is done for every scan code received, prior to any other processing. If it is not a function key at
most three comparisons are made before control is returned to kb_read. If a function key is registered a
notification message is sent to the appropriate process. If the process is one that has registered only one key
the notification by itself is adequate for the process to know what to do. If a process is the information server
or another that has registered several keys, a dialogue is requiredthe process must send an FKEY_EVENTS
request to the terminal driver, to be processed by do_fkey_ctl which will inform the caller which keys have
been active. The caller can then dispatch to the routine for each key that has been pressed.

Scan_keyboard (line 15800) works at the hardware interface level, by reading and writing bytes from I/O
ports. The keyboard controller is informed that a character has been read by the sequence on lines 15809 and
15810, which reads a byte, writes it again with the most significant bit set to 1, and then rewrites it with the
same bit rest to 0. This prevents the same data from being read on a subsequent read. There is no status
checking in reading the keyboard, but there should be no problems in any case, since scan_keyboard is only
called in response to an interrupt.

The last function in keyboard.c is do_panic_dumps (line 15819). If invoked as a result of a system panic, it
provides an opportunity for the user to use the function keys to display debugging information. The loop on
lines 15830 to 15854 is another example of busy waiting. The keyboard is read repeatedly until an ESC is
typed. Certainly no one can claim that a more efficient technique is needed after a crash, while awaiting a

51

51

command to reboot. Within the loop, the rarely-used nonblocking receive operation, nb_receive, is used to
permit alternately accepting messages, if available, and testing the keyboard for input, which can be expected
to be one of the options suggested in the message

Hit ESC to reboot, DEL to shutdown, F-keys for debug dumps

printed on entering this function. In the next section we will see the code that implements do_newkmess and
do_diagnostics.

3.8.6. Implementation of the Display Driver

The IBM PC display may be configured as several virtual terminals, if sufficient memory is available. We will
examine the console's device-dependent code in this section. We will also look at the debug dump routines
that use low-level services of the keyboard and display. These provide support for limited interaction with the
user at the console, even when other parts of the MINIX 3 system are not functioning and can provide useful
information even following a near-total system crash.

[Page 358]

Hardware-specific support for console output to the PC memory-mapped screen is in console.c. The console
structure is defined on lines 15981 to 15998. In a sense this structure is an extension of the tty structure
defined in tty.c. At initialization the tp->tty_priv field of a console's tty structure is assigned a pointer to its
own console structure. The first item in the console structure is a pointer back to the corresponding tty
structure. The components of a console structure are what one would expect for a video display: variables to
record the row and column of the cursor location, the memory addresses of the start and limit of memory used
for the display, the memory address pointed to by the controller chip's base pointer, and the current address of
the cursor. Other variables are used for managing escape sequences. Since characters are initially received as
8-bit bytes and must be combined with attribute bytes and transferred as 16-bit words to video memory, a
block to be transferred is built up in c_ramqueue, an array big enough to hold an entire 80-column row of
16-bit character-attribute pairs. Each virtual console needs one console structure, and the storage is allocated
in the array cons_table (line 16001). As we have done with the tt y and other structures, we will usually refer
to the elements of a console structure using a pointer, for example, cons->c_tty.

The function whose address is stored in each console's tp->tty_devwrite entry is cons_write (line 16036). It is
called from only one place, handle_events in tty.c. Most of the other functions in console.c exist to support
this function. When it is called for the first time after a client process makes a write call, the data to be
output are in the client's buffer, which can be found using the tp->tty_outproc and tp->out_vir fields in the tty
structure. The tp->tty_outleft field tells how many characters are to be transferred, and the tp->tty_outcum
field is initially zero, indicating none have yet been transferred. This is the usual situation upon entry to
cons_write, because normally, once called, it transfers all the data requested in the original call. However, if
the user wants to slow the process in order to review the data on the screen, he may enter a STOP (CTRL-S)
character at the keyboard, resulting in raising of the tp->tty_inhibited flag. Cons_write returns immediately
when this flag is raised, even though the write has not been completed. In such a case handle_events will
continue to call cons_write, and when tp->tty_inhibited is finally reset, by the user entering a START
(CTRL-Q) character, cons_write continues with the interrupted transfer.

Cons_write's first argument is a pointer to the particular console's tty structure, so the first thing that must be
done is to initialize cons, the pointer to this console's console structure (line 16049). Then, because
handle_events calls cons_write whenever it runs, the first action is a test to see if there really is work to be
done. A quick return is made if not (line 16056). Following this the main loop on lines 16061 to 16089 is
entered. This loop is similar in structure to the main loop of in_transfer in tty.c. A local buffer that can hold 64

52

52

characters is filled by using the sys_vircopy kernel call to get the data from the client's buffer. Following this,
the pointer to the source and the counts are updated, and then each character in the local buffer is transferred
to the cons->c_ramqueue array, along with an attribute byte, for later transfer to the screen by flush.

[Page 359]

The transfer of characters from cons->c_ramqueue can be done in more than one way, as we saw in Fig. 3-35.
Out_char can be called to do this for each character, but it is predictable that none of the special services of
out_char will be needed if the character is a visible character, an escape sequence is not in progress, the screen
width has not been exceeded, and cons->c_ramqueue is not full. If the full service of out_char is not needed,
the character is placed directly into cons->c_ramqueue, along with the attribute byte (which is retrieved from
cons->c_attr), and cons->c_rwords (which is the index into the queue), cons->c_column (which keeps track of
the column on the screen), and tbuf, the pointer into the buffer, are all incremented. This direct placement of
characters into cons->c_ramqueue corresponds to the dashed line on the left side of Fig. 3-35. If needed,
out_char is called (line 16082). It does all of the bookkeeping, and additionally calls flush, which does the
final transfer to screen memory, when necessary.

The transfer from the user buffer to the local buffer to the queue is repeated as long as tp->tty_outleft
indicates there are still characters to be transferred and the flag tp->tty_inhibited has not been raised. When
the transfer stops, whether because the write operation is complete or because tp->tty_inhibited has been
raised, flush is called again to transfer the last characters in the queue to screen memory. If the operation is
complete (tested by seeing if tp->tty_outleft is zero), a reply message is sent by calling tty_reply lines 16096
and 16097).

In addition to calls to cons_write from handle_events, characters to be displayed are also sent to the console
by echo and rawecho in the hardware independent part of the terminal driver. If the console is the current
output device, calls via the tp->tty_echo pointer are directed to the next function, cons_echo (line 16105).
Cons_echo does all of its work by calling out_char and then flush. Input from the keyboard arrives character
by character and the person doing the typing wants to see the echo with no perceptible delay, so putting
characters into the output queue would be unsatisfactory.

Out_char (line 16119). does a test to see if an escape sequence is in progress, calling parse_escape and then
returning immediately if so (lines 16124 to 16126). Otherwise, a switch is entered to check for special
cases: null, backspace, the bell character, and so on. The handling of most of these is easy to follow. The
linefeed and the tab are the most complicated, since they involve complicated changes to the position of the
cursor on the screen and may require scrolling as well. The last test is for the ESC code. If it is found, the
cons->c_esc_state flag is set (line 16181), and future calls to out_char are diverted to parse_escape until the
sequence is complete. At the end, the default is taken for printable characters. If the screen width has been
exceeded, the screen may need to be scrolled, and flush is called. Before a character is placed in the output
queue a test is made to see that the queue is not full, and flush is called if it is. Putting a character into the
queue requires the same bookkeeping we saw earlier in cons_write.

[Page 360]

The next function is scroll_screen (line 16205). Scroll_screen handles both scrolling up, the normal situation
that must be dealt with whenever the bottom line on the screen is full, and scrolling down, which occurs when
cursor positioning commands attempt to move the cursor beyond the top line of the screen. For each direction
of scroll there are three possible methods. These are required to support different kinds of video cards.

We will look at the scrolling up case. To begin, chars is assigned the size of the screen minus one line.
Softscrolling is accomplished by a single call to vid_vid_copy to move chars characters lower in memory, the
size of the move being the number of characters in a line. Vid_vid_copy can wrap, that is, if asked to move a

53

53

block of memory that overflows the upper end of the block assigned to the video display, it fetches the
overflow portion from the low end of the memory block and moves it to an address higher than the part that is
moved lower, treating the entire block as a circular array. The simplicity of the call hides a fairly slow
operation, even though vid_vid_copy is an assembly language routine (defined in drivers/tty/vidcopy.s, not
listed in Appendix B). This call requires the CPU to move 3840 bytes, which is a large job even in assembly
language.

The softscroll method is never the default; the operator is supposed to select it only if hardware scrolling does
not work or is not desired for some reason. One reason might be a desire to use the screendump command,
either to save the screen memory in a file or to view the main console display when working from a remote
terminal. When hardware scrolling is in effect, screendump is likely to give unexpected results, because the
start of the screen memory is likely not to coincide with the start of the visible display.

On line 16226 the wrap variable is tested as the first part of a compound test. Wrap is true for older displays
that can support hardware scrolling, and if the test fails, simple hardware scrolling occurs on line 16230,
where the origin pointer used by the video controller chip, cons->c_org, is updated to point to the first
character to be displayed at the upper-left corner of the display. If wrap is FALSE, the compound test
continues with a test of whether the block to be moved up in the scroll operation overflows the bounds of the
memory block designated for this console. If this is so, vid_vid_copy is called again to make a wrapped move
of the block to the start of the console's allocated memory, and the origin pointer is updated. If there is no
overlap, control passes to the simple hardware scrolling method always used by older video controllers. This
consists of adjusting cons->c_org and then putting the new origin in the correct register of the controller chip.
The call to do this is executed later, as is a call to blank the bottom line on the screen to achieve the
"scrolling" effect.

[Page 361]

The code for scrolling down is very similar to that for scrolling up. Finally, mem_vid_copy is called to blank
out the line at the bottom (or top) addressed by new_line. Then set_6845 is called to write the new origin from
cons->c_org into the appropriate registers, and flush makes sure all changes become visible on the screen.

We have mentioned flush (line 16259) several times. It transfers the characters in the queue to the video
memory using mem_vid_copy, updates some variables, and then makes sure the row and column numbers are
reasonable, adjusting them if, for instance, an escape sequence has tried to move the cursor to a negative
column position. Finally, a calculation of where the cursor ought to be is made and is compared with
cons->c_cur. If they do not agree, and if the video memory that is currently being handled belongs to the
current virtual console, a call to set_6845 is made to set the correct value in the controller's cursor register.

Figure 3-44 shows how escape sequence handling can be represented as a finite state machine. This is
implemented by parse_escape (line 16293) which is called at the start of out_char if cons->c_esc_state is
nonzero. An ESC itself is detected by out_char and makes cons->c_esc_state equal to 1. When the next
character is received, parse_escape prepares for further processing by putting a "\0" in cons->c_esc_intro, a
pointer to the start of the array of parameters, cons->c_esc_parmv[0] into cons->c_esc_parmp, and zeroes into
the parameter array itself. Then the first character directly following the ESC is examinedvalid values are
either "[" or "M". In the first case the "[" is copied to cons->c_esc_intro and the state is advanced to 2. In the
second case, do_escape is called to carry out the action, and the escape state is reset to zero. If the first
character after the ESC is not one of the valid ones, it is ignored and succeeding characters are once again
displayed normally.

54

54

Figure 3-44. Finite state machine for processing escape sequences.

[View full size image]

When an ESC [sequence has been seen, the next character entered is processed by the escape state 2 code.
There are three possibilities at this point. If the character is a numeric character, its value is extracted and
added to 10 times the existing value in the position currently pointed to by cons->c_esc_parmp, initially
cons->c_esc_parmv[0] (which was initialized to zero). The escape state does not change. This makes it
possible to enter a series of decimal digits and accumulate a large numeric parameter, although the maximum
value currently recognized by MINIX 3 is 80, used by the sequence that moves the cursor to an arbitrary
position (lines 16335 to 16337). If the character is a semicolon there is another parameter, so the pointer to the
parameter string is advanced, allowing succeeding numeric values to be accumulated in the second parameter
(lines 16339 to 16341). If MAX_ESC_PARMS were to be changed to allocate a larger array for the
parameters, this code would not have to be altered to accumulate additional numeric values after entry of
additional parameters. Finally, if the character is neither a numeric digit nor a semicolon, do_escape is called.

[Page 362]

Do_escape (line 16352) is one of the longer functions in the MINIX 3 system source code, even though
MINIX 3's complement of recognized escape sequences is relatively modest. For all its length, however, the
code should be easy to follow. After an initial call to flush to make sure the video display is fully updated,
there is a simple if choice, depending upon whether the character immediately following the ESC character
was a special control sequence introducer or not. If not, there is only one valid action, moving the cursor up
one line if the sequence was ESC M. Note that the test for the "M" is done within a switch with a default
action, as a validity check and in anticipation of addition of other sequences that do not use the ESC [format.
The action is typical of many escape sequences: the cons->c_row variable is inspected to determine if
scrolling is required. If the cursor is already on row 0, a SCROLL_DOWN call is made to scroll_screen;
otherwise the cursor is moved up one line. The latter is accomplished just by decrementing cons->c_row and
then calling flush. If a control sequence introducer is found, the code following the else on line 16377 is
taken. A test is made for "[", the only control sequence introducer currently recognized by MINIX 3. If the
sequence is valid, the first parameter found in the escape sequence, or zero if no numeric parameter was
entered, is assigned to value (line 16380). If the sequence is invalid, nothing happens except that the large
switch that ensues (lines 16381 to 16586) is skipped and the escape state is reset to zero before returning
from do_escape. In the more interesting case that the sequence is valid, the switch is entered. We will not
discuss all the cases; we will just note several that are representative of the types of actions governed by
escape sequences.

55

55

The first five sequences are generated, with no numeric arguments, by the four "arrow" keys and the Home
key on the IBM PC keyboard. The first two, ESC [A and ESC [B, are similar to ESC M, except they can
accept a numeric parameter and move up and down by more than one line, and they do not scroll the screen if
the parameter specifies a move that exceeds the bounds of the screen. In such cases, flush catches requests to
move out of bounds and limits the move to the last row or the first row, as appropriate. The next two
sequences, ESC [C and ESC [D, which move the cursor right and left, are similarly limited by flush. When
generated by the "arrow" keys there is no numeric argument, and thus the default movement of one line or
column occurs.

[Page 363]

ESC [H can take two numeric parameters, for instance, ESC [20;60H. The parameters specify an absolute
position rather than one relative to the current position and are converted from 1-based numbers to 0-based
numbers for proper interpretation. The Home key generates the default (no parameters) sequence which
moves the cursor to position (1, 1).

ESC [s J and ESC [s K clear a part of either the entire screen or the current line, depending upon the
parameter that is entered. In each case a count of characters is calculated. For instance, for ESC [1J, count gets
the number of characters from the start of the screen to the cursor position, and the count and a position
parameter, dst, which may be the start of the screen, cons->c_org, or the current cursor position, cons->c_cur,
are used as parameters to a call to mem_vid_copy. This procedure is called with a parameter that causes it to
fill the specified region with the current background color.

The next four sequences insert and delete lines and spaces at the cursor position, and their actions do not
require detailed explanation. The last case, ESC [n m (note the n represents a numeric parameter, but the "m"
is a literal character) has its effect upon cons->c_attr, the attribute byte that is interleaved between the
character codes when they are written to video memory.

The next function, set_6845 (line 16594), is used whenever it is necessary to update the video controller chip.
The 6845 has internal 16-bit registers that are programmed 8 bits at a time, and writing a single register
requires four I/O port write operations. These are carried out by setting up an array (vector) of (port, value)
pairs and invoking a sys_voutb kernel call to get the system task to do the I/O. Some of the registers of the
6845 video controller chip are shown in Fig. 3-45

Figure 3-45. Some of the 6845's registers.

Registers

Function

10 11

Cursor size

12 13

Start address for drawing screen

14 15

Cursor position

56

56

The next function is get_6845 (line 16613), which returns the values of readable video controller registers. It
also uses kernel calls to accomplish its job. It does not appear to be called from anywhere in the current
MINIX 3 code, but it may be useful for future enhancements such as adding graphics support.

The beep function (line 16629) is called when a CTRL-G character must be output. It takes advantage of the
built-in support provided by the PC for making sounds by sending a square wave to the speaker. The sound is
initiated by more of the kind of magic manipulation of I/O ports that only assembly language programmers
can love. The more interesting part of the code is using the ability to set an alarm to turn off the beep. As a
process with system privileges (i.e., a slot in the priv table), the terminal driver is allowed to set a timer using
the library function tmrs_settimers. On line 16655 this is done, with the next function, stop_beep, specified as
the function to run when the timer expires. This timer is put into the terminal task's own timer queue. The
sys_setalarm kernel call that follows asks the system task to set a timer in the kernel. When that expires,
a SYN_ALARM message is detected by the main loop of the terminal driver, tty_task, which calls
expire_timers to deal with all timers belonging to the terminal driver, one of which is the one set by beep.

[Page 364]

The next routine, stop_beep (line 16666), is the one whose address is put into the tmr_func field of the timer
initiated by beep. It stops the beep after the designated time has elapsed and also resets the beeping flag. This
prevents superfluous calls to the beep routine from having any effect.

Scr_init (line 16679) is called by tty_init NR_CONS times. Each time its argument is a pointer to a tty
structure, one element of the tty_table. On lines 16693 and 16694 line, to be used as the index into the
cons_table array, is calculated, tested for validity, and, if valid, used to initialize cons, the pointer to the
current console table entry. At this point the cons->c_tty field can be initialized with the pointer to the main
tty structure for the device, and, in turn, tp->tty_priv can be pointed to this device's console_t structure. Next,
kb_init is called to initialize the keyboard, and then the pointers to device specific routines are set up,
tp->tty_devwrite pointing to cons_write, tp->tty_echo pointing to cons_echo, and tp->tty_ioctl pointing to
cons_ioctl. The I/O address of the base register of the CRT controller is fetched from the BIOS, the address
and size of the video memory are determined on lines 16708 to 16731, and the wrap flag (used to determine
how to scroll) is set according to the class of video controller in use. On line 16735 the segment descriptor for
the video memory is initialized in the global descriptor table by the system task.

Next comes the initialization of virtual consoles. Each time scr_init is called, the argument is a different value
of tp, and thus a different line and cons are used on lines 16750 to 16753 to provide each virtual console with
its own share of the available video memory. Each screen is then blanked, ready to start, and finally console 0
is selected to be the first active one.

Several routines display output on behalf of the terminal driver itself, the kernel, or another system
component. The first one, kputc (line 16775) just calls putk, a routine to output text a byte at a time, to be
described below. This routine is here because the library routine that provides the printf function used within
system components is written to be linked to a character printing routine with this name, but other functions in
the terminal driver expect one named putk.

Do_new_kmess (line 16784) is used to print messages from the kernel. Actually, "messages" is not the best
word to use here; we do not mean messages as used for interprocess communication. This function is for
displaying text on the console to report information, warnings, or errors to the user.

[Page 365]

The kernel needs a special mechanism to display information. It needs to be robust, too, so it can be used
during startup, before all components of MINIX 3 are running, or during a panic, another time when major

57

57

parts of the system may be unavailable. The kernel writes text into a circular character buffer, part of a
structure that also contains pointers to the next byte to write and the size of the yet-to-be processed text. The
kernel sends a SYS_SIG message to the terminal driver when there is new text, and do_new_kmess is called
when the main loop in tty_task is running. When things are not going so smoothly, (i.e., when the system
crashes) the SYS_SIG will be detected by the loop that includes a nonblocking read operation in
do_panic_dumps, which we saw in keyboard.c, and do_new_kmess will be called from there. In either case,
the kernel call sys_getkmessages retrieves a copy of the kernel structure, and the bytes are displayed,
one by one, by passing them to putk, followed by a final call to putk with a null byte to force it to flush the
output. A local static variable is used to keep track of the position in the buffer between messages.

Do_diagnostics (line 16823) has a function similar to that of do_new_kmess, but do_diagnostics is used to
display messages from system processes, rather than the kernel. A DIAGNOSTICS message can be received
either by the tty_task main loop or the loop in do_panic_dumps, and in either case a call is made to
do_diagnostics. The message contains a pointer to a buffer in the calling process and a count of the size of the
message. No local buffer is used; instead repeated sys_vircopy kernel calls are made to get the text one
byte at a time. This protects the terminal driver; if something goes wrong and a process starts generates an
excessive amount of output there is no buffer to overrun. The characters are output one by one by calling putk,
followed by a null byte.

Putk (line 16850) can print characters on behalf of any code linked into the terminal driver, and is used by the
functions just described to output text on behalf of the kernel or other system components. It just calls
out_char for each non-null byte received, and then calls flush for the null byte at the end of the string.

The remaining routines in console.c are short and simple and we will review them quickly. Toggle_scroll (line
16869) does what its name says, it toggles the flag that determines whether hardware or software scrolling is
used. It also displays a message at the current cursor position to identify the selected mode. Cons_stop (line
16881) reinitializes the console to the state that the boot monitor expects, prior to a shutdown or reboot.
Cons_org0 (line 16893) is used only when a change of scrolling mode is forced by the F3 key, or when
preparing to shut down. Select_console (line 16917) selects a virtual console. It is called with the new index
and calls set_6845 twice to get the video controller to display the proper part of the video memory.

The next two routines are highly hardware-specific. Con_loadfont (line 16931) loads a font into a graphics
adapter, in support of the ioctl TIOCSFON operation. It calls ga_program (line 16971) to do a series of
magical writes to an I/O port that cause the video adapter's font memory, which is normally not addressable
by the CPU, to be visible. Then phys_copy is called to copy the font data to this area of memory, and another
magic sequence is invoked to return the graphics adapter to its normal mode of operation.

[Page 366]

The last function is cons_ioctl (line 16987). It performs only one function, setting the screen size, and is called
only by scr_init, which uses values obtained from the BIOS. If there were a need for a real ioctl call to
change the sizeMINIX 3screen code to provide the new dimensions would have to be written.

58

58

[Page 366 (continued)]

3.9. Summary

Input/output is an important topic that is often neglected. A substantial fraction of any operating system is
concerned with I/O. But I/O device drivers are often responsible for operating system problems. Drivers are
often written by programmers working for device manufacturers. Conventional operating system designs
usually require allowing drivers to have access to critical resources, such as interrupts, I/O ports, and memory
belonging to other processes. The design of MINIX 3 isolates drivers as independent processes with limited
privileges, so a bug in a driver cannot crash the entire system.

We started out by looking at I/O hardware, and the relation of I/O devices to I/O controllers, which are what
the software has to deal with. Then we moved on to the four levels of I/O software: the interrupt routines, the
device drivers, the device-independent I/O software, and the I/O libraries and spoolers that run in user space.

Then we examined the problem of deadlock and how it can be tackled. Deadlock occurs when a group of
processes each have been granted exclusive access to some resources, and each one wants yet another
resource that belongs to another process in the group. All of them are blocked and none will ever run again.
Deadlock can be prevented by structuring the system so it can never occur, for example, by allowing a process
to hold only one resource at any instant. It can also be avoided by examining each resource request to see if it
leads to a situation in which deadlock is possible (an unsafe state) and denying or delaying those that lead to
trouble.

Device drivers in MINIX 3 are implemented as independent processes running in user space. We have looked
at the RAM disk driver, hard disk driver, and terminal driver. Each of these drivers has a main loop that gets
requests and processes them, eventually sending back replies to report on what happened. Source code for the
main loops and common functions of the RAM disk, hard disk, and floppy disk drivers is provided in a
common driver library, but each driver is compiled and linked with its own copy of the library routines. Each
device driver runs in its own address space. Several different terminals, using the system console, the serial
lines, and network connections, are all supported by a single terminal driver process.

[Page 367]

Device drivers have varying relationships to the interrupt system. Devices which can complete their work
rapidly, such as the RAM disk and the memory-mapped display, do not use interrupts at all. The hard disk
driver does most of its work in the driver code itself, and the interrupt handlers just return status information.
Interrupts are always expected, and a receive can be done to wait for one. A keyboard interrupt can happen
at any time. Messages generated by all interrupts for the terminal driver are received and processed in the
main loop of the driver. When a keyboard interrupt occurs the first stage of processing the input is done as
quickly as possible in order to be ready for subsequent interrupts.

MINIX 3 drivers have limited privileges, and cannot handle interrupts or access I/O ports on their own.
Interrupts are handled by the system task, which sends a message to notify a driver when an interrupt occurs.
Access to I/O ports is similarly mediated by the system task. Drivers cannot read or write I/O ports directly.

1

1

2

2

[Page 367 (continued)]

Problems

1. A 1x DVD reader can deliver data at a rate of 1.32 MB/sec. What is the highest speed
DVD drive that could be connected over a USB 2.0 connection without losing data?

2. Many disks contain an ECC at the end of each sector. If the ECC is wrong, what actions
might be taken and by which piece of hardware or software?

3. What is memory-mapped I/O? Why is it sometimes used?

4. Explain what DMA is and why it is used.

5. Although DMA does not use the CPU, the maximum transfer rate is still limited.
Consider reading a block from the disk. Name three factors that might ultimately limit
the rate of transfer.

6. CD-quality music requires sampling the sound signal 44,100 times per second. Suppose
that a timer generates an interrupt at this rate and that each interrupt takes 1 microsec to
handle on a 1-GHz CPU. What is the slowest clock rate that could be used and not lose
any data? Assume that the number of instructions to be processed for an interrupt is
constant, so halving the clock speed doubles the interrupt handling time.

7. An alternative to interrupts is polling. Are there any circumstances you can think of in
which polling is a better choice?

8. Disk controllers have internal buffers and they are getting larger with each new model.
Why?

[Page 368]

9. Each device driver has two different interfaces with the operating system. One interface
is a set of function calls that the operating system makes on the driver. The other is a set
of calls that the driver makes on the operating system. Name one likely call in each
interface.

10. Why do operating system designers attempt to provide device-independent I/O wherever
it is possible?

11. In which of the four I/O software layers is each of the following done?

(a) Computing the track, sector, and head for a disk read.

(b) Maintaining a cache of recently used blocks.

(c) Writing commands to the device registers.

(d) Checking to see if the user is permitted to use the device.

(e) Converting binary integers to ASCII for printing.

12. Why are output files for the printer normally spooled on disk before being printed?

1

1

13. Give an example of a deadlock that could occur in the physical world.

14. Consider Fig. 3-10. Suppose that in step (o) C requested S instead of requesting R.
Would this lead to deadlock? Suppose that it requested both S and R?

15. Take a careful look at Fig. 3-13(b). If D asks for one more unit, does this lead to a safe
state or an unsafe one? What if the request came from C instead of D?

16. All the trajectories in Fig. 3-14 are horizontal or vertical. Can you envision any
circumstances in which diagonal trajectories were also possible?

17. Suppose that process A in Fig. 3-15 requests the last tape drive. Does this action lead to a
deadlock?

18. A computer has six tape drives, with n processes competing for them. Each process may
need two drives. For which values of n is the system deadlock free?

19. Can a system be in a state that is neither deadlocked nor safe? If so, give an example. If
not, prove that all states are either deadlocked or safe.

20. A distributed system using mailboxes has two IPC primitives, SEND and RECEIVE. The
latter primitive specifies a process to receive from, and blocks if no message from that
process is available, even though messages may be waiting from other processes. There
are no shared resources, but processes need to communicate frequently about other
matters. Is deadlock possible? Discuss.

21. In an electronic funds transfer system, there are hundreds of identical processes that work
as follows. Each process reads an input line specifying an amount of money, the account
to be credited, and the account to be debited. Then it locks both accounts and transfers
the money, releasing the locks when done. With many processes running in parallel,
there is a very real danger that having locked account x it will be unable to lock y
because y has been locked by a process now waiting for x. Devise a scheme that avoids
deadlocks. Do not release an account record until you have completed the transactions.
(In other words, solutions that lock one account and then release it immediately if the
other is locked are not allowed.)

[Page 369]

22. The banker's algorithm is being run in a system with m resource classes and n processes.
In the limit of large m and n, the number of operations that must be performed to check a
state for safety is proportional to ma n b. What are the values of a and b?

23. Consider the banker's algorithm of Fig. 3-15. Assume that processes A and D change
their requests to an additional (1, 2, 1, 0) and (1, 2, 1, 0) respectively. Can these requests
be met and the system still remain in a safe state?

24. Cinderella and the Prince are getting divorced. To divide their property, they have agreed
on the following algorithm. Every morning, each one may send a letter to the other's
lawyer requesting one item of property. Since it takes a day for letters to be delivered,
they have agreed that if both discover that they have requested the same item on the same
day, the next day they will send a letter canceling the request. Among their property is
their dog, Woofer, Woofer's doghouse, their canary, Tweeter, and Tweeter's cage. The
animals love their houses, so it has been agreed that any division of property separating
an animal from its house is invalid, requiring the whole division to start over from
scratch. Both Cinderella and the Prince desperately want Woofer. So they can go on

2

2

(separate) vacations, each spouse has programmed a personal computer to handle the
negotiation. When they come back from vacation, the computers are still negotiating.
Why? Is deadlock possible? Is starvation (waiting forever) possible? Discuss.

25. Consider a disk with 1000 512-byte sectors/track, eight tracks per cylinder, and 10,000
cylinders with a rotation time of 10 msec. The track-to-track seek time is 1 msec. What is
the maximum sustainable burst rate? How long can such a burst last?

26. A local area network is used as follows. The user issues a system call to write data
packets to the network. The operating system then copies the data to a kernel buffer.
Then it copies the data to the network controller board. When all the bytes are safely
inside the controller, they are sent over the network at a rate of 10 megabits/sec. The
receiving network controller stores each bit a microsecond after it is sent. When the last
bit arrives, the destination CPU is interrupted, and the kernel copies the newly arrived
packet to a kernel buffer to inspect it. Once it has figured out which user the packet is for,
the kernel copies the data to the user space. If we assume that each interrupt and its
associated processing takes 1 msec, that packets are 1024 bytes (ignore the headers), and
that copying a byte takes 1 microsec, what is the maximum rate at which one process can
pump data to another? Assume that the sender is blocked until the work is finished at the
receiving side and an acknowledgement comes back. For simplicity, assume the time to
get the acknowledgement back is so small it can be ignored.

27. The message format of Fig. 3-17 is used for sending request messages to drivers for
block devices. Could any fields be omitted for character devices? Which ones?

28. Disk requests come in to the driver for cylinders 10, 22, 20, 2, 40, 6, and 38, in that
order. A seek takes 6 msec per cylinder moved. How much seek time is needed for

(a) First-come, first served.

(b) Closest cylinder next.

(c) Elevator algorithm (initially moving upward).

In all cases, the arm is initially at cylinder 20.

[Page 370]

29. A personal computer salesman visiting a university in South-West Amsterdam remarked
during his sales pitch that his company had devoted substantial effort to making their
version of UNIX very fast. As an example, he noted that their disk driver used the
elevator algorithm and also queued multiple requests within a cylinder in sector order. A
student, Harry Hacker, was impressed and bought one. He took it home and wrote a
program to randomly read 10,000 blocks spread across the disk. To his amazement, the
performance that he measured was identical to what would be expected from first-come,
first-served. Was the salesman lying?

30. A UNIX process has two partsthe user part and the kernel part. Is the kernel part like a
subroutine or a coroutine?

31. The clock interrupt handler on a certain computer requires 2 msec (including process
switching overhead) per clock tick. The clock runs at 60 Hz. What fraction of the CPU is
devoted to the clock?

32.

3

3

Two examples of watchdog timers were given in the text: timing the startup of the floppy
disk motor and allowing for carriage return on hardcopy terminals. Give a third example.

33. Why are RS232 terminals interrupt driven, but memory-mapped terminals not interrupt
driven?

34. Consider how a terminal works. The driver outputs one character and then blocks. When
the character has been printed, an interrupt occurs and a message is sent to the blocked
driver, which outputs the next character and then blocks again. If the time to pass a
message, output a character, and block is 4 msec, does this method work well on
110-baud lines? How about 4800-baud lines?

35. A bitmap terminal contains 1200 by 800 pixels. To scroll a window, the CPU (or
controller) must move all the lines of text upward by copying their bits from one part of
the video RAM to another. If a particular window is 66 lines high by 80 characters wide
(5280 characters, total), and a character's box is 8 pixels wide by 12 pixels high, how
long does it take to scroll the whole window at a copying rate of 500 nsec per byte? If all
lines are 80 characters long, what is the equivalent baud rate of the terminal? Putting a
character on the screen takes 50 microsec. Now compute the baud rate for the same
terminal in color, with 4 bits/pixel. (Putting a character on the screen now takes 200
microsec.)

36. Why do operating systems provide escape characters, such as CTRL-V in MINIX?

37. After receiving a CTRL-C (SIGINT) character, the MINIX driver discards all output
currently queued for that terminal. Why?

38. Many RS232 terminals have escape sequences for deleting the current line and moving
all the lines below it up one line. How do you think this feature is implemented inside the
terminal?

39. On the original IBM PC's color display, writing to the video RAM at any time other than
during the CRT beam's vertical retrace caused ugly spots to appear all over the screen. A
screen image is 25 by 80 characters, each of which fits in a box 8 pixels by 8 pixels. Each
row of 640 pixels is drawn on a single horizontal scan of the beam, which takes 63.6
microsec, including the horizontal retrace. The screen is redrawn 60 times a second, each
of which requires a vertical retrace period to get the beam back to the top. What fraction
of the time is the video RAM available for writing in?

[Page 371]

40. Write a graphics driver for the IBM color display, or some other suitable bitmap display.
The driver should accept commands to set and clear individual pixels, move rectangles
around the screen, and any other features you think are interesting. User programs
interface to the driver by opening /dev/graphics and writing commands to it.

41. Modify the MINIX floppy disk driver to do track-at-a-time caching.

42. Implement a floppy disk driver that works as a character, rather than a block device, to
bypass the file system's block cache. In this way, users can read large chunks of data
from the disk, which are DMA'ed directly to user space, greatly improving performance.
This driver would primarily be of interest to programs that need to read the raw bits on
the disk, without regard to the file system. File system checkers fall into this category.

43. Implement the UNIX PROFIL system call, which is missing from MINIX.

4

4

44. Modify the terminal driver so that in addition to a having a special key to erase the
previous character, there is a key to erase the previous word.

45. A new hard disk device with removable media has been added to a MINIX 3 system.
This device must spin up to speed every time the media are changed, and the spin up time
is quite long. It is anticipated media changes will be made frequently while the system is
running. Suddenly the waitfor routine in at_wini.c is unsatisfactory. Design a new
waitfor routine in which, if the bit pattern being awaited is not found after 1 second of
busy waiting, a phase will be entered in which the disk driver will sleep for 1 second, test
the port, and go back to sleep for another second until either the sought-for pattern is
found or the preset TIMEOUT period expires.

5

5

6

6

[Page 373]

4. Memory Management

Memory is an important resource that must be carefully managed. While the average home computer
nowadays has two thousand times as much memory as the IBM 7094 (the largest computer in the world in the
early 1960s), programs and the data they are expected to handle have also grown tremendously. To paraphrase
Parkinson's law, "Programs and their data expand to fill the memory available to hold them." In this chapter
we will study how operating systems manage memory.

Ideally, what every programmer would like is an infinitely large, infinitely fast memory that is also
nonvolatile, that is, does not lose its contents when the electric power fails. While we are at it, why not also
ask for it to be inexpensive, too? Unfortunately technology cannot turn such dreams into memories.
Consequently, most computers have a memory hierarchy, with a small amount of very fast, expensive, volatile
cache memory, hundreds of megabytes of medium-speed, medium-price, volatile main memory (RAM), and
tens or hundreds of gigabytes of slow, cheap, nonvolatile disk storage. It is the job of the operating system to
coordinate how these memories are used.

The part of the operating system that manages the memory hierarchy is usually called the memory manager.
Its job is to keep track of which parts of memory are in use and which parts are not in use, to allocate memory
to processes when they need it and deallocate it when they are done, and to manage swapping between main
memory and disk when main memory is too small to hold all the processes. In most systems (but not MINIX
3), it is in the kernel.

[Page 374]

In this chapter we will investigate a number of different memory management schemes, ranging from very
simple to highly sophisticated. We will start at the beginning and look first at the simplest possible memory
management system and then gradually progress to more and more elaborate ones.

As we pointed out in Chap. 1, history tends to repeat itself in the computer world: minicomputer software was
initially like mainframe software and personal computer software was initially like minicomputer software.
The cycle is now repeating itself with palmtops, PDAs, and embedded systems. In these systems, simple
memory management schemes are still in use. For this reason, they are still worth studying.

1

1

2

2

[Page 374 (continued)]

4.1. Basic Memory Management

Memory management systems can be divided into two basic classes: those that move processes back and forth
between main memory and disk during execution (swapping and paging), and those that do not. The latter are
simpler, so we will study them first. Later in the chapter we will examine swapping and paging. Throughout
this chapter the reader should keep in mind that swapping and paging are largely artifacts caused by the lack
of sufficient main memory to hold all programs and data at once. If main memory ever gets so large that there
is truly enough of it, the arguments in favor of one kind of memory management scheme or another may
become obsolete.

On the other hand, as mentioned above, software seems to grow as fast as memory, so efficient memory
management may always be needed. In the 1980s, there were many universities that ran a timesharing system
with dozens of (more-or-less satisfied) users on a 4 MB VAX. Now Microsoft recommends having at least
128 MB for a single-user Windows XP system. The trend toward multimedia puts even more demands on
memory, so good memory management is probably going to be needed for the next decade at least.

4.1.1. Monoprogramming without Swapping or Paging

The simplest possible memory management scheme is to run just one program at a time, sharing the memory
between that program and the operating system. Three variations on this theme are shown in Fig. 4-1. The
operating system may be at the bottom of memory in RAM (Random Access Memory), as shown in Fig.
4-1(a), or it may be in ROM (Read-Only Memory) at the top of memory, as shown in Fig. 4-1(b), or the
device drivers may be at the top of memory in a ROM and the rest of the system in RAM down below, as
shown in Fig. 4-1(c). The first model was formerly used on mainframes and minicomputers but is rarely used
any more. The second model is used on some palmtop computers and embedded systems. The third model
was used by early personal computers (e.g., running MS-DOS), where the portion of the system in the ROM is
called the BIOS (Basic Input Output System).

[Page 375]

Figure 4-1. Three simple ways of organizing memory with an operating system and one user process. Other
possibilities also exist.

1

1

When the system is organized in this way, only one process at a time can be running. As soon as the user
types a command, the operating system copies the requested program from disk to memory and executes it.
When the process finishes, the operating system displays a prompt character and waits for a new command.
When it receives the command, it loads a new program into memory, overwriting the first one.

4.1.2. Multiprogramming with Fixed Partitions

Except on very simple embedded systems, monoprogramming is hardly used any more. Most modern systems
allow multiple processes to run at the same time. Having multiple processes running at once means that when
one process is blocked waiting for I/O to finish, another one can use the CPU. Thus multiprogramming
increases the CPU utilization. Network servers always have the ability to run multiple processes (for different
clients) at the same time, but most client (i.e., desktop) machines also have this ability nowadays.

The easiest way to achieve multiprogramming is simply to divide memory up into n (possibly unequal)
partitions. This partitioning can, for example, be done manually when the system is started up.

When a job arrives, it can be put into the input queue for the smallest partition large enough to hold it. Since
the partitions are fixed in this scheme, any space in a partition not used by a job is wasted while that job runs.
In Fig. 4-2(a) we see how this system of fixed partitions and separate input queues looks.

Figure 4-2. (a) Fixed memory partitions with separate input queues for each partition. (b) Fixed memory partitions
with a single input queue. (This item is displayed on page 376 in the print version)

[View full size image]

The disadvantage of sorting the incoming jobs into separate queues becomes apparent when the queue for a
large partition is empty but the queue for a small partition is full, as is the case for partitions 1 and 3 in Fig.
4-2(a). Here small jobs have to wait to get into memory, even though plenty of memory is free. An alternative
organization is to maintain a single queue as in Fig. 4-2(b). Whenever a partition becomes free, the job closest
to the front of the queue that fits in it could be loaded into the empty partition and run. Since it is undesirable
to waste a large partition on a small job, a different strategy is to search the whole input queue whenever a

2

2

partition becomes free and pick the largest job that fits. Note that the latter algorithm discriminates against
small jobs as being unworthy of having a whole partition, whereas usually it is desirable to give the smallest
jobs (often interactive jobs) the best service, not the worst.

[Page 376]

One way out is to have at least one small partition around. Such a partition will allow small jobs to run
without having to allocate a large partition for them.

Another approach is to have a rule stating that a job that is eligible to run may not be skipped over more than
k times. Each time it is skipped over, it gets one point. When it has acquired k points, it may not be skipped
again.

This system, with fixed partitions set up by the operator in the morning and not changed thereafter, was used
by OS/360 on large IBM mainframes for many years. It was called MFT (Multiprogramming with a Fixed
number of Tasks or OS/MFT). it is simple to understand and equally simple to implement: incoming jobs are
queued until a suitable partition is available, at which time the job is loaded into that partition and run until it
terminates. However, nowadays, few, if any, operating systems, support this model, even on mainframe batch
systems.

[Page 377]

4.1.3. Relocation and Protection

Multiprogramming introduces two essential problems that must be solved relocation and protection. Look at
Fig. 4-2. From the figure it is clear that different jobs will be run at different addresses. When a program is
linked (i.e., the main program, user-written procedures, and library procedures are combined into a single
address space), the linker must know at what address the program will begin in memory.

For example, suppose that the first instruction is a call to a procedure at absolute address 100 within the binary
file produced by the linker. If this program is loaded in partition 1 (at address 100K), that instruction will
jump to absolute address 100, which is inside the operating system. What is needed is a call to 100K + 100. If
the program is loaded into partition 2, it must be carried out as a call to 200K + 100, and so on. This problem
is known as the relocation problem.

One possible solution is to actually modify the instructions as the program is loaded into memory. Programs
loaded into partition 1 have 100K added to each address, programs loaded into partition 2 have 200K added to
addresses, and so forth. To perform relocation during loading like this, the linker must include in the binary
program a list or bitmap telling which program words are addresses to be relocated and which are opcodes,
constants, or other items that must not be relocated. OS/MFT worked this way.

Relocation during loading does not solve the protection problem. A malicious program can always construct a
new instruction and jump to it. Because programs in this system use absolute memory addresses rather than
addresses relative to a register, there is no way to stop a program from building an instruction that reads or
writes any word in memory. In multiuser systems, it is highly undesirable to let processes read and write
memory belonging to other users.

The solution that IBM chose for protecting the 360 was to divide memory into blocks of 2-KB bytes and
assign a 4-bit protection code to each block. The PSW (Program Status Word) contained a 4-bit key. The 360
hardware trapped any attempt by a running process to access memory whose protection code differed from the
PSW key. Since only the operating system could change the protection codes and key, user processes were

3

3

prevented from interfering with one another and with the operating system itself.

An alternative solution to both the relocation and protection problems is to equip the machine with two special
hardware registers, called the base and limit registers. When a process is scheduled, the base register is loaded
with the address of the start of its partition, and the limit register is loaded with the length of the partition.
Every memory address generated automatically has the base register contents added to it before being sent to
memory. Thus if the base register contains the value 100K, a CALL 100 instruction is effectively turned into a
CALL 100K + 100 instruction, without the instruction itself being modified. Addresses are also checked
against the limit register to make sure that they do not attempt to address memory outside the current partition.
The hardware protects the base and limit registers to prevent user programs from modifying them.

[Page 378]

A disadvantage of this scheme is the need to perform an addition and a comparison on every memory
reference. Comparisons can be done fast, but additions are slow due to carry propagation time unless special
addition circuits are used.

The CDC 6600the world's first supercomputerused this scheme. The Intel 8088 CPU used for the original
IBM PC used a slightly weaker version of this schemebase registers, but no limit registers. Few computers use
it now.

4

4

[Page 378 (continued)]

4.2. Swapping

With a batch system, organizing memory into fixed partitions is simple and effective. Each job is loaded into
a partition when it gets to the head of the queue. It stays in memory until it has finished. As long as enough
jobs can be kept in memory to keep the CPU busy all the time, there is no reason to use anything more
complicated.

With timesharing systems or graphics-oriented personal computers, the situation is different. Sometimes there
is not enough main memory to hold all the currently active processes, so excess processes must be kept on
disk and brought in to run dynamically.

Two general approaches to memory management can be used, depending (in part) on the available hardware.
The simplest strategy, called swapping, consists of bringing in each process in its entirety, running it for a
while, then putting it back on the disk. The other strategy, called virtual memory, allows programs to run even
when they are only partially in main memory. Below we will study swapping; in Sec. 4.3 we will examine
virtual memory.

The operation of a swapping system is illustrated in Fig. 4-3. Initially, only process A is in memory. Then
processes B and C are created or swapped in from disk. In Fig. 4-3(d) A is swapped out to disk. Then D
comes in and B goes out. Finally A comes in again. Since A is now at a different location, addresses contained
in it must be relocated, either by software when it is swapped in or (more likely) by hardware during program
execution.

Figure 4-3. Memory allocation changes as processes come into memory and leave it. The shaded regions are
unused memory. (This item is displayed on page 379 in the print version)

[View full size image]

The main difference between the fixed partitions of Fig. 4-2 and the variable partitions of Fig. 4-3 is that the
number, location, and size of the partitions vary dynamically in the latter as processes come and go, whereas
they are fixed in the former. The flexibility of not being tied to a fixed number of partitions that may be too
large or too small improves memory utilization, but it also complicates allocating and deallocating memory,
as well as keeping track of it.

When swapping creates multiple holes in memory, it is possible to combine them all into one big one by

1

1

moving all the processes downward as far as possible. This technique is known as memory compaction. It is
usually not done because it requires a lot of CPU time. For example, on a 1-GB machine that can copy at a
rate of 2 GB/sec (0.5 nsec/byte) it takes about 0.5 sec to compact all of memory. That may not seem like much
time, but it would be noticeably disruptive to a user watching a video stream.

[Page 379]

A point that is worth making concerns how much memory should be allocated for a process when it is created
or swapped in. If processes are created with a fixed size that never changes, then the allocation is simple: the
operating system allocates exactly what is needed, no more and no less.

If, however, processes' data segments can grow, for example, by dynamically allocating memory from a heap,
as in many programming languages, a problem occurs whenever a process tries to grow. If a hole is adjacent
to the process, it can be allocated and the process can be allowed to grow into the hole. On the other hand, if
the process is adjacent to another process, the growing process will either have to be moved to a hole in
memory large enough for it, or one or more processes will have to be swapped out to create a large enough
hole. If a process cannot grow in memory and the swap area on the disk is full, the process will have to wait or
be killed.

If it is expected that most processes will grow as they run, it is probably a good idea to allocate a little extra
memory whenever a process is swapped in or moved, to reduce the overhead associated with moving or
swapping processes that no longer fit in their allocated memory. However, when swapping processes to disk,
only the memory actually in use should be swapped; it is wasteful to swap the extra memory as well. In Fig.
4-4(a) we see a memory configuration in which space for growth has been allocated to two processes.

Figure 4-4. (a) Allocating space for a growing data segment. (b) Allocating space for a growing stack and a
growing data segment. (This item is displayed on page 380 in the print version)

[View full size image]

If processes can have two growing segments, for example, the data segment being used as a heap for variables
that are dynamically allocated and released and a stack segment for the normal local variables and return

2

2

addresses, an alternative arrangement suggests itself, namely that of Fig. 4-4(b). In this figure we see that each
process illustrated has a stack at the top of its allocated memory that is growing downward, and a data
segment just beyond the program text that is growing upward. The memory between them can be used for
either segment. If it runs out, either the process will have to be moved to a hole with sufficient space, swapped
out of memory until a large enough hole can be created, or killed.

[Page 380]

4.2.1. Memory Management with Bitmaps

When memory is assigned dynamically, the operating system must manage it. In general terms, there are two
ways to keep track of memory usage: bitmaps and free lists. In this section and the next one we will look at
these two methods in turn.

With a bitmap, memory is divided up into allocation units, perhaps as small as a few words and perhaps as
large as several kilobytes. Corresponding to each allocation unit is a bit in the bitmap, which is 0 if the unit is
free and 1 if it is occupied (or vice versa). Figure 4-5 shows part of memory and the corresponding bitmap.

Figure 4-5. (a) A part of memory with five processes and three holes. The tick marks show the memory allocation
units. The shaded regions (0 in the bitmap) are free. (b) The corresponding bitmap. (c) The same information as a

list. (This item is displayed on page 381 in the print version)

[View full size image]

The size of the allocation unit is an important design issue. The smaller the allocation unit, the larger the
bitmap. However, even with an allocation unit as small as 4 bytes, 32 bits of memory will require only 1 bit of
the map. A memory of 32n bits will use n map bits, so the bitmap will take up only 1/33 of memory. If the
allocation unit is chosen large, the bitmap will be smaller, but appreciable memory may be wasted in the last
unit of the process if the process size is not an exact multiple of the allocation unit.

[Page 381]

A bitmap provides a simple way to keep track of memory words in a fixed amount of memory because the
size of the bitmap depends only on the size of memory and the size of the allocation unit. The main problem
with it is that when it has been decided to bring a k unit process into memory, the memory manager must
search the bitmap to find a run of k consecutive 0 bits in the map. Searching a bitmap for a run of a given
length is a slow operation (because the run may straddle word boundaries in the map); this is an argument
against bitmaps.

3

3

4.2.2. Memory Management with Linked Lists

Another way of keeping track of memory is to maintain a linked list of allocated and free memory segments,
where a segment is either a process or a hole between two processes. The memory of Fig. 4-5(a) is
represented in Fig. 4-5(c) as a linked list of segments. Each entry in the list specifies a hole (H) or process (P),
the address at which it starts, the length, and a pointer to the next entry.

In this example, the segment list is kept sorted by address. Sorting this way has the advantage that when a
process terminates or is swapped out, updating the list is straightforward. A terminating process normally has
two neighbors (except when it is at the very top or very bottom of memory). These may be either processes or
holes, leading to the four combinations shown in Fig. 4-6. In Fig. 4-6(a) updating the list requires replacing a
P by an H. In Fig. 4-6(b) and also in Fig. 4-6(c), two entries are coalesced into one, and the list becomes one
entry shorter. In Fig. 4-6(d), three entries are merged and two items are removed from the list. Since the
process table slot for the terminating process will normally point to the list entry for the process itself, it may
be more convenient to have the list as a double-linked list, rather than the single-linked list of Fig. 4-5(c). This
structure makes it easier to find the previous entry and to see if a merge is possible.

[Page 382]

Figure 4-6. Four neighbor combinations for the terminating process, X.

When the processes and holes are kept on a list sorted by address, several algorithms can be used to allocate
memory for a newly created process (or an existing process being swapped in from disk). We assume that the
memory manager knows how much memory to allocate. The simplest algorithm is first fit. The process
manager scans along the list of segments until it finds a hole that is big enough. The hole is then broken up
into two pieces, one for the process and one for the unused memory, except in the statistically unlikely case of
an exact fit. First fit is a fast algorithm because it searches as little as possible.

A minor variation of first fit is next fit. It works the same way as first fit, except that it keeps track of where it
is whenever it finds a suitable hole. The next time it is called to find a hole, it starts searching the list from the
place where it left off last time, instead of always at the beginning, as first fit does. Simulations by Bays
(1977) show that next fit gives slightly worse performance than first fit.

Another well-known algorithm is best fit. Best fit searches the entire list and takes the smallest hole that is
adequate. Rather than breaking up a big hole that might be needed later, best fit tries to find a hole that is close
to the actual size needed.

4

4

As an example of first fit and best fit, consider Fig. 4-5 again. If a block of size 2 is needed, first fit will
allocate the hole at 5, but best fit will allocate the hole at 18.

Best fit is slower than first fit because it must search the entire list every time it is called. Somewhat
surprisingly, it also results in more wasted memory than first fit or next fit because it tends to fill up memory
with tiny, useless holes. First fit generates larger holes on the average.

To get around the problem of breaking up nearly exact matches into a process and a tiny hole, one could think
about worst fit, that is, always take the largest available hole, so that the hole broken off will be big enough to
be useful. Simulation has shown that worst fit is not a very good idea either.

[Page 383]

All four algorithms can be speeded up by maintaining separate lists for processes and holes. In this way, all of
them devote their full energy to inspecting holes, not processes. The inevitable price that is paid for this
speedup on allocation is the additional complexity and slowdown when deallocating memory, since a freed
segment has to be removed from the process list and inserted into the hole list.

If distinct lists are maintained for processes and holes, the hole list may be kept sorted on size, to make best fit
faster. When best fit searches a list of holes from smallest to largest, as soon as it finds a hole that fits, it
knows that the hole is the smallest one that will do the job, hence the best fit. No further searching is needed,
as it is with the single list scheme. With a hole list sorted by size, first fit and best fit are equally fast, and next
fit is pointless.

When the holes are kept on separate lists from the processes, a small optimization is possible. Instead of
having a separate set of data structures for maintaining the hole list, as is done in Fig. 4-5(c), the holes
themselves can be used. The first word of each hole could be the hole size, and the second word a pointer to
the following entry. The nodes of the list of Fig. 4-5(c), which require three words and one bit (P/H), are no
longer needed.

Yet another allocation algorithm is quick fit, which maintains separate lists for some of the more common
sizes requested. For example, it might have a table with n entries, in which the first entry is a pointer to the
head of a list of 4-KB holes, the second entry is a pointer to a list of 8-KB holes, the third entry a pointer to
12-KB holes, and so on. Holes of say, 21 KB, could either be put on the 20-KB list or on a special list of
odd-sized holes. With quick fit, finding a hole of the required size is extremely fast, but it has the same
disadvantage as all schemes that sort by hole size, namely, when a process terminates or is swapped out,
finding its neighbors to see if a merge is possible is expensive. If merging is not done, memory will quickly
fragment into a large number of small holes into which no processes fit.

5

5

6

6

[Page 383 (continued)]

4.3. Virtual Memory

Many years ago people were first confronted with programs that were too big to fit in the
available memory. The solution usually adopted was to split the program into pieces,
called overlays. Overlay 0 would start running first. When it was done, it would call
another overlay. Some overlay systems were highly complex, allowing multiple overlays
in memory at once. The overlays were kept on the disk and swapped in and out of
memory by the operating system, dynamically, as needed.

Although the actual work of swapping overlays in and out was done by the system, the
decision of how to split the program into pieces had to be done by the programmer.
Splitting up large programs into small, modular pieces was time consuming and boring.
It did not take long before someone thought of a way to turn the whole job over to the
computer.

[Page 384]

The method that was devised has come to be known as virtual memory (Fotheringham,
1961). The basic idea behind virtual memory is that the combined size of the program,
data, and stack may exceed the amount of physical memory available for it. The
operating system keeps those parts of the program currently in use in main memory, and
the rest on the disk. For example, a 512-MB program can run on a 256-MB machine by
carefully choosing which 256 MB to keep in memory at each instant, with pieces of the
program being swapped between disk and memory as needed.

Virtual memory can also work in a multiprogramming system, with bits and pieces of
many programs in memory at once. While a program is waiting for part of itself to be
brought in, it is waiting for I/O and cannot run, so the CPU can be given to another
process, the same way as in any other multiprogramming system.

4.3.1. Paging

Most virtual memory systems use a technique called paging, which we will now
describe. On any computer, there exists a set of memory addresses that programs can
produce. When a program uses an instruction like

MOV REG,1000

it does this to copy the contents of memory address 1000 to REG (or vice versa,
depending on the computer). Addresses can be generated using indexing, base registers,
segment registers, and other ways.

[Page 385]

1

1

These program-generated addresses are called virtual addresses and form the virtual
address space. On computers without virtual memory, the virtual address is put directly
onto the memory bus and causes the physical memory word with the same address to be
read or written. When virtual memory is used, the virtual addresses do not go directly to
the memory bus. Instead, they go to an MMU (Memory Management Unit) that maps
the virtual addresses onto the physical memory addresses as illustrated in Fig. 4-7.

Figure 4-7. The position and function of the MMU. Here the MMU is shown as being a part of
the CPU chip because it commonly is nowadays. However, logically it could be a separate
chip and was in years gone by. (This item is displayed on page 384 in the print version)

A very simple example of how this mapping works is shown in Fig. 4-8. In this example,
we have a computer that can generate 16-bit addresses, from 0 up to 64K. These are the
virtual addresses. This computer, however, has only 32 KB of physical memory, so
although 64-KB programs can be written, they cannot be loaded into memory in their
entirety and run. A complete copy of a program's memory image, up to 64 KB, must be
present on the disk, however, so that pieces can be brought in as needed.

Figure 4-8. The relation between virtual addresses and physical memory addresses is given
by the page table. (This item is displayed on page 386 in the print version)

2

2

The virtual address space is divided up into units called pages. The corresponding units
in the physical memory are called page frames. The pages and page frames are always
the same size. In this example they are 4 KB, but page sizes from 512 bytes to 1 MB
have been used in real systems. With 64 KB of virtual address space and 32 KB of
physical memory, we get 16 virtual pages and 8 page frames. Transfers between RAM
and disk are always in units of a page.

When the program tries to access address 0, for example, using the instruction

MOV REG,0

virtual address 0 is sent to the MMU. The MMU sees that this virtual address falls in
page 0 (0 to 4095), which according to its mapping is page frame 2 (8192 to 12287). It
thus transforms the address to 8192 and outputs address 8192 onto the bus. The memory
knows nothing at all about the MMU and just sees a request for reading or writing
address 8192, which it honors. Thus, the MMU has effectively mapped all virtual
addresses between 0 and 4095 onto physical addresses 8192 to 12287.

Similarly, an instruction

MOV REG,8192

3

3

is effectively transformed into

MOV REG,24576

because virtual address 8192 is in virtual page 2 and this page is mapped onto physical
page frame 6 (physical addresses 24576 to 28671). As a third example, virtual address
20500 is 20 bytes from the start of virtual page 5 (virtual addresses 20480 to 24575) and
maps onto physical address 12288 + 20 = 12308.

By itself, this ability to map the 16 virtual pages onto any of the eight page frames by
setting the MMU's map appropriately does not solve the problem that the virtual address
space is larger than the physical memory. Since we have only eight physical page
frames, only eight of the virtual pages in Fig. 4-8 are mapped onto physical memory.
The others, shown as crosses in the figure, are not mapped. In the actual hardware, a
present/absent bit keeps track of which pages are physically present in memory.

[Page 386]

What happens if the program tries to use an unmapped page, for example, by using the
instruction

MOV REG,32780

which is byte 12 within virtual page 8 (starting at 32768)? The MMU notices that the
page is unmapped (indicated by a cross in the figure) and causes the CPU to trap to the
operating system. This trap is called a page fault. The operating system picks a
little-used page frame and writes its contents back to the disk. It then fetches the page
just referenced into the page frame just freed, changes the map, and restarts the trapped
instruction.

For example, if the operating system decided to evict page frame 1, it would load virtual
page 8 at physical address 4K and make two changes to the MMU map. First, it would
mark virtual page 1's entry as unmapped, to trap any future accesses to virtual addresses
between 4K and 8K. Then it would replace the cross in virtual page 8's entry with a 1, so
that when the trapped instruction is re-executed, it will map virtual address 32780 onto
physical address 4108.

[Page 387]

Now let us look inside the MMU to see how it works and why we have chosen to use a
page size that is a power of 2. In Fig. 4-9 we see an example of a virtual address, 8196
(0010000000000100 in binary), being mapped using the MMU map of Fig. 4-8. The
incoming 16-bit virtual address is split into a 4-bit page number and a 12-bit offset. With
4 bits for the page number, we can have 16 pages, and with 12 bits for the offset, we can
address all 4096 bytes within a page.

4

4

Figure 4-9. The internal operation of the MMU with 16 4-KB pages.

The page number is used as an index into the page table, yielding the number of the page
frame corresponding to that virtual page. If the present/absent bit is 0, a trap to the
operating system is caused. If the bit is 1, the page frame number found in the page table
is copied to the high-order 3 bits of the output register, along with the 12-bit offset,
which is copied unmodified from the incoming virtual address. Together they form a
15-bit physical address. The output register is then put onto the memory bus as the
physical memory address.

[Page 388]

4.3.2. Page Tables

In the simplest case, the mapping of virtual addresses onto physical addresses is as we
have just described it. The virtual address is split into a virtual page number (high-order
bits) and an offset (low-order bits). For example, with a 16-bit address and a 4-KB page
size, the upper 4 bits could specify one of the 16 virtual pages and the lower 12 bits
would then specify the byte offset (0 to 4095) within the selected page. However a split
with 3 or 5 or some other number of bits for the page is also possible. Different splits
imply different page sizes.

5

5

The virtual page number is used as an index into the page table to find the entry for that
virtual page. From the page table entry, the page frame number (if any) is found. The
page frame number is attached to the high-order end of the offset, replacing the virtual
page number, to form a physical address that can be sent to the memory.

The purpose of the page table is to map virtual pages onto page frames. Mathematically
speaking, the page table is a function, with the virtual page number as argument and the
physical frame number as result. Using the result of this function, the virtual page field
in a virtual address can be replaced by a page frame field, thus forming a physical
memory address.

Despite this simple description, two major issues must be faced:

1. The page table can be extremely large.

2. The mapping must be fast.

The first point follows from the fact that modern computers use virtual addresses of at
least 32 bits. With, say, a 4-KB page size, a 32-bit address space has 1 million pages,
and a 64-bit address space has more than you want to contemplate. With 1 million pages
in the virtual address space, the page table must have 1 million entries. And remember
that each process needs its own page table (because it has its own virtual address space).

The second point is a consequence of the fact that the virtual-to-physical mapping must
be done on every memory reference. A typical instruction has an instruction word, and
often a memory operand as well. Consequently, it is necessary to make one, two, or
sometimes more page table references per instruction. If an instruction takes, say, 1 nsec,
the page table lookup must be done in under 250 psec to avoid becoming a major
bottleneck.

The need for large, fast page mapping is a significant constraint on the way computers
are built. Although the problem is most serious with top-of-the-line machines that must
be very fast, it is also an issue at the low end as well, where cost and the
price/performance ratio are critical In this section and the following ones, we will look at
page table design in detail and show a number of hardware solutions that have been used
in actual computers.

[Page 389]

The simplest design (at least conceptually) is to have a single page table consisting of an
array of fast hardware registers, with one entry for each virtual page, indexed by virtual
page number, as shown in Fig. 4-9. When a process is started up, the operating system
loads the registers with the process' page table, taken from a copy kept in main memory.
During process execution, no more memory references are needed for the page table.
The advantages of this method are that it is straightforward and requires no memory
references during mapping. A disadvantage is that it is potentially expensive (if the page
table is large). Also, having to load the full page table at every context switch hurts
performance.

At the other extreme, the page table can be entirely in main memory. All the hardware
needs then is a single register that points to the start of the page table. This design allows
the memory map to be changed at a context switch by reloading one register. Of course,

6

6

it has the disadvantage of requiring one or more memory references to read page table
entries during the execution of each instruction. For this reason, this approach is rarely
used in its most pure form, but below we will study some variations that have much
better performance.

Multilevel Page Tables

To get around the problem of having to store huge page tables in memory all the time,
many computers use a multilevel page table. A simple example is shown in Fig. 4-10. In
Fig. 4-10(a) we have a 32-bit virtual address that is partitioned into a 10-bit PT1 field, a
10-bit PT2 field, and a 12-bit Offset field. Since offsets are 12 bits, pages are 4 KB, and
there are a total of 220 of them.

Figure 4-10. (a) A 32-bit address with two page table fields. (b) Two-level page tables. (This
item is displayed on page 390 in the print version)

[View full size image]

The secret to the multilevel page table method is to avoid keeping all the page tables in
memory all the time. In particular, those that are not needed should not be kept around.
Suppose, for example, that a process needs 12 megabytes, the bottom 4 megabytes of
memory for program text, the next 4 megabytes for data, and the top 4 megabytes for the
stack. In between the top of the data and the bottom of the stack is a gigantic hole that is

7

7

not used.

In Fig. 4-10(b) we see how the two-level page table works in this example. On the left
we have the top-level page table, with 1024 entries, corresponding to the 10-bit PT1
field. When a virtual address is presented to the MMU, it first extracts the PT1 field and
uses this value as an index into the top-level page table. Each of these 1024 entries
represents 4M because the entire 4-gigabyte (i.e., 32-bit) virtual address space has been
chopped into chunks of 1024 bytes.

The entry located by indexing into the top-level page table yields the address or the page
frame number of a second-level page table. Entry 0 of the top-level page table points to
the page table for the program text, entry 1 points to the page table for the data, and
entry 1023 points to the page table for the stack. The other (shaded) entries are not used.
The PT2 field is now used as an index into the selected second-level page table to find
the page frame number for the page itself.

[Page 390]

As an example, consider the 32-bit virtual address 0x00403004 (4,206,596 decimal),
which is 12,292 bytes into the data. This virtual address corresponds to PT1 = 1, PT2 =
2, and Offset = 4. The MMU first uses PT1 to index into the top-level page table and
obtain entry 1, which corresponds to addresses 4M to 8M. It then uses PT2 to index into
the second-level page table just found and extract entry 3, which corresponds to
addresses 12,288 to 16,383 within its 4M chunk (i.e., absolute addresses 4,206,592 to
4,210,687). This entry contains the page frame number of the page containing virtual
address 0x00403004. If that page is not in memory, the present/absent bit in the page
table entry will be zero, causing a page fault. If the page is in memory, the page frame
number taken from the second-level page table is combined with the offset (4) to
construct a physical address. This address is put on the bus and sent to memory.

[Page 391]

The interesting thing to note about Fig. 4-10 is that although the address space contains
over a million pages, only four page tables are actually needed: the top-level table, the
second-level tables for 0 to 4M, 4M to 8M, and the top 4M. The present/absent bits in
1021 entries of the top-level page table are set to 0, forcing a page fault if they are ever
accessed. Should this occur, the operating system will notice that the process is trying to
reference memory that it is not supposed to and will take appropriate action, such as
sending it a signal or killing it. In this example we have chosen round numbers for the
various sizes and have picked PT1 equal to PT2 but in actual practice other values are
also possible, of course.

The two-level page table system of Fig. 4-10 can be expanded to three, four, or more
levels. Additional levels give more flexibility, but it is doubtful that the additional
complexity is worth it beyond two levels.

Structure of a Page Table Entry

Let us now turn from the structure of the page tables in the large, to the details of a
single page table entry. The exact layout of an entry is highly machine dependent, but
the kind of information present is roughly the same from machine to machine. In Fig.

8

8

4-11 we give a sample page table entry. The size varies from computer to computer, but
32 bits is a common size. The most important field is the page frame number. After all,
the goal of the page mapping is to locate this value. Next to it we have the present/absent
bit. If this bit is 1, the entry is valid and can be used. If it is 0, the virtual page to which
the entry belongs is not currently in memory. Accessing a page table entry with this bit
set to 0 causes a page fault.

Figure 4-11. A typical page table entry.

[View full size image]

The protection bits tell what kinds of access are permitted. In the simplest form, this
field contains 1 bit, with 0 for read/write and 1 for read only. A more sophisticated
arrangement is having 3 independent bits, one bit each for individually enabling reading,
writing, and executing the page.

[Page 392]

The modified and referenced bits keep track of page usage. When a page is written to,
the hardware automatically sets the modified bit. This bit is used when the operating
system decides to reclaim a page frame. If the page in it has been modified (i.e., is
"dirty"), it must be written back to the disk. If it has not been modified (i.e., is "clean"),
it can just be abandoned, since the disk copy is still valid. The bit is sometimes called the
dirty bit, since it reflects the page's state.

The referenced bit is set whenever a page is referenced, either for reading or writing. Its
value is to help the operating system choose a page to evict when a page fault occurs.
Pages that are not being used are better candidates than pages that are, and this bit plays
an important role in several of the page replacement algorithms that we will study later
in this chapter.

Finally, the last bit allows caching to be disabled for the page. This feature is important
for pages that map onto device registers rather than memory. If the operating system is
sitting in a tight loop waiting for some I/O device to respond to a command it was just
given, it is essential that the hardware keep fetching the word from the device, and not
use an old cached copy. With this bit, caching can be turned off. Machines that have a
separate I/O space and do not use memory mapped I/O do not need this bit.

Note that the disk address used to hold the page when it is not in memory is not part of
the page table. The reason is simple. The page table holds only that information the
hardware needs to translate a virtual address to a physical address. Information the
operating system needs to handle page faults is kept in software tables inside the
operating system. The hardware does not need it.

9

9

4.3.3. TLBsTranslation Lookaside Buffers

In most paging schemes, the page tables are kept in memory, due to their large size.
Potentially, this design has an enormous impact on performance. Consider, for example,
an instruction that copies one register to another. In the absence of paging, this
instruction makes only one memory reference, to fetch the instruction. With paging,
additional memory references will be needed to access the page table. Since execution
speed is generally limited by the rate the CPU can get instructions and data out of the
memory, having to make two page table references per memory reference reduces
performance by 2/3. Under these conditions, no one would use it.

Computer designers have known about this problem for years and have come up with a
solution. Their solution is based on the observation that most programs tend to make a
large number of references to a small number of pages, and not the other way around.
Thus only a small fraction of the page table entries are heavily read; the rest are barely
used at all. This is an example of locality of reference, a concept we will come back to in
a later section.

The solution that has been devised is to equip computers with a small hardware device
for rapidly mapping virtual addresses to physical addresses without going through the
page table. The device, called a TLB (Translation Lookaside Buffer) or sometimes an
associative memory, is illustrated in Fig. 4-12. It is usually inside the MMU and consists
of a small number of entries, eight in this example, but rarely more than 64. Each entry
contains information about one page, including the virtual page number, a bit that is set
when the page is modified, the protection code (read/write/execute permissions), and the
physical page frame in which the page is located. These fields have a one-to-one
correspondence with the fields in the page table. Another bit indicates whether the entry
is valid (i.e., in use) or not.

[Page 393]

Figure 4-12. A TLB to speed up paging.
Valid Virtual

page
ModifiedProtection Page

frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

An example that might generate the TLB of Fig. 4-12 is a process in a loop that spans virtual pages 19, 20,
and 21, so these TLB entries have protection codes for reading and executing. The main data currently being
used (say, an array being processed) are on pages 129 and 130. Page 140 contains the indices used in the array
calculations. Finally, the stack is on pages 860 and 861.

Let us now see how the TLB functions. When a virtual address is presented to the MMU for translation, the
hardware first checks to see if its virtual page number is present in the TLB by comparing it to all the entries
simultaneously (i.e., in parallel). If a valid match is found and the access does not violate the protection bits,
the page frame is taken directly from the TLB, without going to the page table. If the virtual page number is

10

10

present in the TLB but the instruction is trying to write on a read-only page, a protection fault is generated, the
same way as it would be from the page table itself.

The interesting case is what happens when the virtual page number is not in the TLB. The MMU detects the
miss and does an ordinary page table lookup. It then evicts one of the entries from the TLB and replaces it
with the page table entry just looked up. Thus if that page is used again soon, the second time around it will
result in a hit rather than a miss. When an entry is purged from the TLB, the modified bit is copied back into
the page table entry in memory. The other values are already there. When the TLB is loaded from the page
table, all the fields are taken from memory.

[Page 394]

Software TLB Management

Up until now, we have assumed that every machine with paged virtual memory has page tables recognized by
the hardware, plus a TLB. In this design, TLB management and handling TLB faults are done entirely by the
MMU hardware. Traps to the operating system occur only when a page is not in memory.

In the past, this assumption was true. However, many modern RISC machines, including the SPARC, MIPS,
HP PA, and PowerPC, do nearly all of this page management in software. On these machines, the TLB entries
are explicitly loaded by the operating system. When a TLB miss occurs, instead of the MMU just going to the
page tables to find and fetch the needed page reference, it just generates a TLB fault and tosses the problem
into the lap of the operating system. The system must find the page, remove an entry from the TLB, enter the
new one, and restart the instruction that faulted. And, of course, all of this must be done in a handful of
instructions because TLB misses occur much more frequently than page faults.

Surprisingly enough, if the TLB is reasonably large (say, 64 entries) to reduce the miss rate, software
management of the TLB turns out to be acceptably efficient. The main gain here is a much simpler MMU,
which frees up a considerable amount of area on the CPU chip for caches and other features that can improve
performance. Software TLB management is discussed by Uhlig et al. (1994).

Various strategies have been developed to improve performance on machines that do TLB management in
software. One approach attacks both reducing TLB misses and reducing the cost of a TLB miss when it does
occur (Bala et al., 1994). To reduce TLB misses, sometimes the operating system can use its intuition to
figure out which pages are likely to be used next and to preload entries for them in the TLB. For example,
when a client process sends a message to a server process on the same machine, it is very likely that the server
will have to run soon. Knowing this, while processing the trap to do the send, the system can also check to
see where the server's code, data, and stack pages are and map them in before they can cause TLB faults.

The normal way to process a TLB miss, whether in hardware or in software, is to go to the page table and
perform the indexing operations to locate the page referenced. The problem with doing this search in software
is that the pages holding the page table may not be in the TLB, which will cause additional TLB faults during
the processing. These faults can be reduced by maintaining a large (e.g., 4-KB or larger) software cache of
TLB entries in a fixed location whose page is always kept in the TLB. By first checking the software cache,
the operating system can substantially reduce the number of TLB misses.

[Page 395]

11

11

4.3.4. Inverted Page Tables

Traditional page tables of the type described so far require one entry per virtual page, since they are indexed
by virtual page number. If the address space consists of 232 bytes, with 4096 bytes per page, then over 1
million page table entries are needed. As a bare minimum, the page table will have to be at least 4 megabytes.
On large systems, this size is probably doable.

However, as 64-bit computers become more common, the situation changes drastically. If the address space is
now 264 bytes, with 4-KB pages, we need a page table with 252 entries. If each entry is 8 bytes, the table is
over 30 million gigabytes. Tying up 30 million gigabytes just for the page table is not doable, not now and not
for years to come, if ever. Consequently, a different solution is needed for 64-bit paged virtual address spaces.

One such solution is the inverted page table. In this design, there is one entry per page frame in real memory,
rather than one entry per page of virtual address space. For example, with 64-bit virtual addresses, a 4-KB
page, and 256 MB of RAM, an inverted page table only requires 65,536 entries. The entry keeps track of
which (process, virtual page) is located in the page frame.

Although inverted page tables save vast amounts of space, at least when the virtual address space is much
larger than the physical memory, they have a serious downside: virtual-to-physical translation becomes much
harder. When process n references virtual page p, the hardware can no longer find the physical page by using
p as an index into the page table. Instead, it must search the entire inverted page table for an entry (n, p).
Furthermore, this search must be done on every memory reference, not just on page faults. Searching a 64K
table on every memory reference is definitely not a good way to make your machine blindingly fast.

The way out of this dilemma is to use the TLB. If the TLB can hold all of the heavily used pages, translation
can happen just as fast as with regular page tables. On a TLB miss, however, the inverted page table has to be
searched in software. One feasible way to accomplish this search is to have a hash table hashed on the virtual
address. All the virtual pages currently in memory that have the same hash value are chained together, as
shown in Fig. 4-13. If the hash table has as many slots as the machine has physical pages, the average chain
will be only one entry long, greatly speeding up the mapping. Once the page frame number has been found,
the new (virtual, physical) pair is entered into the TLB and the faulting instruction restarted.

Figure 4-13. Comparison of a traditional page table with an inverted page table. (This item is displayed on page
396 in the print version)

[View full size image]

Inverted page tables are currently used on IBM, Sun, and Hewlett-Packard workstations and will become
more common as 64-bit machines become widespread. Inverted page tables are essential on this machines.

12

12

Other approaches to handling large virtual memories can be found in Huck and Hays (1993), Talluri and Hill
(1994), and Talluri et al. (1995). Some hardware issues in implementation of virtual memory are discussed by
Jacob and Mudge (1998).

13

13

14

14

[Page 396]

4.4. Page Replacement Algorithms

When a page fault occurs, the operating system has to choose a page to remove from memory to make room
for the page that has to be brought in. If the page to be removed has been modified while in memory, it must
be rewritten to the disk to bring the disk copy up to date. If, however, the page has not been changed (e.g., it
contains program text), the disk copy is already up to date, so no rewrite is needed. The page to be read in just
overwrites the page being evicted.

While it would be possible to pick a random page to evict at each page fault, system performance is much
better if a page that is not heavily used is chosen. If a heavily used page is removed, it will probably have to
be brought back in quickly, resulting in extra overhead. Much work has been done on the subject of page
replacement algorithms, both theoretical and experimental. Below we will describe some of the most
important algorithms.

It is worth noting that the problem of "page replacement" occurs in other areas of computer design as well.
For example, most computers have one or more memory caches consisting of recently used 32-byte or 64-byte
memory blocks. When the cache is full, some block has to be chosen for removal. This problem is precisely
the same as page replacement except on a shorter time scale (it has to be done in a few nanoseconds, not
milliseconds as with page replacement). The reason for the shorter time scale is that cache block misses are
satisfied from main memory, which has no seek time and no rotational latency.

A second example is in a web browser. The browser keeps copies of previously accessed web pages in its
cache on the disk. Usually, the maximum cache size is fixed in advance, so the cache is likely to be full if the
browser is used a lot. Whenever a web page is referenced, a check is made to see if a copy is in the cache and
if so, if the page on the web is newer. If the cached copy is up to date, it is used; otherwise, a fresh copy is
fetched from the Web. If the page is not in the cache at all or a newer version is available, it is downloaded. If
it is a newer copy of a cached page it replaces the one in the cache. When the cache is full a decision has to be
made to evict some other page in the case of a new page or a page that is larger than an older version. The
considerations are similar to pages of virtual memory, except for the fact that the Web pages are never
modified in the cache and thus are never written back to the web server. In a virtual memory system, pages in
main memory may be either clean or dirty.

[Page 397]

4.4.1. The Optimal Page Replacement Algorithm

The best possible page replacement algorithm is easy to describe but impossible to implement. It goes like
this. At the moment that a page fault occurs, some set of pages is in memory. One of these pages will be
referenced on the very next instruction (the page containing that instruction). Other pages may not be
referenced until 10, 100, or perhaps 1000 instructions later. Each page can be labeled with the number of
instructions that will be executed before that page is first referenced.

The optimal page algorithm simply says that the page with the highest label should be removed. If one page
will not be used for 8 million instructions and another page will not be used for 6 million instructions,
removing the former pushes the page fault that will fetch it back as far into the future as possible. Computers,
like people, try to put off unpleasant events for as long as they can.

1

1

The only problem with this algorithm is that it is unrealizable. At the time of the page fault, the operating
system has no way of knowing when each of the pages will be referenced next. (We saw a similar situation
earlier with the shortest-job-first scheduling algorithmhow can the system tell which job is shortest?) Still, by
running a program on a simulator and keeping track of all page references, it is possible to implement optimal
page replacement on the second run by using the page reference information collected during the first run.

In this way it is possible to compare the performance of realizable algorithms with the best possible one. If an
operating system achieves a performance of, say, only 1 percent worse than the optimal algorithm, effort spent
in looking for a better algorithm will yield at most a 1 percent improvement.

To avoid any possible confusion, it should be made clear that this log of page references refers only to the one
program just measured and then with only one specific input. The page replacement algorithm derived from it
is thus specific to that one program and input data. Although this method is useful for evaluating page
replacement algorithms, it is of no use in practical systems. Below we will study algorithms that are useful on
real systems.

[Page 398]

4.4.2. The Not Recently Used Page Replacement Algorithm

In order to allow the operating system to collect useful statistics about which pages are being used and which
ones are not, most computers with virtual memory have two status bits associated with each page. R is set
whenever the page is referenced (read or written). M is set when the page is written to (i.e., modified). The
bits are contained in each page table entry, as shown in Fig. 4-11. It is important to realize that these bits must
be updated on every memory reference, so it is essential that they be set by the hardware. Once a bit has been
set to 1, it stays 1 until the operating system resets it to 0 in software.

If the hardware does not have these bits, they can be simulated as follows. When a process is started up, all of
its page table entries are marked as not in memory. As soon as any page is referenced, a page fault will occur.
The operating system then sets the R bit (in its internal tables), changes the page table entry to point to the
correct page, with mode READ ONLY, and restarts the instruction. If the page is subsequently written on,
another page fault will occur, allowing the operating system to set the M bit as well and change the page's
mode to READ/WRITE.

The R and M bits can be used to build a simple paging algorithm as follows. When a process is started up,
both page bits for all its pages are set to 0 by the operating system. Periodically (e.g., on each clock interrupt),
the R bit is cleared, to distinguish pages that have not been referenced recently from those that have been.

When a page fault occurs, the operating system inspects all the pages and divides them into four categories
based on the current values of their R and M bits:

Class 0: not referenced, not modified.

Class 1: not referenced, modified.

Class 2: referenced, not modified.

Class 3: referenced, modified.

Although class 1 pages seem, at first glance, impossible, they occur when a class 3 page has its R bit cleared
by a clock interrupt. Clock interrupts do not clear the M bit because this information is needed to know
whether the page has to be rewritten to disk or not. Clearing R but not M leads to a class 1 page.

2

2

The NRU (Not Recently Used) algorithm removes a page at random from the lowest numbered nonempty
class. Implicit in this algorithm is that it is better to remove a modified page that has not been referenced in at
least one clock tick (typically 20 msec) than a clean page that is in heavy use. The main attraction of NRU is
that it is easy to understand, moderately efficient to implement, and gives a performance that, while certainly
not optimal, may be adequate.

[Page 399]

4.4.3. The First-In, First-Out (FIFO) Page Replacement Algorithm

Another low-overhead paging algorithm is the FIFO (First-In, First-Out) algorithm. To illustrate how this
works, consider a supermarket that has enough shelves to display exactly k different products. One day, some
company introduces a new convenience foodinstant, freeze-dried, organic yogurt that can be reconstituted in a
microwave oven. It is an immediate success, so our finite supermarket has to get rid of one old product in
order to stock it.

One possibility is to find the product that the supermarket has been stocking the longest (i.e., something it
began selling 120 years ago) and get rid of it on the grounds that no one is interested any more. In effect, the
supermarket maintains a linked list of all the products it currently sells in the order they were introduced. The
new one goes on the back of the list; the one at the front of the list is dropped.

As a page replacement algorithm, the same idea is applicable. The operating system maintains a list of all
pages currently in memory, with the page at the head of the list the oldest one and the page at the tail the most
recent arrival. On a page fault, the page at the head is removed and the new page added to the tail of the list.
When applied to stores, FIFO might remove mustache wax, but it might also remove flour, salt, or butter.
When applied to computers the same problem arises. For this reason, FIFO in its pure form is rarely used.

4.4.4. The Second Chance Page Replacement Algorithm

A simple modification to FIFO that avoids the problem of throwing out a heavily used page is to inspect the R
bit of the oldest page. If it is 0, the page is both old and unused, so it is replaced immediately. If the R bit is 1,
the bit is cleared, the page is put onto the end of the list of pages, and its load time is updated as though it had
just arrived in memory. Then the search continues.

The operation of this algorithm, called second chance, is shown in Fig. 4-14. In Fig. 4-14(a) we see pages A
through H kept on a linked list and sorted by the time they arrived in memory.

Figure 4-14. Operation of second chance. (a) Pages sorted in FIFO order. (b) Page list if a page fault occurs at
time 20 and A has its R bit set. The numbers above the pages are their loading times. (This item is displayed on

page 400 in the print version)

[View full size image]

3

3

Suppose that a page fault occurs at time 20. The oldest page is A, which arrived at time 0, when the process
started. If A has the R bit cleared, it is evicted from memory, either by being written to the disk (if it is dirty),
or just abandoned (if it is clean). On the other hand, if the R bit is set, A is put onto the end of the list and its
"load time" is reset to the current time (20). The R bit is also cleared. The search for a suitable page continues
with B.

What second chance is doing is looking for an old page that has not been referenced in the previous clock
interval. If all the pages have been referenced, second chance degenerates into pure FIFO. Specifically,
imagine that all the pages in Fig. 4-14(a) have their R bits set. One by one, the operating system moves the
pages to the end of the list, clearing the R bit each time it appends a page to the end of the list. Eventually, it
comes back to page A, which now has its R bit cleared. At this point A is evicted. Thus the algorithm always
terminates.

[Page 400]

4.4.5. The Clock Page Replacement Algorithm

Although second chance is a reasonable algorithm, it is unnecessarily inefficient because it is constantly
moving pages around on its list. A better approach is to keep all the page frames on a circular list in the form
of a clock, as shown in Fig. 4-15. A hand points to the oldest page.

Figure 4-15. The clock page replacement algorithm.

[View full size image]

4

4

When a page fault occurs, the page being pointed to by the hand is inspected. If its R bit is 0, the page is
evicted, the new page is inserted into the clock in its place, and the hand is advanced one position. If R is 1, it
is cleared and the hand is advanced to the next page. This process is repeated until a page is found with R = 0.
Not surprisingly, this algorithm is called clock. It differs from second chance only in the implementation, not
in the page selected.

[Page 401]

4.4.6. The Least Recently Used (LRU) Page Replacement Algorithm

A good approximation to the optimal algorithm is based on the observation that pages that have been heavily
used in the last few instructions will probably be heavily used again in the next few. Conversely, pages that
have not been used for ages will probably remain unused for a long time. This idea suggests a realizable
algorithm: when a page fault occurs, throw out the page that has been unused for the longest time. This
strategy is called LRU (Least Recently Used) paging.

Although LRU is theoretically realizable, it is not cheap. To fully implement LRU, it is necessary to maintain
a linked list of all pages in memory, with the most recently used page at the front and the least recently used
page at the rear. The difficulty is that the list must be updated on every memory reference. Finding a page in
the list, deleting it, and then moving it to the front is a very time-consuming operation, even in hardware
(assuming that such hardware could be built).

However, there are other ways to implement LRU with special hardware. Let us consider the simplest way
first. This method requires equipping the hardware with a 64-bit counter, C, that is automatically incremented
after each instruction. Furthermore, each page table entry must also have a field large enough to contain the
counter. After each memory reference, the current value of C is stored in the page table entry for the page just
referenced. When a page fault occurs, the operating system examines all the counters in the page table to find
the lowest one. That page is the least recently used.

Now let us look at a second hardware LRU algorithm. For a machine with n page frames, the LRU hardware
can maintain a matrix of n x n bits, initially all zero. Whenever page frame k is referenced, the hardware first
sets all the bits of row k to 1, then sets all the bits of column k to 0. At any instant, the row whose binary value
is lowest is the least recently used, the row whose value is next lowest is next least recently used, and so forth.
The workings of this algorithm are given in Fig. 4-16 for four page frames and page references in the order

Figure 4-16. LRU using a matrix when pages are referenced in the order 0, 1, 2, 3, 2, 1, 0, 3, 2, 3. (This item is
displayed on page 402 in the print version)

[View full size image]

5

5

0 1 2 3 2 1 0 3 2 3

After page 0 is referenced, we have the situation of Fig. 4-16(a). After page 1 is referenced, we have the
situation of Fig. 4-16(b), and so forth.

4.4.7. Simulating LRU in Software

Although both of the previous LRU algorithms are realizable in principle, few, if any, machines have this
hardware, so they are of little use to the operating system designer who is making a system for a machine that
does not have this hardware. Instead, a solution that can be implemented in software is needed. One possible
software solution is called the NFU (Not Frequently Used) algorithm. It requires a software counter associated
with each page, initially zero. At each clock interrupt, the operating system scans all the pages in memory. For
each page, the R bit, which is 0 or 1, is added to the counter. In effect, the counters are an attempt to keep
track of how often each page has been referenced. When a page fault occurs, the page with the lowest counter
is chosen for replacement.

[Page 402]

The main problem with NFU is that it never forgets anything. For example, in a multipass compiler, pages
that were heavily used during pass 1 may still have a high count well into later passes. In fact, if pass 1
happens to have the longest execution time of all the passes, the pages containing the code for subsequent
passes may always have lower counts than the pass 1 pages. Thus the operating system will remove useful
pages instead of pages no longer in use.

Fortunately, a small modification to NFU makes it able to simulate LRU quite well. The modification has two
parts. First, the counters are each shifted right 1 bit before the R bit is added in. Second, the R bit is added to
the leftmost, rather than the rightmost bit.

Figure 4-17 illustrates how the modified algorithm, known as aging, works. Suppose that after the first clock
tick the R bits for pages 0 to 5 have the values 1, 0, 1, 0, 1, and 1, respectively (page 0 is 1, page 1 is 0, page 2
is 1, etc.). In other words, between tick 0 and tick 1, pages 0, 2, 4, and 5 were referenced, setting their R bits
to 1, while the other ones remain 0. After the six corresponding counters have been shifted and the R bit
inserted at the left, they have the values shown in Fig. 4-17(a). The four remaining columns show the values
of the six counters after the next four clock ticks, respectively.

6

6

[Page 403]

Figure 4-17. The aging algorithm simulates LRU in software. Shown are six pages for five clock ticks. The five
clock ticks are represented by (a) to (e).

[View full size image]

When a page fault occurs, the page whose counter is the lowest is removed. It is clear that a page that has not
been referenced for, say, four clock ticks will have four leading zeros in its counter and thus will have a lower
value than a counter that has not been referenced for three clock ticks.

This algorithm differs from LRU in two ways. Consider pages 3 and 5 in Fig. 4-17(e). Neither has been
referenced for two clock ticks; both were referenced in the tick prior to that. According to LRU, if a page must
be replaced, we should choose one of these two. The trouble is, we do not know which of these two was
referenced last in the interval between tick 1 and tick 2. By recording only one bit per time interval, we have
lost the ability to distinguish references early in the clock interval from those occurring later. All we can do is
remove page 3, because page 5 was also referenced two ticks earlier and page 3 was not referenced then.

The second difference between LRU and aging is that in aging the counters have a finite number of bits, 8 bits
in this example. Suppose that two pages each have a counter value of 0. All we can do is pick one of them at
random. In reality, it may well be that one of the pages was last referenced 9 ticks ago and the other was last
referenced 1000 ticks ago. We have no way of seeing that. In practice, however, 8 bits is generally enough if a
clock tick is around 20 msec. If a page has not been referenced in 160 msec, it probably is not that important.

7

7

8

8

[Page 404]

4.5. Design Issues for Paging Systems

In the previous sections we have explained how paging works and have given a few of the basic page
replacement algorithms and shown how to model them. But knowing the bare mechanics is not enough. To
design a system, you have to know a lot more to make it work well. It is like the difference between knowing
how to move the rook, knight, and other pieces in chess, and being a good player. In the following sections,
we will look at other issues that operating system designers must consider in order to get good performance
from a paging system.

4.5.1. The Working Set Model

In the purest form of paging, processes are started up with none of their pages in memory. As soon as the CPU
tries to fetch the first instruction, it gets a page fault, causing the operating system to bring in the page
containing the first instruction. Other page faults for global variables and the stack usually follow quickly.
After a while, the process has most of the pages it needs and settles down to run with relatively few page
faults. This strategy is called demand paging because pages are loaded only on demand, not in advance.

Of course, it is easy enough to write a test program that systematically reads all the pages in a large address
space, causing so many page faults that there is not enough memory to hold them all. Fortunately, most
processes do not work this way. They exhibit a locality of reference, meaning that during any phase of
execution, the process references only a relatively small fraction of its pages. Each pass of a multipass
compiler, for example, references only a fraction of the pages, and a different fraction at that. The concept of
locality of reference is widely applicable in computer science, for a history see Denning (2005).

The set of pages that a process is currently using is called its working set (Denning, 1968a; Denning, 1980). If
the entire working set is in memory, the process will run without causing many faults until it moves into
another execution phase (e.g., the next pass of the compiler). If the available memory is too small to hold the
entire working set, the process will cause numerous page faults and run slowly since executing an instruction
takes a few nanoseconds and reading in a page from the disk typically takes 10 milliseconds. At a rate of one
or two instructions per 10 milliseconds, it will take ages to finish. A program causing page faults every few
instructions is said to be thrashing (Denning, 1968b).

In a multiprogramming system, processes are frequently moved to disk (i.e., all their pages are removed from
memory) to let other processes have a turn at the CPU. The question arises of what to do when a process is
brought back in again. Technically, nothing need be done. The process will just cause page faults until its
working set has been loaded. The problem is that having 20, 100, or even 1000 page faults every time a
process is loaded is slow, and it also wastes considerable CPU time, since it takes the operating system a few
milliseconds of CPU time to process a page fault, not to mention a fair amount of disk I/O.

[Page 405]

Therefore, many paging systems try to keep track of each process' working set and make sure that it is in
memory before letting the process run. This approach is called the working set model (Denning, 1970). It is
designed to greatly reduce the page fault rate. Loading the pages before letting processes run is also called
prepaging. Note that the working set changes over time.

It has long been known that most programs do not reference their address space uniformly Instead the
references tend to cluster on a small number of pages. A memory reference may fetch an instruction, it may

1

1

fetch data, or it may store data. At any instant of time, t, there exists a set consisting of all the pages used by
the k most recent memory references. This set, w(k, t), is the working set. Because a larger value of k means
looking further into the past, the number of pages counted as part of the working set cannot decrease as k is
made larger. So w(k, t) is a monotonically nondecreasing function of k. The limit of w(k, t) as k becomes
large is finite because a program cannot reference more pages than its address space contains, and few
programs will use every single page. Figure 4-18 depicts the size of the working set as a function of k.

Figure 4-18. The working set is the set of pages used by the k most recent memory references. The function w(k,
t) is the size of the working set at time t.

The fact that most programs randomly access a small number of pages, but that this set changes slowly in time
explains the initial rapid rise of the curve and then the slow rise for large k. For example, a program that is
executing a loop occupying two pages using data on four pages, may reference all six pages every 1000
instructions, but the most recent reference to some other page may be a million instructions earlier, during the
initialization phase. Due to this asymptotic behavior, the contents of the working set is not sensitive to the
value of k chosen. To put it differently, there exists a wide range of k values for which the working set is
unchanged. Because the working set varies slowly with time, it is possible to make a reasonable guess as to
which pages will be needed when the program is restarted on the basis of its working set when it was last
stopped. Prepaging consists of loading these pages before the process is allowed to run again.

[Page 406]

To implement the working set model, it is necessary for the operating system to keep track of which pages are
in the working set. One way to monitor this information is to use the aging algorithm discussed above. Any
page containing a 1 bit among the high order n bits of the counter is considered to be a member of the working
set. If a page has not been referenced in n consecutive clock ticks, it is dropped from the working set. The
parameter n has to be determined experimentally for each system, but the system performance is usually not
especially sensitive to the exact value.

Information about the working set can be used to improve the performance of the clock algorithm. Normally,
when the hand points to a page whose R bit is 0, the page is evicted. The improvement is to check to see if
that page is part of the working set of the current process. If it is, the page is spared. This algorithm is called
wsclock.

4.5.2. Local versus Global Allocation Policies

In the preceding sections we have discussed several algorithms for choosing a page to replace when a fault
occurs. A major issue associated with this choice (which we have carefully swept under the rug until now) is

2

2

how memory should be allocated among the competing runnable processes.

Take a look at Fig. 4-19(a). In this figure, three processes, A, B, and C, make up the set of runnable processes.
Suppose A gets a page fault. Should the page replacement algorithm try to find the least recently used page
considering only the six pages currently allocated to A, or should it consider all the pages in memory? If it
looks only at A's pages, the page with the lowest age value is A5, so we get the situation of Fig. 4-19(b).

Figure 4-19. Local versus global page replacement. (a) Original configuration. (b) Local page replacement. (c)
Global page replacement. (This item is displayed on page 407 in the print version)

On the other hand, if the page with the lowest age value is removed without regard to whose page it is, page
B3 will be chosen and we will get the situation of Fig. 4-19(c). The algorithm of Fig. 4-19(b) is said to be a
local page replacement algorithm, whereas that of Fig. 4-19(c) is said to be a global algorithm. Local
algorithms effectively correspond to allocating every process a fixed fraction of the memory. Global
algorithms dynamically allocate page frames among the runnable processes. Thus the number of page frames
assigned to each process varies in time.

In general, global algorithms work better, especially when the working set size can vary over the lifetime of a
process. If a local algorithm is used and the working set grows, thrashing will result, even if there are plenty
of free page frames. If the working set shrinks, local algorithms waste memory. If a global algorithm is used,
the system must continually decide how many page frames to assign to each process. One way is to monitor
the working set size as indicated by the aging bits, but this approach does not necessarily prevent thrashing.
The working set may change size in microseconds, whereas the aging bits are a crude measure spread over a
number of clock ticks.

[Page 407]

Another approach is to have an algorithm for allocating page frames to processes. One way is to periodically
determine the number of running processes and allocate each process an equal share. Thus with 12,416
available (i.e., nonoperating system) page frames and 10 processes, each process gets 1241 frames. The
remaining 6 go into a pool to be used when page faults occur.

3

3

Although this method seems fair, it makes little sense to give equal shares of the memory to a 10-KB process
and a 300-KB process. Instead, pages can be allocated in proportion to each process' total size, with a 300-KB
process getting 30 times the allotment of a 10-KB process. It is probably wise to give each process some
minimum number, so it can run, no matter how small it is. On some machines, for example, a single
two-operand instruction may need as many as six pages because the instruction itself, the source operand, and
the destination operand may all straddle page boundaries. With an allocation of only five pages, programs
containing such instructions cannot execute at all.

If a global algorithm is used, it may be possible to start each process up with some number of pages
proportional to the process' size, but the allocation has to be updated dynamically as the processes run. One
way to manage the allocation is to use the PFF (Page Fault Frequency) algorithm. It tells when to increase or
decrease a process' page allocation but says nothing about which page to replace on a fault. It just controls the
size of the allocation set.

For a large class of page replacement algorithms, including LRU, it is known that the fault rate decreases as
more pages are assigned, as we discussed above. This is the assumption behind PFF. This property is
illustrated in Fig. 4-20.

[Page 408]

Figure 4-20. Page fault rate as a function of the number of page frames assigned.

Measuring the page fault rate is straightforward: just count the number of faults per second, possibly taking a
running mean over past seconds as well. One easy way to do this is to add the present second's value to the
current running mean and divide by two. The dashed line marked A corresponds to a page fault rate that is
unacceptably high, so the faulting process is given more page frames to reduce the fault rate. The dashed line
marked B corresponds to a page fault rate so low that it can be concluded that the process has too much
memory. In this case, page frames may be taken away from it. Thus, PFF tries to keep the paging rate for each
process within acceptable bounds.

If it discovers that there are so many processes in memory that it is not possible to keep all of them below A,
then some process is removed from memory, and its page frames are divided up among the remaining
processes or put into a pool of available pages that can be used on subsequent page faults. The decision to
remove a process from memory is a form of load control. It shows that even with paging, swapping is still
needed, only now swapping is used to reduce potential demand for memory, rather than to reclaim blocks of it
for immediate use. Swapping processes out to relieve the load on memory is reminiscent of two-level
scheduling, in which some processes are put on disk and a short-term scheduler is used to schedule the

4

4

remaining processes. Clearly, the two ideas can be combined, with just enough processes swapped out to
make the page-fault rate acceptable.

4.5.3. Page Size

The page size is often a parameter that can be chosen by the operating system. Even if the hardware has been
designed with, for example, 512-byte pages, the operating system can easily regard pages 0 and 1, 2 and 3, 4
and 5, and so on, as 1-KB pages by always allocating two consecutive 512-byte page frames for them.

Determining the best page size requires balancing several competing factors. As a result, there is no overall
optimum. To start with, there are two factors that argue for a small page size. A randomly chosen text, data, or
stack segment will not fill an integral number of pages. On the average, half of the final page will be empty.
The extra space in that page is wasted. This wastage is called internal fragmentation. With n segments in
memory and a page size of p bytes, np/ 2 bytes will be wasted on internal fragmentation. This argues for a
small page size.

[Page 409]

Another argument for a small page size becomes apparent if we think about a program consisting of eight
sequential phases of 4 KB each. With a 32-KB page size, the program must be allocated 32 KB all the time.
With a 16-KB page size, it needs only 16 KB. With a page size of 4 KB or smaller, it requires only 4 KB at
any instant. In general, a large page size will cause more unused program to be in memory than a small page
size.

On the other hand, small pages mean that programs will need many pages, hence a large page table. A 32-KB
program needs only four 8-KB pages, but 64 512-byte pages. Transfers to and from the disk are generally a
page at a time, with most of the time being for the seek and rotational delay, so that transferring a small page
takes almost as much time as transferring a large page. It might take 64 x 10 msec to load 64 512-byte pages,
but only 4 x 10.1 msec to load four 8-KB pages.

On some machines, the page table must be loaded into hardware registers every time the CPU switches from
one process to another. On these machines having a small page size means that the time required to load the
page registers gets longer as the page size gets smaller. Furthermore, the space occupied by the page table
increases as the page size decreases.

This last point can be analyzed mathematically. Let the average process size be s bytes and the page size be p
bytes. Furthermore, assume that each page entry requires e bytes. The approximate number of pages needed
per process is then s/p, occupying se/p bytes of page table space. The wasted memory in the last page of the
process due to internal fragmentation is p/ 2. Thus, the total overhead due to the page table and the internal
fragmentation loss is given by the sum of these two terms:

overhead = se/p + p/2

The first term (page table size) is large when the page size is small. The second term (internal fragmentation)
is large when the page size is large. The optimum must lie somewhere in between. By taking the first
derivative with respect to p and equating it to zero, we get the equation

5

5

From this equation we can derive a formula that gives the optimum page size (considering only memory
wasted in fragmentation and page table size). The result is:

[Page 410]

For s = 1MB and e = 8 bytes per page table entry, the optimum page size is 4 KB. Commercially available
computers have used page sizes ranging from 512 bytes to 1 MB. A typical value used to 1 KB, but nowadays
4 KB or 8 KB are more common. As memories get larger, the page size tends to get larger as well (but not
linearly). Quadrupling the RAM size rarely even doubles the page size.

4.5.4. Virtual Memory Interface

Up until now, our whole discussion has assumed that virtual memory is transparent to processes and
programmers. That is, all they see is a large virtual address space on a computer with a small(er) physical
memory. With many systems, that is true, but in some advanced systems, programmers have some control
over the memory map and can use it in nontraditional ways to enhance program behavior. In this section, we
will briefly look at a few of these.

One reason for giving programmers control over their memory map is to allow two or more processes to share
the same memory. If programmers can name regions of their memory, it may be possible for one process to
give another process the name of a memory region so that process can also map it in. With two (or more)
processes sharing the same pages, high bandwidth sharing becomes possible: one process writes into the
shared memory and another one reads from it.

Sharing of pages can also be used to implement a high-performance message passing system. Normally, when
messages are passed, the data are copied from one address space to another, at considerable cost. If processes
can control their page map, a message can be passed by having the sending process unmap the page(s)
containing the message, and the receiving process mapping them in. Here only the page names have to be
copied, instead of all the data.

Yet another advanced memory management technique is distributed shared memory (Feeley et al., 1995; Li
and Hudak, 1989; and Zekauskas et al., 1994). The idea here is to allow multiple processes over a network to
share a set of pages, possibly, but not necessarily, as a single shared linear address space. When a process
references a page that is not currently mapped in, it gets a page fault. The page fault handler, which may be in
the kernel or in user space, then locates the machine holding the page and sends it a message asking it to
unmap the page and send it over the network. When the page arrives, it is mapped in and the faulting
instruction is restarted.

6

6

[Page 410 (continued)]

4.6. Segmentation

The virtual memory discussed so far is one-dimensional because the virtual addresses go
from 0 to some maximum address, one address after another. For many problems,
having two or more separate virtual address spaces may be much better than having only
one. For example, a compiler has many tables that are built up as compilation proceeds,
possibly including

[Page 411]

1. The source text being saved for the printed listing (on batch systems).

2. The symbol table, containing the names and attributes of variables.

3. The table containing all the integer and floating-point constants used.

4. The parse tree, containing the syntactic analysis of the program.

5. The stack used for procedure calls within the compiler.

Each of the first four tables grows continuously as compilation proceeds. The last one
grows and shrinks in unpredictable ways during compilation. In a one-dimensional
memory, these five tables would have to be allocated contiguous chunks of virtual
address space, as in Fig. 4-21.

Figure 4-21. In a one-dimensional address space with growing tables, one table may bump
into another.

1

1

Consider what happens if a program has an exceptionally large number of variables but a
normal amount of everything else. The chunk of address space allocated for the symbol
table may fill up, but there may be lots of room in the other tables. The compiler could,
of course, simply issue a message saying that the compilation cannot continue due to too
many variables, but doing so does not seem very sporting when unused space is left in
the other tables.

Another possibility is to play Robin Hood, taking space from the tables with an excess of
room and giving it to the tables with little room. This shuffling can be done, but it is
analogous to managing one's own overlaysa nuisance at best and a great deal of tedious,
unrewarding work at worst.

[Page 412]

What is really needed is a way of freeing the programmer from having to manage the
expanding and contracting tables, in the same way that virtual memory eliminates the
worry of organizing the program into overlays.

A straightforward and extremely general solution is to provide the machine with many
completely independent address spaces, called segments. Each segment consists of a
linear sequence of addresses, from 0 to some maximum. The length of each segment
may be anything from 0 to the maximum allowed. Different segments may, and usually
do, have different lengths. Moreover, segment lengths may change during execution.
The length of a stack segment may be increased whenever something is pushed onto the
stack and decreased whenever something is popped off the stack.

Because each segment constitutes a separate address space, different segments can grow
or shrink independently, without affecting each other. If a stack in a certain segment

2

2

needs more address space to grow, it can have it, because there is nothing else in its
address space to bump into. Of course, a segment can fill up but segments are usually
very large, so this occurrence is rare. To specify an address in this segmented or
two-dimensional memory, the program must supply a two-part address, a segment
number, and an address within the segment. Figure 4-22 illustrates a segmented memory
being used for the compiler tables discussed earlier. Five independent segments are
shown here.

Figure 4-22. A segmented memory allows each table to grow or shrink independently of the
other tables.

[View full size image]

We emphasize that in its purest form, a segment is a logical entity, which the
programmer is aware of and uses as a logical entity. A segment might contain one or
more procedures, or an array, or a stack, or a collection of scalar variables, but usually it
does not contain a mixture of different types.

[Page 413]

A segmented memory has other advantages besides simplifying the handling of data
structures that are growing or shrinking. If each procedure occupies a separate segment,
with address 0 as its starting address, the linking up of procedures compiled separately is
greatly simplified. After all the procedures that constitute a program have been compiled
and linked up, a procedure call to the procedure in segment n will use the two-part
address (n, 0) to address word 0 (the entry point).

If the procedure in segment n is subsequently modified and recompiled, no other
procedures need be changed (because no starting addresses have been modified), even if
the new version is larger than the old one. With a one-dimensional memory, the
procedures are packed tightly next to each other, with no address space between them.
Consequently, changing one procedure's size can affect the starting address of other,
unrelated procedures. This, in turn, requires modifying all procedures that call any of the
moved procedures, in order to incorporate their new starting addresses. If a program
contains hundreds of procedures, this process can be costly.

3

3

Segmentation also facilitates sharing procedures or data between several processes. A
common example is the shared library. Modern workstations that run advanced window
systems often have extremely large graphical libraries compiled into nearly every
program. In a segmented system, the graphical library can be put in a segment and
shared by multiple processes, eliminating the need for having it in every process' address
space. While it is also possible to have shared libraries in pure paging systems, it is
much more complicated. In effect, these systems do it by simulating segmentation.

Because each segment forms a logical entity of which the programmer is aware, such as
a procedure, or an array, or a stack, different segments can have different kinds of
protection. A procedure segment can be specified as execute only, prohibiting attempts
to read from it or store into it. A floating-point array can be specified as read/write but
not execute, and attempts to jump to it will be caught. Such protection is helpful in
catching programming errors.

You should try to understand why protection makes sense in a segmented memory but
not in a one-dimensional paged memory. In a segmented memory the user is aware of
what is in each segment. Normally, a segment would not contain a procedure and a
stack, for example, but one or the other. Since each segment contains only one type of
object, the segment can have the protection appropriate for that particular type. Paging
and segmentation are compared in Fig. 4-23.

Figure 4-23. Comparison of paging and segmentation. (This item is displayed on page 414
in the print version)

Consideration Paging Segmentation
Need the programmer be aware that this technique is being used? No Yes
How many linear address spaces are there? 1 Many
Can the total address space exceed the size of physical memory? Yes Yes
Can procedures and data be distinguished and separately protected? No Yes
Can tables whose size fluctuates be accommodated easily? No Yes
Is sharing of procedures between users facilitated? No Yes
Why was this technique invented? To get a

large
linear
address
space
without
having
to buy
more
physical
memory

To allow
programs and
data to be
broken up
into logically
independent
address
spaces and to
aid sharing
and
protection

The contents of a page are, in a certain sense, accidental. The programmer is unaware of the fact that paging is
even occurring. Although putting a few bits in each entry of the page table to specify the access allowed
would be possible, to utilize this feature the programmer would have to keep track of where in his address
space all the page boundaries were. However, that is precisely the sort of complex administration that paging
was invented to eliminate. Because the user of a segmented memory has the illusion that all segments are in
main memory all the timethat is, he can address them as though they werehe can protect each segment
separately, without having to be concerned with the administration of overlaying them.

[Page 414]

4

4

4.6.1. Implementation of Pure Segmentation

The implementation of segmentation differs from paging in an essential way: pages are fixed size and
segments are not. Figure 4-24(a) shows an example of physical memory initially containing five segments.
Now consider what happens if segment 1 is evicted and segment 7, which is smaller, is put in its place. We
arrive at the memory configuration of Fig. 4-24(b). Between segment 7 and segment 2 is an unused areathat
is, a hole. Then segment 4 is replaced by segment 5, as in Fig. 4-24(c), and segment 3 is replaced by segment
6, as in Fig. 4-24(d). After the system has been running for a while, memory will be divided up into a number
of chunks, some containing segments and some containing holes. This phenomenon, called checkerboarding
or external fragmentation, wastes memory in the holes. It can be dealt with by compaction, as shown in Fig.
4-24(e).

[Page 415]

Figure 4-24. (a)-(d) Development of checkerboarding. (e) Removal of the checkerboarding by compaction.

[View full size image]

4.6.2. Segmentation with Paging: The Intel Pentium

The Pentium supports up to 16K segments, each with up to 232 bytes of virtual address space. The Pentium
can be set up (by the operating system) to use only segmentation, only paging, or both. Most operating
systems, including Windows XP and all flavors of UNIX, use the pure paging model, in which each process
has a single segment of 232 bytes. Since the Pentium is capable of providing processes with a much larger
address space, and one operating system (OS/2) did actually use the full power of the addressing, we will
describe how Pentium virtual memory works in its full generality.

The heart of the Pentium virtual memory consists of two tables, the LDT (Local Descriptor Table) and the
GDT (Global Descriptor Table). Each program has its own LDT, but there is a single GDT, shared by all the
programs on the computer. The LDT describes segments local to each program, including its code, data, stack,
and so on, whereas the GDT describes system segments, including the operating system itself.

To access a segment, a Pentium program first loads a selector for that segment into one of the machine's six
segment registers. During execution, the CS register holds the selector for the code segment and the DS
register holds the selector for the data segment. The other segment registers are less important. Each selector
is a 16-bit number, as shown in Fig. 4-25.

5

5

Figure 4-25. A Pentium selector. (This item is displayed on page 416 in the print version)

One of the selector bits tells whether the segment is local or global (i.e., whether it is in the LDT or GDT).
Thirteen other bits specify the LDT or GDT entry number; thus tables are each restricted to holding 8K
segment descriptors. The other 2 bits relate to protection, and will be described later. Descriptor 0 is
forbidden. It may be safely loaded into a segment register to indicate that the segment register is not currently
available. It causes a trap if used.

[Page 416]

At the time a selector is loaded into a segment register, the corresponding descriptor is fetched from the LDT
or GDT and stored in microprogram registers, so it can be accessed quickly. A descriptor consists of 8 bytes,
including the segment's base address, size, and other information, as depicted in Fig. 4-26.

Figure 4-26. Pentium code segment descriptor. Data segments differ slightly.

[View full size image]

The format of the selector has been cleverly chosen to make locating the descriptor easy. First either the LDT
or GDT is selected, based on selector bit 2. Then the selector is copied to an internal scratch register, and the 3
low-order bits set to 0. Finally, the address of either the LDT or GDT table is added to it, to give a direct
pointer to the descriptor. For example, selector 72 refers to entry 9 in the GDT, which is located at address
GDT + 72.

Let us trace the steps by which a (selector, offset) pair is converted to a physical address. As soon as the
microprogram knows which segment register is being used, it can find the complete descriptor corresponding
to that selector in its internal registers. If the segment does not exist (selector 0), or is currently paged out, a
trap occurs.

6

6

It then checks to see if the offset is beyond the end of the segment, in which case a trap also occurs. Logically,
there should simply be a 32-bit field in the descriptor giving the size of the segment, but there are only 20 bits
available, so a different scheme is used. If the gbit (Granularity) field is 0, the limit field is the exact segment
size, up to 1 MB. If it is 1, the limit field gives the segment size in pages instead of bytes. The Pentium page
size is fixed at 4 KB, so 20 bits are enough for segments up to 232 bytes.

[Page 417]

Assuming that the segment is in memory and the offset is in range, the Pentium then adds the 32-bit base field
in the descriptor to the offset to form what is called a linear address, as shown in Fig. 4-27. The base field is
broken up into three pieces and spread all over the descriptor for compatibility with the 286, in which the base
is only 24 bits. In effect, the base field allows each segment to start at an arbitrary place within the 32-bit
linear address space.

Figure 4-27. Conversion of a (selector, offset) pair to a linear address.

If paging is disabled (by a bit in a global control register), the linear address is interpreted as the physical
address and sent to the memory for the read or write. Thus with paging disabled, we have a pure segmentation
scheme, with each segment's base address given in its descriptor. Segments are permitted to overlap,
incidentally, probably because it would be too much trouble and take too much time to verify that they were
all disjoint.

On the other hand, if paging is enabled, the linear address is interpreted as a virtual address and mapped onto
the physical address using page tables, pretty much as in our earlier examples. The only real complication is
that with a 32-bit virtual address and a 4-KB page, a segment might contain 1 million pages, so a two-level
mapping is used to reduce the page table size for small segments.

Each running program has a page directory consisting of 1024 32-bit entries. It is located at an address
pointed to by a global register. Each entry in this directory points to a page table also containing 1024 32-bit
entries. The page table entries point to page frames. The scheme is shown in Fig. 4-28.

Figure 4-28. Mapping of a linear address onto a physical address. (This item is displayed on page 418 in the print
version)

[View full size image]

7

7

In Fig. 4-28(a) we see a linear address divided into three fields, dir, page, and offset. The dir field is used to
index into the page directory to locate a pointer to the proper page table. Then the page field is used as an
index into the page table to find the physical address of the page frame. Finally, offset is added to the address
of the page frame to get the physical address of the byte or word needed.

[Page 418]

The page table entries are 32 bits each, 20 of which contain a page frame number. The remaining bits contain
access and dirty bits, set by the hardware for the benefit of the operating system, protection bits, and other
utility bits.

Each page table has entries for 1024 4-KB page frames, so a single page table handles 4 megabytes of
memory. A segment shorter than 4-MB will have a page directory with a single entry, a pointer to its one and
only page table. In this way, the overhead for short segments is only two pages, instead of the million pages
that would be needed in a one-level page table.

To avoid making repeated references to memory, the Pentium has a small TLB that directly maps the most
recently used dirpage combinations onto the physical address of the page frame. Only when the current
combination is not present in the TLB is the mechanism of Fig. 4-28 actually carried out and the TLB
updated. As long as TLB misses are rare, performance is good.

A little thought will reveal the fact that when paging is used, there is really no point in having the base field in
the descriptor be nonzero. All that base does is cause a small offset to use an entry in the middle of the page
directory, instead of at the beginning. The real reason for including base at all is to allow pure (non-paged)
segmentation, and for compatibility with the 286, which always has paging disabled (i.e., the 286 has only
pure segmentation, but not paging).

[Page 419]

It is also worth noting that if some application does not need segmentation but is content with a single, paged,
32-bit address space, that model is possible. All the segment registers can be set up with the same selector,
whose descriptor has base = 0 and limit set to the maximum. The instruction offset will then be the linear
address, with only a single address space usedin effect, normal paging. In fact, all current operating systems

8

8

for the Pentium work this way. OS/2 was the only one that used the full power of the Intel MMU architecture.

All in all, one has to give credit to the Pentium designers. Given the conflicting goals of implementing pure
paging, pure segmentation, and paged segments, while at the same time being compatible with the 286, and
doing all of this efficiently, the resulting design is surprisingly simple and clean.

Although we have covered the complete architecture of the Pentium virtual memory, albeit briefly, it is worth
saying a few words about protection, since this subject is intimately related to the virtual memory. The
Pentium supports four protection levels with level 0 being the most privileged and level 3 the least. These are
shown in Fig. 4-29. At each instant, a running program is at a certain level, indicated by a 2-bit field in its
PSW. Each segment in the system also has a level.

Figure 4-29. Protection on the Pentium.

As long as a program restricts itself to using segments at its own level, everything works fine. Attempts to
access data at a higher level are permitted. Attempts to access data at a lower level are illegal and cause traps.
Attempts to call procedures at a different level (higher or lower) are allowed, but in a carefully controlled
way. To make an interlevel call, the CALL instruction must contain a selector instead of an address. This
selector designates a descriptor called a call gate, which gives the address of the procedure to be called. Thus
it is not possible to jump into the middle of an arbitrary code segment at a different level. Only official entry
points may be used.

[Page 420]

A typical use for this mechanism is suggested in Fig. 4-29. At level 0, we find the kernel of the operating
system, which handles I/O, memory management, and other critical matters. At level 1, the system call
handler is present. User programs may call procedures here to have system calls carried out, but only a
specific and protected list of procedures may be called. Level 2 contains library procedures, possibly shared
among many running programs. User programs may call these procedures and read their data, but they may

9

9

not modify them. Finally, user programs run at level 3, which has the least protection.

Traps and interrupts use a mechanism similar to the call gates. They, too, reference descriptors, rather than
absolute addresses, and these descriptors point to specific procedures to be executed. The type field in Fig.
4-26 distinguishes between code segments, data segments, and the various kinds of gates.

10

10

[Page 420 (continued)]

4.7. Overview of the MINIX 3 Process Manager

Memory management in MINIX 3 is simple: paging is not used at all. MINIX 3
memory management as we will discuss it here does not include swapping either.
Swapping code is available in the complete source and could be activated to make
MINIX 3 work on a system with limited physical memory. In practice, memories are
so large now that swapping is rarely needed.

In this chapter we will study a user-space server designated the process manager, or
PM for short. The process manager handles system calls relating to process
management. Of these some are intimately involved with memory management. The
fork, exec, and brk calls are in this category. Process management also includes
processing system calls related to signals, setting and examining process properties
such as user and group ownership, and reporting CPU usage times. The MINIX 3
process manager also handles setting and querying the real time clock.

Sometimes when we are referring to that part of the process manager that handles
memory management, we will refer to it as the "memory manager." It is possible that
in a future release, process management and memory management will be completely
separated, but in MINIX 3 the two functions are merged into one process.

The PM maintains a list of holes sorted in numerical memory address order. When
memory is needed, either due to a fork or an exec system call, the hole list is
searched using first fit for a hole that is big enough. Without swapping, a process that
has been placed in memory remains in exactly the same place during its entire
execution. It is never moved to another place in memory, nor does its allocated
memory area ever grow or shrink.

[Page 421]

This strategy for managing memory is somewhat unusual and deserves some
explanation. It was originally derived from three factors:

1. The desire to keep the system easy to understand.

2. The architecture of the original IBM PC CPU (an Intel 8088),

3. The goal of making MINIX 3 easy to port to other hardware,

First, as a teaching system, avoiding complexity was highly desirable; a source code
listing of nearly 250 pages was deemed long enough. Second, the system was
designed for the original IBM PC, which did not even have an MMU, so including
paging was impossible to start with. Third, since other computers of its era also lacked
MMUs, this memory management strategy made porting to the Macintosh, Atari,
Amiga, and other machines easier.

Of course, one can rightly ask if such a strategy still makes sense. The first point is

1

1

still valid, although the system has definitely grown over the years. However, several
new factors also play a role now. Modern PCs have more than 1000 times as much
memory available as the original IBM PC. While programs are bigger, most systems
have so much memory that swapping and paging are hardly needed. Finally, MINIX 3
is targeted to some extent at low-end systems such as embedded systems. Nowadays,
digital cameras, DVD players, stereos, cell phones, and other products have operating
systems, but certainly do not support swapping or paging. MINIX 3 is quite a
reasonable choice in this world, so swapping and paging are not a high priority.
Nevertheless, some work is in progress to see what can be done in the area of virtual
memory in the simplest possible way. The Web site should be consulted to follow
current developments.

It is also worth pointing out another way in which implementation of memory
management in MINIX 3 differs from that of many other operating systems. The PM
is not part of the kernel. Instead, it is a process that runs in user space and
communicates with the kernel by the standard message mechanism. The position of
the PM is shown in Fig. 2-29.

Moving the PM out of the kernel is an example of the separation of policy and
mechanism. The decisions about which process will be placed where in memory
(policy) are made by the PM. The actual setting of memory maps for processes
(mechanism) is done by the system task within the kernel. This split makes it
relatively easy to change the memory management policy (algorithms, etc.) without
having to modify the lowest layers of the operating system.

Most of the PM code is devoted to handling the MINIX 3 system calls that involve
creating processes, primarily fork and exec, rather than just manipulating lists of
processes and holes. In the next section we will look at the memory layout, and in
subsequent sections we will take a bird's-eye view of how the process management
system calls are handled by the PM.

[Page 422]

4.7.1. Memory Layout

MINIX 3 programs may be compiled to use combined I and D space, in which all
parts of the process (text, data, and stack) share a block of memory which is allocated
and released as one block. This was the default for the original version of MINIX. In
MINIX 3, however, the default is to compile programs to use separate I and D space.
For clarity, allocation of memory for the simpler combined model will be discussed
first. Processes using separate I and D space can use memory more efficiently, but
taking advantage of this feature complicates things. We will discuss the complications
after the simple case has been outlined.

In normal MINIX 3 operation memory is allocated on two occasions. First, when a
process forks, the amount of memory needed by the child is allocated. Second, when a
process changes its memory image via the exec system call, the space occupied by
the old image is returned to the free list as a hole, and memory is allocated for the new
image. The new image may be in a part of memory different from the released
memory. Its location will depend upon where an adequate hole is found. Memory is
also released whenever a process terminates, either by exiting or by being killed by a
signal. There is a third case: a system process can request memory for its own use; for

2

2

instance, the memory driver can request memory for the RAM disk. This can only
happen during system initialization.

Figure 4-30 shows memory allocation during a fork and an exec. In Fig. 4-30(a)
we see two processes, A and B, in memory. If A forks, we get the situation of Fig.
4-30(b). The child is an exact copy of A. If the child now execs the file C, the
memory looks like Fig. 4-30(c). The child's image is replaced by C.

Figure 4-30. Memory allocation. (a) Originally. (b) After a fork. (c) After the child does an
exec. The shaded regions are unused memory. The process is a common I&D one.

Note that the old memory for the child is released before the new memory for C is
allocated, so that C can use the child's memory. In this way, a series of fork and
exec pairs (such as the shell setting up a pipeline) can result in all the processes
being adjacent, with no holes between them, assuming a large block of unallocated
memory exists. Holes would remain if the new memory had been allocated before the
old memory had been released.

[Page 423]

Doing it this way is not trivial. Consider the possible error condition that there is not
enough memory to perform an exec. A test for sufficient memory to complete the
operation should be performed before the child's memory is released, so the child can
respond to the error somehow. This means the child's memory must be considered as
if it were a hole while it is still in use.

When memory is allocated, either by the fork or exec system calls, a certain
amount of it is taken for the new process. In the former case, the amount taken is
identical to what the parent process has. In the latter case, the PM takes the amount
specified in the header of the file executed. Once this allocation has been made, under
no conditions is the process ever allocated any more total memory.

What has been said so far applies to programs that have been compiled with combined
I and D space. Programs with separate I and D space take advantage of an enhanced
mode of memory management called shared text. When such a process does a fork,
only the amount of memory needed for a copy of the new process' data and stack is

3

3

allocated. Both the parent and the child share the executable code already in use by
the parent. When such a process does an exec, the process table is searched to see if
another process is already using the executable code needed. If one is found, new
memory is allocated only for the data and stack, and the text already in memory is
shared. Shared text complicates termination of a process. When a process terminates it
always releases the memory occupied by its data and stack. But it only releases the
memory occupied by its text segment after a search of the process table reveals that no
other current process is sharing that memory. Thus a process may be allocated more
memory when it starts than it releases when it terminates, if it loaded its own text
when it started but that text is being shared by one or more other processes when the
first process terminates.

Figure 4-31 shows how a program is stored as a disk file and how this is transferred to
the internal memory layout of a MINIX 3 process. The header on the disk file contains
information about the sizes of the different parts of the image, as well as the total size.
In the header of a program with common I and D space, a field specifies the total size
of the text and data parts; these parts are copied directly to the memory image. The
data part in the image is enlarged by the amount specified in the bss field in the
header. This area is cleared to contain all zeroes and is used for uninitialized static
data. The total amount of memory to be allocated is specified by the total field in the
header. If, for example, a program has 4 KB of text, 2 KB of data plus bss, and 1 KB
of stack, and the header says to allocate 40 KB total, the gap of unused memory
between the data segment and the stack segment will be 33 KB. A program file on the
disk may also contain a symbol table. This is for use in debugging and is not copied
into memory.

[Page 424]

Figure 4-31. (a) A program as stored in a disk file. (b) Internal memory layout for a single
process. In both parts of the figure the lowest disk or memory address is at the bottom

and the highest address is at the top.

If the programmer knows that the total memory needed for the combined growth of
the data and stack segments for the file a.out is at most 10 KB, he can give the
command

chmem =10240 a.out

4

4

which changes the header field so that upon exec the PM allocates a space 10240
bytes more than the sum of the initial text and data segments. For the above example,
a total of 16 KB will be allocated on all subsequent execs of the file. Of this amount,
the topmost 1 KB will be used for the stack, and 9 KB will be in the gap, where it can
be used by growth of the stack, the data area, or both, as actually needed.

For a program using separate I and D space (indicated by a bit in the header that is set
by the linker), the total field in the header applies to the combined data and stack
space only. A program with 4 KB of text, 2 KB of data, 1 KB of stack, and a total size
of 64 KB will be allocated 68 KB (4 KB instruction space, 64 KB stack and data
space), leaving 61 KB for the data segment and stack to consume during execution.
The boundary of the data segment can be moved only by the brk system call. All
brk does is check to see if the new data segment bumps into the current stack pointer,
and if not, notes the change in some internal tables. This is entirely internal to the
memory originally allocated to the process; no additional memory is allocated by the
operating system. If the new data segment bumps into the stack, the call fails.

This is a good place to mention a possible semantic difficulty. When we use the word
"segment," we refer to an area of memory defined by the operating system. Intel
processors have a set of internal segment registers and segment descriptor tables
which provide hardware support for "segments." The Intel hardware designers'
concept of a segment is similar to, but not always the same as, the segments used and
defined by MINIX 3. All references to segments in this text should be interpreted as
references to memory areas delineated by MINIX 3 data structures. We will refer
explicitly to "segment registers" or "segment descriptors" when talking about the
hardware.

[Page 425]

This warning can be generalized. Hardware designers often try to provide support for
the operating systems that they expect to be used on their machines, and the
terminology used to describe registers and other aspects of a processor's architecture
usually reflects an idea of how the features will be used. Such features are often useful
to the implementer of an operating system, but they may not be used in the same way
the hardware designer foresaw. This can lead to misunderstandings when the same
word has different meanings when used to describe an aspect of an operating system
or of the underlying hardware.

4.7.2. Message Handling

Like all the other components of MINIX 3, the process manager is message driven.
After the system has been initialized, PM enters its main loop, which consists of
waiting for a message, carrying out the request contained in the message, and sending
a reply.

Two message categories may be received by the process manager. For high priority
communication between the kernel and system servers such as PM, a system
notification message is used. These are special cases to be discussed in the
implementation section of this chapter. The majority of messages received by the
process manager result from system calls originated by user processes. For this
category, Figure 4-32 gives the list of legal message types, input parameters, and
values sent back in the reply message.

5

5

Figure 4-32. The message types, input parameters, and reply values used for
communicating with the PM. (This item is displayed on page 427 in the print version)

Message type Input
parameters

Reply
value

fork (none) Child's
PID, (to
child: 0)

exit Exit status (No reply if
successful)

wait (none) Status
waitpid Process

identifier
and flags

Status

brk New size New size
exec Pointer to

initial stack
(No reply if
successful)

kill Process
identifier
and signal

Status

alarm Number of
seconds to
wait

Residual
time

pause (none) (No reply if
successful)

sigaction Signal
number,
action, old
action

Status

sigsuspend Signal
mask

(No reply if
successful)

sigpending (none) Status
sigprocmask How, set,

old set
Status

sigreturn Context Status
getuid (none) Uid,

effective
uid

getgid (none) Gid,
effective
gid

getpid (none) PID, parent
PID

setuid New uid Status
setgid New gid Status
setsid New sid Process

group
getpgrp New gid Process

group
time Pointer to

place
where
current
time goes

Status

stime Pointer to
current

Status

6

6

time
times Pointer to

buffer for
process and
child times

Uptime
since boot

ptrace Request,
PID,
address,
data

Status

reboot How (halt,
reboot, or
panic)

(No reply if
successful)

svrctl Request,
data
(depends
upon
function)

Status

getsysinfo Request,
data
(depends
upon
function)

Status

getprocnr (none) Proc
number

memalloc Size,
pointer to
address

Status

memfree Size,
address

Status

getpriority Pid, type,
value

Priority
(nice value)

setpriority Pid, type,
value

Priority
(nice value)

gettimeofday (none) Time,
uptime

Fork, exit, wait, waitpid, brk, and exec are clearly closely related to memory allocation and
deallocation. The calls kill, alarm, and pause are all related to signals, as are sigaction,
sigsuspend, sigpending, sigmask, and sigreturn. These also can affect what is in memory,
because when a signal kills a process the memory used by that process is deallocated. The seven get/set
calls have nothing to do with memory management at all, but they certainly relate to process management.
Other calls could go either in the file system or the PM, since every system call is handled by one or the other.
They were put here simply because the file system was large enough already. The time, stime, and
times calls were put here for this reason, as was ptrace, which is used in debugging.

Reboot has effects throughout the operating system, but its first job is to send signals to terminate all
processes in a controlled way, so the PM is a good place for it. The same is true of svrctl, whose most
important use is to enable or disable swapping in the PM.

You may have noticed that the last two calls mentioned here, reboot and svrctl, were not listed in Fig.
1-9. This also true of the remaining calls in Fig. 4-32, getsysinfo, getprocnr, memalloc,
memfree, and getsetpriority. None of these are intended for use by ordinary user processes, and they
are not parts of the POSIX standard. They are provided because they are needed in a system like MINIX 3. In

7

7

a system with a monolithic kernel the operations provided by these calls could be provided by calls to
functions compiled into the kernel. But in MINIX 3 components that are normally considered part of the
operating system run in user space, and additional system calls are needed. Some of these do little more than
implement an interface to a kernel call, a term we use for calls that request kernel services via the system task.

[Page 426]

As mentioned in Chap. 1, although there is a library routine sbrk, there is no system call sbrk. The library
routine computes the amount of memory needed by adding the increment or decrement specified as parameter
to the current size and makes a brk call to set the size. Similarly, there are no separate system calls for
geteuid and getegid. The calls getuid and getgid return both the effective and real identifiers. In like
manner, getpid returns the PID of both the calling process and its parent.

A key data structure used for message processing is the call_vec table declared in table.c. It contains pointers
to the procedures that handle the various message types. When a message comes in to the PM, the main loop
extracts the message type and puts it in the global variable call_nr. This value is then used to index into
call_vec to find the pointer to the procedure that handles the newly arrived message. That procedure is then
called to execute the system call. The value that it returns is sent back to the caller in the reply message to
report on the success or failure of the call. The mechanism is similar to the table of pointers to system call
handlers used in step 7 of Fig. 1-16, only in user space rather than in the kernel.

4.7.3. Process Manager Data Structures and Algorithms

Two key data structures are used by the process manager: the process table and the hole table. We will now
look at each of these in turn.

In Fig. 2-4 we saw that some process table fields are needed by the kernel, others by the process manager, and
yet others by the file system. In MINIX 3, each of these three pieces of the operating system has its own
process table, containing just those fields that it needs. With a few exceptions, entries correspond exactly, to
keep things simple. Thus, slot k of the PM's table refers to the same process as slot k of the file system's table.
When a process is created or destroyed, all three parts update their tables to reflect the new situation, in order
to keep them synchronized.

The exceptions are processes that are not known outside of the kernel, either because they are compiled into
the kernel, like the CLOCK and SYSTEM tasks, or because they are place holders like IDLE, and KERNEL.
In the kernel process table their slots are designated by negative numbers. These slots do not exist in the
process manager or file system process tables. Thus, strictly speaking, what was said above about slot k in the
tables is true for k equal to or greater than zero.

[Page 428]

Processes in Memory

The PM's process table is called mproc and its definition is given in src/servers/pm/mproc.h. It contains all the
fields related to a process' memory allocation, as well as some additional items. The most important field is
the array mp_seg, which has three entries, for the text, data, and stack segments, respectively. Each entry is a
structure containing the virtual address, physical address, and length of the segment, all measured in clicks
rather than in bytes. The size of a click is implementation dependent. In early MINIX versions it was 256
bytes. For MINIX 3 it is 1024 bytes. All segments must start on a click boundary and occupy an integral
number of clicks.

8

8

The method used for recording memory allocation is shown in Fig. 4-33. In this figure we have a process with
3 KB of text, 4 KB of data, a gap of 1 KB, and then a 2-KB stack, for a total memory allocation of 10 KB. In
Fig. 4-33(b) we see what the virtual, physical, and length fields for each of the three segments are, assuming
that the process does not have separate I and D space. In this model, the text segment is always empty, and the
data segment contains both text and data. When a process references virtual address 0, either to jump to it or
to read it (i.e., as instruction space or as data space), physical address 0x32000 (in decimal, 200K) will be
used. This address is at click 0xc8.

Figure 4-33. (a) A process in memory. (b) Its memory representation for combined I and D space. (c) Its memory
representation for separate I and D space.

Note that the virtual address at which the stack begins depends initially on the total amount of memory
allocated to the process. If the chmem command were used to modify the file header to provide a larger
dynamic allocation area (bigger gap between data and stack segments), the next time the file was executed,
the stack would start at a higher virtual address. If the stack grows longer by one click, the stack entry should
change from the triple (0x8, 0xd0, 0x2) to the triple (0x7, 0xcf, 0x3). Note that, in this example, growth of the
stack by one click would reduce the gap to nothing if there were no increase of the total memory allocation.

[Page 429]

The 8088 hardware does not have a stack limit trap, and MINIX defined the stack in a way that will not
trigger the trap on 32-bit processors until the stack has already overwritten the data segment. Thus, this
change will not be made until the next brk system call, at which point the operating system explicitly reads
SP and recomputes the segment entries. On a machine with a stack trap, the stack segment's entry could be
updated as soon as the stack outgrew its segment. This is not done by MINIX 3 on 32-bit Intel processors, for
reasons we will now discuss.

We mentioned previously that the efforts of hardware designers may not always produce exactly what the
software designer needs. Even in protected mode on a Pentium, MINIX 3 does not trap when the stack
outgrows its segment. Although in protected mode the Intel hardware detects attempted access to memory
outside a segment (as defined by a segment descriptor such as the one in Fig. 4-26), in MINIX 3 the data

9

9

segment descriptor and the stack segment descriptor are always identical. The MINIX 3 data and stack
segments each use part of this space, and thus either or both can expand into the gap between them. However,
only MINIX 3 can manage this. The CPU has no way to detect errors involving the gap, since as far as the
hardware is concerned the gap is a valid part of both the data area and the stack area. Of course, the hardware
can detect a very large error, such as an attempt to access memory outside the combined data-gap-stack area.
This will protect one process from the mistakes of another process but is not enough to protect a process from
itself.

A design decision was made here. We recognize an argument can be made for abandoning the shared
hardware-defined segment that allows MINIX 3 to dynamically reallocate the gap area. The alternative, using
the hardware to define nonoverlapping stack and data segments, would offer somewhat more security from
certain errors but would make MINIX 3 more memory-hungry. The source code is available to anybody who
wants to evaluate the other approach.

Fig. 4-33(c) shows the segment entries for the memory layout of Fig. 4-33(a) for separate I and D space. Here
both the text and data segments are nonzero in length. The mp_seg array shown in Fig. 4-33(b) or (c) is
primarily used to map virtual addresses onto physical memory addresses. Given a virtual address and the
space to which it belongs, it is a simple matter to see whether the virtual address is legal or not (i.e., falls
inside a segment), and if legal, what the corresponding physical address is. The kernel procedure umap_local
performs this mapping for the I/O tasks and for copying to and from user space, for example.

[Page 430]

Shared Text

The contents of the data and stack areas belonging to a process may change as the process executes, but the
text does not change. It is common for several processes to be executing copies of the same program, for
instance several users may be executing the same shell. Memory efficiency is improved by using shared text.
When exec is about to load a process, it opens the file holding the disk image of the program to be loaded
and reads the file header. If the process uses separate I and D space, a search of the mp_dev, mp_ino, and
mp_ctime fields in each slot of mproc is made. These hold the device and i-node numbers and changed-status
times of the images being executed by other processes. If a process in memory is found to be executing the
same program that is about to be loaded, there is no need to allocate memory for another copy of the text.
Instead the mp_seg [T] portion of the new process' memory map is initialized to point to the same place where
the text segment is already loaded, and only the data and stack portions are set up in a new memory allocation.
This is shown in Fig. 4-34. If the program uses combined I and D space or no match is found, memory is
allocated as shown in Fig. 4-33 and the text and data for the new process are copied in from the disk.

[Page 431]

Figure 4-34. (a) The memory map of a separate I and D space process, as in the previous figure. (b) The layout in
memory after a second process starts, executing the same program image with shared text. (c) The memory map

of the second process. (This item is displayed on page 430 in the print version)

[View full size image]

10

10

In addition to the segment information, mproc also holds additional information about the process. This
includes the process ID (PID) of the process itself and of its parent, the UIDs and GIDs (both real and
effective), information about signals, and the exit status, if the process has already terminated but its parent
has not yet done a wait for it. Also in mproc there are fields for a timer for sigalarm and for accumulated
user and system time use by child processes. The kernel was responsible for these items in earlier versions of
MINIX, but responsibility for them has been shifted to the process manager in MINIX 3.

The Hole List

The other major process manager data structure is the hole table, hole, defined in src/servers/pm/alloc.c,
which lists every hole in memory in order of increasing memory address. The gaps between the data and stack
segments are not considered holes; they have already been allocated to processes. Consequently, they are not
contained in the free hole list. Each hole list entry has three fields: the base address of the hole, in clicks; the
length of the hole, in clicks; and a pointer to the next entry on the list. The list is singly linked, so it is easy to
find the next hole starting from any given hole, but to find the previous hole, you have to search the entire list
from the beginning until you come to the given hole. Because of space limitations alloc.c is not included in
the printed listing although it is on the CD-ROM. But the code defining the hole list is simple, and is shown in
Fig. 4-35.

Figure 4-35. The hole list is an array of struct hole.

PRIVATE struct hole {
 struct hole *h_next; /* pointer to next entry on the list */
 phys_clicks h_base; /* where does the hole begin? */
 phys_clicks h_len; /* how big is the hole? */
}hole[NR_HOLES];

11

11

The reason for recording everything about segments and holes in clicks rather than bytes is simple: it is much
more efficient. In 16-bit mode, 16-bit integers are used for recording memory addresses, so with 1024-byte
clicks, up to 64 MB of memory can be supported. In 32-bit mode, address fields can refer to up to as many as
232 x 210 = 242 bytes, which is 4 terabytes (4096 gigabytes).

[Page 432]

The principal operations on the hole list are allocating a piece of memory of a given size and returning an
existing allocation. To allocate memory, the hole list is searched, starting at the hole with the lowest address,
until a hole that is large enough is found (first fit). The segment is then allocated by reducing the hole by the
amount needed for the segment, or in the rare case of an exact fit, removing the hole from the list. This
scheme is fast and simple but suffers from both a small amount of internal fragmentation (up to 1023 bytes
may be wasted in the final click, since an integral number of clicks is always taken) and external
fragmentation.

When a process terminates and is cleaned up, its data and stack memory are returned to the free list. If it uses
combined I and D, this releases all its memory, since such programs never have a separate allocation of
memory for text. If the program uses separate I and D and a search of the process table reveals no other
process is sharing the text, the text allocation will also be returned. Since with shared text the text and data
regions are not necessarily contiguous, two regions of memory may be returned. For each region returned, if
either or both of the region's neighbors are holes, they are merged, so adjacent holes never occur. In this way,
the number, location, and sizes of the holes vary continuously during system operation. Whenever all user
processes have terminated, all of available memory is once again ready for allocation. This is not necessarily a
single hole, however, since physical memory may be interrupted by regions unusable by the operating system,
as in IBM compatible systems where read-only memory (ROM) and memory reserved for I/O transfers
separate usable memory below address 640K from memory above 1 MB.

4.7.4. The FORK, EXIT, and WAIT System Calls

When processes are created or destroyed, memory must be allocated or deallocated. Also, the process table
must be updated, including the parts held by the kernel and FS. The PM coordinates all this activity. Process
creation is done by fork, and carried out in the series of steps shown in Fig. 4-36.

Figure 4-36. The steps required to carry out the fork system call. (This item is displayed on page 433 in the print
version)

Check to see if process table is full.1.

Try to allocate memory for the child's data and stack.2.

Copy the parent's data and stack to the child's memory.3.

Find a free process slot and copy parent's slot to it.4.

Enter child's memory map in process table.5.

Choose a PID for the child.6.

Tell kernel and file system about child.7.

Report child's memory map to kernel.8.

12

12

Send reply messages to parent and child.9.

It is difficult and inconvenient to stop a fork call part way through, so the PM maintains a count at all times
of the number of processes currently in existence in order to see easily if a process table slot is available. If the
table is not full, an attempt is made to allocate memory for the child. If the program is one with separate I and
D space, only enough memory for new data and stack allocations is requested. If this step also succeeds, the
fork is guaranteed to work. The newly allocated memory is then filled in, a process slot is located and filled
in, a PID is chosen, and the other parts of the system are informed that a new process has been created.

A process fully terminates when two events have both happened: (1) the process itself has exited (or has been
killed by a signal), and (2) its parent has executed a wait system call to find out what happened. A process
that has exited or has been killed, but whose parent has not (yet) done a wait for it, enters a kind of
suspended animation, sometimes known as zombie state. It is prevented from being scheduled and has its
alarm timer turned off (if it was on), but it is not removed from the process table. Its memory is freed. Zombie
state is temporary and rarely lasts long. When the parent finally does the wait, the process table slot is freed,
and the file system and kernel are informed.

[Page 433]

A problem arises if the parent of an exiting process is itself already dead. If no special action were taken, the
exiting process would remain a zombie forever. Instead, the tables are changed to make it a child of the init
process. When the system comes up, init reads the /etc/ttytab file to get a list of all terminals, and then forks
off a login process to handle each one. It then blocks, waiting for processes to terminate. In this way, orphan
zombies are cleaned up quickly.

4.7.5. The EXEC System Call

When a command is typed at the terminal, the shell forks off a new process, which then executes the
command requested. It would have been possible to have a single system call to do both fork and exec at
once, but they were provided as two distinct calls for a very good reason: to make it easy to implement I/O
redirection. When the shell forks, if standard input is redirected, the child closes standard input and then opens
the new standard input before executing the command. In this way the newly started process inherits the
redirected standard input. Standard output is handled the same way.

Exec is the most complex system call in MINIX 3. It must replace the current memory image with a new
one, including setting up a new stack. The new image must be a binary executable file, of course. An
executable file may also be a script that must be interpreted by another program, such as the shell or perl. In
that case the file whose image must be placed in memory is the binary of the interpreter, with the name of the
script as an argument. In this section we discuss the simple case of an exec call that refers to a binary
executable. Later, when we discuss implementation of exec, the additional processing required to execute a
script will be described.

[Page 434]

Exec carries out its job in a series of steps, as shown in Fig. 4-37.

13

13

Figure 4-37. The steps required to carry out the exec system call.

Check permissionsis the file executable?1.

Read the header to get the segment and total sizes.2.

Fetch the arguments and environment from the caller.3.

Allocate new memory and release unneeded old memory.4.

Copy stack to new memory image.5.

Copy data (and possibly text) segment to new memory image.6.

Check for and handle setuid, setgid bits.7.

Fix up process table entry.8.

Tell kernel that process is now runnable.9.

Each step consists, in turn, of yet smaller steps, some of which can fail. For example, there might be
insufficient memory available. The order in which the tests are made has been carefully chosen to make sure
the old memory image is not released until it is certain that the exec will succeed, to avoid the embarrassing
situation of not being able to set up a new memory image, but not having the old one to go back to, either.
Normally exec does not return, but if it fails, the calling process must get control again, with an error
indication.

A few steps in Fig. 4-37 deserve some more comment. First is the question of whether or not there is enough
room. After determining how much memory is needed, which requires determining if the text memory of
another process can be shared, the hole list is searched to check whether there is sufficient physical memory
before freeing the old memory. If the old memory were freed first and there were insufficient memory, it
would be hard to get the old image back again and we would be up a tree.

However, this test is overly strict. It sometimes rejects exec calls that, in fact, could succeed. Suppose, for
example, the process doing the exec call occupies 20 KB and its text is not shared by any other process.
Further suppose that there is a 30-KB hole available and that the new image requires 50 KB. By testing before
releasing, we will discover that only 30 KB is available and reject the call. If we had released first, we might
have succeeded, depending on whether or not the new 20-KB hole were adjacent to, and thus now merged
with, the 30 KB hole. A more sophisticated implementation could handle this situation a little better.

Another possible improvement would be to search for two holes, one for the text segment and one for the data
segment, if the process to be execed uses separate I and D space. The segments do not need to be contiguous.

[Page 435]

A more subtle issue is whether the executable file fits in the virtual address space. The problem is that
memory is allocated not in bytes, but in 1024-byte clicks. Each click must belong to a single segment, and
may not be, for example, half data, half stack, because the entire memory administration is in clicks.

To see how this restriction can give trouble, note that the address space on 16-bit Intel processors (8086 and
80286) is limited to 64 KB, which with a click size of 1024 allows 64 clicks. Suppose that a separate I and D
space program has 40,000 bytes of text, 32,770 bytes of data, and 32,760 bytes of stack. The data segment

14

14

occupies 33 clicks, although only 2 bytes of the last click is used; still, the whole click must be alloted for the
data segment. The stack segment is 32 clicks. Together they exceed 64 clicks, and thus cannot co-exist, even
though the number of bytes needed fits in the virtual address space (barely). In theory this problem exists on
all machines whose click size is larger than 1 byte, but in practice it rarely occurs on Pentium-class
processors, since they permit large (4-GB) segments. Unfortunately, the code has to check for this case. A
system that does not check for rare, but possible, conditions is likely to crash in an unexpected way if one of
them ever occurs.

Another important issue is how the initial stack is set up. The library call normally used to invoke exec with
arguments and an environment is

execve(name, argv, envp);

where name is a pointer to the name of the file to be executed, argv is a pointer to an array of pointers, each
one pointing to an argument, and envp is a pointer to an array of pointers, each one pointing to an
environment string.

It would be easy enough to implement exec by just putting the three pointers in the message to the PM and
letting it fetch the file name and two arrays by itself. Then it would have to fetch each argument and each
string one at a time. Doing it this way requires at least one message to the system task per argument or string
and probably more, since the PM has no way of knowing in advance the size of each one.

To avoid the overhead of multiple messages to read all these pieces, a completely different strategy has been
chosen. The execve library procedure builds the entire initial stack inside itself and passes its base address and
size to the PM. Building the new stack within the user space is highly efficient, because references to the
arguments and strings are just local memory references, not references to a different address space.

To make this mechanism clearer, consider an example. When a user types

ls l f.c g.c

to the shell, the shell interprets it and then makes the call

execve("/bin/ls", argv, envp);

to the library procedure. The contents of the two pointer arrays are shown in Fig. 4-38(a). The procedure
execve, within the shell's address space, now builds the initial stack, as shown in Fig. 4-38(b). This stack is
eventually copied intact to the PM during the processing of the exec call.

[Page 436]

Figure 4-38. (a) The arrays passed to execve. (b) The stack built by execve. (c) The stack after relocation by the
PM. (d) The stack as it appears to main at the start of execution.

[View full size image]

15

15

When the stack is finally copied to the user process, it will not be put at virtual address 0. Instead, it will be
put at the end of the memory allocation, as determined by the total memory size field in the executable file's
header. As an example, let us arbitrarily assume that the total size is 8192 bytes, so the last byte available to
the program is at address 8191. It is up to the PM to relocate the pointers within the stack so that when
deposited into the new address, the stack looks like Fig. 4-38(c).

When the exec call completes and the program starts running, the stack will indeed look exactly like Fig.
4-38(c), with the stack pointer having the value 8136. However, another problem is yet to be dealt with. The
main program of the executed file is probably declared something like this:

main(argc, argv, envp);

As far as the C compiler is concerned, main is just another function. It does not know that main is special, so
it compiles code to access the three parameters on the assumption that they will be passed on the stack
according to the standard C calling convention, last parameter first. With one integer and two pointers, the
three parameters are expected to occupy the three words just before the return address. Of course, the stack of
Fig. 4-38(c) does not look like that at all.

[Page 437]

The solution is that programs do not begin with main. Instead, a small, assembly language routine called the C
run-time, start-off procedure, or crtso, is always linked in at text address 0 so it gets control first. Its job is to
push three more words onto the stack and then to call main using the standard call instruction. This results in
the stack of Fig. 4-38(d) at the time that main starts executing. Thus, main is tricked into thinking it was called
in the usual way (actually, it is not really a trick; it is called that way).

16

16

If the programmer neglects to call exit at the end of main, control will pass back to the C run-time, start-off
routine when main is finished. Again, the compiler just sees main as an ordinary procedure and generates the
usual code to return from it after the last statement. Thus main returns to its caller, the C runtime, start-off
routine which then calls exit itself. Most of the code of 32-bit crtso is shown in Fig. 4-39. The comments
should make its operation clear. Left out are initialization of the environment if not defined by the
programmer, code to load the registers that are pushed and a few lines that set a flag that indicates if a floating
point coprocessor is present or not. The complete source is in the file src/lib/i386/rts/crtso.s.

Figure 4-39. The key part of crtso, the C run-time, start-off routine.

push ecx ! push environ
push edx ! push argv
push eax ! push argc
call _main ! main(argc, argv, envp)
push eax ! push exit status
call _exit
hlt ! force a trap if exit fails

4.7.6. The BRK System Call

The library procedures brk and sbrk are used to adjust the upper bound of the data segment. The former takes
an absolute size (in bytes) and calls brk. The latter takes a positive or negative increment to the current size,
computes the new data segment size, and then calls brk. Actually, there is no sbrk system call.

An interesting question is: "How does sbrk keep track of the current size, so it can compute the new size?"
The answer is that a variable, brksize, always holds the current size so sbrk can find it. This variable is
initialized to a compiler generated symbol giving the initial size of text plus data (combined I and D) or just
data (separate I and D). The name, and, in fact, very existence of such a symbol is compiler dependent, and
thus it will not be found defined in any header file in the source file directories. It is defined in the library, in
the file brksize.s. Exactly where it will be found depends on the system, but it will be in the same directory as
crtso.s.

[Page 438]

Carrying out brk is easy for the process manager. All that must be done is to check to see that everything still
fits in the address space, adjust the tables, and tell the kernel.

4.7.7. Signal Handling

In Chap. 1, signals were described as a mechanism to convey information to a process that is not necessarily
waiting for input. A defined set of signals exists, and each signal has a default actioneither kill the process to
which it is directed, or ignore the signal. Signal processing would be easy to understand and to implement if
these were the only alternatives. However, processes can use system calls to alter these responses. A process
can request that any signal (except for the special sigkill signal) be ignored. Furthermore, a user process
can prepare to catch a signal by requesting that a signal handler procedure internal to the process be activated
instead of the default action for any signal (except, again, for sigkill). Thus to the programmer it appears
that there are two distinct times when the operating system deals with signals: a preparation phase when a
process may modify its response to a future signal, and a response phase when a signal is generated and acted
upon. The action can be execution of a custom-written signal handler. A third phase also occurs, as shown in
Fig. 4-40. When a user-written handler terminates, a special system call cleans up and restores normal

17

17

operation of the signaled process. The programmer does not need to know about this third phase. He writes a
signal handler just like any other function. The operating system takes care of the details of invoking and
terminating the handler and managing the stack.

Figure 4-40. Three phases of dealing with signals.

Preparation: program code prepares for possible signal.

Response: signal is received and action is taken.

Cleanup: restore normal operation of the process.

In the preparation phase there are several system calls that a process can execute at any time to change its
response to a signal. The most general of these is sigaction, which can specify that the process ignore
some signal, catch some signal (replacing the default action with execution of user-defined signal-handling
code within the process), or restore the default response to some signal. Another system call, sigprocmask,
can block a signal, causing it to be queued and to be acted upon only when and if the process unblocks that
particular signal at a later time. These calls may be made at any time, even from within a signal catching
function. In MINIX 3 the preparation phase of signal processing is handled entirely by the PM, since the
necessary data structures are all in the PM's part of the process table. For each process there are several
sigset_t variables. These are bitmaps, in which each possible signal is represented by a bit. One such variable
defines a set of signals to be ignored, another defines a set to be caught, and so on. For each process there is
also an array of sigaction structures, one for each signal. The structure is defined in Fig. 4-41. Each element of
the sigaction structure contains a variable to hold the address of a custom handler for that signal and an
additional sigset_t variable to map signals to be blocked while that handler is executing. The field used for the
address of the handler can instead hold special values signifying that the signal is to be ignored or is to be
handled in the default way defined for that signal.

[Page 439]

Figure 4-41. The sigaction structure.

struct sigaction {
 __sighandler_t sa_handler; /* SIG_DFL, SIG_IGN, SIG_MESS,
 or pointer to function */
 sigset_t sa_mask; /* signals to be blocked during handler */
 int sa_flags; /* special flags */
}

This is a good place to mention that a system process, such as the process manager itself, cannot catch signals.
System processes use a a new handler type SIG_MESS that tells PM to forward a signal by means of a
SYS_SIG notification message. No cleanup is needed for SIG_MESS-type signals.

When a signal is generated, multiple parts of the MINIX 3 system may become involved. The response begins
in the PM, which figures out which processes should get the signal using the data structures just mentioned. If
the signal is to be caught, it must be delivered to the target process. This requires saving information about the
state of the process, so normal execution can be resumed. The information is stored on the stack of the
signaled process, and a check must be made to determine that there is sufficient stack space. The PM does this
checking, since this is within its realm, and then calls the system task in the kernel to put the information on

18

18

the stack. The system task also manipulates the program counter of the process, so the process can execute the
handler code. When the handler terminates, a sigreturn system call is made. Through this call, both the
PM and the kernel participate in restoring the signal context and registers of the signaled process so it can
resume normal execution. If the signal is not caught, the default action is taken, which may involve calling the
file system to produce a core dump (writing the memory image of the process to a file that may be examined
with a debugger), as well as killing the process, which involves all of the PM, file system, and kernel. The PM
may direct one or more repetitions of these actions, since a single signal may need to be delivered to a group
of processes.

[Page 440]

The signals known to MINIX 3 are defined in include/signal.h, a file required by the POSIX standard. They
are listed in Fig. 4-42. All of the mandatory POSIX signals are defined in MINIX 3, but not all the optional
ones are. For instance, POSIX requires several signals related to job control, the ability to put a running
program into the background and bring it back. MINIX 3 does not support job control, but programs that
might generate these signals can be ported to MINIX 3. These signals will be ignored if generated. Job control
has not been implemented because it was intended to provide a way to start a program running, then detach
from it to allow the user to do something else. With MINIX 3, after starting a program, a user can just hit
ALT+F2 to switch to a new virtual terminal to do something else while the program runs. Virtual terminals
are a kind of poor man's windowing system, but eliminate the need for job control and its signals, at least if
you are working on the local console. MINIX 3 also defines some non-POSIX signals for internal use and
some synonyms for POSIX names for compatibility with older source code.

Figure 4-42. Signals defined by POSIX and MINIX 3. Signals indicated by (*) depend upon hardware support.
Signals marked (M) are not defined by POSIX, but are defined by MINIX 3 for compatibility with older programs.
Kernel signals are MINIX 3 specific signals generated by the kernel, and used to inform system processes about
system events. Several obsolete names and synonyms are not listed here. (This item is displayed on page 441 in
the print version)

Signal

Description

Generated by

SIGHUP

Hangup

KILL system call

SIGINT

Interrupt

TTY

SIGQUIT

Quit

TTY

19

19

SIGILL

Illegal instruction

Kernel (*)

SIGTRAP

Trace trap

Kernel (M)

SIGABRT

Abnormal termination

TTY

SIGFPE

Floating point exception

Kernel (*)

SIGKILL

Kill (cannot be caught or ignored)

KILL system call

SIGUSR1

User-defined signal # 1

Not supported

SIGSEGV

Segmentation violation

Kernel (*)

SIGUSR2

User defined signal # 2

Not supported

SIGPIPE

Write on a pipe with no one to read it

FS

20

20

SIGALRM

Alarm clock, timeout

PM

SIGTERM

Software termination signal from kill

KILL system call

SIGCHLD

Child process terminated or stopped

PM

SIGCONT

Continue if stopped

Not supported

SIGSTOP

Stop signal

Not supported

SIGTSTP

Interactive stop signal

Not supported

SIGTTIN

Background process wants to read

Not supported

SIGTTOU

Background process wants to write

Not supported

SIGKMESS

Kernel message

Kernel

21

21

SIGKSIG

Kernel signal pending

Kernel

SIGKSTOP

Kernel shutting down

Kernel

In a traditional UNIX system, signals can be generated in two ways: by the kill system call, and by the
kernel. Some user-space processes in MINIX 3 do things that would be done by the kernel in a traditional
system. Fig. 4-42 shows all signals known to MINIX 3 and their origins. Sigint, sigquit, and sigkill
can be initiated by pressing special key combinations on the keyboard. Sigalrm is managed by the process
manager. Sigpipe is generated by the file system. The kill program can be used to cause any signal to be
sent to any process. Some kernel signals depend upon hardware support. For instance, the 8086 and 8088
processors do not support detection of illegal instruction operation codes, but this capability is available on the
286 and above, which trap on an attempt to execute an illegal opcode. This service is provided by the
hardware. The implementer of the operating system must provide code to generate a signal in response to the
trap. We saw in Chap. 2 that kernel/exception.c contains code to do just this for a number of different
conditions. Thus a sigill signal will be generated in response to an illegal instruction when MINIX 3 runs
on a 286 or higher processor; on the original 8088 it was never seen.

Just because the hardware can trap on a certain condition does not mean the capability can be used fully by the
operating system implementer. For instance, several kinds of violations of memory integrity result in
exceptions on all Intel processors beginning with the 286. Code in kernel/exception.c translates these
exceptions into sigsegv signals. Separate exceptions are generated for violations of the limits of the
hardware-defined stack segment and for other segments, since these might need to be treated differently.
However, because of the way MINIX 3 uses memory, the hardware cannot detect all the errors that might
occur. The hardware defines a base and a limit for each segment. The stack and data segments are combined
in a single harware segment. The hardware-defined data segment base is the same as the MINIX 3 data
segment base, but the hardware-defined data segment limit is higher than the limit that MINIX 3 enforces in
software. In other words, the hardware defines the data segment as the maximum amount of memory that
MINIX 3 could possibly use for data, if somehow the stack could shrink to nothing. Similarly, the hardware
defines the stack as the maximum amount of memory the MINIX 3 stack could use if the data area could
shrink to nothing. Although certain violations can be detected by the hardware, the hardware cannot detect the
most probable stack violation, growth of the stack into the data area, since as far as the hardware registers and
descriptor tables are concerned the data area and the stack area overlap.

[Page 441]

[Page 442]

Conceivably some code could be added to the kernel that would check the register contents of a process after
each time the process gets a chance to run and generate a sigsegv signal upon detection of a violation of the
integrity of the MINIX 3-defined data or stack areas. Whether this would be worthwhile is unclear; hardware
traps can catch a violation immediately. A software check might not get a chance to do its work until many
thousands of additional instructions had been executed, and at that point there might be very little a signal

22

22

handler could do to try to recover.

Whatever their origin, the PM processes all signals the same way. For each process to be signaled, a variety of
checks are made to see if the signal is feasible. One process can signal another if the signaler is the superuser
or if the real or effective UID of the signaler is equal to either the real or effective UID of the signaled
process. But there are several conditions that can prevent a signal being sent. Zombies cannot be signaled, for
example. A process cannot be signaled if it has explicitly called sigaction to ignore the signal or
sigprocmask to block it. Blocking a signal is distinct from ignoring it; receipt of a blocked signal is
remembered, and it is delivered when and if the signaled process removes the block. Finally, if its stack space
is not adequate the signaled process is killed.

If all the conditions are met, the signal can be sent. If the process has not arranged for the signal to be caught,
no information needs to be passed to the process. In this case the PM executes the default action for the signal,
which is usually to kill the process, possibly also producing a core dump. For a few signals the default action
is to ignore the signal. The signals marked "Not supported" in Fig. 4-42 are required to be defined by POSIX
but are ignored by MINIX 3, as permitted by the standard.

Catching a signal means executing custom signal-handling code, the address of which is stored in a sigaction
structure in the process table. In Chap. 2 we saw how the stackframe within its process table entry receives the
information needed to restart a process when it is interrupted. By modifying the stackframe of a process to be
signaled, it can be arranged that when the process next is allowed to execute the signal handler will run. By
modifying the stack of the process in user space, it can be arranged that when the signal handler terminates the
sigreturn system call will be made. This system call is never invoked by user-written code. It is executed
after the kernel puts its address on the stack in such a way that its address becomes the return address popped
from the stack when a signal handler terminates. Sigreturn restores the original stackframe of the signaled
process, so it can resume execution at the point where it was interrupted by the signal.

Although the final stage of sending a signal is done by the system task, this is a good place to summarize how
it is done, since the data used are passed to the kernel from the PM. Catching a signal requires something
much like the context switch that occurs when one process is taken out of execution and another process is put
into execution, since when the handler terminates the process ought to be able to continue as if nothing had
happened. However, there is only room in the process table to store one copy of the contents of all the CPU
registers that are needed to restore the process to its original state. The solution to this problem is shown in
Fig. 4-43. Part (a) of the figure is a simplified view of the stack of a process and part of its process table entry
just after it has been taken out of execution following an interrupt. At the time of suspension the contents of
all of the CPU registers are copied into the stackframe structure in the process table entry for the suspended
process in the kernel part of the process table. This will be the situation at the moment a signal is generated. A
signal is generated by a process or task different from the intended recipient, so the recipient cannot be
running at that time.

[Page 443]

Figure 4-43. The stack of a process (above) and its stackframe in the process table (below) corresponding to
phases in handling a signal. (a) State as process is taken out of execution. (b) State as handler begins execution.

(c) State while sigreturn is executing. (d) State after sigreturn completes execution.

[View full size image]

23

23

In preparation for handling the signal, the stackframe from the process table is copied onto the stack of the
receiving process as a sigcontext structure, thus preserving it. Then a sigframe structure is placed on the stack.
This structure contains information to be used by sigreturn after the handler finishes. It also contains the
address of the library procedure that invokes sigreturn itself, ret addr1, and another return address, ret
addr2, which is the address where execution of the interrupted program will resume. As will be seen,
however, the latter address is not used during normal execution.

[Page 444]

Although the handler is written as an ordinary procedure by the programmer, it is not called by a call
instruction. The instruction pointer (program counter) field in the stackframe in the process table is altered to
cause the signal handler to begin executing when restart puts the signaled process back into execution. Figure
4-43(b) shows the situation after this preparation has been completed and as the signal handler executes.
Recall that the signal handler is an ordinary procedure, so when it terminates, ret addr1 is popped and
sigreturn executes.

Part (c) shows the situation while sigreturn is executing. The rest of the sigframe structure is now
sigreturn's local variables. Part of sigreturn's action is to adjust its own stack pointer so that if it were
to terminate like an ordinary function, it would use ret addr2 as its return address. However, sigreturn
does not actually terminate this way. It terminates like other system calls, allowing the scheduler in the kernel
to decide which process to restart. Eventually, the signaled process will be rescheduled and will restart at this
address, because the address is also in the process' original stackframe. The reason this address is on the stack
is that a user might want to trace a program using a debugger, and this fools the debugger into a reasonable
interpretation of the stack while a signal handler is being traced. In each phase the stack looks like that of an
ordinary process, with local variables on top of a return address.

24

24

The real work of sigreturn is to restore things to the state they were in before the signal was received, and
to clean up. Most importantly, the stackframe in the process table is restored to its original state, using the
copy that was saved on the signaled process' stack. When sigreturn terminates, the situation will be as in
Fig. 4-43(d), which shows the process waiting to be put back into execution in the same state it was in when
interrupted.

For most signals the default action is to kill the signaled process. The PM takes care of this for any signal that
is not ignored by default, and which the recipient process has not been enabled to handle, block, or ignore. If
the parent is waiting for it, the killed process is cleaned up and removed from the process table. If the parent is
not waiting, it becomes a zombie. For certain signals (e.g., SIGQUIT), the PM also writes a core dump of the
process to the current directory.

It can easily happen that a signal is sent to a process that is currently blocked waiting for a read on a
terminal for which no input is available. If the process has not specified that the signal is to be caught, it is just
killed in the usual way. If, however, the signal is caught, the issue arises of what to do after the signal
interrupt has been processed. Should the process go back to waiting, or should it continue with the next
statement? Decisions, decisions.

[Page 445]

What MINIX 3 does is this: the system call is terminated in such a way as to return the error code EINTR, so
the process can see that the call was broken off by a signal. Determining that a signaled process was blocked
on a system call is not entirely trivial. The PM must ask the file system to check for it.

This behavior is suggested, but not required, by POSIX, which also allows a read to return the number of
bytes read so far at the time of receipt of the signal. Returning EINTR makes it possible to set an alarm and to
catch sigalrm. This is an easy way to implement a timeout, for instance to terminate login and hang up a
modem line if a user does not respond within a certain period.

User-Space Timers

Generating an alarm to wake up a process after a preset period of time is one of the most common uses of
signals. In a conventional operating system, alarms would be managed entirely by the kernel, or a clock driver
running in kernel space. In MINIX 3 responsibility for alarms to user processes is delegated to the process
manager. The idea is to lighten the kernel's load, and simplify the code that runs in kernel space. If it is true
that some number b of bugs are inevitable per some number l of lines of code, it is reasonable to expect that a
smaller kernel will mean fewer bugs in the kernel. Even if the total number of bugs remains the same, their
effects should be less serious if they occur in user-space operating system components rather than in the
kernel itself.

Can we handle alarms without depending upon kernel-space code at all? In MINIX 3, at least, the answer is
no, of course not. Alarms are managed in the first place by the kernel-space clock task, which maintains a
linked list, or queue, of timers, as schematized in Fig. 2-49. On every interrupt from the clock chip the
expiration time of the timer at the head of the queue is compared to the current time, and if it has expired the
clock task main loop is activated. The clock task then causes a notification to be sent to the process that
requested the alarm.

The innovation in MINIX 3 is that timers in kernel space are maintained only for system processes. The
process manager maintains another queue of timers on behalf of user processes that have requested alarms.
The process manager requests an alarm from the clock only for the timer at the head of its queue. If a new
request is not added to the head of the queue no request to the clock is necessary at the time it is added.
(Actually, of course, an alarm request is made through the system task, since the clock task does not
communicate directly with any other process.) When expiration of an alarm is detected after a clock interrupt

25

25

a notification comes to the process manager. The PM then does all the work of checking its own timer queue,
signaling user processes, and possibly requesting another alarm if there is still an active alarm request at the
head of its list.

So far this does not sound as if it saves much effort at the kernel level, but there are several other
considerations. First there is the possibility that more than one timer may be found to have expired on a
particular clock tick. It may seem improbable that two processes would request alarms at the same time.
However, although the clock checks for timer expirations on every interrupt from the clock chip, interrupts are
sometimes disabled, as we have seen. A call to the PC BIOS can cause enough interrupts to be missed that
special provision is made to catch up. This means the time maintained by the clock task can jump by multiple
ticks, making it possible that multiple timeouts may need to be handled at once. If these are handled by the
process manager the kernel-space code does not have to traverse its own linked list, cleaning it up and
generating multiple notifications.

[Page 446]

Second, alarms can be cancelled. A user process may terminate before a timer set on its behalf expires. Or a
timer may have been set as a backup to prevent a process from waiting forever for an event that might never
occur. When the event does occur the alarm can be cancelled. Clearly, it eases the load on the kernel-space
code if cancellation of timers is done on a queue maintained by the process manager, and not in the kernel.
The kernel-space queue only needs attention when the timer at its head expires or when the process manager
makes a change to the head of its queue.

The implementation of timers will be easier to understand if we take a quick tour of the functions used in
handling an alarm now. Many functions in the process manager and in the kernel are involved, and it is hard
to see the whole picture when looking at details, one function at a time.

When the PM sets an alarm on behalf of a user process a timer is initialized by set_alarm. The timer structure
has fields for the expiration time, the process on behalf of which the alarm is set, and a pointer to a function to
execute. For alarms that function is always cause_sigalarm. Then the system task is asked to set a
kernel-space alarm. When this timer expires the watchdog process in the kernel, cause_alarm, is executed and
sends a notification to the process manager. Several functions and macros are involved in this, but eventually
this notification is received by the PM's get_work function, and detected as a message of type SYN_ALARM
in the PM's main loop, which calls the PM's pm_expire_timers function. Now several more functions in the
process manager's space are used. A library function, tmrs_exptimers causes the watchdog cause_sigalrm to
be executed, which calls checksig, which calls sig_proc. Next, sig_proc decides whether to kill the process or
send it the SIGALRM. Finally, sending the signal requires asking the system task in kernel space for help, of
course, since data in the process table and in the stack space of the signaled process are manipulated, as was
described in Fig. 4-43.

4.7.8. Other System Calls

The PM also handles a few more simple system calls. Time and stime deal with the real time clock. The
times call gets process accounting times. They are handled here largely because the PM is a convenient
place to put them. (We will discuss another time-related call, utime, when we come to file systems in Chap.
5, since it stores file modification times in i-nodes.)

[Page 447]

The library functions getuid and geteuid both invoke the getuid system call, which returns both values in its
return message. Similarly, the getgid system call also returns real and effective values for use by the getgid

26

26

and getegid functions. getpid works the same way to return both the process ID and the ID of the parent
process, and setuid and setgid can each set both real and effective values in one call. Two additional
system calls exist in this group, getpgrp and setsid. The former returns the process group ID, and the
latter sets it to the current PID value. These seven calls are the simplest MINIX 3 system calls.

The ptrace and reboot system calls are also handled by the PM. The former supports debugging of
programs. The latter affects many aspects of the system. It is appropriate to place it in the PM because its first
action is to send signals to kill all processes except init. After that, it calls upon the file system and the system
task to complete its work.

27

27

28

28

[Page 447 (continued)]

4.8. Implementation of the
MINIX 3 Process Manager

Armed with a general overview of how the
PM works, let us now turn to the code itself.
The PM is written entirely in C, is
straightforward, and contains a substantial
amount of commentary in the code itself, so
our treatment of most parts need not be long
or involved. We will first look briefly at the
header files, then the main program, and
finally the files for the various system call
groups discussed previously.

4.8.1. The Header Files and Data
Structures

Several header files in the PM source
directory have the same names as files in
the kernel directory; these names will be
seen again in the file system. These files
have similar functions in their own
contexts. The parallel structure is designed
to make it easier to understand the
organization of the whole MINIX 3 system.
The PM also has a number of headers with
unique names. As in other parts of the
system, storage for global variables is
reserved when the PM's version of table.c is
compiled. In this section we will look at all
of the header files, as well as table.c.

As with the other major parts of MINIX 3,
the PM has a master header file, pm.h (line
17000). It is included in every compilation,
and it in turn includes all the system-wide
header files from /usr/include and its
subdirectories that are needed by every
object module. Most of the files that are
included in kernel/kernel.h are also included
here. The PM also needs some definitions in
include/fcntl.h and include/unistd.h. The
PM's own versions of const.h, type.h,
proto.h, and glo.h also are included. We
saw a similar structure with the kernel.

[Page 448]

1

1

Const.h (line 17100) defines some constants
used by the PM.

Type.h is currently unused and exists in
skeletal form just so the PM files will have
the same organization as the other parts of
MINIX 3. Proto.h (line 17300) collects in
one place function prototypes needed
throughout the PM. Dummy definitions of
some functions needed when swapping is
compiled into MINIX 3 are found on lines
17313 and 17314. Putting these macros here
simplifies compiling a version without
swapping; otherwise many other source
files would have to be modified to remove
calls to these functions.

The PM's global variables are declared in
glo.h (line 17500). The same trick used in
the kernel with EXTERN is used here,
namely, EXTERN is normally a macro that
expands to extern, except in the file table.c.
There it becomes the null string so storage
can be reserved for the variables declared as
EXTERN.

The first of these variables, mp, is a pointer
to an mproc structure, the PM part of the
process table for the process whose system
call is being processed. The second
variable, procs_in_use, keeps track of how
many process slots are currently in use,
making it easy to see if a fork call is
feasible.

The message buffer m_in is for the request
messages. Who is the index of the current
process; it is related to mp by

mp = &mproc[who];

When a message comes in, the system call
number is extracted from it and put in
call_nr.

MINIX 3 writes an image of a process to a
core file when a process terminates
abnormally. Core_name defines the name
this file will have, core_sset is a bitmap
which defines which signals should produce
core dumps, and ign_sset is a bitmap telling
which signals should be ignored. Note that
core_name is defined extern, not EXTERN.

2

2

The array call_vec is also declared as
extern. The reason for making both of these
declarations this way will be explained
when we discuss table.c.

The PM's part of the process table is in the
next file, mproc.h (line 17600). Most of the
fields are adequately described by their
comments. Several fields deal with signal
handling. Mp_ignore, mp_catch,
mp_sig2mess, mp_sigmask, mp_sigmask2,
and mp_sigpending are bitmaps, in which
each bit represents one of the signals that
can be sent to a process. The type sigset_t is
a 32-bit integer, so MINIX 3 could support
up to 32 signals. Currently 22 signals are
defined, although some are not supported,
as permitted by the POSIX standard. Signal
1 is the least significant (rightmost) bit. In
any case, POSIX requires standard
functions to add or delete members of the
signal sets represented by these bitmaps, so
all necessary manipulations can be done
without the programmer being aware of
these details. The array mp_sigact is
important for handling signals. An element
is provided for each signal type, and each
element is a sigaction structure (defined in
the file include/signal.h). Each sigaction
structure consists of three fields:

[Page 449]

The sa_handler field defines
whether the signal is to be handled
in the default way, ignored, or
handled by a special handler.

1.

The sa_mask field is a sigset_t that
defines which signals are to be
blocked when the signal is being
handled by a custom handler.

2.

The sa_flags field is a set of flags
that apply to the signal.

3.

This array makes possible a great deal of
flexibility in handling signals.

The mp_flags field is used to hold a
miscellaneous collection of bits, as
indicated at the end of the file. This field is
an unsigned integer, 16 bits on low-end
CPUs or 32 bits on a 386 and up.

3

3

The next field in the process table is
mp_procargs. When a new process is
started, a stack like the one shown in Fig.
4-38 is built, and a pointer to the start of the
new process' argv array is stored here. This
is used by the ps command. For instance,
for the example of Fig. 4-38, the value 8164
would be stored here, making it possible for
ps to display the command line,

ls l f.c g.c

if executed while the ls command is active.

The mp_swapq field is not used in MINIX 3
as described here. It is used when swapping
is enabled, and points to a queue of
processes waiting to be swapped. The
mp_reply field is where a reply message is
built. In earlier versions of MINIX, one
such field was provided, defined in glo.h
and thus compiled when table.c was
compiled. In MINIX 3, a space for building
a reply message is provided for every
process. Providing a place for a reply in
each process table slot allows the PM to go
on to handle another incoming message if a
reply cannot be sent immediately upon
completion of building the reply. The PM
cannot handle two requests at once, but it
can postpone replies if necessary, and catch
up by trying to send all pending replies each
time it completes a request.

The last two items in the process table
might be regarded as frills. Mp_nice
provides a place for each process to be
assigned a nice value, so users can lower
the priority of their processes, for example,
to allow one running process to defer to
another, more important, one. However,
MINIX 3 uses this field internally to
provide system processes (servers and
drivers) with different priorities, depending
upon their needs. The mp_name field is
convenient for debugging, to help the
programmer identify a process table slot in
a memory dump. A system call is available
to search the process table for a process
name and return a process ID.

Finally, note that the process manager's part
of the process table is declared as an array

4

4

of size NR_PROCS (line 17655). Recall
that the kernel's part of the process table
was declared as an array of size
NR_TASKS + NR_PROCS in kernel/proc.h
(line 5593). As mentioned previously,
processes compiled into the kernel are not
known to user space components of the
operating system such as the process
manager. They are not really first-class
processes.

[Page 450]

The next file is param.h (line 17700), which
contains macros for many of the system call
parameters contained in the request
message. It also contains twelve macros for
fields in the reply message, and three
macros used only in messages to the file
system. For example, if the statement

k = m_in.pid;

appears in any file in which param.h is
included, the C preprocessor converts it to

k = m_in.m1_i1;

before feeding it to the compiler proper
(line 17707).

Before we continue with the executable
code, let us look at table.c (line 17800).
Compilation of this file reserves storage for
the various EXTERN variables and
structures we have seen in glo.h and
mproc.h. The statement

#define _TABLE

causes EXTERN to become the null string.
This is the same mechanism that we saw in
the kernel code. As we mentioned earlier,
core_name was declared as extern, not
EXTERN in glo.h. Now we can see why.
Here core_name is declared with an
initialization string. Initialization is not
possible within an extern definition.

5

5

The other major feature of table.c is the
array call_vec (line 17815). It is also an
initialized array, and thus could not be
declared as EXTERN in glo.h. When a
request message arrives, the system call
number is extracted from it and used as an
index into call_vec to locate the procedure
that carries out that system call. System call
numbers that are not valid calls all invoke
no_sys, which just returns an error code.
Note that although the _PROTOTYPE
macro is used in defining call_vec, this is
not a declaration of a prototype; it is the
definition of an initialized array. However,
it is an array of functions, and use of
_PROTOTYPE is the easiest way to do this
that is compatible with both classic
(Kernighan & Ritchie) C and Standard C.

A final note on header files: because
MINIX 3 is still being actively developed,
there are still some rough edges. One of
these is that some source files in pm/
include header files from the kernel
directory. It may be hard to find some
important definitions if you are not aware of
this. Arguably definitions used by more
than one major component of MINIX 3
should be consolidated into header files in
the include/ directory.

4.8.2. The Main Program

The PM is compiled and linked
independently from the kernel and the file
system. Consequently, it has its own main
program, which is started up after the kernel
has finished initializing itself. The entry
point is at line 18041 in main.c. After doing
its own initialization by calling pm_init, the
PM enters its loop on line 18051. In this
loop, it calls get_work to wait for an
incoming request message. Then it calls one
of its do_XXX procedures via the call_vec
table to carry out the request. Finally, it
sends a reply, if needed. This construction
should be familiar by now: it is the same
one used by the I/O tasks.

[Page 451]

The preceding description is slightly

6

6

simplified. As mentioned in Chap. 2,
notification messages can be sent to any
process. These are identified by special
values in the call_nr field. In lines 18055 to
18062 a test is made for the two types of
notification messages the PM can receive,
and special action is taken in these cases.
Also, a test is made for a valid call_nr on
line 18064 before an attempt is made to
carry out a request (on line 18067).
Although an invalid request is unlikely, the
test is cheap and the consequences of an
invalid request would be serious.

Another point worth noting is the call to
swap_in at line 18073. As we mentioned in
the context of proto.h, in MINIX 3 as
configured for description in this text this is
a dummy call. But if the system is compiled
with the full set of source code with
swapping enabled, this is where a test is
made to see if a process could be swapped
in.

Finally, although the comment on line
18070 indicates this is where a reply is sent
back, that is also a simplification. The call
to setreply constructs a reply in the space
we mentioned earlier, in the process table
entry for the current process. Then in lines
18078 to 18091 of the loop, all entries in the
process table are checked and all pending
replies that can be sent are sent, skipping
over any that cannot be sent at this time.

The procedures get_work (line 18099) and
setreply (line 18116) handle the actual
receiving and sending, respectively. The
former does a little trick to make it look like
a message from the kernel was actually
from the PM itself, since the kernel does not
have a process table slot of its own. The
latter function does not really send the
reply, it sets it up to be sent later, as
mentioned above.

Initialization of the Process Manager

The longest procedure in main.c is pm_init,
which initializes the PM. It is not used after
the system has started running. Even though
drivers and servers are compiled separately
and run as separate processes, some of them
are loaded as part of the boot image by the

7

7

boot monitor. It is hard to see how any
operating system could be started without a
PM and a file system, so these components
probably will always need to be loaded into
memory by the boot monitor. Some device
drivers are also loaded as part of the image.
Although it is a goal to make as many
MINIX 3 drivers as possible independently
loadable, it is hard to see, for instance, how
to avoid loading some disk driver early in
the game.

Most of the work of pm_init is to initialize
the PM's tables so all of the preloaded
processes can run. As noted earlier the PM
maintains two important data structures, the
hole table (or free memory table) and a part
of the process table. We will consider the
hole table first. Initialization of memory is
complicated. It will be easier to understand
the description that follows if we first show
how memory is organized when the PM is
activated. MINIX 3 provides all the
information we need for this.

[Page 452]

Before the MINIX 3 boot image itself is
loaded into memory, the boot monitor
determines the layout of available memory.
From the boot menu, you can press the ESC
key to see the boot parameters. One line in
the display shows blocks of unused
memory, and looks like this:

memory = 800:923e0,100000:3df0000

(After MINIX 3 starts you can also see this
information using the sysenv command or
the F5 key. The exact numbers you see may
be different, of course.)

This shows two blocks of free memory. In
addition, there are two blocks of used
memory. Memory below 0x800 is used for
BIOS data and by the master boot record
and the bootblock. It really does not matter
how it is used, it is not available by the time
the boot monitor starts up. The free memory
beginning at 0x800 is the "base memory" of
IBM-compatible computers. In this
example, starting at address 0x800 (2048)

8

8

there are 0x923e0 (599008) bytes available.
Above this is the 640 KB to 1 MB "upper
memory area" which is off limits to
ordinary programsit is reserved for ROM
and dedicated RAM on I/O adapters.
Finally, at address 0x100000 (1 MB) there
are 0x3df0000 bytes free. This range is
commonly referred to as "extended
memory." This example indicates the
computer has a total of 64 MB of RAM
installed.

If you have been keeping track of these
numbers you will have noticed that the
amount of free base memory is less than the
638 KB you might have expected. The
MINIX 3 boot monitor loads itself as high
as possible in this range, and in this case
requires about 52 KB. In this example about
584 KB is really free. This is a good place
to note that memory use could be more
complicated than is in this example. For
instance, one method of running MINIX,
not yet ported to MINIX 3 at the time this is
being written, uses an MS-DOS file to
simulate a MINIX disk. The technique
requires loading some components of
MS-DOS before starting the MINIX 3 boot
monitor. If these are not loaded adjacent to
memory regions already in use more than
two regions of free memory will be reported
by the boot monitor.

When the boot monitor loads the boot
image into memory information about the
image components is displayed on the
console screen. Fig. 4-44 shows part of such
a display. In this example (typical but
possibly not identical to what you will see
as this was from a pre-release version of
MINIX 3), the boot monitor loaded the
kernel into the free memory at address
0x800. The PM, file system, reincarnation
server, and other components not shown in
the figure are installed in the block of free
memory that starts at 1 MB. This was an
arbitrary design choice; enough memory
remains below the 588 KB limit for some of
these components. However, when MINIX
3 is compiled with a large block cache, as is
true in this example, the file system cannot
fit into the space just above the kernel. It
was easier, but by no means essential, just
to load everything in the higher region of

9

9

memory. Nothing is lost by this, the
memory manager can make use of the hole
in memory below 588 KB once the system
is running and user processes are started.

[Page 453]

Figure 4-44. Boot monitor display of memory
usage of the first few boot image
components.

cs ds text data bss stack
0000800 0005800 19552 3140 30076 0kernel
0100000 0104c00 19456 2356 48612 1024pm
0111800 011c400 43216 5912 6224364 2048fs
070e000 070f400 4352 616 4696 131072rs

Initialization of the PM starts by looping through the process table to disable the timer for each slot so no
spurious alarms can occur. Then global variables that define the default sets of signals that will be ignored or
that will cause core dumps are initialized. Next the information we have seen about memory use is processed.
On line 18182 the system task retrieves the boot monitor's memory string that we saw above. In our example
there are two base:size pairs showing blocks of free memory. The call to get_mem_chunks (line 18184)
converts the data in the ASCII string into binary, and enters the base and size values into the array
mem_chunks (line 18192) the elements of which are defined as

struct memory {phys_clicks base; phys_clicks size;};

Mem_chunks is not the hole list yet, it is just a small array in which this information is collected prior to
initializing the hole list.

After querying the kernel and converting information about kernel memory use into units of clicks,
patch_mem_chunks is called to subtract the kernel usage from mem_chunks array. Now memory that was in
use before MINIX 3 started is accounted for, as is memory used by the kernel. Mem_chunks is not complete,
but memory used by normal processes in the boot image will be accounted for within the loop on lines 18201
to 18239 which initializes process table entries.

Information about attributes of all processes that are part of the boot image are in the imag e table that was
declared in kernel/table.c (lines 6095 to 6109). Before entering the main loop the sys_getimage kernel
call on line 18197 provides the process manager with a copy of the imag e table. (Strictly speaking, this is not
exactly a kernel call; it is one of more than a dozen macros defined in include/minix/syslib.h that provide
easily-used interfaces to the sys_getinfo kernel call.) Kernel processes are not known in user space and
the PM (and FS) parts of the process table do not need initialization for kernel processes. In fact, space is not
reserved for kernel process slots. These each have a negative process number (process table index), and they
are ignored by the test on line 18202. Also, it is not necessary to call patch_mem_chunks for kernel processes;
the allowance made for the kernel's memory use also takes care of the tasks that are compiled into the kernel.

[Page 454]

System processes and user processes need to be added to the process table, although they get slightly different
treatments (lines 18210 to 18219). The only user process loaded in the boot image is init, thus a test is made

10

10

for INIT_PROC_NR (line 18210). All of the other processes in the boot image are system processes. System
processes are specialthey cannot be swapped, they each have a dedicated slot in the priv table in the kernel,
and they have special privileges as indicated by their flags. For each process, the proper defaults are set for
signal processing (with some differences between the defaults for system processes and init). Then the
memory map of each process is obtained from the kernel, using get_mem_map, which ultimately invokes the
sys_getinfo kernel call, and patch_mem_chunks is called to adjust the mem_chunks array (lines 18225 to
18230) accordingly.

Finally, a message is sent to the file system so an entry for each process can be initialized in the FS part of the
process table (lines 18233 to 18236). The message contains only the process number and the PID; this is
sufficient to initialize the FS process table slot, as all the processes in the system boot image belong to the
superuser and can be given the same default values. Each message is dispatched with a send operation, so no
reply is expected. After sending the message the name of the process is displayed on the console (line 18237):

Building process table: pm fs rs tty memory log driver init

In this display driver is a stand-in for the default disk driver; multiple disk drivers may be compiled into
the boot image, with one selected as the default by a label= assignment in the boot parameters.

The PM's own process table entry is a special case. After the main loop is complete the PM makes some
changes to its own entry and then sends a final message to the file system with a symbolic value of NONE as
the process number. This message is sent with a sendrec call, and the process manager blocks expecting a
response. While the PM has been looping through the initialization code the file system has been executing a
receive loop (on lines 24189 to 24202, if you want to peek at code to be described in the next chapter).
Receiving the message with process number NONE tells the FS that all system processes have been
initialized, so it can exit its loop and send a synchronization message to unblock the PM.

Now the FS is free to continue its own initialization, and here in the PM initialization is also almost complete.
On line 18253, mem_init is called. This function takes the information that has been collected in the
mem_chunks array and initializes the linked list of free memory regions and related variables that will be used
for memory management once the system is running. Normal memory management begins after printing a
message on the console listing total memory, memory in use by MINIX 3, and available memory:

[Page 455]

Physical memory: total 63996 KB, system 12834 KB, free 51162 KB.

The next function is get_nice_value (line 18263). It is called to determine the "nice level" of each process in
the boot image. The image table provides a queue value for each boot image process which defines on which
priority queue the process will be scheduled. These range from 0 for high priority processes like CLOCK to
15 for IDLE. But the traditional meaning of "nice level" in UNIX systems is a value that can be either positive
or negative. Thus get_nice_value scales the kernel priority values on a scale centered on zero for user
processes. This is done using constants defined as macros in include/sys/resource.h (not listed), PRIO_MIN
and PRIO_MAX, with values of -20 and +20. These are scaled between MIN_USER_Q and MAX_USER_Q,
defined in kernel/proc.h, so if a decision is made to provide fewer or more scheduling queues the nice
command will still work. Init, the root process in the user process tree, is scheduled in priority queue 7 and
receives a "nice" value of 0, which is inherited by a child after a fork.

The last two functions contained in main.c have already been mentioned in passing. Get_mem_chunks (line
18280) is called only once. It takes the memory information returned by the boot monitor as an ASCII string

11

11

of hexadecimal base:size pairs, converts the information into units of clicks, and stores the information in the
mem_chunks array. Patch_mem_chunks (line 18333) continues building the free memory list, and is called
several times, once for the kernel itself and once for init and each of the system processes initialized during
the main loop of pm_init. It corrects the raw boot monitor information. Its job is easier because it gets its data
in click units. For each process, pm_init is passed the base and size of the text and data allocations for that
process. For each process, the base of the last element in the array of free blocks is increased by the sum of the
lengths of the text and data segments. Then the size of that block is decreased by the same amount to mark the
memory for that process as in use.

4.8.3. Implementation of FORK, EXIT, and WAIT

The fork, exit, and wait system calls are implemented by the procedures do_fork, do_pm_exit, and
do_waitpid in the file forkexit.c. The procedure do_fork (line 18430) follows the steps shown in Fig. 4-36.
Notice that the second call to proc s_in_use (line 18445) reserves the last few process table slots for the
superuser. In computing how much memory the child needs, the gap between the data and stack segments is
included, but the text segment is not. Either the parent's text is shared, or, if the process has common I and D
space, its text segment is of zero length. After doing the computation, a call is made to alloc_mem to get the
memory. If this is successful, the base addresses of child and parent are converted from clicks into absolute
bytes, and sys_copy is called to send a message to the system task to get the copying done.

[Page 456]

Now a slot is found in the process table. The test involving procs_in_use earlier guarantees that one will exist.
After the slot has been found, it is filled in, first by copying the parent's slot there, and then updating the fields
mp_parent, mp_flags, mp_child_utime, mp_child_stime, mp_seg, mp_exitstatus, and mp_sigstatus. Some of
these fields need special handling. Only certain bits in the mp_flags field are inherited. The mp_seg field is an
array containing elements for the text, data, and stack segments, and the text portion is left pointing to the
parent's text segment if the flags indicate this is a separate I and D program that can share text.

The next step is assigning a PID to the child. The call to get_free_pid does what its name indicates. This is not
as simple as one might think, and we will describe the function further on.

Sys_fork and tell_fs inform the kernel and file system, respectively, that a new process has been created, so
they can update their process tables. (All the procedures beginning with sys_ are library routines that send a
message to the system task in the kernel to request one of the services of Fig. 2-45.) Process creation and
destruction are always initiated by the PM and then propagated to the kernel and file system when completed.

The reply message to the child is sent explicitly at the end of do_fork. The reply to the parent, containing the
child's PID, is sent by the loop in main, as the normal reply to a request.

The next system call handled by the PM is exit. The procedure do_pm_exit (line 18509) accepts the call,
but most of the work is done by the call to pm_exit, a few lines further down. The reason for this division of
labor is that pm_exit is also called to take care of processes terminated by a signal. The work is the same, but
the parameters are different, so it is convenient to split things up this way.

The first thing pm_exit does is to stop the timer, if the process has one running. Then the time used by the
child is added to the parent's account. Next, the kernel and file system are notified that the process is no longer
runnable (lines 18550 and 18551). The sys_exit kernel call sends a message to the system task telling it to
clear the slot used by this process in the kernel's process table. Next the memory is released. A call to
find_share determines whether the text segment is being shared by another process, and if not the text segment
is released by a call to free_mem. This is followed by another call to the same procedure to release the data
and stack. It is not worth the trouble to decide whether all the memory could be released in one call to

12

12

free_mem. If the parent is waiting, cleanup is called to release the process table slot. If the parent is not
waiting, the process becomes a zombie, indicated by the ZOMBIE bit in the mp_flags word, and the parent is
sent a SIGCHILD signal.

Whether the process is completely eliminated or made into a zombie, the final action of pm_exit is to loop
through the process table and look for children of the process it has just terminated (lines 18582 to 18589). If
any are found, they are disinherited and become children of init. If init is waiting and a child is hanging,
cleanup is then called for that child. This deals with situations such as the one shown in Fig. 4-45(a). In this
figure we see that process 12 is about to exit, and that its parent, 7, is waiting for it. Cleanup will be called to
get rid of 12, so 52 and 53 are turned into children of init, as shown in Fig. 4-45(b). Now we have the situation
that 53, which has already exited, is the child of a process doing a wait. Consequently, it can also be cleaned
up.

[Page 457]

Figure 4-45. (a) The situation as process 12 is about to exit. (b) The situation after it has exited.

When the parent process does a wait or a waitpid, control comes to procedure do_waitpid on line 18598.
The parameters supplied by the two calls are different, and the actions expected are also different, but the
setup done in lines 18613 to 18615 prepares internal variables so do_waitpid can perform the actions of either
call. The loop on lines 18623 to 18642 scans the entire process table to see if the process has any children at
all, and if so, checks to see if any are zombies that can now be cleaned up. If a zombie is found (line 18630), it
is cleaned up and do_waitpid returns the SUSPEND return code. If a traced child is found, the reply message
being constructed is modified to indicate the process is stopped, and do_waitpid returns.

If the process doing the wait has no children, it simply receives an error return (line 18653). If it has
children, but none are zombies or are being traced, a test is made to see if do_waitpid was called with a bit set
indicating the parent did not want to wait. If not (the usual case), then a bit is set on line 18648 to indicate that
it is waiting, and the parent is suspended until a child terminates.

When a process has exited and its parent is waiting for it, in whichever order these events occur, the procedure
cleanup (line 18660) is called to perform the last rites. Not much remains to be done by this point. The parent
is awakened from its wait or waitpid call and is given the PID of the terminated child, as well as its exit
and signal status. The file system has already released the child's memory, and the kernel has already
suspended scheduling and freed up the child's slot in the process table. At this point, the child process is gone
forever.

13

13

[Page 458]

4.8.4. Implementation of EXEC

The code for exec follows the outline of Fig. 4-40. It is contained in the procedure do_exec (line 18747) in
exec.c. After making a few validity checks, the PM fetches the name of the file to be executed from user space
(lines 18773 to 18776). Recall that the library procedures which implement exec build a stack within the old
core image, as we saw in Fig. 4-38. This stack is fetched into the PM's memory space next (line 18782).

The next few steps are written as a loop (lines 18789 to 18801). However, for ordinary binary executables
only one pass through the loop takes place. We will first describe this case. On line 18791 a message to the
file system switches to the user's directory so the path to the file will be interpreted relative to the user's, rather
than to PM's, working directory. Then allowed is calledif execution is allowed it opens the file. If the test fails
a negative number is returned instead of a valid file descriptor, and do_exit terminates indicating failure. If the
file is present and executable, the PM calls read_header and gets the segment sizes. For an ordinary binary the
return code from read_header will cause an exit from the loop at line 18800.

Now we will look at what happens if the executable is a script. MINIX 3, like most UNIX-like operating
systems, supports executable scripts. Read_header tests the first two bytes of the file for the magic shebang
(#!) sequence and returns a special code if this is found, indicating a script. The first line of a script marked
this way specifies the interpreter for the script, and possibly also specifies flags and options for the interpreter.
For instance, a script can be written with a first line like

#! /bin/sh

to show it is to be interpreted by the Bourne shell, or

#! /usr/local/bin/perl wT

to be interpreted with Perl with flags set to warn of possible problems. This complicates the job of exec,
however. When a script is to be run, the file that do_exec must load into memory is not the script itself.
Instead the binary for the interpreter must be loaded. When a script is identified patch_stack is called on line
18801 at the bottom of the loop.

What patch_stack does can be illustrated by an example. Suppose that a Perl script is called with a few
arguments on the command line, like this:

perl_prog.pl file1 file2

If the perl script was written with a shebang line similar to the one we saw above patch_stack creates a stack
to execute the perl binary as if the command line were:

/usr/local/bin/perl -wT perl_prog.pl file1 file2

[Page 459]

14

14

If it is successful in this, the first part of this line, that is, the path to the binary executable of the interpreter, is
returned. Then the body of the loop is executed once more, this time reading the file header and getting the
segment sizes of the file to be executed. It is not permitted for the first line of a script to point to another script
as its interpreter. That is why the variable r is used. It can only be incremented once, allowing only one chance
to call patch_stack. If on the second time through the loop the code indicating a script is encountered, the test
on line 18800 will break the loop. The code for a script, represented symbolically as ESCRIPT, is a negative
number (defined on line 18741). In this case the test on line 18803 will cause do_exit to return with an error
code telling whether the problem is a file that canot be executed or a command line that is too long.

Some work remains to be done to complete the exec operation. Find_share checks to see if the new process
can share text with a process that is already running (line 18809), and new_mem allocates memory for the
new image and releases the old memory. Both the image in memory and the process table need to be made
ready before the exec-ed program can run. On lines 18819 to 18821 the executable file's i-node, filesystem,
and modification time are saved in the process table. Then the stack is fixed up as in Fig. 4-38(c) and copied
to the new image in memory. Next the text (if not already sharing text) and data segments are copied from the
disk to the memory image by calling rw_seg (lines 18834 to 18841). If the setuid or setgid bits are set the file
system needs to be notified to put the effective id information into the FS part of process table entry (lines
18845 to 18852). In the PM's part of the file table a pointer to the arguments to the new program is saved so
the ps command will be able to show the command line, signal bitmasks are initialized, the FS is notified to
close any file descriptors that should be closed after an exec, and the name of the command is saved for
display by ps or during debugging (lines 18856 to 18877). Usually, the last step is to tell the kernel, but if
tracing is enabled a signal must be sent (lines 18878 to 18881).

In describing the work of do_exec we mentioned a number of supporting functions provided in exec.c.
Read_header (line 18889) not only reads the header and returns the segment sizes, it also verifies that the file
is a valid MINIX 3 executable for the same CPU type as the operating system is compiled for. The constant
value A_I80386 on line 18944 is determined by a #ifdef ... #endif sequence at compile time. Binary
executable programs for 32-bit MINIX 3 on Intel platforms must have this constant in their headers to be
acceptable. If MINIX 3 were to be compiled to run in 16-bit mode the value here would be A_I8086. If you
are curious, you can see values defined for other CPUs in include/a.out.h.

Procedure new_mem (line 18980) checks to see if sufficient memory is available for the new memory image.
It searches for a hole big enough for just the data and stack if the text is being shared; otherwise it searches for
a single hole big enough for the combined text, data, and stack. A possible improvement here would be to
search for two separate holes. In earlier versions of MINIX it was required that the text and data/stack
segments be contiguous, but this is not necessary in MINIX 3. If sufficient memory is found, the old memory
is released and the new memory is acquired. If insufficient memory is available, the exec call fails. After the
new memory is allocated, new_mem updates the memory map (in mp_seg) and reports it to the kernel with
the sys_newmap kernel call.

[Page 460]

The final job of new_mem is to zero the bss segment, gap, and stack segment. (The bss segment is that part of
the data segment that contains all the uninitialized global variables.) The work is done by the system task,
called by sys_memset at line 19064. Many compilers generate explicit code to zero the bss segment, but
doing it here allows MINIX 3 to work even with compilers that do not. The gap between data and stack
segments is also zeroed, so that when the data segment is extended by brk, the newly acquired memory will
contain zeroes. This is not only a convenience for the programmer, who can count on new variables having an
initial value of zero, it is also a security feature on a multiuser operating system, where a process previously
using this memory may have been using data that should not be seen by other processes.

The next procedure, patch_ptr (line 19074), relocates pointers like those of Fig. 4-38(b) to the form of Fig.
4-38(c). The work is simple: examine the stack to find all the pointers and add the base address to each one.

15

15

The next two functions work together. We described their purpose earlier. When a script is exec-ed the
binary for the interpreter of the script is the executable that must be run. Insert_arg (line 19106) inserts strings
into the PM copy of the stack. This is directed by patch_stack (line 19162), which finds all of the strings on
the shebang line of the script, and call s insert_arg. The pointers have to be corrected, too, of course.
Insert_arg's job is straightforward, but there are a number of things that can go wrong and must be tested. This
is a good place to mention that checking for problems when dealing with scripts is particularly important.
Scripts, after all, can be written by users, and all computer professionals recognize that users are often the
major cause of problems. But, seriously, a major difference between a script and a compiled binary is that you
can generally trust the compiler to have refused to produce output for a wide range of errors in the source
code. A script is not validated this way.

Fig. 4-46 shows how this would work for a call to a shell script, s.sh, which operates on a file f1. The
command line looks like this:

s.sh f1

Figure 4-46. (a) Arrays passed to execve and the stack created when a script is executed. (b) After processing by
patch_stack, the arrays and the stack look like this. The script name is passed to the program which interprets

the script. (This item is displayed on page 461 in the print version)

[View full size image]

and the shebang line of the script indicates it is to be interpreted by the Bourne shell:

#! /bin/sh

In part (a) of the figure is the stack copied from the caller's space. Part (b) shows how this is transformed by
patch_stack and insert_arg. Both of these diagrams correspond to Fig. 4-38(b).

16

16

The next function defined in exec.c is rw_seg (line 19208). Is called once or twice per exec, possibly to load
the text segment and always to load the data segment. Rather than just reading the file block by block and then
copying the blocks to the user, a trick is used to allow the file system to load the entire segment directly to the
user space. In effect, the call is decoded by the file system in a slightly special way so that it appears to be a
read of the entire segment by the user process itself. Only a few lines at the beginning of the file system's read
routine know that some monkey business is going on here. Loading is appreciably speeded up by this
maneuver.

[Page 461]

The final procedure in exec.c is find_share (line 19256). It searches for a process that can share text by
comparing the i-node, device, and modification times of the file to be executed with those of existing
processes. This is just a straightforward search of the appropriate fields in mproc. Of course, it must ignore the
process on behalf of which the search is being made.

4.8.5. Implementation of BRK

As we have just seen, the basic memory model used by MINIX 3 is quite simple:-each process is given a
single contiguous allocation for its data and stack when it is created. It is never moved around in memory, it
never grows, and it never shrinks. All that can happen is that the data segment can eat away at the gap from
the low end, and the stack can eat away at it from the high end. Under these circumstances, the
implementation of the brk call in break.c is especially easy. It consists of verifying that the new sizes are
feasible and then updating the tables to reflect them.

[Page 462]

The top-level procedure is do_brk (line 19328), but most of the work is done in adjust (line 19361). The latter
checks to see if the stack and data segments have collided. If they have, the brk call cannot be carried out,
but the process is not killed immediately. A safety factor, SAFETY_BYTES, is added to the top of the data
segment before making the test, so (hopefully) the decision that the stack has grown too far can be made while
there is still enough room on the stack for the process to continue for a short while. It gets control back (with
an error message), so it can print appropriate messages and shut down gracefully.

Note that SAFETY_BYTES and SAFETY_CLICKS are defined using #define statements in the middle of
the procedure (line 19393). This use is rather unusual; normally such definitions appear at the beginning of
files, or in separate header files. The associated comment reveals that the programmer found deciding upon
the size of the safety factor to be difficult. No doubt this definition was done in this way to attract attention
and, perhaps, to stimulate additional experimentation.

The base of the data segment is constant, so if adjust has to adjust the data segment, all it does is update the
length field. The stack grows downward from a fixed end point, so if adjust also notices that the stack pointer,
which is given to it as a parameter, has grown beyond the stack segment (to a lower address), both the origin
and length are updated.

4.8.6. Implementation of Signal Handling

Eight POSIX system calls are related to signals. These calls are summarized in Fig. 4-47. These system calls,
as well as the signals themselves, are processed in the file signal.c.

17

17

Figure 4-47. System calls relating to signals.

System call

Purpose

sigaction

Modify response to future signal

sigprocmask

Change set of blocked signals

kill

Send signal to another process

alarm

Send ALRM signal to self after delay

pause

Suspend self until future signal

sigsuspend

Change set of blocked signals, then PAUSE

sigpending

Examine set of pending (blocked) signals

sigreturn

Clean up after signal handler

The sigaction system call supports the sigaction and signal functions, which allow a process to alter how
it will respond to signals. Sigaction is required by POSIX and is the preferred call for most purposes, but the
signal library function is required by Standard C, and programs that must be portable to non-POSIX systems
should be written using it. The code for do_sigaction (line 19544) begins with checks for a valid signal
number and verification that the call is not an attempt to change the response to a sigkill signal (lines
19550 and 19551). (It is not permitted to ignore, catch, or block sigkill. Sigkill is the ultimate means
by which a user can control his processes and a system manager can control his users.) Sigaction is called with
pointers to a sigaction structure, sig_osa, which receives the old signal attributes that were in effect before the
call, and another such structure, sig_nsa, containing a new set of attributes.

[Page 463]

The first step is to call the system task to copy the current attributes into the structure pointed to by sig_osa.
Sigaction can be called with a NULL pointer in sig_nsa to examine the old signal attributes without changing

18

18

them. In this case do_sigaction returns immediately (line 19560). If sig_nsa is not NULL, the structure
defining the new signal action is copied to the PM's space.

The code in lines 19567 to 19585 modifies the mp_catch, mp_ignore, and mp_sigpending bitmaps according
to whether the new action is to be to ignore the signal, to use the default handler, or to catch the signal. The
sa_handler field of the sigaction structure is used to pass a pointer to the procedure to the function to be
executed if a signal is to be caught, or one of the special codes SIG_IGN or SIG_DFL, whose meanings
should be clear if you understand the POSIX standards for signal handling discussed earlier. A special MINIX
3-specific code, SIG_MESS is also possible; this will be explained below.

The library functions sigaddset and sigdelset are used, to modify the signal bitmaps, although the actions are
straightforward bit manipulation operations that could have been implemented with simple macros. However,
these functions are required by the POSIX standard in order to make programs that use them easily portable,
even to systems in which the number of signals exceeds the number of bits available in an integer. Using the
library functions helps to make MINIX 3 itself easily portable to different architectures.

We mentioned a special case above. The SIG_MESS code detected on line 19576 is available only for
privileged (system) processes. Such processes are normally blocked, waiting for request messages. Thus the
ordinary method of receiving a signal, in which the PM asks the kernel to put a signal frame on the recipients
stack, will be delayed until a message wakes up the recipient. A SIG_MESS code tells the PM to deliver a
notification message, which has higher priority than normal messages. A notification message contains the set
of pending signals as an argument, allowing multiple signals to be passed in one message.

Finally, the other signal-related fields in the PM's part of the process table are filled in. For each potential
signal there is a bitmap, the sa_mask, which defines which signals are to be blocked while a handler for that
signal is executing. For each signal there is also a pointer, sa_handler. It can contain a pointer to the handler
function, or special values to indicate the signal is to be ignored, handled in the default way, or used to
generate a message. The address of the library routine that invokes sigreturn when the handler terminates
is stored in mp_sigreturn. This address is one of the fields in the message received by the PM.

[Page 464]

POSIX allows a process to manipulate its own signal handling, even while within a signal handler. This can
be used to change signal response to subsequent signals while a signal is being processed, and then to restore
the normal set of responses. The next group of system calls support these signal-manipulation features.
Sigpending is handled by do_sigpending (line 19597), which returns the mp_sigpending bitmap, so a
process can determine if it has pending signals. Sigprocmask, handled by do_sigprocmask, returns the set
of signals that are currently blocked, and can also be used to change the state of a single signal in the set, or to
replace the entire set with a new one. The moment that a signal is unblocked is an appropriate time to check
for pending signals, and this is done by calls to check_pending on line 19635 and line 19641. Do_sigsuspend
(line 19657) carries out the sigsuspend system call. This call suspends a process until a signal is received.
Like the other functions we have discussed here, it manipulates bitmaps. It also sets the sigsuspended bit
in mp_flags, which is all it takes to prevent execution of the process. Again, this is a good time to make a call
to check_pending. Finally, do_sigreturn handles sigreturn, which is used to return from a custom handler.
It restores the signal context that existed when the handler was entered, and it also calls check_pending on line
19682.

When a user process, such as the kill command, invokes the kill system call, the PM's do_kill function (line
19689) is invoked. A single call to kill may require delivery of signals to a group of several processes, and
do_kill just calls check_sig, which checks the entire process table for eligible recipients.

Some signals, such as sigint, originate in the kernel itself. Ksig_pending (line 19699) is activated when a
message from the kernel about pending signals is sent to the PM. There may be more than one process with

19

19

pending signals, so the loop on lines 19714 to 19722 repeatedly asks the system task for a pending signal,
passes it on to handle_sig, and then tells the system task it is done, until there are no more processes with
signals pending. The messages come with a bitmap, allowing the kernel to generate multiple signals with one
message. The next function, handle_sig, processes the bitmap one bit at a time on lines 19750 to 19763. Some
kernel signals need special attention: the process ID is changed in some cases to cause the signal to be
delivered to a group of processes (lines 19753 to 19757). Otherwise, each set bit results in a call to check_sig,
just as in do_kill.

Alarms and Timers

The alarm system call is handled by do_alarm (line 19769). It calls the next function, set_alarm, which is a
separate function because it is also used to turn off a timer when a process exits with a timer still on. This is
done by calling set_alarm with an alarm time of zero. Set_alarm does its work with timers maintained within
the process manager. It first determines if a timer is already set on behalf of the requesting process, and if so,
whether it has expired, so the system call can return the time in seconds remaining on a previous alarm, or
zero if no timer was set. A comment within the code explains some problems with dealing with long times.
Some rather ugly code on line 19918 multiplies the argument to the call, a time in seconds, by the constant
HZ, the number of clock ticks per second, to get a time in tick units. Three casts are needed to make the result
the correct clock_t data type. Then on the next line the calculation is reversed with ticks cast from clock_t to
unsigned long. The result is compared with a cast of the original alarm time argument cast to unsigned long. If
they are not equal it means the requested time resulted in a number that was out of range of one of the data
types used, and a value which means "never" is substituted. Finally, either pm_set_timer or pm_cancel_timer
is called to add or remove a timer from the process manager's timer queue. The key argument to the former
call is cause_sigalarm, the watchdog function to be executed when the timer expires.

[Page 465]

Any interaction with the timer maintained in kernel space is hidden in the calls to the pm_XXX_timer
routines. Every request for an alarm that eventually culminates in an alarm will normally result in a request to
set a timer in kernel space. The only exception would be if more than one request for a timeout at the exact
same time were to occur. However, processes may cancel their alarms or terminate before their alarms expire.
A kernel call to request setting a timer in kernel space only needs to be made when there is a change to the
timer at the head of the process manager's timer queue.

Upon expiration of a timer in the kernel-space timer queue that was set on behalf of the PM, the system task
announces the fact by sending the PM a notification message, detected as type SYN_ALARM by the main
loop of the PM. This results in a call to pm_expire_timers, which ultimately results in execution of the next
function, cause_sigalrm.

Cause_sigalarm (line 19935) is the watchdog, mentioned above. It gets the process number of the process to
be signaled, checks some flags, resets the ALARM_ON flag, and calls check_sig to send the SIGALRM
signal.

The default action of the SIGALRM signal is to kill the process if it is not caught. If the SIGALRM is to be
caught, a handler must be installed by sigaction. Fig. 4-48 shows the complete sequence of events for a
SIGALRM signal with a custom handler. The figure shows that three sequences of messages occur. First, in
message (1) the user does an alarm call via a message to the PM. At this point the process manager sets up a
timer in the queue of timers it maintains for user processes, and acknowledges with message (2). Nothing
more may happen for a while. When the timer for this request reaches the head of the PM's timer queue,
because timers ahead of it have expired or have been cancelled, message (3) is sent to the system task to have
it set up a new kernel-space timer for the process manager, and is acknowledged by message (4). Again, some
time will pass before anything more happens. But after this timer reaches the head of the kernel-space timer
queue the clock interrupt handler will find it has expired. The remaining messages in the sequence will follow

20

20

quickly. The clock interupt handler sends a HARD_INT message (5) to the clock task, which causes it to run
and update its timers. The timer watchdog function, cause_alarm, initiates message (6), a notification to the
PM. The PM now updates its timers, and after determining from its part of the process table that a handler is
installed for SIGALRM in the target process, sends message (7) to the system task to have it do the stack
manipulations needed to send the signal to the user process. This is acknowledged by message (8). The user
process will be scheduled and will execute the handler, and then will make a sigreturn call (9) to the
process manager. The process manager then sends message (10) to the system task to complete the cleanup,
and this is acknowledged by message (11). Not shown in this diagram is another pair of messages from the
PM to the system task to get the uptime, made before message (3).

[Page 466]

Figure 4-48. Messages for an alarm. The most important are: (1) User does alarm. (3) PM asks system task to set
timer. (6) Clock tells PM time has expired. (7) PM requests signal to user. (9) Handler terminates with call to

sigreturn. See text for details.

The next function, do_pause, takes care of the pause system call (line 19853). It isn't really related to alarms
and timers, although it can be used in a program to suspend execution until an alarm (or some other signal) is
received. All that is necessary is to set a bit and return the SUSPEND code, which causes the main loop of the
PM to refrain from replying, thus keeping the caller blocked. The kernel need not even be informed, since it
knows that the caller is blocked.

[Page 467]

21

21

Support Functions for Signals

Several support functions in signal.c have been mentioned in passing. We will now look at them in more
detail. By far the most important is sig_proc (line 19864), which actually sends a signal. First a number of
tests are made. Attempts to send to dead or zombie processes are serious problems that cause a system panic
(lines 19889 to 19893). A process that is currently being traced is stopped when signaled (lines 19894 to
19899). If the signal is to be ignored, sig_proc's work is complete on line 19902. This is the default action for
some signals, for instance, those signals that are required to be there by POSIX but do not have to (and are
not) supported by MINIX 3. If the signal is blocked, the only action that needs to be taken is to set a bit in that
process' mp_sigpending bitmap. The key test (line 19910) is to distinguish processes that have been enabled to
catch signals from those that have not. With the exception of signals that are converted into messages to be
sent to system services all other special considerations have been eliminated by this point and a process that
cannot catch the signal must be terminated.

First we will look at the processing of signals that are eligible to be caught (lines 19911 to 19950). A message
is constructed to be sent to the kernel, some parts of which are copies of information in the PM's part of the
process table. If the process to be signaled was previously suspended by sigsuspend, the signal mask that
was saved at the time of suspension is included in the message; otherwise the current signal mask is included
(line 19914). Other items included in the message are several addresses in the space of the signaled process
space: the signal handler, the address of the sigreturn library routine to be called on completion of the handler,
and the current stack pointer.

Next, space is allocated on the process' stack. Figure 4-49 shows the structure that is put on the stack. The
sigcontext portion is put on the stack to preserve it for later restoration, since the corresponding structure in
the process table itself is altered in preparation for execution of the signal handler. The sigframe part provides
a return address for the signal handler and data needed by sigreturn to complete restoration of the process'
state when the handler is done. The return address and frame pointer are not actually used by any part of
MINIX 3. They are there to fool a debugger if anyone should ever try to trace execution of a signal handler.

Figure 4-49. The sigcontext and sigframe structures pushed on the stack to prepare for a signal handler. The
processor registers are a copy of the stackframe used during a context switch. (This item is displayed on page

468 in the print version)

22

22

The structure to be put on the signaled process' stack is fairly large. The code in lines 19923 and 19924
reserves space for it, following which a call to adjust tests to see whether there is enough room on the process'
stack. If there is not enough stack space, the process is killed by jumping to the label doterminate using the
seldom-usedC goto (lines 19926 and 19927).

[Page 468]

The call to adjust has a potential problem. Recall from our discussion of the implementation of brk that
adjust returns an error if the stack is within SAFETY_BYTES of running into the data segment. The extra
margin of error is provided because the validity of the stack can only be checked occasionally by software.
This margin of error is probably excessive in the present instance, since it is known exactly how much space
is needed on the stack for the signal, and additional space is needed only for the signal handler, presumably a
relatively simple function. It is possible that some processes may be terminated unnecessarily because the call
to adjust fails. This is certainly better than having programs fail mysteriously at other times, but finer tuning
of these tests may be possible at some time in the future.

[Page 469]

23

23

If there is enough room on the stack for the struct, two more flags are checked. The SA_NODEFER flag
indicates if the signaled process is to block further signals of the same type while handling a signal. The
SA_RESETHAND flag tells if the signal handler is to be reset upon receiving this signal. (This provides
faithful emulation of the old signal call. Although this "feature" is often considered a fault in the old call,
support of old features requires supporting their faults as well.) The kernel is then notified, using the
sys_sigsend kernel call (line 19940) to put the sigframe on the stack. Finally, the bit indicating that a
signal is pending is cleared, and unpause is called to terminate any system call on which the process may be
hanging. When the signaled process next executes, the signal handler will run. If for some reason all of the
tests above failed, the PM panics (line 19949).

The exception mentioned abovesignals converted into messages for system servicesis tested for on line 19951,
and carried out by the sys_kill kernel call that follows. This causes the system task to send a notification
message to the signaled process. Recall that, unlike most other notifications, a notification from the system
task carries a payload in addition to the basic information about its origin and a timestamp. It also transmits a
bitmap of signals, so the signaled system process learns of all pending signals. If the sys_kill call fails, the
PM panics. If it succeeds sig_proc returns (line 19954). If the test on line 19951 failed, execution falls through
to the doterminate label.

Now let us look at the termination code marked by the label doterminate (line 19957). The label and a goto
are the easiest way to handle the possible failure of the call to adjust. Here signals are processed that for one
reason or another cannot or should not be caught. It is possible that the signal was one to be ignored, in which
case sig_proc just returns. Otherwise the process must be terminated. The only question is whether a core
dump is also needed. Finally, the process is terminated as if it had exited, through a call to pm_exit (line
19967).

Check_sig (line 19973) is where the PM checks to see if a signal can be sent. The call

kill(0, sig);

causes the indicated signal to be sent to all the processes in the caller's group (i.e., all the processes started
from the same terminal). Signals originating in the kernel and the reboot system call also may affect
multiple processes. For this reason, check_sig loops on lines 19996 to 20026 to scan through the process table
to find all the processes to which a signal should be sent. The loop contains a large number of tests. Only if all
of them are passed is the signal sent, by calling sig_proc on line 20023.

Check_pending (line 20036) is another important function called several times in the code we have just
reviewed. It loops through all the bits in the mp_sigpending bitmap for the process referred to by do_sigmask,
do_sigreturn, or do_sigsuspend, to see if any blocked signal has become unblocked. It calls sig_proc to send
the first unblocked pending signal it finds. Since all signal handlers eventually cause execution of
do_sigreturn, this code suffices eventually to deliver all pending unmasked signals.

[Page 470]

The procedure unpause (line 20065) has to do with signals that are sent to processes suspended on pause,
wait, read, write, or sigsuspend calls. Pause, wait, and sigsuspend can be checked by
consulting the PM's part of the process table, but if none of these are found, the file system must be asked to
use its own do_unpause function to check for a possible hangup on read or write. In every case the action
is the same: an error reply is sent to the waiting call and the flag bit that corresponds to the cause of the wait is
reset so the process may resume execution and process the signal.

The final procedure in this file is dump_core (line 20093), which writes core dumps to the disk. A core dump
consists of a header with information about the size of the segments occupied by a process, a copy of all the

24

24

process' state information, obtained by copying the kernel process table information for the process, and the
memory image of each of the segments. A debugger can interpret this information to help the programmer
determine what went wrong during execution of the process.

The code to write the file is straightforward. The potential problem mentioned in the previous section again
raises its head, but in a somewhat different form. To be sure the stack segment to be recorded in the core
dump is up to date, adjust is called on line 20120. This call may fail because of the safety margin built into it.
The success of the call is not checked by dump_core, so the core dump will be written in any case, but within
the file the information about the stack may be incorrect.

Support Functions for Timers

The MINIX 3 process manager handles requests for alarms from user processes, which are not allowed to
contact the kernel or the system task directly themselves. All details of scheduling an alarm at the clock task
are hidden behind this interface. Only system processes are allowed to set an alarm timer at the kernel.
Support for this is provided in the file timers.c (line 20200).

The process manager maintains a list of requests for alarms, and asks the system task to notify it when it is
time for an alarm. When an alarm comes from the kernel the process manager passes it on to the process that
should receive it.

Three functions are provided here to support timers. Pm_set_timer sets a timer and adds it to the PM's list of
timers, pm_expire_timer checks for expired timers and pm_cancel_timer removes a timer from the PM's list.
All three of these take advantage of functions in the timers library, declared in include/-timers.h. The function
Pm_set_timer calls tmrs_settimer, pm_expire_timer calls tmrs_exptimers, and pm_cancel_timer calls
tmrs_clrtimers. These all manage the business of traversing a linked list and inserting or removing an item, as
required. Only when an item is inserted at or removed from the head of the queue does it become necessary to
involve the system task in order to adjust the kernelspace timer queue. In such cases each of the
pm_XXX_timer functions uses a sys_setalarm kernel call to request help at the kernel level.

[Page 471]

4.8.7. Implementation of Other System Calls

The process manager handles three system calls that involve time in time.c: time, stime, and times. They
are summarized in Fig. 4-50.

Figure 4-50. Three system calls involving time.

Call

Function

time

Get current real time and uptime in seconds

stime

Set the real time clock

25

25

times

Get the process accounting times

The real time is maintained by the clock task within the kernel, but the clock task itself does not exchange
messages with any process except the system task. As a consequence, the only way to get or set the real time
is to send a message to the system task. This is, in fact, what do_time (line 20320) and do_stime (line 20341)
both do. The real time is measured in seconds since Jan 1, 1970.

Accounting information is also maintained by the kernel for each process. At each clock tick it charges one
tick to some process. The kernel doesn't know about parent-child relationships, so it falls to the process
manager to accumulate time information for the children of a process. When a child exits, its times are
accumulated in the parent's slot in the PM's part of the process table. Do_times (line 20366) retrieves the time
usage of a parent process from the system task with a sys_times kernel call, then fills in a reply message
with user and system time charged to children.

The file getset.c contains one procedure, do_getset (line 20415), which carries out seven POSIX-required PM
system calls. They are shown in Fig. 4-51. They are all so simple that they are not worth an entire procedure
each. The getuid and getgid calls both return the real and effective UID or GID.

Figure 4-51. The system calls supported in servers/pm/getset.c. (This item is displayed on page 472 in the print
version)

System Call

Description

getuid

Return real and effective UID

getgid

Return real and effective GID

getpid

Return PIDs of process and its parent

setuid

Set caller's real and effective UID

setgid

Set caller's real and effective GID

setsid

Create new session, return PID

getpgrp

26

26

Return ID of process group

Setting the uid or gid is slightly more complex than just reading it. A check has to be made to see if the caller
is authorized to set the uid or gid. If the caller passes the test, the file system must be informed of the new uid
or gid, since file protection depends on it. The setsid call creates a new session, and a process which is
already a process group leader is not allowed to do this. The test on line 20463 checks this. The file system
completes the job of making a process into a session leader with no controlling terminal.

In contrast to the system calls considered so far in this chapter, the calls in misc.c are not required by POSIX.
These calls are necessary because the user-space device drivers and servers of MINIX 3 need support for
communication with the kernel that is not necessary in monolithic operating systems. Fig. 4-52 shows these
calls and their purposes.

[Page 472]

Figure 4-52. Special-purpose MINIX 3 system calls in servers/pm/misc.c.

System Call

Description

do_allocmem

Allocate a chunk of memory

do_freemem

Deallocate a chunk of memory

do_getsysinfo

Get info about PM from kernel

do_getprocnr

Get index to proc table from PID or name

do_reboot

Kill all processes, tell FS and kernel

do_getsetpriority

Get or set system priority

do_svrctrl

Make a process into a server

27

27

The first two are handled entirely by the PM. do_allocmem reads the request from a received message,
converts it into click units, and calls alloc_mem. This is used, for example, by the memory driver to allocate
memory for the RAM disk. Do_freemem is similar, but calls free_mem.

The next calls usually need help from other parts of the system. They may be thought of as interfaces to the
system task. Do_getsysinfo (line 20554) can do several things, depending on the request in the message
received. It can call the system task to get information about the kernel contained in the kinfo structure
(defined in the file include/minix/type.h). It can also be used to provide the address of the PM's own part of
the process table or a copy of the entire process table to another process upon request. The final action is
carried out by a call to sys_datacopy (line 20582). Do_getprocnr can find an index into the process table in its
own section if given PID, and calls the system task for help if all it has to work with is the name of the target
process.

[Page 473]

The next two calls, although not required by POSIX, will probably be found in some form in most UNIX-like
systems. Do_reboot sends a KILL signal to all processes, and tells the file system to get ready for a reboot.
Only after the file system has been synched is the kernel notified with a sys_abort call (line 20667). A reboot
may be the result of a panic, or a request from the superuser to halt or restart, and the kernel needs to know
which case applies. Do_getsetpriority, supports the famous UNIX nice utility, which allows a user to reduce
the priority of a process in order to be a good neighbor to other processes (possibly his own). More
importantly, this call is used by the MINIX 3 system to provide fine-grained control of relative priorities of
system components. A network or disk device that must handle a rapid stream of data can be given priority
over one that receives data more slowly, such as a keyboard. Also, a high-priority process that is stuck in a
loop and preventing other processes from running may have its priority lowered temporarily. Changing
priority is done by scheduling the process on a lower (or higher) priority queue, as described in the discussion
of implementation of scheduling in Chap. 2. When this is initiated by the scheduler in the kernel there is no
need to involve the PM, of course, but an ordinary process must use a system call. At the level of the PM it is
just a matter of reading the current value returned in a message or generating a message with a new value. A
kernel call, sys_nice sends the new value to the system task.

The last function in misc.c is do_svrctl. It is currently used to enable and disable swapping. Other functions
once served by this call are expected to be implemented in the reincarnation server.

The last system call we will consider in this chapter is ptrace, handled by trace.c. This file is not listed in
Appendix B, but may be found on the CD-ROM and the MINIX 3 Web site. Ptrace is used by debugging
programs. The parameter to this call can be one of eleven commands. These are shown in Fig. 4-53. In the PM
do_trace processes four of them: T_OK, T_RESUME, I T_EXIT, T_STEP. Requests to enable and exit
tracing are completed here. All other commands are passed on to the system task, which has access to the
kernel's part of the process table. This is done by calling the sys_trace library function. Two support functions
for tracing are provided. Find_proc searches the process table for the process to be traced, and stop_proc stops
a traced process when it is signaled.

Figure 4-53. Debugging commands supported by servers/pm/trace.c. (This item is displayed on page 474 in the
print version)

Command

Description

T_STOP

Stop the process

28

28

T_OK

Enable tracing by parent for this process

T_GETINS

Return value from text (instruction) space

T_GETDATA

Return value from data space

T_GETUSER

Return value from user process table

T_SETINS

Set value in instruction space

T_SETDATA

Set value in data space

T_SETUSER

Set value in user process table

T_RESUME

Resume execution

T_EXIT

Exit

T_STEP

Set trace bit

4.8.8. Memory Management Utilities

We will end this chapter by describing briefly two more files which provide support functions for the process
manager. These are alloc.c and utility.c. Because internal details of these files are not discussed here, they are
not printed in Appendix B (to keep this already fat book from becoming even fatter). However, they are
available on the CD-ROM and the MINIX 3 Web site.

Alloc.c is where the system keeps track of which parts of memory are in use and which are free. It has three
entry points:

29

29

[Page 474]

alloc_mem request a block of memory of a given size.1.
free_mem return memory that is no longer needed.2.
mem_init initialize the free list when the PM starts running.3.

As we have said before, alloc_mem uses first fit on a list of holes sorted by memory address. If it finds a piece
that is too big, it takes what it needs and leaves the rest on the free list, but reduced in size by the amount
taken. If an entire hole is needed, del_slot is called to remove the entry from the free list.

Free_mem's job is to check if a newly released piece of memory can be merged with holes on either side. If it
can, merge is called to join the holes and update the lists.

Mem_init builds the initial free list, consisting of all available memory.

The last file to be described is utility.c, which holds a few miscellaneous procedures used in various places in
the PM. As with alloc.c, utility.c is not listed in Appendix B.

Get_free_pid finds a free PID for a child process. It avoids a problem that conceivably could occur. The
maximum PID value is 30,000. It ought to be the maximum value that can be in PID_t, but this value was
chosen to avoid problems with some older programs that use a smaller type. After assigning, say, PID 20 to a
very long-lived process, 30,000 more processes might be created and destroyed, and simply incrementing a
variable each time a new PID is needed and wrapping around to zero when the limit is reached could bring us
back to 20 again. Assigning a PID that was still in use would be a disaster (suppose someone later tried to
signal process 20). A variable holding the last PID assigned is incremented and if it exceeds a fixed maximum
value, a fresh start is made with PID 2 (because init always has PID 1). Then the whole process table is
searched to make sure that the PID to be assigned is not already in use. If it is in use the procedure is repeated
until a free PID is found.

[Page 475]

The procedure allowed checks to see if a given access is allowed to a file. For example, do_exec needs to
know if a file is executable.

The procedure no_sys should never be called. It is provided just in case a user ever calls the PM with an
invalid system call number.

Panic is called only when the PM has detected an error from which it cannot recover. It reports the error to the
system task, which then brings MINIX 3 to a screeching halt. It is not called lightly.

The next function in utility.c is tell_fs, which constructs a message and sends it to the file system when the
latter needs to be informed of events handled by the PM.

Find_param is used to parse the monitor parameters. Its current use is to extract information about memory
use before MINIX 3 is loaded into memory, but it could be used to find other information if there were a need.

The next two functions in this file provide interfaces to the library function sys_getproc, which calls the
system task to get information from the kernel's part of the process table. Sys_getproc, in turn, is actually a
macro defined in include/minix/syslib.h which passes parameters to the sys_getinfo kernel call.
Get_mem_map gets the memory map of a process. Get_stack_ptr gets the stack pointer. Both of these need a
process number, that is, an index into the process table, which is not the same as a PID. The last function in
utility.c is proc_from_pid which provides this supportit is called with a PID and returns an index to the
process table.

30

30

31

31

32

32

[Page 475 (continued)]

4.9. Summary

In this chapter we have examined memory management, both in general and in MINIX 3. We saw that the
simplest systems do not swap or page at all. Once a program is loaded into memory, it remains there until it
finishes. Embedded systems usually work like this, possibly with the code even in ROM. Some operating
systems allow only one process at a time in memory, while others support multiprogramming.

The next step up is swapping. When swapping is used, the system can handle more processes than it has room
for in memory. Processes for which there is no room are swapped out to the disk. Free space in memory and
on disk can be kept track of with a bitmap or a hole list.

More advanced computers often have some form of virtual memory. In the simplest form, each process'
address space is divided up into uniformly sized blocks called pages, which can be placed into any available
page frame in memory. Many page replacement algorithms have been proposed. Two of the better known
ones are second chance and aging. To make paging systems work well, choosing an algorithm is not enough;
attention to issues such as determining the working set, memory allocation policy, and page size are required.

[Page 476]

Segmentation helps in handling data structures that change size during execution and simplifies linking and
sharing. It also facilitates providing different protection for different segments. Sometimes segmentation and
paging are combined to provide a two-dimensional virtual memory. The Intel Pentium supports segmentation
and paging.

Memory management in MINIX 3 is simple. Memory is allocated when a process executes a fork or exec
system call. The memory so allocated is never increased or decreased as long as the process lives. On Intel
processors there are two memory models used by MINIX 3. Small programs can have instructions and data in
the same memory segment. Larger programs use separate instruction and data space (separate I and D).
Processes with separate I and D space can share the text portion of their memory, so only data and stack
memory must be allocated during a fork. This may also be true during an exec if another process already is
using the text needed by the new program.

Most of the work of the PM is concerned not with keeping track of free memory,-which it does using a hole
list and the first fit algorithm, but rather with carrying out the system calls relating to process management. A
number of system calls support POSIX-style signals, and since the default action of most signals is to
terminate the signaled process, it is appropriate to handle them in the PM, which initiates termination of all
processes. Several system calls not directly related to memory are also handled by the PM, mainly because it
is smaller than the file system, and thus it was most convenient to put them here.

1

1

2

2

[Page 476 (continued)]

Problems

1. A computer system has enough room to hold four programs in its main memory. These programs
are each idle half the time waiting for I/O. What fraction of the CPU time is wasted?

2. Consider a swapping system in which memory consists of the following hole sizes in memory
order: 10 KB, 4 KB, 20 KB, 18 KB, 7 KB, 9 KB, 12 KB, and 15 KB. Which hole is taken for
successive segment requests of

(a) 12 KB

(b) 10 KB

(c) 9 KB

for first fit? Now repeat the question for best fit, worst fit, and next fit.

[Page 477]

3. A computer has 1 GB of RAM allocated in units of 64 KB. How many KB are needed if a bitmap
is used to keep track of free memory?

4. Now revisit the previous question using a hole list. How much memory is needed for the list in the
best case and in the worst case? Assume the operating system occupies the bottom 512 KB of
memory.

5. What is the difference between a physical address and a virtual address?

6. Using the page mapping of Fig. 4-8, give the physical address corresponding to each of the
following virtual addresses:

(a) 20

(b) 4100

(c) 8300

7. In Fig. 4-9, the page field of the virtual address is 4 bits and the page field of the physical address is
3 bits. In general, is it permitted for the number of page bits of the virtual address to be smaller,
equal to, or larger than the number of page bits of the physical address? Discuss your answer.

8. The Intel 8086 processor does not support virtual memory. Nevertheless, some companies
previously sold systems that contained an unmodified 8086 CPU and do paging. Make an educated
guess as to how they did it. (Hint: think about the logical location of the MMU.)

9. If an instruction takes 1 nsec and a page fault takes an additional n nsec, give a formula for the
effective instruction time if page faults occur every k instructions.

10. A machine has a 32-bit address space and an 8 KB page. The page table is entirely in hardware,
with one 32-bit word per entry. When a process starts, the page table is copied to the hardware

1

1

from memory, at one word every 100 nsec. If each process runs for 100 msec (including the time to
load the page table), what fraction of the CPU time is devoted to loading the page tables?

11. A computer with a 32-bit address uses a two-level page table. Virtual addresses are split into a 9-bit
top-level page table field, an 11-bit second-level page table field, and an offset. How large are the
pages and how many are there in the address space?

12. Below is the listing of a short assembly language program for a computer with 512-byte pages. The
program is located at address 1020, and its stack pointer is at 8192 (the stack grows toward 0). Give
the page reference string generated by this program. Each instruction occupies 4 bytes (1 word),
and both instruction and data references count in the reference string.

Load word 6144 into register 0

Push register 0 onto the stack

Call a procedure at 5120, stacking the return address

Subtract the immediate constant 16 from the stack pointer

Compare the actual parameter to the immediate constant 4

Jump if equal to 5152

13. Suppose that a 32-bit virtual address is broken up into four fields, a, b, c, and d. The first three are
used for a three-level page table system. The fourth field, d, is the offset. Does the number of pages
depend on the sizes of all four fields? If not, which ones matter and which ones do not?

[Page 478]

14. A computer whose processes have 1024 pages in their address spaces keeps its page tables in
memory. The overhead required for reading a word from the page table is 500 nsec. To reduce this
overhead, the computer has a TLB, which holds 32 (virtual page, physical page frame) pairs, and
can do a look up in 100 nsec. What hit rate is needed to reduce the mean overhead to 200 nsec?

15. The TLB on the VAX did not contain an R bit. Was this omission just an artifact of its era (1980s)
or is there some other reason for its absence?

16. A machine has 48-bit virtual addresses and 32-bit physical addresses. Pages are 8 KB. How many
entries are needed for the page table?

17. A RISC CPU with 64-bit virtual addresses and 8 GB of RAM uses an inverted page table with
8-KB pages. What is the minimum size of the TLB?

18. A computer has four page frames. The time of loading, time of last access, and the R and M bits for
each page are as shown below (the times are in clock ticks):

Page Loaded Last ref. R M

0 126 279 0 0

1 230 260 1 0

2 120 272 1 1

2

2

3 160 280 1 1

(a) Which page will NRU replace?

(b) Which page will FIFO replace?

(c) Which page will LRU replace?

(d) Which page will second chance replace?

19. If FIFO page replacement is used with four page frames and eight pages, how many page faults
will occur with the reference string 0172327103 if the four frames are initially empty? Now repeat
this problem for LRU.

20. A small computer has 8 page frames, each containing a page. The page frames contain virtual page
s A, C, G, H, B, L, N, D, and F in that order. Their respective load times were 18, 23, 5, 7, 32, 19,
3, and 8. Their reference bits are 1, 0, 1, 1, 0, 1, 1, and 0 and their modified bits are 1, 1, 1, 0, 0, 0,
1, and 1, respectively. What is the order that second chance considers pages and which one is
selected?

21. Are there any circumstances in which clock and second chance choose different pages to replace?
If so, what are they?

22. Suppose that a computer uses the PFF page replacement algorithm but there is sufficient memory to
hold all the processes without page faults. What happens?

23. A small computer has four page frames. At the first clock tick, the R bits are 0111 (page 0 is 0, the
rest are 1). At subsequent clock ticks, the values are 1011, 1010, 1101, 0010, 1010, 1100, and 0001.
If the aging algorithm is used with an 8-bit counter, give the values of the four counters after the
last tick.

[Page 479]

24. How long does it take to load a 64-KB program from a disk whose average seek time is 10 msec,
whose rotation time is 8 msec, and whose tracks hold 1 MB

(a) for a 2-KB page size?

(b) for a 4-KB page size?

(c) for a 64-KB page size

The pages are spread randomly around the disk.

25. Given the results of the previous problem, why are pages so small? Name two disadvantages of
64-KB pages with respect to 4-KB pages.

26. One of the first timesharing machines, the PDP-1, had a memory of 4-KB 18-bit words. It held one
process at a time in memory. When the scheduler decided to run another process, the process in
memory was written to a paging drum, with 4K 18-bit words around the circumference of the
drum. The drum could start writing (or reading) at any word, rather than only at word 0. Why do
you suppose this drum was chosen?

3

3

27. An embedded computer provides each process with 65,536 bytes of address space divided into
pages of 4096 bytes. A particular program has a text size of 32,768 bytes, a data size of 16,386
bytes, and a stack size of 15,870 bytes. Will this program fit in the address space? If the page size
were 512 bytes, would it fit? Remember that a page may not contain parts of two different
segments.

28. It has been observed that the number of instructions executed between page faults is directly
proportional to the number of page frames allocated to a program. If the available memory is
doubled, the mean interval between page faults is also doubled. Suppose that a normal instruction
takes 1 microsec, but if a page fault occurs, it takes 2001 microsec (i.e., 2 msec) to handle the fault.
If a program takes 60 sec to run, during which time it gets 15,000 page faults, how long would it
take to run if twice as much memory were available?

29. A group of operating system designers for the Frugal Computer Company are thinking about ways
of reducing the amount of backing store needed in their new operating system. The head guru has
just suggested not bothering to save the program text in the swap area at all, but just page it in
directly from the binary file whenever it is needed. Are there any problems with this approach?

30. Explain the difference between internal fragmentation and external fragmentation. Which one
occurs in paging systems? Which one occurs in systems using pure segmentation?

31. When segmentation and paging are both being used, as in the Pentium, first the segment descriptor
must be looked up, then the page descriptor. Does the TLB also work this way, with two levels of
lookup?

32. Why does the MINIX 3 memory management scheme make it necessary to have a program like
chmem?

33. Figure 4-44 shows the initial memory usage of the first four components of a MINIX 3 system.
What will be the cs value for the next component loaded after rs?

[Page 480]

34. IBM-compatible computers have ROM and I/O device memory not available for program use in
the range from 640 KB to 1 MB, and after the MINIX 3 boot monitor relocates itself below the
640-KB limit the memory available for program use is further reduced. In Fig. 4-44, how much
memory is available for loading a program in the region between the kernel and the unavailable
region if the boot monitor has 52256 bytes allocated to it?

35. In the previous problem does it matter whether the boot monitor takes exactly as much memory as
it needs or if it is rounded up to units of clicks?

36. In Sec. 4.7.5, it was pointed out that on an exec call, by testing for an adequate hole before
releasing the current process' memory, a suboptimal implementation is achieved. Reprogram this
algorithm to do better.

37. In Sec. 4.8.4, it was pointed out that it would be better to search for holes for the text and data
segments separately. Implement this improvement.

38. Redesign adjust to avoid the problem of signaled processes being killed unnecessarily because of a
too-strict test for stack space.

39. To tell the current memory allocation of a MINIX 3 process you can use the command

chmem +0 a.out

4

4

but this has the annoying side effect of rewriting the file, and thus changing its date and time
information. Modify chmem to make a new command showmem, which simply displays the
current memory allocation of its argument.

5

5

6

6

[Page 481]

5. File Systems

All computer applications need to store and retrieve information. While a process is running, it can store a
limited amount of information within its own address space. However, the storage capacity is restricted to the
size of the virtual address space. For some applications this size is adequate, but for others, such as airline
reservations, banking, or corporate record keeping, it is far too small.

A second problem with keeping information within a process' address space is that when the process
terminates, the information is lost. For many applications, (e.g., for databases), the information must be
retained for weeks, months, or even forever. Having it vanish when the process using it terminates is
unacceptable. Furthermore, it must not go away when a computer crash kills the process.

A third problem is that it is frequently necessary for multiple processes to access (parts of) the information at
the same time. If we have an online telephone directory stored inside the address space of a single process,
only that process can access it. The way to solve this problem is to make the information itself independent of
any one process.

Thus we have three essential requirements for long-term information storage:

1. It must be possible to store a very large amount of information.

2. The information must survive the termination of the process using it.

3. Multiple processes must be able to access the information concurrently.

[Page 482]

The usual solution to all these problems is to store information on disks and other external media in units
called files. Processes can then read them and write new ones if need be. Information stored in files must be
persistent, that is, not be affected by process creation and termination. A file should only disappear when its
owner explicitly removes it.

Files are managed by the operating system. How they are structured, named, accessed, used, protected, and
implemented are major topics in operating system design. As a whole, that part of the operating system
dealing with files is known as the file system and is the subject of this chapter.

From the users' standpoint, the most important aspect of a file system is how it appears to them, that is, what
constitutes a file, how files are named and protected, what operations are allowed on files, and so on. The
details of whether linked lists or bitmaps are used to keep track of free storage and how many sectors there are
in a logical block are of less interest, although they are of great importance to the designers of the file system.
For this reason, we have structured the chapter as several sections. The first two are concerned with the user
interface to files and directories, respectively. Then comes a discussion of alternative ways a file system can
be implemented. Following a discussion of security and protection mechanisms, we conclude with a
description of the MINIX 3 file system.

1

1

2

2

[Page 482 (continued)]

5.1. Files

In the following pages we will look at files from the user's point of view, that is, how they are
used and what properties they have.

5.1.1. File Naming

Files are an abstraction mechanism. They provide a way to store information on the disk and
read it back later. This must be done in such a way as to shield the user from the details of
how and where the information is stored, and how the disks actually work.

Probably the most important characteristic of any abstraction mechanism is the way the
objects being managed are named, so we will start our examination of file systems with the
subject of file naming. When a process creates a file, it gives the file a name. When the
process terminates, the file continues to exist and can be accessed by other processes using its
name.

The exact rules for file naming vary somewhat from system to system, but all current
operating systems allow strings of one to eight letters as legal file names. Thus andrea, bruce,
and cathy are possible file names. Frequently digits and special characters are also permitted,
so names like 2, urgent!, and Fig. 2-14 are often valid as well. Many file systems support
names as long as 255 characters.

[Page 483]

Some file systems distinguish between upper- and lower-case letters, whereas others do not.
UNIX (including all its variants) falls in the first category; MS-DOS falls in the second. Thus
a UNIX system can have all of the following as three distinct files: maria, Maria, and
MARIA. In MS-DOS, all these names refer to the same file.

Windows falls in between these extremes. The Windows 95 and Windows 98 file systems are
both based upon the MS-DOS file system, and thus inherit many of its properties, such as how
file names are constructed. With each new version improvements were added but the features
we will discuss are mostly common to MS-DOS and "classic" Windows versions. In addition,
Windows NT, Windows 2000, and Windows XP support the MS-DOS file system. However,
the latter systems also have a native file system (NTFS) that has different properties (such as
file names in Unicode). This file system also has seen changes in successive versions. In this
chapter, we will refer to the older systems as the Windows 98 file system. If a feature does not
apply to the MS-DOS or Windows 95 versions we will say so. Likewise, we will refer to the
newer system as either NTFS or the Windows XP file system, and we will point it out if an
aspect under discussion does not also apply to the file systems of Windows NT or Windows
2000. When we say just Windows, we mean all Windows file systems since Windows 95.

Many operating systems support two-part file names, with the two parts separated by a period,
as in prog.c. The part following the period is called the file extension and usually indicates
something about the file, in this example that it is a C programming language source file. In
MS-DOS, for example, file names are 1 to 8 characters, plus an optional extension of 1 to 3
characters. In UNIX, the size of the extension, if any, is up to the user, and a file may even

1

1

have two or more extensions, as in prog.c.bz2, where .bz2 is commonly used to indicate that
the file (prog.c) has been compressed using the bzip2 compression algorithm. Some of the
more common file extensions and their meanings are shown in Fig. 5-1

Figure 5-1. Some typical file extensions. (This item is displayed on page 484 in the print version)
Extension Meaning

file.bak Backup file
file.c C source

program
file.gif Graphical

Interchange
Format image

file.html World Wide
Web
HyperText
Markup
Language
document

file.iso ISO image of a
CD-ROM (for
burning to CD)

file.jpg Still picture
encoded with
the JPEG
standard

file.mp3 Music encoded
in MPEG layer
3 audio format

file.mpg Movie encoded
with the MPEG
standard

file.o Object file
(compiler
output, not yet
linked)

file.pdf Portable
Document
Format file

file.ps PostScript file
file.tex Input for the

TEX
formatting
program

file.txt General text
file

file.zip Compressed
archive

In some systems (e.g., UNIX), file extensions are just conventions and are not enforced by the operating
system. A file named file.txt might be some kind of text file, but that name is more to remind the owner than
to convey any actual information to the computer. On the other hand, a C compiler may actually insist that
files it is to compile end in .c, and it may refuse to compile them if they do not.

2

2

Conventions like this are especially useful when the same program can handle several different kinds of files.
The C compiler, for example, can be given a list of files to compile and link together, some of them C files
(e.g., foo.c), some of them assembly language files (e.g., bar.s), and some of them object files (e.g., other.o).
The extension then becomes essential for the compiler to tell which are C files, which are assembly files, and
which are object files.

In contrast, Windows is very much aware of the extensions and assigns meaning to them. Users (or processes)
can register extensions with the operating system and specify which program "owns" which one. When a user
double clicks on a file name, the program assigned to its file extension is launched and given the name of the
file as parameter. For example, double clicking on file.doc starts Microsoft Word with file.doc as the initial
file to edit.

[Page 484]

Some might think it odd that Microsoft chose to make common extensions invisible by default since they are
so important. Fortunately most of the "wrong by default" settings of Windows can be changed by a
sophisticated user who knows where to look.

5.1.2. File Structure

Files can be structured in any one of several ways. Three common possibilities are depicted in Fig. 5-2. The
file in Fig. 5-2(a) is just an unstructured sequence of bytes. In effect, the operating system does not know or
care what is in the file. All it sees are bytes. Any meaning must be imposed by user-level programs. Both
UNIX and Windows 98 use this approach.

Figure 5-2. Three kinds of files. (a) Byte sequence. (b) Record sequence. (c) Tree. (This item is displayed on page
485 in the print version)

[View full size image]

Having the operating system regard files as nothing more than byte sequences provides the maximum
flexibility. User programs can put anything they want in their files and name them any way that is convenient.
The operating system does not help, but it also does not get in the way. For users who want to do unusual
things, the latter can be very important.

The first step up in structure is shown in Fig. 5-2(b). In this model, a file is a sequence of fixed-length records,
each with some internal structure. Central to the idea of a file being a sequence of records is the idea that the

3

3

read operation returns one record and the write operation overwrites or appends one record. As a historical
note, when the 80-column punched card was king many (mainframe) operating systems based their file
systems on files consisting of 80-character records, in effect, card images. These systems also supported files
of 132-character records, which were intended for the line printer (which in those days were big chain printers
having 132 columns). Programs read input in units of 80 characters and wrote it in units of 132 characters,
although the final 52 could be spaces, of course. No current general-purpose system works this way.

[Page 485]

The third kind of file structure is shown in Fig. 5-2(c). In this organization, a file consists of a tree of records,
not necessarily all the same length, each containing a key field in a fixed position in the record. The tree is
sorted on the key field, to allow rapid searching for a particular key.

The basic operation here is not to get the "next" record, although that is also possible, but to get the record
with a specific key. For the zoo file of Fig. 5-2(c), one could ask the system to get the record whose key is
pony, for example, without worrying about its exact position in the file. Furthermore, new records can be
added to the file, with the operating system, and not the user, deciding where to place them. This type of file is
clearly quite different from the unstructured byte streams used in UNIX and Windows 98 but is widely used
on the large mainframe computers still used in some commercial data processing.

5.1.3. File Types

Many operating systems support several types of files. UNIX and Windows, for example, have regular files
and directories. UNIX also has character and block special files. Windows XP also uses metadata files, which
we will mention later. Regular files are the ones that contain user information. All the files of Fig. 5-2 are
regular files. Directories are system files for maintaining the structure of the file system. We will study
directories below. Character special files are related to input/output and used to model serial I/O devices such
as terminals, printers, and networks. Block special files are used to model disks. In this chapter we will be
primarily interested in regular files.

[Page 486]

Regular files are generally either ASCII files or binary files. ASCII files consist of lines of text. In some
systems each line is terminated by a carriage return character. In others, the line feed character is used. Some
systems (e.g., Windows) use both. Lines need not all be of the same length.

The great advantage of ASCII files is that they can be displayed and printed as is, and they can be edited with
any text editor. Furthermore, if large numbers of programs use ASCII files for input and output, it is easy to
connect the output of one program to the input of another, as in shell pipelines. (The interprocess plumbing is
not any easier, but interpreting the information certainly is if a standard convention, such as ASCII, is used for
expressing it.)

Other files are binary files, which just means that they are not ASCII files. Listing them on the printer gives an
incomprehensible listing full of what is apparently random junk. Usually, they have some internal structure
known to programs that use them.

For example, in Fig. 5-3(a) we see a simple executable binary file taken from an early version of UNIX.
Although technically the file is just a sequence of bytes, the operating system will only execute a file if it has
the proper format. It has five sections: header, text, data, relocation bits, and symbol table. The header starts
with a so-called magic number, identifying the file as an executable file (to prevent the accidental execution of
a file not in this format). Then come the sizes of the various pieces of the file, the address at which execution

4

4

starts, and some flag bits. Following the header are the text and data of the program itself. These are loaded
into memory and relocated using the relocation bits. The symbol table is used for debugging.

Figure 5-3. (a) An executable file. (b) An archive. (This item is displayed on page 487 in the print version)

[View full size image]

Our second example of a binary file is an archive, also from UNIX. It consists of a collection of library
procedures (modules) compiled but not linked. Each one is prefaced by a header telling its name, creation
date, owner, protection code, and size. Just as with the executable file, the module headers are full of binary
numbers. Copying them to the printer would produce complete gibberish.

Every operating system must recognize at least one file type: its own executable file, but some operating
systems recognize more. The old TOPS-20 system (for the DECsystem 20) went so far as to examine the
creation time of any file to be executed. Then it located the source file and saw if the source had been
modified since the binary was made. If it had been, it automatically recompiled the source. In UNIX terms,
the make program had been built into the shell. The file extensions were mandatory so the operating system
could tell which binary program was derived from which source.

[Page 487]

Having strongly typed files like this causes problems whenever the user does anything that the system
designers did not expect. Consider, as an example, a system in which program output files have extension .dat
(data files). If a user writes a program formatter that reads a .c file (C program), transforms it (e.g., by
converting it to a standard indentation layout), and then writes the transformed file as output, the output file
will be of type .dat. If the user tries to offer this to the C compiler to compile it, the system will refuse because

5

5

it has the wrong extension. Attempts to copy file.dat to file.c will be rejected by the system as invalid (to
protect the user against mistakes).

While this kind of "user friendliness" may help novices, it drives experienced users up the wall since they
have to devote considerable effort to circumventing the operating system's idea of what is reasonable and
what is not.

[Page 488]

5.1.4. File Access

Early operating systems provided only a single kind of file access: sequential access. In these systems, a
process could read all the bytes or records in a file in order, starting at the beginning, but could not skip
around and read them out of order. Sequential files could be rewound, however, so they could be read as often
as needed. Sequential files were convenient when the storage medium was magnetic tape, rather than disk.

When disks came into use for storing files, it became possible to read the bytes or records of a file out of
order, or to access records by key, rather than by position. Files whose bytes or records can be read in any
order are called random access files. They are required by many applications.

Random access files are essential for many applications, for example, database systems. If an airline customer
calls up and wants to reserve a seat on a particular flight, the reservation program must be able to access the
record for that flight without having to read the records for thousands of other flights first.

Two methods are used for specifying where to start reading. In the first one, every read operation gives the
position in the file to start reading at. In the second one, a special operation, seek, is provided to set the
current position. After a seek, the file can be read sequentially from the now-current position.

In some older mainframe operating systems, files are classified as being either sequential or random access at
the time they are created. This allows the system to use different storage techniques for the two classes.
Modern operating systems do not make this distinction. All their files are automatically random access.

5.1.5. File Attributes

Every file has a name and its data. In addition, all operating systems associate other information with each
file, for example, the date and time the file was created and the file's size. We will call these extra items the
file's attributes although some people called them metadata. The list of attributes varies considerably from
system to system. The table of Fig. 5-4 shows some of the possibilities, but others also exist. No existing
system has all of these, but each is present in some system.

Figure 5-4. Some possible file attributes. (This item is displayed on page 489 in the print version)

Attribute

Meaning

Protection

Who can access the file and in what way

Password

6

6

Password needed to access the file

Creator

ID of the person who created the file

Owner

Current owner

Read-only flag

0 for read/write; 1 for read only

Hidden flag

0 for normal; 1 for do not display in listings

System flag

0 for normal files; 1 for system file

Archive flag

0 for has been backed up; 1 for needs to be backed up

ASCII/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags

0 for unlocked; nonzero for locked

Record length

Number of bytes in a record

Key position

Offset of the key within each record

Key length

Number of bytes in the key field

7

7

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

The first four attributes relate to the file's protection and tell who may access it and who may not. All kinds of
schemes are possible, some of which we will study later. In some systems the user must present a password to
access a file, in which case the password must be one of the attributes.

The flags are bits or short fields that control or enable some specific property. Hidden files, for example, do
not appear in listings of the files. The archive flag is a bit that keeps track of whether the file has been backed
up. The backup program clears it, and the operating system sets it whenever a file is changed. In this way, the
backup program can tell which files need backing up. The temporary flag allows a file to be marked for
automatic deletion when the process that created it terminates.

[Page 489]

The record length, key position, and key length fields are only present in files whose records can be looked up
using a key. They provide the information required to find the keys.

The various times keep track of when the file was created, most recently accessed and most recently modified.
These are useful for a variety of purposes. For example, a source file that has been modified after the creation
of the corresponding object file needs to be recompiled. These fields provide the necessary information.

The current size tells how big the file is at present. Some old mainframe operating systems require the
maximum size to be specified when the file is created, in order to let the operating system reserve the
maximum amount of storage in advance. Modern operating systems are clever enough to do without this
feature.

[Page 490]

8

8

5.1.6. File Operations

Files exist to store information and allow it to be retrieved later. Different systems provide different
operations to allow storage and retrieval. Below is a discussion of the most common system calls relating to
files.

Create. The file is created with no data. The purpose of the call is to announce that the file is
coming and to set some of the attributes.

1.

Delete. When the file is no longer needed, it has to be deleted to free up disk space. A system call
for this purpose is always provided.

2.

Open. Before using a file, a process must open it. The purpose of the open call is to allow the system
to fetch the attributes and list of disk addresses into main memory for rapid access on later calls.

3.

Close. When all the accesses are finished, the attributes and disk addresses are no longer needed, so
the file should be closed to free up some internal table space. Many systems encourage this by
imposing a maximum number of open files on processes. A disk is written in blocks, and closing a file
forces writing of the file's last block, even though that block may not be entirely full yet.

4.

Read. Data are read from file. Usually, the bytes come from the current position. The caller must
specify how much data are needed and must also provide a buffer to put them in.

5.

Write. Data are written to the file, again, usually at the current position. If the current position is the
end of the file, the file's size increases. If the current position is in the middle of the file, existing data
are overwritten and lost forever.

6.

Append. This call is a restricted form of write. It can only add data to the end of the file. Systems
that provide a minimal set of system calls do not generally have append, but many systems provide
multiple ways of doing the same thing, and these systems sometimes have append.

7.

Seek. For random access files, a method is needed to specify from where to take the data. One
common approach is a system call, seek, that repositions the file pointer to a specific place in the
file. After this call has completed, data can be read from, or written to, that position.

8.

Get attributes. Processes often need to read file attributes to do their work. For example, the
UNIX make program is commonly used to manage software development projects consisting of many
source files. When make is called, it examines the modification times of all the source and object files
and arranges for the minimum number of compilations required to bring everything up to date. To do
its job, it must look at the attributes, namely, the modification times.

[Page 491]

9.

Set attributes. Some of the attributes are user settable and can be changed after the file has
been created. This system call makes that possible. The protection mode information is an obvious
example. Most of the flags also fall in this category.

10.

Rename. It frequently happens that a user needs to change the name of an existing file. This system
call makes that possible. It is not always strictly necessary, because the file can usually be copied to a
new file with the new name, and the old file then deleted.

11.

Lock. Locking a file or a part of a file prevents multiple simultaneous access by different process.
For an airline reservation system, for instance, locking the database while making a reservation
prevents reservation of a seat for two different travelers.

12.

9

9

10

10

[Page 491 (continued)]

5.2. Directories

To keep track of files, file systems normally have directories or folders, which, in many systems, are
themselves files. In this section we will discuss directories, their organization, their properties, and the
operations that can be performed on them.

5.2.1. Simple Directories

A directory typically contains a number of entries, one per file. One possibility is shown in Fig. 5-5(a), in
which each entry contains the file name, the file attributes, and the disk addresses where the data are stored.
Another possibility is shown in Fig. 5-5(b). Here a directory entry holds the file name and a pointer to another
data structure where the attributes and disk addresses are found. Both of these systems are commonly used.

Figure 5-5. (a) Attributes in the directory entry. (b) Attributes elsewhere. (This item is displayed on page 492 in the
print version)

[View full size image]

When a file is opened, the operating system searches its directory until it finds the name of the file to be
opened. It then extracts the attributes and disk addresses, either directly from the directory entry or from the
data structure pointed to, and puts them in a table in main memory. All subsequent references to the file use
the information in main memory.

The number of directories varies from system to system. The simplest form of directory system is a single
directory containing all files for all users, as illustrated in Fig. 5-6(a). On early personal computers, this
single-directory system was common, in part because there was only one user.

Figure 5-6. Three file system designs. (a) Single directory shared by all users. (b) One directory per user. (c)
Arbitrary tree per user. The letters indicate the directory or file's owner. (This item is displayed on page 493 in the

print version)

[View full size image]

1

1

[Page 492]

The problem with having only one directory in a system with multiple users is that different users may
accidentally use the same names for their files. For example, if user A creates a file called mailbox, and then
later user B also creates a file called mailbox, B's file will overwrite A's file. Consequently, this scheme is not
used on multiuser systems any more, but could be used on a small embedded system, for example, a handheld
personal digital assistant or a cellular telephone.

To avoid conflicts caused by different users choosing the same file name for their own files, the next step up
is giving each user a private directory. In that way, names chosen by one user do not interfere with names
chosen by a different user and there is no problem caused by the same name occurring in two or more
directories. This design leads to the system of Fig. 5-6(b). This design could be used, for example, on a
multiuser computer or on a simple network of personal computers that shared a common file server over a
local area network.

Implicit in this design is that when a user tries to open a file, the operating system knows which user it is in
order to know which directory to search. As a consequence, some kind of login procedure is needed, in which
the user specifies a login name or identification, something not required with a single-level directory system.

When this system is implemented in its most basic form, users can only access files in their own directories.

5.2.2. Hierarchical Directory Systems

The two-level hierarchy eliminates file name conflicts between users. But another problem is that users with
many files may want to group them in smaller subgroups, for instance a professor might want to separate
handouts for a class from drafts of chapters of a new textbook. What is needed is a general hierarchy (i.e., a
tree of directories). With this approach, each user can have as many directories as are needed so that files can
be grouped together in natural ways. This approach is shown in Fig. 5-6(c). Here, the directories A, B, and C
contained in the root directory each belong to a different user, two of whom have created subdirectories for
projects they are working on.

[Page 493]

The ability to create an arbitrary number of subdirectories provides a powerful structuring tool for users to
organize their work. For this reason nearly all modern PC and server file systems are organized this way.

2

2

However, as we have pointed out before, history often repeats itself with new technologies. Digital cameras
have to record their images somewhere, usually on a flash memory card. The very first digital cameras had a
single directory and named the files DSC0001.JPG, DSC0002.JPG, etc. However, it did not take very long for
camera manufacturers to build file systems with multiple directories, as in Fig. 5-6(b). What difference does it
make that none of the camera owners understand how to use multiple directories, and probably could not
conceive of any use for this feature even if they did understand it? It is only (embedded) software, after all,
and thus costs the camera manufacturer next to nothing to provide. Can digital cameras with full-blown
hierarchical file systems, multiple login names, and 255-character file names be far behind?

5.2.3. Path Names

When the file system is organized as a directory tree, some way is needed for specifying file names. Two
different methods are commonly used. In the first method, each file is given an absolute path name consisting
of the path from the root directory to the file. As an example, the path /usr/ast/mailbox means that the root
directory contains a subdirectory usr/, which in turn contains a subdirectory ast/, which contains the file
mailbox. Absolute path names always start at the root directory and are unique. In UNIX the components of
the path are separated by /. In Windows the separator is \ . Thus the same path name would be written as
follows in these two systems:

[Page 494]

Windows \usr\ast\mailbox
UNIX /usr/ast/mailbox

No matter which character is used, if the first character of the path name is the separator, then the path is
absolute.

The other kind of name is the relative path name. This is used in conjunction with the concept of the working
directory (also called the current directory). A user can designate one directory as the current working
directory, in which case all path names not beginning at the root directory are taken relative to the working
directory. For example, if the current working directory is /usr/ast, then the file whose absolute path is
/usr/ast/mailbox can be referenced simply as mailbox. In other words, the UNIX command

 cp /usr/ast/mailbox /usr/ast/mailbox.bak

and the command

 cp mailbox mailbox.bak

do exactly the same thing if the working directory is /usr/ast/. The relative form is often more convenient, but
it does the same thing as the absolute form.

Some programs need to access a specific file without regard to what the working directory is. In that case,
they should always use absolute path names. For example, a spelling checker might need to read
/usr/lib/dictionary to do its work. It should use the full, absolute path name in this case because it does not
know what the working directory will be when it is called. The absolute path name will always work, no
matter what the working directory is.

3

3

Of course, if the spelling checker needs a large number of files from /usr/lib/, an alternative approach is for it
to issue a system call to change its working directory to /usr/lib/, and then use just dictionary as the first
parameter to open. By explicitly changing the working directory, it knows for sure where it is in the directory
tree, so it can then use relative paths.

Each process has its own working directory, so when a process changes its working directory and later exits,
no other processes are affected and no traces of the change are left behind in the file system. In this way it is
always perfectly safe for a process to change its working directory whenever that is convenient. On the other
hand, if a library procedure changes the working directory and does not change back to where it was when it
is finished, the rest of the program may not work since its assumption about where it is may now suddenly be
invalid. For this reason, library procedures rarely change the working directory, and when they must, they
always change it back again before returning.

[Page 495]

Most operating systems that support a hierarchical directory system have two special entries in every
directory, "." and "..", generally pronounced "dot" and "dotdot." Dot refers to the current directory; dotdot
refers to its parent. To see how these are used, consider the UNIX file tree of Fig. 5-7. A certain process has
/usr/ast/ as its working directory. It can use .. to go up the tree. For example, it can copy the file
/usr/lib/dictionary to its own directory using the command

cp ../lib/dictionary .

Figure 5-7. A UNIX directory tree.

[View full size image]

4

4

The first path instructs the system to go upward (to the usr directory), then to go down to the directory lib/ to
find the file dictionary.

The second argument (dot) names the current directory. When the cp command gets a directory name
(including dot) as its last argument, it copies all the files there. Of course, a more normal way to do the copy
would be to type

 cp /usr/lib/dictionary .

Here the use of dot saves the user the trouble of typing dictionary a second time.

[Page 496]

Nevertheless, typing

cp /usr/lib/dictionary dictionary

also works fine, as does

cp /usr/lib/dictionary /usr/ast/dictionary

5

5

All of these do exactly the same thing.

5.2.4. Directory Operations

The system calls for managing directories exhibit more variation from system to system than system calls for
files. To give an impression of what they are and how they work, we will give a sample (taken from UNIX).

Create. A directory is created. It is empty except for dot and dotdot, which are put there
automatically by the system (or in a few cases, by the mkdir program).

1.

Delete. A directory is deleted. Only an empty directory can be deleted. A directory containing only
dot and dotdot is considered empty as these cannot usually be deleted.

2.

Opendir. Directories can be read. For example, to list all the files in a directory, a listing program
opens the directory to read out the names of all the files it contains. Before a directory can be read, it
must be opened, analogous to opening and reading a file.

3.

Closedir. When a directory has been read, it should be closed to free up internal table space.4.
Readdir. This call returns the next entry in an open directory. Formerly, it was possible to read
directories using the usual read system call, but that approach has the disadvantage of forcing the
programmer to know and deal with the internal structure of directories. In contrast, readdir always
returns one entry in a standard format, no matter which of the possible directory structures is being
used.

5.

Rename. In many respects, directories are just like files and can be renamed the same way files can
be.

6.

Link. Linking is a technique that allows a file to appear in more than one directory. This system call
specifies an existing file and a path name, and creates a link from the existing file to the name
specified by the path. In this way, the same file may appear in multiple directories. A link of this kind,
which increments the counter in the file's i-node (to keep track of the number of directory entries
containing the file), is sometimes called a hard link.

7.

[Page 497]

Unlink. A directory entry is removed. If the file being unlinked is only present in one directory (the
normal case), it is removed from the file system. If it is present in multiple directories, only the path
name specified is removed. The others remain. In UNIX, the system call for deleting files (discussed
earlier) is, in fact, unlink.

8.

The above list gives the most important calls, but there are a few others as well, for example, for managing the
protection information associated with a directory.

6

6

[Page 497 (continued)]

5.3. File System Implementation

Now it is time to turn from the user's view of the file system to the implementer's view. Users are concerned
with how files are named, what operations are allowed on them, what the directory tree looks like, and similar
interface issues. Implementers are interested in how files and directories are stored, how disk space is
managed, and how to make everything work efficiently and reliably. In the following sections we will
examine a number of these areas to see what the issues and trade-offs are.

5.3.1. File System Layout

File systems usually are stored on disks. We looked at basic disk layout in Chap. 2, in the section on
bootstrapping MINIX 3. To review this material briefly, most disks can be divided up into partitions, with
independent file systems on each partition. Sector 0 of the disk is called the MBR (Master Boot Record) and
is used to boot the computer. The end of the MBR contains the partition table. This table gives the starting and
ending addresses of each partition. One of the partitions in the table may be marked as active. When the
computer is booted, the BIOS reads in and executes the code in the MBR. The first thing the MBR program
does is locate the active partition, read in its first block, called the boot block, and execute it. The program in
the boot block loads the operating system contained in that partition. For uniformity, every partition starts
with a boot block, even if it does not contain a bootable operating system. Besides, it might contain one in the
some time in the future, so reserving a boot block is a good idea anyway.

The above description must be true, regardless of the operating system in use, for any hardware platform on
which the BIOS is to be able to start more than one operating system. The terminology may differ with
different operating systems. For instance the master boot record may sometimes be called the IPL (Initial
Program Loader), Volume Boot Code, or simply masterboot. Some operating systems do not require a
partition to be marked active to be booted, and provide a menu for the user to choose a partition to boot,
perhaps with a timeout after which a default choice is automatically taken. Once the BIOS has loaded an
MBR or boot sector the actions may vary. For instance, more than one block of a partition may be used to
contain the program that loads the operating system. The BIOS can be counted on only to load the first block,
but that block may then load additional blocks if the implementer of the operating system writes the boot
block that way. An implementer can also supply a custom MBR, but it must work with a standard partition
table if multiple operating systems are to be supported.

[Page 498]

On PC-compatible systems there can be no more than four primary partitions because there is only room for a
four-element array of partition descriptors between the master boot record and the end of the first 512-byte
sector. Some operating systems allow one entry in the partition table to be an extended partition which points
to a linked list of logical partitions. This makes it possible to have any number of additional partitions. The
BIOS cannot start an operating system from a logical partition, so initial startup from a primary partition is
required to load code that can manage logical partitions.

An alternative to extended partitions is used by MINIX 3, which allows a partition to contain a subpartition
table. An advantage of this is that the same code that manages a primary partition table can manage a
subpartition table, which has the same structure. Potential uses for subpartitions are to have different ones for
the root device, swapping, the system binaries, and the users' files. In this way, problems in one subpartition
cannot propagate to another one, and a new version of the operating system can be easily installed by
replacing the contents of some of the subpartitions but not all.

1

1

Not all disks are partitioned. Floppy disks usually start with a boot block in the first sector. The BIOS reads
the first sector of a disk and looks for a magic number which identifies it as valid executable code, to prevent
an attempt to execute the first sector of an unformatted or corrupted disk. A master boot record and a boot
block use the same magic number, so the executable code may be either one. Also, what we say here is not
limited to electromechanical disk devices. A device such as a camera or personal digital assistant that uses
nonvolatile (e.g., flash) memory typically has part of the memory organized to simulate a disk.

Other than starting with a boot block, the layout of a disk partition varies considerably from file system to file
system. A UNIX-like file system will contain some of the items shown in Fig. 5-8. The first one is the
superblock. It contains all the key parameters about the file system and is read into memory when the
computer is booted or the file system is first touched.

Figure 5-8. A possible file system layout. (This item is displayed on page 499 in the print version)

[View full size image]

Next might come information about free blocks in the file system. This might be followed by the i-nodes, an
array of data structures, one per file, telling all about the file and where its blocks are located. After that might
come the root directory, which contains the top of the file system tree. Finally, the remainder of the disk
typically contains all the other directories and files.

[Page 499]

5.3.2. Implementing Files

Probably the most important issue in implementing file storage is keeping track of which disk blocks go with
which file. Various methods are used in different operating systems. In this section, we will examine a few of
them.

Contiguous Allocation

The simplest allocation scheme is to store each file as a contiguous run of disk blocks. Thus on a disk with
1-KB blocks, a 50-KB file would be allocated 50 consecutive blocks. Contiguous disk space allocation has
two significant advantages. First, it is simple to implement because keeping track of where a file's blocks are
is reduced to remembering two numbers: the disk address of the first block and the number of blocks in the
file. Given the number of the first block, the number of any other block can be found by a simple addition.

2

2

Second, the read performance is excellent because the entire file can be read from the disk in a single
operation. Only one seek is needed (to the first block). After that, no more seeks or rotational delays are
needed so data come in at the full bandwidth of the disk. Thus contiguous allocation is simple to implement
and has high performance.

Unfortunately, contiguous allocation also has a major drawback: in time, the disk becomes fragmented,
consisting of files and holes. Initially, this fragmentation is not a problem since each new file can be written at
the end of disk, following the previous one. However, eventually the disk will fill up and it will become
necessary to either compact the disk, which is prohibitively expensive, or to reuse the free space in the holes.
Reusing the space requires maintaining a list of holes, which is doable. However, when a new file is to be
created, it is necessary to know its final size in order to choose a hole of the correct size to place it in.

[Page 500]

As we mentioned in Chap. 1, history may repeat itself in computer science as new generations of technology
occur. Contiguous allocation was actually used on magnetic disk file systems years ago due to its simplicity
and high performance (user friendliness did not count for much then). Then the idea was dropped due to the
nuisance of having to specify final file size at file creation time. But with the advent of CD-ROMs, DVDs,
and other write-once optical media, suddenly contiguous files are a good idea again. For such media,
contiguous allocation is feasible and, in fact, widely used. Here all the file sizes are known in advance and
will never change during subsequent use of the CD-ROM file system. It is thus important to study old systems
and ideas that were conceptually clean and simple because they may be applicable to future systems in
surprising ways.

Linked List Allocation

The second method for storing files is to keep each one as a linked list of disk blocks, as shown in Fig. 5-9.
The first word of each block is used as a pointer to the next one. The rest of the block is for data.

Figure 5-9. Storing a file as a linked list of disk blocks.

3

3

Unlike contiguous allocation, every disk block can be used in this method. No space is lost to disk
fragmentation (except for internal fragmentation in the last block of each file). Also, it is sufficient for the
directory entry to merely store the disk address of the first block. The rest can be found starting there.

On the other hand, although reading a file sequentially is straightforward, random access is extremely slow.
To get to block n, the operating system has to start at the beginning and read the n 1 blocks prior to it, one at a
time. Clearly, doing so many reads will be painfully slow.

[Page 501]

Also, the amount of data storage in a block is no longer a power of two because the pointer takes up a few
bytes. While not fatal, having a peculiar size is less efficient because many programs read and write in blocks
whose size is a power of two. With the first few bytes of each block occupied to a pointer to the next block,
reads of the full block size require acquiring and concatenating information from two disk blocks, which
generates extra overhead due to the copying.

Linked List Allocation Using a Table in Memory

Both disadvantages of the linked list allocation can be eliminated by taking the pointer word from each disk
block and putting it in a table in memory. Figure 5-10 shows what the table looks like for the example of Fig.
5-9. In both figures, we have two files. File A uses disk blocks 4, 7, 2, 10, and 12, in that order, and file B
uses disk blocks 6, 3, 11, and 14, in that order. Using the table of Fig. 5-10, we can start with block 4 and
follow the chain all the way to the end. The same can be done starting with block 6. Both chains are
terminated with a special marker (e.g., 1) that is not a valid block number. Such a table in main memory is
called a FAT (File Allocation Table).

Figure 5-10. Linked list allocation using a file allocation table in main memory.

4

4

Using this organization, the entire block is available for data. Furthermore, random access is much easier.
Although the chain must still be followed to find a given offset within the file, the chain is entirely in
memory, so it can be followed without making any disk references. Like the previous method, it is sufficient
for the directory entry to keep a single integer (the starting block number) and still be able to locate all the
blocks, no matter how large the file is.

[Page 502]

The primary disadvantage of this method is that the entire table must be in memory all the time. With a 20-GB
disk and a 1-KB block size, the table needs 20 million entries, one for each of the 20 million disk blocks. Each
entry has to be a minimum of 3 bytes. For speed in lookup, they should be 4 bytes. Thus the table will take up
60 MB or 80 MB of main memory all the time, depending on whether the system is optimized for space or
time. Conceivably the table could be put in pageable memory, but it would still occupy a great deal of virtual
memory and disk space as well as generating paging traffic. MS-DOS and Windows 98 use only FAT file
systems and later versions of Windows also support it.

I-Nodes

Our last method for keeping track of which blocks belong to which file is to associate with each file a data
structure called an i-node (index-node), which lists the attributes and disk addresses of the file's blocks. A
simple example is depicted in Fig. 5-11. Given the i-node, it is then possible to find all the blocks of the file.
The big advantage of this scheme over linked files using an in-memory table is that the i-node need only be in
memory when the corresponding file is open. If each i-node occupies n bytes and a maximum of k files may
be open at once, the total memory occupied by the array holding the i-nodes for the open files is only kn
bytes. Only this much space need be reserved in advance.

Figure 5-11. An i-node with three levels of indirect blocks. (This item is displayed on page 503 in the print version)

[View full size image]

5

5

This array is usually far smaller than the space occupied by the file table described in the previous section.
The reason is simple. The table for holding the linked list of all disk blocks is proportional in size to the disk
itself. If the disk has n blocks, the table needs n entries. As disks grow larger, this table grows linearly with
them. In contrast, the i-node scheme requires an array in memory whose size is proportional to the maximum
number of files that may be open at once. It does not matter if the disk is 1 GB or 10 GB or 100 GB.

One problem with i-nodes is that if each one has room for a fixed number of disk addresses, what happens
when a file grows beyond this limit? One solution is to reserve the last disk address not for a data block, but
instead for the address of an indirect block containing more disk block addresses. This idea can be extended to
use double indirect blocks and triple indirect blocks, as shown in Fig. 5-11.

5.3.3. Implementing Directories

Before a file can be read, it must be opened. When a file is opened, the operating system uses the path name
supplied by the user to locate the directory entry. Finding a directory entry means, of course, that the root
directory must be located first. The root directory may be in a fixed location relative to the start of a partition.
Alternatively, its position may be determined from other information, for instance, in a classic UNIX file
system the superblock contains information about the size of the file system data structures that precede the
data area. From the superblock the location of the i-nodes can be found. The first i-node will point to the root
directory, which is created when a UNIX file system is made. In Windows XP, information in the boot sector
(which is really much bigger than one sector) locates the MFT (Master File Table), which is used to locate
other parts of the file system.

[Page 503]

Once the root directory is located a search through the directory tree finds the desired directory entry. The
directory entry provides the information needed to find the disk blocks. Depending on the system, this
information may be the disk address of the entire file (contiguous allocation), the number of the first block
(both linked list schemes), or the number of the i-node. In all cases, the main function of the directory system
is to map the ASCII name of the file onto the information needed to locate the data.

A closely related issue is where the attributes should be stored. Every file system maintains file attributes,
such as each file's owner and creation time, and they must be stored somewhere. One obvious possibility is to
store them directly in the directory entry. In its simplest form, a directory consists of a list of fixed-size
entries, one per file, containing a (fixed-length) file name, a structure of the file attributes, and one or more
disk addresses (up to some maximum) telling where the disk blocks are, as we saw in Fig. 5-5(a).

[Page 504]

For systems that use i-nodes, another possibility for storing the attributes is in the i-nodes, rather than in the
directory entries, as in Fig. 5-5(b). In this case, the directory entry can be shorter: just a file name and an
i-node number.

Shared Files

In Chap. 1 we briefly mentioned links between files, which make it easy for several users working together on
a project to share files. Figure 5-12 shows the file system of Fig. 5-6(c) again, only with one of C's files now
present in one of B's directories as well.

6

6

Figure 5-12. File system containing a shared file.

In UNIX the use of i-nodes for storing file attributes makes sharing easy; any number of directory entries can
point to a single i-node. The i-node contains a field which is incremented when a new link is added, and which
is decremented when a link is deleted. Only when the link count reaches zero are the actual data and the
i-node itself deleted.

This kind of link is sometimes called a hard link. Sharing files using hard links is not always possible. A
major limitation is that directories and i-nodes are data structures of a single file system (partition), so a
directory in one file system cannot point to an i-node on another file system. Also, a file can have only one
owner and one set of permissions. If the owner of a shared file deletes his own directory entry for that file,
another user could be stuck with a file in his directory that he cannot delete if the permissions do not allow it.

[Page 505]

An alternative way to share files is to create a new kind of file whose data is the path to another file. This kind
of link will work across mounted file systems. In fact, if a means is provided for path names to include
network addresses, such a link can refer to a file on a different computer. This second kind of link is called a
symbolic link in UNIX-like systems, a shortcut in Windows, and an alias in Apple's Mac OS. Symbolic links
can be used on systems where attributes are stored within directory entries. A little thought should convince
you that multiple directory entries containing file attributes would be difficult to synchronize. Any change to a
file would have to affect every directory entry for that file. But the extra directory entries for symbolic links
do not contain the attributes of the file to which they point. A disadvantage of symbolic links is that when a
file is deleted, or even just renamed, a link becomes an orphan.

Directories in Windows 98

The file system of the original release of Windows 95 was identical to the MS-DOS file system, but a second
release added support for longer file names and bigger files. We will refer to this as the Windows 98 file
system, even though it is found on some Windows 95 systems. Two types of directory entry exist in Windows

7

7

98. We will call the first one, shown in Fig. 5-13, a base entry.

Figure 5-13. A Windows 98 base directory entry.

[View full size image]

The base directory entry has all the information that was in the directory entries of older Windows versions,
and more. The 10 bytes starting with the NT field are additions to the older Windows 95 structure, which
fortunately (or more likely deliberately, with later improvement in mind) were not previously used. The most
important upgrade is the field that increases the number of bits available for pointing to the starting block
from 16 to 32. This increases the maximum potential size of the file system from 216 blocks to 232 blocks.

This structure provides only for the old-style 8 + 3 character filenames inherited from MS-DOS (and CP/M).
How about long file names? The answer to the problem of providing long file names while retaining
compatibility with the older systems was to use additional directory entries. Fig. 5-14 shows an alternative
form of directory entry that can contain up to 13 characters of a long file name. For files with long names a
shortened form of the name is generated automatically and placed in the Base name and Ext fields of an Fig.
5-13-style base directory entry. As many entries like that of Fig. 5-14 as are needed to contain the long file
name are placed before the base entry, in reverse order. The Attributes field of each long name entry contains
the value 0x0F, which is an impossible value for older (MS-DOS and Windows 95) files systems, so these
entries will be ignored if the directory is read by an older system (on a floppy disk, for instance). A bit in the
Sequence field tells the system which is the last entry.

[Page 506]

Figure 5-14. An entry for (part of) a long file name in Windows 98.

[View full size image]

If this seems rather complex, well, it is. Providing backward compatibility so an earlier simpler system can
continue to function while providing additional features for a newer system is likely to be messy. A purist
might decide not to go to so much trouble. However, a purist would probably not become rich selling new
versions of operating systems.

8

8

Directories in UNIX

The traditional UNIX directory structure is extremely simple, as shown in Fig. 5-15. Each entry contains just a
file name and its i-node number. All the information about the type, size, times, ownership, and disk blocks is
contained in the i-node. Some UNIX systems have a different layout, but in all cases, a directory entry
ultimately contains only an ASCII string and an i-node number.

Figure 5-15. A Version 7 UNIX directory entry.

When a file is opened, the file system must take the file name supplied and locate its disk blocks. Let us
consider how the path name /usr/ast/mbox is looked up. We will use UNIX as an example, but the algorithm
is basically the same for all hierarchical directory systems. First the system locates the root directory. The
i-nodes form a simple array which is located using information in the superblock. The first entry in this array
is the i-node of the root directory.

[Page 507]

The file system looks up the first component of the path, usr, in the root directory to find the i-node number of
the file /usr/. Locating an i-node from its number is straightforward, since each one has a fixed location
relative to the first one. From this i-node, the system locates the directory for /usr/ and looks up the next
component, ast, in it. When it has found the entry for ast, it has the i-node for the directory /usr/ast/. From this
i-node it can find the directory itself and look up mbox. The i-node for this file is then read into memory and
kept there until the file is closed. The lookup process is illustrated in Fig. 5-16.

Figure 5-16. The steps in looking up /usr/ast/mbox.

[View full size image]

9

9

Relative path names are looked up the same way as absolute ones, only starting from the working directory
instead of starting from the root directory. Every directory has entries for . and .. which are put there when the
directory is created. The entry . has the i-node number for the current directory, and the entry for .. has the
i-node number for the parent directory. Thus, a procedure looking up ../dick/prog.c simply looks up .. in the
working directory, finds the i-node number for the parent directory, and searches that directory for dick. No
special mechanism is needed to handle these names. As far as the directory system is concerned, they are just
ordinary ASCII strings, just the same as any other names.

Directories in NTFS

Microsoft's NTFS (New Technology File System) is the default file system. We do not have space for a
detailed description of NTFS, but will just briefly look at some of the problems NTFS deals with and the
solutions used.

[Page 508]

One problem is long file and path names. NTFS allows long file names (up to 255 characters) and path names
(up to 32,767 characters). But since older versions of Windows cannot read NTFS file systems, a complicated
backward-compatible directory structure is not needed, and filename fields are variable length. Provision is
made to have a second 8 + 3 character name so an older system can access NTFS files over a network.

NTFS provides for multiple character sets by using Unicode for filenames. Unicode uses 16 bits for each
character, enough to represent multiple languages with very large symbol sets (e.g., Japanese). But using
multiple languages raises problems in addition to representation of different character sets. Even among
Latin-derived languages there are subtleties. For instance, in Spanish some combinations of two characters
count as single characters when sorting. Words beginning with "ch" or "ll" should appear in sorted lists after
words that begin with "cz" or "lz", respectively. The problem of case mapping is more complex. If the default
is to make filenames case sensitive, there may still be a need to do case-insensitive searches. For Latin-based
languages it is obvious how to do that, at least to native users of these languages. In general, if only one
language is in use, users will probably know the rules. However, Unicode allows a mixture of languages:
Greek, Russian, and Japanese filenames could all appear in a single directory at an international organization.
The NTFS solution is an attribute for each file that defines the case conventions for the language of the
filename.

10

10

More attributes is the NTFS solution to many problems. In UNIX, a file is a sequence of bytes. In NTFS a file
is a collection of attributes, and each attribute is a stream of bytes. The basic NTFS data structure is the MFT
(Master File Table) that provides for 16 attributes, each of which can have a length of up to 1 KB within the
MFT. If that is not enough, an attribute within the MFT can be a header that points to an additional file with
an extension of the attribute values. This is known as a nonresident attribute. The MFT itself is a file, and it
has an entry for every file and directory in the file system. Since it can grow very large, when an NTFS file
system is created about 12.5% of the space on the partition is reserved for growth of the MFT. Thus it can
grow without becoming fragmented, at least until the initial reserved space is used, after which another large
chunk of space will be reserved. So if the MFT becomes fragmented it will consists of a small number of very
large fragments.

What about data in NTFS? Data is just another attribute. In fact an NTFS file may have more than one data
stream. This feature was originally provided to allow Windows servers to serve files to Apple MacIntosh
clients. In the original MacIntosh operating system (through Mac OS 9) all files had two data streams, called
the resource fork and the data fork. Multiple data streams have other uses, for instance a large graphic image
may have a smaller thumbnail image associated with it. A stream can contain up to 264 bytes. At the other
extreme, NTFS can handle small files by putting a few hundred bytes in the attribute header. This is called an
immediate file (Mullender and Tanenbaum, 1984).

[Page 509]

We have only touched upon a few ways that NTFS deals with issues not addressed by older and simpler file
systems. NTFS also provides features such as a sophisticated protection system, encryption, and data
compression. Describing all these features and their implementation would require much more space than we
can spare here. For a more throrough look at NTFS see Tanenbaum (2001) or look on the World Wide Web
for more information.

5.3.4. Disk Space Management

Files are normally stored on disk, so management of disk space is a major concern to file system designers.
Two general strategies are possible for storing an n byte file: n consecutive bytes of disk space are allocated,
or the file is split up into a number of (not necessarily) contiguous blocks. The same trade-off is present in
memory management systems between pure segmentation and paging.

As we have seen, storing a file as a contiguous sequence of bytes has the obvious problem that if a file grows,
it will probably have to be moved on the disk. The same problem holds for segments in memory, except that
moving a segment in memory is a relatively fast operation compared to moving a file from one disk position
to another. For this reason, nearly all file systems chop files up into fixed-size blocks that need not be
adjacent.

Block Size

Once it has been decided to store files in fixed-size blocks, the question arises of how big the blocks should
be. Given the way disks are organized, the sector, the track and the cylinder are obvious candidates for the
unit of allocation (although these are all device dependent, which is a minus). In a paging system, the page
size is also a major contender. However, having a large allocation unit, such as a cylinder, means that every
file, even a 1-byte file, ties up an entire cylinder.

On the other hand, using a small allocation unit means that each file will consist of many blocks. Reading
each block normally requires a seek and a rotational delay, so reading a file consisting of many small blocks
will be slow.

11

11

As an example, consider a disk with 131,072 bytes/track, a rotation time of 8.33 msec, and an average seek
time of 10 msec. The time in milliseconds to read a block of k bytes is then the sum of the seek, rotational
delay, and transfer times:

10 + 4.165 + (k / 131072)x 8.33

The solid curve of Fig. 5-17 shows the data rate for such a disk as a function of block size.

Figure 5-17. The solid curve (left-hand scale) gives the data rate of a disk. The dashed curve (right-hand scale)
gives the disk space efficiency. All files are 2 KB. (This item is displayed on page 510 in the print version)

[View full size image]

To compute the space efficiency, we need to make an assumption about the mean file size. An early study
showed that the mean file size in UNIX environments is about 1 KB (Mullender and Tanenbaum, 1984). A
measurement made in 2005 at the department of one of the authors (AST), which has 1000 users and over 1
million UNIX disk files, gives a median size of 2475 bytes, meaning that half the files are smaller than 2475
bytes and half are larger. As an aside, the median is a better metric than the mean because a very small
number of files can influence the mean enormously, but not the median. A few 100-MB hardware manuals or
a promotional videos or to can greatly skew the mean but have little effect on the median.

[Page 510]

In an experiment to see if Windows NT file usage was appreciably different from UNIX file usage, Vogels
(1999) made measurements on files at Cornell University. He observed that NT file usage is more
complicated than on UNIX. He wrote:

When we type a few characters in the notepad text editor, saving this to a file will trigger 26
system calls, including 3 failed open attempts, 1 file overwrite and 4 additional open and
close sequences.

Nevertheless, he observed a median size (weighted by usage) of files just read at 1 KB, files just written as 2.3
KB and files read and written as 4.2 KB. Given the fact that Cornell has considerable large-scale scientific
computing and the difference in measurement technique (static versus dynamic), the results are reasonably
consistent with a median file size of around 2 KB.

For simplicity, let us assume all files are 2 KB, which leads to the dashed curve in Fig. 5-17 for the disk space
efficiency.

12

12

The two curves can be understood as follows. The access time for a block is completely dominated by the
seek time and rotational delay, so given that it is going to cost 14 msec to access a block, the more data that
are fetched, the better. Hence the data rate goes up with block size (until the transfers take so long that the
transfer time begins to dominate). With small blocks that are powers of two and 2-KB files, no space is
wasted in a block. However, with 2-KB files and 4 KB or larger blocks, some disk space is wasted. In reality,
few files are a multiple of the disk block size, so some space is always wasted in the last block of a file.

[Page 511]

What the curves show, however, is that performance and space utilization are inherently in conflict. Small
blocks are bad for performance but good for disk space utilization. A compromise size is needed. For this
data, 4 KB might be a good choice, but some operating systems made their choices a long time ago, when the
disk parameters and file sizes were different. For UNIX, 1 KB is commonly used. For MS-DOS the block size
can be any power of two from 512 bytes to 32 KB, but is determined by the disk size and for reasons
unrelated to these arguments (the maximum number of blocks on a disk partition is 216, which forces large
blocks on large disks).

Keeping Track of Free Blocks

Once a block size has been chosen, the next issue is how to keep track of free blocks. Two methods are widely
used, as shown in Fig. 5-18. The first one consists of using a linked list of disk blocks, with each block
holding as many free disk block numbers as will fit. With a 1-KB block and a 32-bit disk block number, each
block on the free list holds the numbers of 255 free blocks. (One slot is needed for the pointer to the next
block). A 256-GB disk needs a free list of maximum 1,052,689 blocks to hold all 228 disk block numbers.
Often free blocks are used to hold the free list.

Figure 5-18. (a) Storing the free list on a linked list. (b) A bitmap.

[View full size image]

[Page 512]

13

13

The other free space management technique is the bitmap. A disk with n blocks requires a bitmap with n bits.
Free blocks are represented by 1s in the map, allocated blocks by 0s (or vice versa). A 256-GB disk has 228
1-KB blocks and thus requires 228 bits for the map, which requires 32,768 blocks. It is not surprising that the
bitmap requires less space, since it uses 1 bit per block, versus 32 bits in the linked list model. Only if the disk
is nearly full (i.e., has few free blocks) will the linked list scheme require fewer blocks than the bitmap. On
the other hand, if there are many blocks free, some of them can be borrowed to hold the free list without any
loss of disk capacity.

When the free list method is used, only one block of pointers need be kept in main memory. When a file is
created, the needed blocks are taken from the block of pointers. When it runs out, a new block of pointers is
read in from the disk. Similarly, when a file is deleted, its blocks are freed and added to the block of pointers
in main memory. When this block fills up, it is written to disk.

5.3.5. File System Reliability

Destruction of a file system is often a far greater disaster than destruction of a computer. If a computer is
destroyed by fire, lightning surges, or a cup of coffee poured onto the keyboard, it is annoying and will cost
money, but generally a replacement can be purchased with a minimum of fuss. Inexpensive personal
computers can even be replaced within an hour by just going to the dealer (except at universities, where
issuing a purchase order takes three committees, five signatures, and 90 days).

If a computer's file system is irrevocably lost, whether due to hardware, software, or rats gnawing on the
backup tapes, restoring all the information will be difficult and time consuming at best, and in many cases will
be impossible. For the people whose programs, documents, customer files, tax records, databases, marketing
plans, or other data are gone forever, the consequences can be catastrophic. While the file system cannot offer
any protection against physical destruction of the equipment and media, it can help protect the information. In
this section we will look at some of the issues involved in safeguarding the file system.

Floppy disks are generally perfect when they leave the factory, but they can develop bad blocks during use. It
is arguable that this is more likely now than it was in the days when floppy disks were more widely used.
Networks and large capacity removable devices such as writeable CDs have led to floppy disks being used
infrequently. Cooling fans draw air and airborne dust in through floppy disk drives, and a drive that has not
been used for a long time may be so dirty that it ruins the next disk that is inserted. A floppy drive that is used
frequently is less likely to damage a disk.

Hard disks frequently have bad blocks right from the start: it is just too expensive to manufacture them
completely free of all defects. As we saw in Chap. 3, bad blocks on hard disks are generally handled by the
controller by replacing bad sectors with spares provided for that purpose. On these disks, tracks are at least
one sector bigger than needed, so that at least one bad spot can be skipped by leaving it in a gap between two
consecutive sectors. A few spare sectors are provided on each cylinder so the controller can do automatic
sector remapping if it notices that a sector needs more than a certain number of retries to be read or written.
Thus the user is usually unaware of bad blocks or their management. Nevertheless, when a modern IDE or
SCSI disk fails, it will usually fail horribly, because it has run out of spare sectors. SCSI disks provide a
"recovered error" when they remap a block. If the driver notes this and displays a message on the monitor the
user will know it is time to buy a new disk when these messages begin to appear frequently.

[Page 513]

A simple software solution to the bad block problem exists, suitable for use on older disks. This approach
requires the user or file system to carefully construct a file containing all the bad blocks. This technique
removes them from the free list, so they will never occur in data files. As long as the bad block file is never
read or written, no problems will arise. Care has to be taken during disk backups to avoid reading this file and

14

14

trying to back it up.

Backups

Most people do not think making backups of their files is worth the time and effortuntil one fine day their disk
abruptly dies, at which time most of them undergo a deathbed conversion. Companies, however, (usually)
well understand the value of their data and generally do a backup at least once a day, usually to tape. Modern
tapes hold tens or sometimes even hundreds of gigabytes and cost pennies per gigabyte. Nevertheless, making
backups is not quite as trivial as it sounds, so we will examine some of the related issues below.

Backups to tape are generally made to handle one of two potential problems:

Recover from disaster.1.
Recover from stupidity.2.

The first one covers getting the computer running again after a disk crash, fire, flood, or other natural
catastrophe. In practice, these things do not happen very often, which is why many people do not bother with
backups. These people also tend not to have fire insurance on their houses for the same reason.

The second reason is that users often accidentally remove files that they later need again. This problem occurs
so often that when a file is "removed" in Windows, it is not deleted at all, but just moved to a special
directory, the recycle bin, so it can be fished out and restored easily later. Backups take this principle further
and allow files that were removed days, even weeks ago, to be restored from old backup tapes.

Making a backup takes a long time and occupies a large amount of space, so doing it efficiently and
conveniently is important. These considerations raise the following issues. First, should the entire file system
be backed up or only part of it? At many installations, the executable (binary) programs are kept in a limited
part of the file system tree. It is not necessary to back up these files if they can all be reinstalled from the
manufacturers' CD-ROMs. Also, most systems have a directory for temporary files. There is usually no reason
to back it up either. In UNIX, all the special files (I/O devices) are kept in a directory /dev/. Not only is
backing up this directory not necessary, it is downright dangerous because the backup program would hang
forever if it tried to read each of these to completion. In short, it is usually desirable to back up only specific
directories and everything in them rather than the entire file system.

[Page 514]

Second, it is wasteful to back up files that have not changed since the last backup, which leads to the idea of
incremental dumps. The simplest form of incremental dumping is to make a complete dump (backup)
periodically, say weekly or monthly, and to make a daily dump of only those files that have been modified
since the last full dump. Even better is to dump only those files that have changed since they were last
dumped. While this scheme minimizes dumping time, it makes recovery more complicated because first the
most recent full dump has to be restored, followed by all the incremental dumps in reverse order, oldest one
first. To ease recovery, more sophisticated incremental dumping schemes are often used.

Third, since immense amounts of data are typically dumped, it may be desirable to compress the data before
writing them to tape. However, with many compression algorithms, a single bad spot on the backup tape can
foil the decompression algorithm and make an entire file or even an entire tape unreadable. Thus the decision
to compress the backup stream must be carefully considered.

Fourth, it is difficult to perform a backup on an active file system. If files and directories are being added,
deleted, and modified during the dumping process, the resulting dump may be inconsistent. However, since
making a dump may take hours, it may be necessary to take the system offline for much of the night to make
the backup, something that is not always acceptable. For this reason, algorithms have been devised for making

15

15

rapid snapshots of the file system state by copying critical data structures, and then requiring future changes to
files and directories to copy the blocks instead of updating them in place (Hutchinson et al., 1999). In this
way, the file system is effectively frozen at the moment of the snapshot, so it can be backed up at leisure
afterward.

Fifth and last, making backups introduces many nontechnical problems into an organization. The best online
security system in the world may be useless if the system administrator keeps all the backup tapes in his office
and leaves it open and unguarded whenever he walks down the hall to get output from the printer. All a spy
has to do is pop in for a second, put one tiny tape in his pocket, and saunter off jauntily. Goodbye security.
Also, making a daily backup has little use if the fire that burns down the computers also burns up all the
backup tapes. For this reason, backup tapes should be kept off-site, but that introduces more security risks. For
a thorough discussion of these and other practical administration issues, see Nemeth et al. (2001). Below we
will discuss only the technical issues involved in making file system backups.

[Page 515]

Two strategies can be used for dumping a disk to tape: a physical dump or a logical dump. A physical dump
starts at block 0 of the disk, writes all the disk blocks onto the output tape in order, and stops when it has
copied the last one. Such a program is so simple that it can probably be made 100% bug free, something that
can probably not be said about any other useful program.

Nevertheless, it is worth making several comments about physical dumping. For one thing, there is no value
in backing up unused disk blocks. If the dumping program can get access to the free block data structure, it
can avoid dumping unused blocks. However, skipping unused blocks requires writing the number of each
block in front of the block (or the equivalent), since it is no longer true that block k on the tape was block k on
the disk.

A second concern is dumping bad blocks. If all bad blocks are remapped by the disk controller and hidden
from the operating system as we described in Sec. 5.4.4, physical dumping works fine. On the other hand, if
they are visible to the operating system and maintained in one or more "bad block files" or bitmaps, it is
absolutely essential that the physical dumping program get access to this information and avoid dumping them
to prevent endless disk read errors during the dumping process.

The main advantages of physical dumping are simplicity and great speed (basically, it can run at the speed of
the disk). The main disadvantages are the inability to skip selected directories, make incremental dumps, and
restore individual files upon request. For these reasons, most installations make logical dumps.

A logical dump starts at one or more specified directories and recursively dumps all files and directories found
there that have changed since some given base date (e.g., the last backup for an incremental dump or system
installation for a full dump). Thus in a logical dump, the dump tape gets a series of carefully identified
directories and files, which makes it easy to restore a specific file or directory upon request.

In order to be able to properly restore even a single file correctly, all information needed to recreate the path
to that file must be saved to the backup medium. Thus the first step in doing a logical dump is doing an
analysis of the directory tree. Obviously, we need to save any file or directory that has been modified. But for
proper restoration, all directories, even unmodified ones, that lie on the path to a modified file or directory
must be saved. This means saving not just the data (file names and pointers to i-nodes), all the attributes of the
directories must be saved, so they can be restored with the original permissions. The directories and their
attributes are written to the tape first, and then modified files (with their attributes) are saved. This makes it
possible to restore the dumped files and directories to a fresh file system on a different computer. In this way,
the dump and restore programs can be used to transport entire file systems between computers.

16

16

[Page 516]

A second reason for dumping unmodified directories above modified files is to make it possible to
incrementally restore a single file (possibly to handle recovery from accidental deletion). Suppose that a full
file system dump is done Sunday evening and an incremental dump is done on Monday evening. On Tuesday
the directory /usr/jhs/proj/nr3/ is removed, along with all the directories and files under it. On Wednesday
morning bright and early, a user wants to restore the file /usr/jhs/proj/nr3/plans/summary However, is not
possible to just restore the file summary because there is no place to put it. The directories nr3/ and plans/
must be restored first. To get their owners, modes, times, etc., correct, these directories must be present on the
dump tape even though they themselves were not modified since the previous full dump.

Restoring a file system from the dump tapes is straightforward. To start with, an empty file system is created
on the disk. Then the most recent full dump is restored. Since the directories appear first on the tape, they are
all restored first, giving a skeleton of the file system. Then the files themselves are restored. This process is
then repeated with the first incremental dump made after the full dump, then the next one, and so on.

Although logical dumping is straightforward, there are a few tricky issues. For one, since the free block list is
not a file, it is not dumped and hence it must be reconstructed from scratch after all the dumps have been
restored. Doing so is always possible since the set of free blocks is just the complement of the set of blocks
contained in all the files combined.

Another issue is links. If a file is linked to two or more directories, it is important that the file is restored only
one time and that all the directories that are supposed to point to it do so.

Still another issue is the fact that UNIX files may contain holes. It is legal to open a file, write a few bytes,
then seek to a distant file offset and write a few more bytes. The blocks in between are not part of the file and
should not be dumped and not be restored. Core dump files often have a large hole between the data segment
and the stack. If not handled properly, each restored core file will fill this area with zeros and thus be the same
size as the virtual address space (e.g., 232 bytes, or worse yet, 264 bytes).

Finally, special files, named pipes, and the like should never be dumped, no matter in which directory they
may occur (they need not be confined to /dev/). For more information about file system backups, see
Chervenak et al. (1998) and Zwicky (1991).

File System Consistency

Another area where reliability is an issue is file system consistency. Many file systems read blocks, modify
them, and write them out later. If the system crashes before all the modified blocks have been written out, the
file system can be left in an inconsistent state. This problem is especially critical if some of the blocks that
have not been written out are i-node blocks, directory blocks, or blocks containing the free list.

[Page 517]

To deal with the problem of inconsistent file systems, most computers have a utility program that checks file
system consistency. For example, UNIX has fsck and Windows has chkdsk (or scandisk in earlier versions).
This utility can be run whenever the system is booted, especially after a crash. The description below tells
how fsck works. Chkdsk is somewhat different because it works on a different file system, but the general
principle of using the file system's inherent redundancy to repair it is still valid. All file system checkers verify
each file system (disk partition) independently of the other ones.

Two kinds of consistency checks can be made: blocks and files. To check for block consistency, the program
builds two tables, each one containing a counter for each block, initially set to 0. The counters in the first table
keep track of how many times each block is present in a file; the counters in the second table record how often

17

17

each block is present in the free list (or the bitmap of free blocks).

The program then reads all the i-nodes. Starting from an i-node, it is possible to build a list of all the block
numbers used in the corresponding file. As each block number is read, its counter in the first table is
incremented. The program then examines the free list or bitmap, to find all the blocks that are not in use. Each
occurrence of a block in the free list results in its counter in the second table being incremented.

If the file system is consistent, each block will have a 1 either in the first table or in the second table, as
illustrated in Fig. 5-19(a). However, as a result of a crash, the tables might look like Fig. 5-19(b), in which
block 2 does not occur in either table. It will be reported as being a missing block. While missing blocks do no
real harm, they do waste space and thus reduce the capacity of the disk. The solution to missing blocks is
straightforward: the file system checker just adds them to the free list.

Figure 5-19. File system states. (a) Consistent. (b) Missing block. (c) Duplicate block in free list. (d) Duplicate data
block. (This item is displayed on page 518 in the print version)

[View full size image]

Another situation that might occur is that of Fig. 5-19(c). Here we see a block, number 4, that occurs twice in
the free list. (Duplicates can occur only if the free list is really a list; with a bitmap it is impossible.) The
solution here is also simple: rebuild the free list.

The worst thing that can happen is that the same data block is present in two or more files, as shown in Fig.
5-19(d) with block 5. If either of these files is removed, block 5 will be put on the free list, leading to a
situation in which the same block is both in use and free at the same time. If both files are removed, the block
will be put onto the free list twice.

The appropriate action for the file system checker to take is to allocate a free block, copy the contents of block
5 into it, and insert the copy into one of the files. In this way, the information content of the files is unchanged
(although almost assuredly one is garbled), but the file system structure is at least made consistent. The error
should be reported, to allow the user to inspect the damage.

[Page 518]

In addition to checking to see that each block is properly accounted for, the file system checker also checks
the directory system. It, too, uses a table of counters, but these are per file, rather than per block. It starts at the
root directory and recursively descends the tree, inspecting each directory in the file system. For every file in
every directory, it increments a counter for that file's usage count. Remember that due to hard links, a file may
appear in two or more directories. Symbolic links do not count and do not cause the counter for the target file
to be incremented.

18

18

When it is all done, it has a list, indexed by i-node number, telling how many directories contain each file. It
then compares these numbers with the link counts stored in the i-nodes themselves. These counts start at 1
when a file is created and are incremented each time a (hard) link is made to the file. In a consistent file
system, both counts will agree. However, two kinds of errors can occur: the link count in the i-node can be too
high or it can be too low.

If the link count is higher than the number of directory entries, then even if all the files are removed from the
directories, the count will still be nonzero and the i-node will not be removed. This error is not serious, but it
wastes space on the disk with files that are not in any directory. It should be fixed by setting the link count in
the i-node to the correct value.

The other error is potentially catastrophic. If two directory entries are linked to a file, but the i-node says that
there is only one, when either directory entry is removed, the i-node count will go to zero. When an i-node
count goes to zero, the file system marks it as unused and releases all of its blocks. This action will result in
one of the directories now pointing to an unused i-node, whose blocks may soon be assigned to other files.
Again, the solution is just to force the link count in the i-node to the actual number of directory entries.

[Page 519]

These two operations, checking blocks and checking directories, are often integrated for efficiency reasons
(i.e., only one pass over the i-nodes is required). Other checks are also possible. For example, directories have
a definite format, with i-node numbers and ASCII names. If an i-node number is larger than the number of
i-nodes on the disk, the directory has been damaged.

Furthermore, each i-node has a mode, some of which are legal but strange, such as 0007, which allows the
owner and his group no access at all, but allows outsiders to read, write, and execute the file. It might be
useful to at least report files that give outsiders more rights than the owner. Directories with more than, say,
1000 entries are also suspicious. Files located in user directories, but which are owned by the superuser and
have the SETUID bit on, are potential security problems because such files acquire the powers of the
superuser when executed by any user. With a little effort, one can put together a fairly long list of technically
legal but still peculiar situations that might be worth reporting.

The previous paragraphs have discussed the problem of protecting the user against crashes. Some file systems
also worry about protecting the user against himself. If the user intends to type

rm *.o

to remove all the files ending with .o (compiler generated object files), but accidentally types

rm * .o

(note the space after the asterisk), rm will remove all the files in the current directory and then complain that it
cannot find .o. In some systems, when a file is removed, all that happens is that a bit is set in the directory or
i-node marking the file as removed. No disk blocks are returned to the free list until they are actually needed.
Thus, if the user discovers the error immediately, it is possible to run a special utility program that
"unremoves" (i.e., restores) the removed files. In Windows, files that are removed are placed in the recycle
bin, from which they can later be retrieved if need be. Of course, no storage is reclaimed until they are
actually deleted from this directory.

19

19

Mechanisms like this are insecure. A secure system would actually overwrite the data blocks with zeros or
random bits when a disk is deleted, so another user could not retrieve it. Many users are unaware how long
data can live. Confidential or sensitive data can often be recovered from disks that have been discarded
(Garfinkel and Shelat, 2003).

5.3.6. File System Performance

Access to disk is much slower than access to memory. Reading a memory word might take 10 nsec. Reading
from a hard disk might proceed at 10 MB/sec, which is forty times slower per 32-bit word, and to this must be
added 510 msec to seek to the track and then wait for the desired sector to arrive under the read head. If only a
single word is needed, the memory access is on the order of a million times as fast as disk access. As a result
of this difference in access time, many file systems have been designed with various optimizations to improve
performance. In this section we will cover three of them.

[Page 520]

Caching

The most common technique used to reduce disk accesses is the block cache or buffer cache. (Cache is
pronounced "cash" and is derived from the French cacher, meaning to hide.) In this context, a cache is a
collection of blocks that logically belong on the disk but are being kept in memory for performance reasons.

Various algorithms can be used to manage the cache, but a common one is to check all read requests to see if
the needed block is in the cache. If it is, the read request can be satisfied without a disk access. If the block is
not in the cache, it is first read into the cache, and then copied to wherever it is needed. Subsequent requests
for the same block can be satisfied from the cache.

Operation of the cache is illustrated in Fig. 5-20. Since there are many (often thousands of) blocks in the
cache, some way is needed to determine quickly if a given block is present. The usual way is to hash the
device and disk address and look up the result in a hash table. All the blocks with the same hash value are
chained together on a linked list so the collision chain can be followed.

Figure 5-20. The buffer cache data structures.

When a block has to be loaded into a full cache, some block has to be removed (and rewritten to the disk if it
has been modified since being brought in). This situation is very much like paging, and all the usual page
replacement algorithms described in Chap. 4, such as FIFO, second chance, and LRU, are applicable. One
pleasant difference between paging and caching is that cache references are relatively infrequent, so that it is

20

20

feasible to keep all the blocks in exact LRU order with linked lists.

In Fig. 5-20, we see that in addition to the collision chains starting at the hash table, there is also a
bidirectional list running through all the blocks in the order of usage, with the least recently used block on the
front of this list and the most recently used block at the end of this list. When a block is referenced, it can be
removed from its position on the bidirectional list and put at the end. In this way, exact LRU order can be
maintained.

[Page 521]

Unfortunately, there is a catch. Now that we have a situation in which exact LRU is possible, it turns out that
LRU is undesirable. The problem has to do with the crashes and file system consistency discussed in the
previous section. If a critical block, such as an i-node block, is read into the cache and modified, but not
rewritten to the disk, a crash will leave the file system in an inconsistent state. If the i-node block is put at the
end of the LRU chain, it may be quite a while before it reaches the front and is rewritten to the disk.

Furthermore, some blocks, such as i-node blocks, are rarely referenced twice within a short interval. These
considerations lead to a modified LRU scheme, taking two factors into account:

Is the block likely to be needed again soon?1.
Is the block essential to the consistency of the file system?2.

For both questions, blocks can be divided into categories such as i-node blocks, indirect blocks, directory
blocks, full data blocks, and partially full data blocks. Blocks that will probably not be needed again soon go
on the front, rather than the rear of the LRU list, so their buffers will be reused quickly. Blocks that might be
needed again soon, such as a partly full block that is being written, go on the end of the list, so they will stay
around for a long time.

The second question is independent of the first one. If the block is essential to the file system consistency
(basically, everything except data blocks), and it has been modified, it should be written to disk immediately,
regardless of which end of the LRU list it is put on. By writing critical blocks quickly, we greatly reduce the
probability that a crash will wreck the file system. While a user may be unhappy if one of his files is ruined in
a crash, he is likely to be far more unhappy if the whole file system is lost.

Even with this measure to keep the file system integrity intact, it is undesirable to keep data blocks in the
cache too long before writing them out. Consider the plight of someone who is using a personal computer to
write a book. Even if our writer periodically tells the editor to write the file being edited to the disk, there is a
good chance that everything will still be in the cache and nothing on the disk. If the system crashes, the file
system structure will not be corrupted, but a whole day's work will be lost.

This situation need not happen very often before we have a fairly unhappy user. Systems take two approaches
to dealing with it. The UNIX way is to have a system call, sync, which forces all the modified blocks out
onto the disk immediately. When the system is started up, a program, usually called update, is started up in the
background to sit in an endless loop issuing sync calls, sleeping for 30 sec between calls. As a result, no
more than 30 seconds of work is lost due to a system crash, a comforting thought for many people.

[Page 522]

The Windows way is to write every modified block to disk as soon as it has been written. Caches in which all
modified blocks are written back to the disk immediately are called write-through caches. They require more
disk I/O than nonwrite-through caches. The difference between these two approaches can be seen when a
program writes a 1-KB block full, one character at a time. UNIX will collect all the characters in the cache

21

21

and write the block out once every 30 seconds, or whenever the block is removed from the cache. Windows
will make a disk access for every character written. Of course, most programs do internal buffering, so they
normally write not a character, but a line or a larger unit on each write system call.

A consequence of this difference in caching strategy is that just removing a (floppy) disk from a UNIX system
without doing a sync will almost always result in lost data, and frequently in a corrupted file system as well.
With Windows, no problem arises. These differing strategies were chosen because UNIX was developed in an
environment in which all disks were hard disks and not removable, whereas Windows started out in the floppy
disk world. As hard disks became the norm, the UNIX approach, with its better efficiency, became the norm,
and is also used now on Windows for hard disks.

Block Read Ahead

A second technique for improving perceived file system performance is to try to get blocks into the cache
before they are needed to increase the hit rate. In particular, many files are read sequentially. When the file
system is asked to produce block k in a file, it does that, but when it is finished, it makes a sneaky check in the
cache to see if block k + 1 is already there. If it is not, it schedules a read for block k + 1 in the hope that when
it is needed, it will have already arrived in the cache. At the very least, it will be on the way.

Of course, this read ahead strategy only works for files that are being read sequentially. If a file is being
randomly accessed, read ahead does not help. In fact, it hurts by tying up disk bandwidth reading in useless
blocks and removing potentially useful blocks from the cache (and possibly tying up more disk bandwidth
writing them back to disk if they are dirty). To see whether read ahead is worth doing, the file system can
keep track of the access patterns to each open file. For example, a bit associated with each file can keep track
of whether the file is in "sequential access mode" or "random access mode." Initially, the file is given the
benefit of the doubt and put in sequential access mode. However, whenever a seek is done, the bit is cleared.
If sequential reads start happening again, the bit is set once again. In this way, the file system can make a
reasonable guess about whether it should read ahead or not. If it gets it wrong once it a while, it is not a
disaster, just a little bit of wasted disk bandwidth.

[Page 523]

Reducing Disk Arm Motion

Caching and read ahead are not the only ways to increase file system performance. Another important
technique is to reduce the amount of disk arm motion by putting blocks that are likely to be accessed in
sequence close to each other, preferably in the same cylinder. When an output file is written, the file system
has to allocate the blocks one at a time, as they are needed. If the free blocks are recorded in a bitmap, and the
whole bitmap is in main memory, it is easy enough to choose a free block as close as possible to the previous
block. With a free list, part of which is on disk, it is much harder to allocate blocks close together.

However, even with a free list, some block clustering can be done. The trick is to keep track of disk storage
not in blocks, but in groups of consecutive blocks. If sectors consist of 512 bytes, the system could use 1-KB
blocks (2 sectors) but allocate disk storage in units of 2 blocks (4 sectors). This is not the same as having a
2-KB disk blocks, since the cache would still use 1-KB blocks and disk transfers would still be 1 KB but
reading a file sequentially on an otherwise idle system would reduce the number of seeks by a factor of two,
considerably improving performance. A variation on the same theme is to take account of rotational
positioning. When allocating blocks, the system attempts to place consecutive blocks in a file in the same
cylinder.

Another performance bottleneck in systems that use i-nodes or anything equivalent to i-nodes is that reading
even a short file requires two disk accesses: one for the i-node and one for the block. The usual i-node

22

22

placement is shown in Fig. 5-21(a). Here all the i-nodes are near the beginning of the disk, so the average
distance between an i-node and its blocks will be about half the number of cylinders, requiring long seeks.

Figure 5-21. (a) I-nodes placed at the start of the disk. (b) Disk divided into cylinder groups, each with its own
blocks and i-nodes.

[View full size image]

One easy performance improvement is to put the i-nodes in the middle of the disk, rather than at the start, thus
reducing the average seek between the i-node and the first block by a factor of two. Another idea, shown in
Fig. 5-21(b), is to divide the disk into cylinder groups, each with its own i-nodes, blocks, and free list
(McKusick et al., 1984). When creating a new file, any i-node can be chosen, but an attempt is made to find a
block in the same cylinder group as the i-node. If none is available, then a block in a nearby cylinder group is
used.

[Page 524]

5.3.7. Log-Structured File Systems

Changes in technology are putting pressure on current file systems. In particular, CPUs keep getting faster,
disks are becoming much bigger and cheaper (but not much faster), and memories are growing exponentially
in size. The one parameter that is not improving by leaps and bounds is disk seek time. The combination of
these factors means that a performance bottleneck is arising in many file systems. Research done at Berkeley
attempted to alleviate this problem by designing a completely new kind of file system, LFS (the
Log-structured File System). In this section we will briefly describe how LFS works. For a more complete
treatment, see Rosenblum and Ousterhout (1991).

The idea that drove the LFS design is that as CPUs get faster and RAM memories get larger, disk caches are
also increasing rapidly. Consequently, it is now possible to satisfy a very substantial fraction of all read
requests directly from the file system cache, with no disk access needed. It follows from this observation, that
in the future, most disk accesses will be writes, so the read-ahead mechanism used in some file systems to
fetch blocks before they are needed no longer gains much performance.

To make matters worse, in most file systems, writes are done in very small chunks. Small writes are highly
inefficient, since a 50-µsec disk write is often preceded by a 10-msec seek and a 4-msec rotational delay. With
these parameters, disk efficiency drops to a fraction of 1 percent.

23

23

To see where all the small writes come from, consider creating a new file on a UNIX system. To write this
file, the i-node for the directory, the directory block, the i-node for the file, and the file itself must all be
written. While these writes can be delayed, doing so exposes the file system to serious consistency problems if
a crash occurs before the writes are done. For this reason, the i-node writes are generally done immediately.

From this reasoning, the LFS designers decided to re-implement the UNIX file system in such a way as to
achieve the full bandwidth of the disk, even in the face of a workload consisting in large part of small random
writes. The basic idea is to structure the entire disk as a log. Periodically, and also when there is a special need
for it, all the pending writes being buffered in memory are collected into a single segment and written to the
disk as a single contiguous segment at the end of the log. A single segment may thus contain i-nodes,
directory blocks, data blocks, and other kinds of blocks all mixed together. At the start of each segment is a
segment summary, telling what can be found in the segment. If the average segment can be made to be about
1 MB, almost the full bandwidth of the disk can be utilized.

[Page 525]

In this design, i-nodes still exist and have the same structure as in UNIX, but they are now scattered all over
the log, instead of being at a fixed position on the disk. Nevertheless, when an i-node is located, locating the
blocks is done in the usual way. Of course, finding an i-node is now much harder, since its address cannot
simply be calculated from its i-node number, as in UNIX. To make it possible to find i-nodes, an i-node map,
indexed by i-node number, is maintained. Entry i in this map points to i-node i on the disk. The map is kept on
disk, but it is also cached, so the most heavily used parts will be in memory most of the time in order to
improve performance.

To summarize what we have said so far, all writes are initially buffered in memory, and periodically all the
buffered writes are written to the disk in a single segment, at the end of the log. Opening a file now consists of
using the map to locate the i-node for the file. Once the i-node has been located, the addresses of the blocks
can be found from it. All of the blocks will themselves be in segments, somewhere in the log.

If disks were infinitely large, the above description would be the entire story. However, real disks are finite, so
eventually the log will occupy the entire disk, at which time no new segments can be written to the log.
Fortunately, many existing segments may have blocks that are no longer needed, for example, if a file is
overwritten, its i-node will now point to the new blocks, but the old ones will still be occupying space in
previously written segments.

To deal with this problem, LFS has a cleaner thread that spends its time scanning the log circularly to compact
it. It starts out by reading the summary of the first segment in the log to see which i-nodes and files are there.
It then checks the current i-node map to see if the i-nodes are still current and file blocks are still in use. If not,
that information is discarded. The i-nodes and blocks that are still in use go into memory to be written out in
the next segment. The original segment is then marked as free, so the log can use it for new data. In this
manner, the cleaner moves along the log, removing old segments from the back and putting any live data into
memory for rewriting in the next segment. Consequently, the disk is a big circular buffer, with the writer
thread adding new segments to the front and the cleaner thread removing old ones from the back.

The bookkeeping here is nontrivial, since when a file block is written back to a new segment, the i-node of the
file (somewhere in the log) must be located, updated, and put into memory to be written out in the next
segment. The i-node map must then be updated to point to the new copy. Nevertheless, it is possible to do the
administration, and the performance results show that all this complexity is worthwhile. Measurements given
in the papers cited above show that LFS outperforms UNIX by an order of magnitude on small writes, while
having a performance that is as good as or better than UNIX for reads and large writes.

24

24

[Page 526]

5.4. Security

File systems generally contain information that is highly valuable to their users. Protecting this
information against unauthorized usage is therefore a major concern of all file systems. In the
following sections we will look at a variety of issues concerned with security and protection.
These issues apply equally well to timesharing systems as to networks of personal computers
connected to shared servers via local area networks.

5.4.1. The Security Environment

People frequently use the terms "security" and "protection" interchangeably. Nevertheless, it is
frequently useful to make a distinction between the general problems involved in making sure that
files are not read or modified by unauthorized persons, which include technical, administrative,
legal, and political issues on the one hand, and the specific operating system mechanisms used to
provide security, on the other. To avoid confusion, we will use the term security to refer to the
overall problem, and the term protection mechanisms to refer to the specific operating system
mechanisms used to safeguard information in the computer. The boundary between them is not
well defined, however. First we will look at security to see what the nature of the problem is. Later
on in the chapter we will look at the protection mechanisms and models available to help achieve
security.

Security has many facets. Three of the more important ones are the nature of the threats, the nature
of intruders, and accidental data loss. We will now look at these in turn.

Threats

From a security perspective, computer systems have three general goals, with corresponding
threats to them, as listed in Fig. 5-22. The first one, data confidentiality, is concerned with having
secret data remain secret. More specifically, if the owner of some data has decided that these data
are only to be made available to certain people and no others, the system should guarantee that
release of the data to unauthorized people does not occur. As a bare minimum, the owner should
be able to specify who can see what, and the system should enforce these specifications.

Figure 5-22. Security goals and threats. (This item is displayed on page 527 in the print version)
Goal Threat

Data confidentiality Exposure
of data

Data integrity Tampering
with data

System availability Denial of
service

The second goal, data integrity, means that unauthorized users should not be able to modify any data without
the owner's permission. Data modification in this context includes not only changing the data, but also
removing data and adding false data as well. If a system cannot guarantee that data deposited in it remain
unchanged until the owner decides to change them, it is not worth much as an information system. Integrity is
usually more important than confidentiality.

1

1

[Page 527]

The third goal, system availability, means that nobody can disturb the system to make it unusable. Such denial
of service attacks are increasingly common. For example, if a computer is an Internet server, sending a flood
of requests to it may cripple it by eating up all of its CPU time just examining and discarding incoming
requests. If it takes, say, 100µsec to process an incoming request to read a Web page, then anyone who
manages to send 10,000 requests/sec can wipe it out. Reasonable models and technology for dealing with
attacks on confidentiality and integrity are available; foiling denial-of-services attacks is much harder.

Another aspect of the security problem is privacy: protecting individuals from misuse of information about
them. This quickly gets into many legal and moral issues. Should the government compile dossiers on
everyone in order to catch X-cheaters, where X is "welfare" or "tax," depending on your politics? Should the
police be able to look up anything on anyone in order to stop organized crime? Do employers and insurance
companies have rights? What happens when these rights conflict with individual rights? All of these issues are
extremely important but are beyond the scope of this book.

Intruders

Most people are pretty nice and obey the law, so why worry about security? Because there are unfortunately a
few people around who are not so nice and want to cause trouble (possibly for their own commercial gain). In
the security literature, people who are nosing around places where they have no business being are called
intruders or sometimes adversaries. Intruders act in two different ways. Passive intruders just want to read
files they are not authorized to read. Active intruders are more malicious; they want to make unauthorized
changes. When designing a system to be secure against intruders, it is important to keep in mind the kind of
intruder one is trying to protect against. Some common categories are

Casual prying by nontechnical users. Many people have personal computers on their desks that are
connected to a shared file server, and human nature being what it is, some of them will read other
people's electronic mail and other files if no barriers are placed in the way. Most UNIX systems, for
example, have the default that all newly created files are publicly readable.

1.

[Page 528]

Snooping by insiders. Students, system programmers, operators, and other technical personnel often
consider it to be a personal challenge to break the security of the local computer system. They often
are highly skilled and are willing to devote a substantial amount of time to the effort.

2.

Determined attempts to make money. Some bank programmers have attempted to steal from the bank
they were working for. Schemes have varied from changing the software to truncate rather than round
interest, keeping the fraction of a cent for themselves, to siphoning off accounts not used in years, to
blackmail ("Pay me or I will destroy all the bank's records.").

3.

Commercial or military espionage. Espionage refers to a serious and well-funded attempt by a
competitor or a foreign country to steal programs, trade secrets, patentable ideas, technology, circuit
designs, business plans, and so forth. Often this attempt will involve wiretapping or even erecting
antennas directed at the computer to pick up its electromagnetic radiation.

4.

It should be clear that trying to keep a hostile foreign government from stealing military secrets is quite a
different matter from trying to keep students from inserting a funny message-of-the-day into the system. The
amount of effort needed for security and protection clearly depends on who the enemy is thought to be.

2

2

Malicious Programs

Another category of security pest is malicious programs, sometimes called malware. In a sense, a writer of
malware is also an intruder, often with high technical skills. The difference between a conventional intruder
and malware is that the former refers to a person who is personally trying to break into a system to cause
damage whereas the latter is a program written by such a person and then released into the world. Some
malware seems to have been written just to cause damage, but some is targeted more specifically. It is
becoming a huge problem and a great deal has been written about it (Aycock and Barker, 2005; Cerf, 2005;
Ledin, 2005; McHugh and Deek, 2005; Treese, 2004; and Weiss, 2005)

The most well known kind of malware is the virus. Basically a virus is a piece of code that can reproduce
itself by attaching a copy of itself to another program, analogous to how biological viruses reproduce. The
virus can do other things in addition to reproducing itself. For example, it can type a message, display an
image on the screen, play music, or something else harmless. Unfortunately, it can also modify, destroy, or
steal files (by e-mailing them somewhere).

Another thing a virus can do is to render the computer unusable as long as the virus is running. This is called a
DOS (Denial Of Service) attack. The usual approach is to consume resources wildly, such as the CPU, or
filling up the disk with junk. Viruses (and the other forms of malware to be described) can also be used to
cause a DDOS (Distributed Denial Of Service) attack. In this case the virus does not do anything immediately
upon infecting a computer. At a predetermined date and time thousands of copies of the virus on computers all
over the world start requesting web pages or other network services from their target, for instance the Web
site of a political party or a corporation. This can overload the targeted server and the networks that service it.

[Page 529]

Malware is frequently created for profit. Much (if not most) unwanted junk e-mail ("spam") is relayed to its
final destinations by networks of computers that have been infected by viruses or other forms of malware. A
computer infected by such a rogue program becomes a slave, and reports its status to its master, somewhere
on the Internet. The master then sends spam to be relayed to all the e-mail addresses that can be gleaned from
e-mail address books and other files on the slave. Another kind of malware for profit scheme installs a key
logger on an infected computer. A key logger records everything typed at the keyboard. It is not too difficult
to filter this data and extract information such as username password combinations or credit card numbers and
expiration dates. This information is then sent back to a master where it can be used or sold for criminal use.

Related to the virus is the worm. Whereas a virus is spread by attaching itself to another program, and is
executed when its host program is executed, a worm is a free-standing program. Worms spread by using
networks to transmit copies of themselves to other computers. Windows systems always have a Startup
directory for each user; any program in that folder will be executed when the user logs in. So all the worm has
to do is arrange to put itself (or a shortcut to itself) in the Startup directory on a remote system. Other ways
exist, some much more difficult to detect, to cause a remote computer to execute a program file that has been
copied to its file system. The effects of a worm can be the same as those of a virus. Indeed, the distinction
between a virus and a worm is not always clear; some malware uses both methods to spread.

Another category of malware is the Trojan horse. This is a program that apparently performs a valid
functionperhaps it is a game or a supposedly "improved" version of a useful utility. But when the Trojan horse
is executed some other function is performed, perhaps launching a worm or virus or performing one of the
nasty things that malware does. The effects of a Trojan horse are likely to be subtle and stealthy. Unlike
worms and viruses, Trojan horses are voluntarily downloaded by users, and as soon as they are recognized for
what they are and the word gets out, a Trojan horse will be deleted from reputable download sites.

Another kind of malware is the logic bomb. This device is a piece of code written by one of a company's
(currently employed) programmers and secretly inserted into the production operating system. As long as the
programmer feeds it its daily password, it does nothing. However, if the programmer is suddenly fired and

3

3

physically removed from the premises without warning, the next day the logic bomb does not get its
password, so it goes off.

[Page 530]

Going off might involve clearing the disk, erasing files at random, carefully making hard-to-detect changes to
key programs, or encrypting essential files. In the latter case, the company has a tough choice about whether
to call the police (which may or may not result in a conviction many months later) or to give in to this
blackmail and to rehire the ex-programmer as a "consultant" for an astronomical sum to fix the problem (and
hope that he does not plant new logic bombs while doing so).

Yet another form of malware is spyware. This is usually obtained by visiting a Web site. In its simplest form
spyware may be nothing more than a cookie. Cookies are small files exchanged between web browsers and
web servers. They have a legitimate purpose. A cookie contains some information that will allow the Web site
to identify you. It is like the ticket you get when you leave a bicycle to be repaired. When you return to the
shop, your half of the ticket gets matched with your bicycle (and its repair bill). Web connections are not
persistent, so, for example, if you indicate an interest in buying this book when visiting an online bookstore,
the bookstore asks your browser to accept a cookie. When you have finished browsing and perhaps have
selected other books to buy, you click on the page where your order is finalized. At that point the web server
asks your browser to return the cookies it has stored from the current session, It can use the information in
these to generate the list of items you have said you want to buy.

Normally, cookies used for a purpose like this expire quickly. They are quite useful, and e-commerce depends
upon them. But some Web sites use cookies for purposes that are not so benign. For instance, advertisements
on Web sites are often furnished by companies other than the information provider. Advertisers pay Web site
owners for this privilege. If a cookie is placed when you visit a page with information about, say, bicycle
equipment, and you then go to another Web site that sells clothing, the same advertising company may
provide ads on this page, and may collect cookies you obtained elsewhere. Thus you may suddenly find
yourself viewing ads for special gloves or jackets especially made for cyclists. Advertisers can collect a lot of
information about your interests this way; you may not want to share so much information about yourself.

What is worse, there are various ways a Web site may be able to download executable program code to your
computer. Most browsers accept plug-ins to add additional function, such as displaying new kinds of files.
Users often accept offers for new plugins without knowing much about what the plugin does. Or a user may
willingly accept an offer to be provided with a new cursor for the desktop that looks like a dancing kitten. And
a bug in a web browser may allow a remote site to install an unwanted program, perhaps after luring the user
to a page that has been carefully constructed to take advantage of the vulnerability. Any time a program is
accepted from another source, voluntarily or not, there is a risk it could contain code that does you harm.

[Page 531]

Accidental Data Loss

In addition to threats caused by malicious intruders, valuable data can be lost by accident. Some of the
common causes of accidental data loss are

Acts of God: fires, floods, earthquakes, wars, riots, or rats gnawing tapes or floppy disks.1.
Hardware or software errors: CPU malfunctions, unreadable disks or tapes, telecommunication errors,
program bugs.

2.

Human errors: incorrect data entry, wrong tape or disk mounted, wrong program run, lost disk or tape,
or some other mistake.

3.

4

4

Most of these can be dealt with by maintaining adequate backups, preferably far away from the original data.
While protecting data against accidental loss may seem mundane compared to protecting against clever
intruders, in practice, probably more damage is caused by the former than the latter.

5.4.2. Generic Security Attacks

Finding security flaws is not easy. The usual way to test a system's security is to hire a group of experts,
known as tiger teams or penetration teams, to see if they can break in. Hebbard et al. (1980) tried the same
thing with graduate students. In the course of the years, these penetration teams have discovered a number of
areas in which systems are likely to be weak. Below we have listed some of the more common attacks that are
often successful. When designing a system, be sure it can withstand attacks like these.

1. Request memory pages, disk space, or tapes and just read them. Many systems do not erase them before
allocating them, and they may be full of interesting information written by the previous owner.

2. Try illegal system calls, or legal system calls with illegal parameters, or even legal system calls with legal
but unreasonable parameters. Many systems can easily be confused.

3. Start logging in and then hit DEL, RUBOUT or BREAK halfway through the login sequence. In some
systems, the password checking program will be killed and the login considered successful.

4. Try modifying complex operating system structures kept in user space (if any). In some systems
(especially on mainframes), to open a file, the program builds a large data structure containing the file
name and many other parameters and passes it to the system. As the file is read and written, the system
sometimes updates the structure itself. Changing these fields can wreak havoc with the security.

[Page 532]
5. Spoof the user by writing a program that types "login:" on the screen and go away. Many users will walk

up to the terminal and willingly tell it their login name and password, which the program carefully
records for its evil master.

6. Look for manuals that say "Do not do X." Try as many variations of X as possible.

7. Convince a system programmer to change the system to skip certain vital security checks for any user
with your login name. This attack is known as a trapdoor.

8. All else failing, the penetrator might find the computer center director's secretary and offer a large bribe.
The secretary probably has easy access to all kinds of wonderful information, and is usually poorly paid.
Do not underestimate problems caused by personnel.

These and other attacks are discussed by Linde (1975). Many other sources of information on security and
testing security can be found, especially on the Web. A recent Windows-oriented work is Johansson and Riley
(2005).

5.4.3. Design Principles for Security

Saltzer and Schroeder (1975) have identified several general principles that can be used as a guide to
designing secure systems. A brief summary of their ideas (based on experience with MULTICS) is given

5

5

below.

First, the system design should be public. Assuming that the intruder will not know how the system works
serves only to delude the designers.

Second, the default should be no access. Errors in which legitimate access is refused will be reported much
faster than errors in which unauthorized access is allowed.

Third, check for current authority. The system should not check for permission, determine that access is
permitted, and then squirrel away this information for subsequent use. Many systems check for permission
when a file is opened, and not afterward. This means that a user who opens a file, and keeps it open for weeks,
will continue to have access, even if the owner has long since changed the file protection.

Fourth, give each process the least privilege possible. If an editor has only the authority to access the file to be
edited (specified when the editor is invoked), editors with Trojan horses will not be able to do much damage.
This principle implies a fine-grained protection scheme. We will discuss such schemes later in this chapter.

Fifth, the protection mechanism should be simple, uniform, and built into the lowest layers of the system.
Trying to retrofit security to an existing insecure system is nearly impossible. Security, like correctness, is not
an add-on feature.

[Page 533]

Sixth, the scheme chosen must be psychologically acceptable. If users feel that protecting their files is too
much work, they just will not do it. Nevertheless, they will complain loudly if something goes wrong. Replies
of the form "It is your own fault" will generally not be well received.

5.4.4. User Authentication

Many protection schemes are based on the assumption that the system knows the identity of each user. The
problem of identifying users when they log in is called user authentication. Most authentication methods are
based on identifying something the user knows, something the user has, or something the user is.

Passwords

The most widely used form of authentication is to require the user to type a password. Password protection is
easy to understand and easy to implement. In UNIX it works like this: The login program asks the user to type
his name and password. The password is immediately encrypted. The login program then reads the password
file, which is a series of ASCII lines, one per user, until it finds the line containing the user's login name. If
the (encrypted) password contained in this line matches the encrypted password just computed, the login is
permitted, otherwise it is refused.

Password authentication is easy to defeat. One frequently reads about groups of high school, or even junior
high school students who, with the aid of their trusty home computers, have broken into some top secret
system owned by a large corporation or government agency. Virtually all the time the break-in consists of
guessing a user name and password combination.

Although more recent studies have been made (e.g., Klein, 1990) the classic work on password security
remains the one done by Morris and Thompson (1979) on UNIX systems. They compiled a list of likely
passwords: first and last names, street names, city names, words from a moderate-sized dictionary (also words
spelled backward), license plate numbers, and short strings of random characters.

6

6

They then encrypted each of these using the known password encryption algorithm and checked to see if any
of the encrypted passwords matched entries in their list. Over 86 percent of all passwords turned up in their
list.

If all passwords consisted of 7 characters chosen at random from the 95 printable ASCII characters, the search
space becomes 957, which is about 7x 1013. At 1000 encryptions per second, it would take 2000 years to build
the list to check the password file against. Furthermore, the list would fill 20 million magnetic tapes. Even
requiring passwords to contain at least one lowercase character, one uppercase character, and one special
character, and be at least seven characters long would be a major improvement over unrestricted user-chosen
passwords.

[Page 534]

Even if it is considered politically impossible to require users to pick reasonable passwords, Morris and
Thompson have described a technique that renders their own attack (encrypting a large number of passwords
in advance) almost useless. Their idea is to associate an n-bit random number with each password. The
random number is changed whenever the password is changed. The random number is stored in the password
file in unencrypted form, so that everyone can read it. Instead of just storing the encrypted password in the
password file, the password and the random number are first concatenated and then encrypted together. This
encrypted result is stored in the password file.

Now consider the implications for an intruder who wants to build up a list of likely passwords, encrypt them,
and save the results in a sorted file, f, so that any encrypted password can be looked up easily. If an intruder
suspects that Marilyn might be a password, it is no longer sufficient just to encrypt Marilyn and put the result
in f. He has to encrypt 2n strings, such as Marilyn0000, Marilyn0001, Marilyn0002, and so forth and enter all
of them in f. This technique increases the size of f by 2n. UNIX uses this method with n= 12 . It is known as
salting the password file. Some versions of UNIX make the password file itself unreadable but provide a
program to look up entries upon request, adding just enough delay to greatly slow down any attacker.

Although this method offers protection against intruders who try to precompute a large list of encrypted
passwords, it does little to protect a user David whose password is also David. One way to encourage people
to pick better passwords is to have the computer offer advice. Some computers have a program that generates
random easy-to-pronounce nonsense words, such as fotally, garbungy, or bipitty that can be used as passwords
(preferably with some upper case and special characters thrown in).

Other computers require users to change their passwords regularly, to limit the damage done if a password
leaks out. The most extreme form of this approach is the one-time password. When one-time passwords are
used, the user gets a book containing a list of passwords. Each login uses the next password in the list. If an
intruder ever discovers a password, it will not do him any good, since next time a different password must be
used. It is suggested that the user try to avoid losing the password book.

It goes almost without saying that while a password is being typed in, the computer should not display the
typed characters, to keep them from prying eyes near the terminal. What is less obvious is that passwords
should never be stored in the computer in unencrypted form. Furthermore, not even the computer center
management should have unencrypted copies. Keeping unencrypted passwords anywhere is looking for
trouble.

A variation on the password idea is to have each new user provide a long list of questions and answers that are
then stored in the computer in encrypted form. The questions should be chosen so that the user does not need
to write them down. In other words, they should be things no one forgets. Typical questions are:

[Page 535]

7

7

Who is Marjolein's sister?1.
On what street was your elementary school?2.
What did Mrs. Woroboff teach?3.

At login, the computer asks one of them at random and checks the answer.

Another variation is challenge-response. When this is used, the user picks an algorithm when signing up as a
user, for example x2. When the user logs in, the computer types an argument, say 7, in which case the user
types 49. The algorithm can be different in the morning and afternoon, on different days of the week, from
different terminals, and so on.

Physical Identification

A completely different approach to authorization is to check to see if the user has some item, normally a
plastic card with a magnetic stripe on it. The card is inserted into the terminal, which then checks to see whose
card it is. This method can be combined with a password, so a user can only log in if he (1) has the card and
(2) knows the password. Automated cash-dispensing machines usually work this way.

Yet another approach is to measure physical characteristics that are hard to forge. For example, a fingerprint
or a voiceprint reader in the terminal could verify the user's identity. (It makes the search go faster if the user
tells the computer who he is, rather than making the computer compare the given fingerprint to the entire data
base.) Direct visual recognition is not yet feasible but may be one day.

Another technique is signature analysis. The user signs his name with a special pen connected to the terminal,
and the computer compares it to a known specimen stored on line. Even better is not to compare the signature,
but compare the pen motions made while writing it. A good forger may be able to copy the signature, but will
not have a clue as to the exact order in which the strokes were made.

Finger length analysis is surprisingly practical. When this is used, each terminal has a device like the one of
Fig. 5-23. The user inserts his hand into it, and the length of each of his fingers is measured and checked
against the data base.

Figure 5-23. A device for measuring finger length. (This item is displayed on page 536 in the print version)

8

8

We could go on and on with more examples, but two more will help make an important point. Cats and other
animals mark off their territory by urinating around its perimeter. Apparently cats can identify each other this
way. Suppose that someone comes up with a tiny device capable of doing an instant urinalysis, thereby
providing a foolproof identification. Each terminal could be equipped with one of these devices, along with a
discreet sign reading: "For login, please deposit sample here." This might be an absolutely unbreakable
system, but it would probably have a fairly serious user acceptance problem.

[Page 536]

The same could be said of a system consisting of a thumbtack and a small spectrograph. The user would be
requested to jab his thumb against the thumbtack, thus extracting a drop of blood for spectrographic analysis.
The point is that any authentication scheme must be psychologically acceptable to the user community.
Finger-length measurements probably will not cause any problem, but even something as nonintrusive as
storing fingerprints on line may be unacceptable to many people.

Countermeasures

Computer installations that are really serious about securityand few are until the day after an intruder has
broken in and done major damageoften take steps to make unauthorized entry much harder. For example, each
user could be allowed to log in only from a specific terminal, and only during certain days of the week and
hours of the day.

Dial-up telephone lines could be made to work as follows. Anyone can dial up and log in, but after a
successful login, the system immediately breaks the connection and calls the user back at an agreed upon
number. This measure means than an intruder cannot just try breaking in from any phone line; only the user's
(home) phone will do. In any event, with or without call back, the system should take at least 10 seconds to
check any password typed in on a dial-up line, and should increase this time after several consecutive
unsuccessful login attempts, in order to reduce the rate at which intruders can try. After three failed login
attempts, the line should be disconnected for 10 minutes and security personnel notified.

9

9

[Page 537]

All logins should be recorded. When a user logs in, the system should report the time and terminal of the
previous login, so he can detect possible break ins.

The next step up is laying baited traps to catch intruders. A simple scheme is to have one special login name
with an easy password (e.g., login name: guest, password: guest). Whenever anyone logs in using this name,
the system security specialists are immediately notified. Other traps can be easy-to-find bugs in the operating
system and similar things, designed for the purpose of catching intruders in the act. Stoll (1989) has written an
entertaining account of the traps he set to track down a spy who broke into a university computer in search of
military secrets.

10

10

[Page 537 (continued)]

5.5. Protection Mechanisms

In the previous sections we have looked at many potential problems, some of them technical, some
of them not. In the following sections we will concentrate on some of the detailed technical ways
that are used in operating systems to protect files and other things. All of these techniques make a
clear distinction between policy (whose data are to be protected from whom) and mechanism (how
the system enforces the policy). The separation of policy and mechanism is discussed by Sandhu
(1993). Our emphasis will be on mechanisms, not policies.

In some systems, protection is enforced by a program called a reference monitor. Every time an
access to a potentially protected resource is attempted, the system first asks the reference monitor to
check its legality. The reference monitor then looks at its policy tables and makes a decision. Below
we will describe the environment in which a reference monitor operates.

5.5.1. Protection Domains

A computer system contains many "objects" that need to be protected. These objects can be
hardware (e.g., CPUs, memory segments, disk drives, or printers), or they can be software (e.g.,
processes, files, databases, or semaphores).

Each object has a unique name by which it is referenced, and a finite set of operations that processes
are allowed to carry out on it. The read and write operations are appropriate to a file; up and
down make sense on a semaphore.

It is obvious that a way is needed to prohibit processes from accessing objects that they are not
authorized to access. Furthermore, this mechanism must also make it possible to restrict processes to
a subset of the legal operations when that is needed. For example, process A may be entitled to read,
but not write, file F.

[Page 538]

In order to discuss different protection mechanisms, it is useful to introduce the concept of a domain.
A domain is a set of (object, rights) pairs. Each pair specifies an object and some subset of the
operations that can be performed on it. A right in this context means permission to perform one of
the operations. Often a domain corresponds to a single user, telling what the user can do and not do,
but a domain can also be more general than just one user.

Figure 5-24 shows three domains, showing the objects in each domain and the rights [Read, Write,
eXecute] available on each object. Note that Printer1 is in two domains at the same time. Although
not shown in this example, it is possible for the same object to be in multiple domains, with different
rights in each one.

Figure 5-24. Three protection domains.

1

1

At every instant of time, each process runs in some protection domain. In other words, there is some
collection of objects it can access, and for each object it has some set of rights. Processes can also
switch from domain to domain during execution. The rules for domain switching are highly system
dependent.

To make the idea of a protection domain more concrete, let us look at UNIX. In UNIX, the domain
of a process is defined by its UID and GID. Given any (UID, GID) combination, it is possible to
make a complete list of all objects (files, including I/O devices represented by special files, etc.) that
can be accessed, and whether they can be accessed for reading, writing, or executing. Two processes
with the same (UID, GID) combination will have access to exactly the same set of objects. Processes
with different (UID, GID) values will have access to a different set of files, although there may be
considerable overlap in most cases.

Furthermore, each process in UNIX has two halves: the user part and the kernel part. When the
process does a system call, it switches from the user part to the kernel part. The kernel part has
access to a different set of objects from the user part. For example, the kernel can access all the
pages in physical memory, the entire disk, and all the other protected resources. Thus, a system call
causes a domain switch.

When a process does an exec on a file with the SETUID or SETGID bit on, it acquires a new
effective UID or GID. With a different (UID, GID) combination, it has a different set of files and
operations available. Running a program with SETUID or SETGID is also a domain switch, since
the rights available change.

An important question is how the system keeps track of which object belongs to which domain.
Conceptually, at least, one can envision a large matrix, with the rows being domains and the columns
being objects. Each box lists the rights, if any, that the domain contains for the object. The matrix for
Fig. 5-24 is shown in Fig. 5-25. Given this matrix and the current domain number, the system can
tell if an access to a given object in a particular way from a specified domain is allowed.

[Page 539]

Figure 5-25. A protection matrix.

[View full size image]

2

2

Domain switching itself can be easily included in the matrix model by realizing that a domain is
itself an object, with the operation enter. Figure 5-26 shows the matrix of Fig. 5-25 again, only
now with the three domains as objects themselves. Processes in domain 1 can switch to domain 2,
but once there, they cannot go back. This situation models executing a SETUID program in UNIX.
No other domain switches are permitted in this example.

Figure 5-26. A protection matrix with domains as objects.

[View full size image]

5.5.2. Access Control Lists

In practice, actually storing the matrix of Fig. 5-26 is rarely done because it is large and sparse. Most
domains have no access at all to most objects, so storing a very large, mostly empty, matrix is a
waste of disk space. Two methods that are practical, however, are storing the matrix by rows or by
columns, and then storing only the nonempty elements. The two approaches are surprisingly
different. In this section we will look at storing it by column; in the next one we will study storing it
by row.

[Page 540]

The first technique consists of associating with each object an (ordered) list containing all the
domains that may access the object, and how. This list is called the Access Control List or ACL and
is illustrated in Fig. 5-27. Here we see three processes, each belonging to a different domain. A, B,
and C, and three files F1, F2, and F3. For simplicity, we will assume that each domain corresponds
to exactly one user, in this case, users A, B, and C. Often in the security literature, the users are
called subjects or principals, to contrast them with the things owned, the objects, such as files.

3

3

Figure 5-27. Use of access control lists to manage file access.

[View full size image]

Each file has an ACL associated with it. File F1 has two entries in its ACL (separated by a
semicolon). The first entry says that any process owned by user A may read and write the file. The
second entry says that any process owned by user B may read the file. All other accesses by these
users and all accesses by other users are forbidden. Note that the rights are granted by user, not by
process. As far as the protection system goes, any process owned by user A can read and write file
F1. It does not matter if there is one such process or 100 of them. It is the owner, not the process ID,
that matters.

File F2 has three entries in its ACL: A, B, and C can all read the file, and in addition B can also write
it. No other accesses are allowed. File F3 is apparently an executable program, since B and C can
both read and execute it. B can also write it.

This example illustrates the most basic form of protection with ACLs. More sophisticated systems
are often used in practice. To start with, we have only shown three rights so far: read, write, and
execute. There may be additional rights as well. Some of these may be generic, that is, apply to all
objects, and some may be object specific. Examples of generic rights are destroy object and
copy object. These could hold for any object, no matter what type it is. Object-specific rights
might include append message for a mailbox object and sort alphabetically for a
directory object.

[Page 541]

So far, our ACL entries have been for individual users. Many systems support the concept of a group
of users. Groups have names and can be included in ACLs. Two variations on the semantics of
groups are possible. In some systems, each process has a user ID (UID) and group ID (GID). In such
systems, an ACL entry contains entries of the form

UID1, GID1: rights1; UID2, GID2: rights2; ...

Under these conditions, when a request is made to access an object, a check is made using the
caller's UID and GID. If they are present in the ACL, the rights listed are available. If the (UID,
GID) combination is not in the list, the access is not permitted.

4

4

Using groups this way effectively introduces the concept of a role. Consider an installation in which
Tana is system administrator, and thus in the group sysadm. However, suppose that the company
also has some clubs for employees and Tana is a member of the pigeon fanciers club. Club members
belong to the group pigfan and have access to the company's computers for managing their pigeon
database. A portion of the ACL might be as shown in Fig. 5-28.

Figure 5-28. Two access control lists.
File Access

control
list

Password tana,
sysadm:
RW

Pigeon_data bill,
pigfan:
RW;
tana,
pigfan:
RW; ...

If Tana tries to access one of these files, the result depends on which group she is currently logged in as.
When she logs in, the system may ask her to choose which of her groups she is currently using, or there might
even be different login names and/or passwords to keep them separate. The point of this scheme is to prevent
Tana from accessing the password file when she currently has her pigeon fancier's hat on. She can only do
that when logged in as the system administrator.

In some cases, a user may have access to certain files independent of which group she is currently logged in
as. That case can be handled by introducing wildcards, which mean everyone. For example, the entry

tana, *: RW

for the password file would give Tana access no matter which group she was currently in as.

Yet another possibility is that if a user belongs to any of the groups that have certain access rights, the access
is permitted. In this case, a user belonging to multiple groups does not have to specify which group to use at
login time. All of them count all of the time. A disadvantage of this approach is that it provides less
encapsulation: Tana can edit the password file during a pigeon club meeting.

[Page 542]

The use of groups and wildcards introduces the possibility of selectively blocking a specific user from
accessing a file. For example, the entry

virgil, *: (none); *, *: RW

gives the entire world except for Virgil read and write access to the file. This works because the entries are
scanned in order, and the first one that applies is taken; subsequent entries are not even examined. A match is
found for Virgil on the first entry and the access rights, in this case, (none) are found and applied. The search

5

5

is terminated at that point. The fact that the rest of the world has access is never even seen.

The other way of dealing with groups is not to have ACL entries consist of (UID, GID) pairs, but to have each
entry be a UID or a GID. For example, an entry for the file pigeon_data could be

debbie: RW; phil: RW; pigfan: RW

meaning that Debbie and Phil, and all members of the pigfan group have read and write access to the file.

It sometimes occurs that a user or a group has certain permissions with respect to a file that the file owner
later wishes to revoke. With access control lists, it is relatively straightforward to revoke a previously granted
access. All that has to be done is edit the ACL to make the change. However, if the ACL is checked only
when a file is opened, most likely the change will only take effect on future calls to open. Any file that is
already open will continue to have the rights it had when it was opened, even if the user is no longer
authorized to access the file at all.

5.5.3. Capabilities

The other way of slicing up the matrix of Fig. 5-26 is by rows. When this method is used, associated with
each process is a list of objects that may be accessed, along with an indication of which operations are
permitted on each, in other words, its domain. This list is called a capability list or C-list and the individual
items on it are called capabilities (Dennis and Van Horn, 1966; Fabry, 1974). A set of three processes and
their capability lists is shown in Fig. 5-29.

Figure 5-29. When capabilities are used, each process has a capability list. (This item is displayed on page 543 in
the print version)

Each capability grants the owner certain rights on a certain object. In Fig. 5-29, the process owned by user A
can read files F1 and F2, for example. Usually, a capability consists of a file (or more generally, an object)
identifier and a bitmap for the various rights. In a UNIX-like system, the file identifier would probably be the
i-node number. Capability lists are themselves objects and may be pointed to from other capability lists, thus
facilitating sharing of subdomains.

It is fairly obvious that capability lists must be protected from user tampering. Three methods of protecting
them are known. The first way requires a tagged architecture, a hardware design in which each memory word
has an extra (or tag) bit that tells whether the word contains a capability or not. The tag bit is not used by

6

6

arithmetic, comparison, or similar ordinary instructions, and it can be modified only by programs running in
kernel mode (i.e., the operating system). Tagged-architecture machines have been built and can be made to
work well (Feustal, 1972). The IBM AS/400 is a popular example.

[Page 543]

The second way is to keep the C-list inside the operating system. Capabilities are then referred to by their
position in the capability list. A process might say: "Read 1 KB from the file pointed to by capability 2." This
form of addressing is similar to using file descriptors in UNIX. Hydra worked this way (Wulf et al., 1974).

The third way is to keep the C-list in user space, but manage the capabilities cryptographically so that users
cannot tamper with them. This approach is particularly suited to distributed systems and works as follows.
When a client process sends a message to a remote server, for example, a file server, to create an object for it,
the server creates the object and generates a long random number, the check field, to go with it. A slot in the
server's file table is reserved for the object and the check field is stored there along with the addresses of the
disk blocks, etc. In UNIX terms, the check field is stored on the server in the i-node. It is not sent back to the
user and never put on the network. The server then generates and returns a capability to the user of the form
shown in Fig. 5-30.

Figure 5-30. A cryptographically-protected capability.

Server

Object

Rights

f(Objects,Rights,Check)

The capability returned to the user contains the server's identifier, the object number (the index into the
server's tables, essentially, the i-node number), and the rights, stored as a bitmap. For a newly created object,
all the rights bits are turned on. The last field consists of the concatenation of the object, rights, and check
field run through a cryptographically-secure one-way function, f, of the kind we discussed earlier.

[Page 544]

When the user wishes to access the object, it sends the capability to the server as part of the request. The
server then extracts the object number to index into its tables to find the object. It then computes f (Object,
Rights, Check) taking the first two parameters from the capability itself and the third one from its own tables.
If the result agrees with the fourth field in the capability, the request is honored; otherwise, it is rejected. If a
user tries to access someone else's object, he will not be able to fabricate the fourth field correctly since he
does not know the check field, and the request will be rejected.

A user can ask the server to produce and return a weaker capability, for example, for read-only access. First
the server verifies that the capability is valid. If so, if computes f (Object, New_rights, Check) and generates a
new capability putting this value in the fourth field. Note that the original Check value is used because other
outstanding capabilities depend on it.

This new capability is sent back to the requesting process. The user can now give this to a friend by just

7

7

sending it in a message. If the friend turns on rights bits that should be off, the server will detect this when the
capability is used since the f value will not correspond to the false rights field. Since the friend does not know
the true check field, he cannot fabricate a capability that corresponds to the false rights bits. This scheme was
developed for the Amoeba system and used extensively there (Tanenbaum et al., 1990).

In addition to the specific object-dependent rights, such as read and execute, capabilities (both kernel and
cryptographically-protected) usually have generic rights which are applicable to all objects. Examples of
generic rights are

Copy capability: create a new capability for the same object.1.
Copy object: create a duplicate object with a new capability.2.
Remove capability: delete an entry from the C-list; object unaffected.3.
Destroy object: permanently remove an object and a capability.4.

A last remark worth making about capability systems is that revoking access to an object is quite difficult in
the kernel-managed version. It is hard for the system to find all the outstanding capabilities for any object to
take them back, since they may be stored in C-lists all over the disk. One approach is to have each capability
point to an indirect object, rather than to the object itself. By having the indirect object point to the real object,
the system can always break that connection, thus invalidating the capabilities. (When a capability to the
indirect object is later presented to the system, the user will discover that the indirect object is now pointing to
a null object.)

[Page 545]

In the Amoeba scheme, revocation is easy. All that needs to be done is change the check field stored with the
object. In one blow, all existing capabilities are invalidated. However, neither scheme allows selective
revocation, that is, taking back, say, John's permission, but nobody else's. This defect is generally recognized
to be a problem with all capability systems.

Another general problem is making sure the owner of a valid capability does not give a copy to 1000 of his
best friends. Having the kernel manage capabilities, as in Hydra, solves this problem, but this solution does
not work well in a distributed system such as Amoeba.

On the other hand, capabilities solve the problem of sandboxing mobile code very elegantly. When a foreign
program is started, it is given a capability list containing only those capabilities that the machine owner wants
to give it, such as the ability to write on the screen and the ability to read and write files in one scratch
directory just created for it. If the mobile code is put into its own process with only these limited capabilities,
it will not be able to access any other system resources and thus be effectively confined to a sandbox without
the need to modify its code or run it interpretively. Running code with as few access rights as possible is
known as the principle of least privilege and is a powerful guideline for producing secure systems.

Briefly summarized, ACLs and capabilities have somewhat complementary properties. Capabilities are very
efficient because if a process says "Open the file pointed to by capability 3," no checking is needed. With
ACLs, a (potentially long) search of the ACL may be needed. If groups are not supported, then granting
everyone read access to a file requires enumerating all users in the ACL. Capabilities also allow a process to
be encapsulated easily, whereas ACLs do not. On the other hand, ACLs allow selective revocation of rights,
which capabilities do not. Finally, if an object is removed and the capabilities are not or the capabilities are
removed and an object is not, problems arise. ACLs do not suffer from this problem.

8

8

5.5.4. Covert Channels

Even with access control lists and capabilities, security leaks can still occur. In this section we discuss how
information can still leak out even when it has been rigorously proven that such leakage is mathematically
impossible. These ideas are due to Lampson (1973).

Lampson's model was originally formulated in terms of a single timesharing system, but the same ideas can be
adapted to LANs and other multiuser environments. In the purest form, it involves three processes on some
protected machine. The first process is the client, which wants some work performed by the second one, the
server. The client and the server do not entirely trust each other. For example, the server's job is to help clients
with filling out their tax forms. The clients are worried that the server will secretly record their financial data,
for example, maintaining a secret list of who earns how much, and then selling the list. The server is worried
that the clients will try to steal the valuable tax program.

[Page 546]

The third process is the collaborator, which is conspiring with the server to indeed steal the client's
confidential data. The collaborator and server are typically owned by the same person. These three processes
are shown in Fig. 5-31. The object of this exercise is to design a system in which it is impossible for the server
process to leak to the collaborator process the information that it has legitimately received from the client
process. Lampson called this the confinement problem.

Figure 5-31. (a) The client, server, and collaborator processes. (b) The encapsulated server can still leak to the
collaborator via covert channels.

[View full size image]

From the system designer's point of view, the goal is to encapsulate or confine the server in such a way that it
cannot pass information to the collaborator. Using a protection matrix scheme we can easily guarantee that the
server cannot communicate with the collaborator by writing a file to which the collaborator has read access.
We can probably also ensure that the server cannot communicate with the collaborator using the system's
normal interprocess communication mechanism.

Unfortunately, more subtle communication channels may be available. For example, the server can try to
communicate a binary bit stream as follows: To send a 1 bit, it computes as hard as it can for a fixed interval
of time. To send a 0 bit, it goes to sleep for the same length of time.

The collaborator can try to detect the bit stream by carefully monitoring its response time. In general, it will
get better response when the server is sending a 0 than when the server is sending a 1. This communication
channel is known as a covert channel, and is illustrated in Fig. 5-31(b).

9

9

Of course, the covert channel is a noisy channel, containing a lot of extraneous information, but information
can be reliably sent over a noisy channel by using an error-correcting code (e.g., a Hamming code, or even
something more sophisticated). The use of an error-correcting code reduces the already low bandwidth of the
covert channel even more, but it still may be enough to leak substantial information. It is fairly obvious that
no protection model based on a matrix of objects and domains is going to prevent this kind of leakage.

[Page 547]

Modulating the CPU usage is not the only covert channel. The paging rate can also be modulated (many page
faults for a 1, no page faults for a 0). In fact, almost any way of degrading system performance in a clocked
way is a candidate. If the system provides a way of locking files, then the server can lock some file to indicate
a 1, and unlock it to indicate a 0. On some systems, it may be possible for a process to detect the status of a
lock even on a file that it cannot access. This covert channel is illustrated in Fig. 5-32, with the file locked or
unlocked for some fixed time interval known to both the server and collaborator. In this example, the secret
bit stream 11010100 is being transmitted.

Figure 5-32. A covert channel using file locking.

[View full size image]

Locking and unlocking a prearranged file, S is not an especially noisy channel, but it does require fairly
accurate timing unless the bit rate is very low. The reliability and performance can be increased even more
using an acknowledgement protocol. This protocol uses two more files, F1 and F2, locked by the server and
collaborator, respectively to keep the two processes synchronized. After the server locks or unlocks S, it flips
the lock status of F1 to indicate that a bit has been sent. As soon as the collaborator has read out the bit, it flips
F2's lock status to tell the server it is ready for another bit and waits until F1 is flipped again to indicate that
another bit is present in S. Since timing is no longer involved, this protocol is fully reliable, even in a busy
system and can proceed as fast as the two processes can get scheduled. To get higher bandwidth, why not use
two files per bit time, or make it a byte-wide channel with eight signaling files, S0 through S7.

Acquiring and releasing dedicated resources (tape drives, plotters, etc.) can also be used for signaling. The
server acquires the resource to send a 1 and releases it to send a 0. In UNIX, the server could create a file to
indicate a 1 and remove it to indicate a 0; the collaborator could use the access system call to see if the file
exists. This call works even though the collaborator has no permission to use the file. Unfortunately, many
other covert channels exist.

[Page 548]

Lampson also mentioned a way of leaking information to the (human) owner of the server process.
Presumably the server process will be entitled to tell its owner how much work it did on behalf of the client,

10

10

so the client can be billed. If the actual computing bill is, say, $100 and the client's income is $53,000 dollars,
the server could report the bill as $100.53 to its owner.

Just finding all the covert channels, let alone blocking them, is extremely difficult. In practice, there is little
that can be done. Introducing a process that causes page faults at random, or otherwise spends its time
degrading system performance in order to reduce the bandwidth of the covert channels is not an attractive
proposition.

11

11

12

12

[Page 548 (continued)]

5.6. Overview of the MINIX 3 File System

Like any file system, the MINIX 3 file system must deal with all the issues we
have just studied. It must allocate and deallocate space for files, keep track of
disk blocks and free space, provide some way to protect files against
unauthorized usage, and so on. In the remainder of this chapter we will look
closely at MINIX 3 to see how it accomplishes these goals.

In the first part of this chapter, we have repeatedly referred to UNIX rather than
to MINIX 3 for the sake of generality, although the external interfaces of the
two is virtually identical. Now we will concentrate on the internal design of
MINIX 3. For information about the UNIX internals, see Thompson (1978),
Bach (1987), Lions (1996), and Vahalia (1996).

The MINIX 3 file system is just a big C program that runs in user space (see Fig.
2-29). To read and write files, user processes send messages to the file system
telling what they want done. The file system does the work and then sends back
a reply. The file system is, in fact, a network file server that happens to be
running on the same machine as the caller.

This design has some important implications. For one thing, the file system can
be modified, experimented with, and tested almost completely independently of
the rest of MINIX 3. For another, it is very easy to move the file system to any
computer that has a C compiler, compile it there, and use it as a free-standing
UNIX-like remote file server. The only changes that need to be made are in the
area of how messages are sent and received, which differs from system to
system.

In the following sections, we will present an overview of many of the key areas
of the file system design. Specifically, we will look at messages, the file system
layout, the bitmaps, i-nodes, the block cache, directories and paths, file
descriptors, file locking, and special files (plus pipes). After studying these
topics, we will show a simple example of how the pieces fit together by tracing
what happens when a user process executes the read system call.

[Page 550]

5.6.1. Messages

The file system accepts 39 types of messages requesting work. All but two are
for MINIX 3 system calls. The two exceptions are messages generated by other
parts of MINIX 3. Of the system calls, 31 are accepted from user processes. Six
system call messages are for system calls which are handled first by the process
manager, which then calls the file system to do a part of the work. Two other
messages are also handled by the file system. The messages are shown in Fig.
5-33.

1

1

Figure 5-33. File system messages. File name parameters are always pointers to
the name. The code status as reply value means OK or ERROR. (This item is
displayed on page 549 in the print version)
Messages from users Input parameters Reply value
access File name,

access mode
Status

chdir Name of new
working
directory

Status

chmod File name, new
mode

Status

chown File name, new
owner, group

Status

chroot Name of new
root directory

Status

close File descriptor of
file to close

Status

creat Name of file to
be created, mode

File
descriptor

dup File descriptor
(for dup2, two
fds)

New file
descriptor

fcntl File descriptor,
function code,
arg

Depends on
function

fstat Name of file,
buffer

Status

ioctl File descriptor,
function code,
arg

Status

link Name of file to
link to, name of
link

Status

lseek File descriptor,
offset, whence

New
position

mkdir File name, mode Status
mknod Name of dir or

special, mode,
address

Status

mount Special file,
where to mount,
ro flag

Status

open Name of file to
open, r/w flag

File
descriptor

pipe Pointer to 2 file
descriptors
(modified)

Status

read File descriptor,
buffer, how
many bytes

Bytes
read

rename File name, file
name

Status

rmdir File name Status
stat File name, status

buffer
Status

2

2

stime Pointer to
current time

Status

sync (None) Always OK
time Pointer to place

where current
time goes

Status

times Pointer to buffer
for process and
child times

Status

umask Complement of
mode mask

Always OK

umount Name of special
file to unmount

Status

unlink Name of file to
unlink

Status

utime File name, file
times

Always OK

write File descriptor,
buffer, how
many bytes

Bytes
written

Messages from PM Input parameters Reply value
exec Pid Status
exit Pid Status
fork Parent pid, child

pid
Status

setgid Pid, real and
effective gid

Status

setsid Pid Status
setuid Pid, real and

effective uid
Status

Other messages Input parameters Reply value
revive Process to revive (No reply)
unpause Process to check (See text)

The structure of the file system is basically the same as that of the process manager and all the I/O device
drivers. It has a main loop that waits for a message to arrive. When a message arrives, its type is extracted and
used as an index into a table containing pointers to the procedures within the file system that handle all the
types. Then the appropriate procedure is called, it does its work and returns a status value. The file system
then sends a reply back to the caller and goes back to the top of the loop to wait for the next message.

5.6.2. File System Layout

A MINIX 3 file system is a logical, self-contained entity with i-nodes, directories, and data blocks. It can be
stored on any block device, such as a floppy disk or a hard disk partition. In all cases, the layout of the file
system has the same structure. Figure 5-34 shows this layout for a floppy disk or a small hard disk partition
with 64 i-nodes and a 1-KB block size. In this simple example, the zone bitmap is just one 1-KB block, so it
can keep track of no more than 8192 1-KB zones (blocks), thus limiting the file system to 8 MB. Even for a
floppy disk, only 64 i-nodes puts a severe limit on the number of files, so rather than the four blocks reserved
for i-nodes in the figure, more would probably be used. Reserving eight blocks for i-nodes would be more
practical but our diagram would not look as nice. For a modern hard disk, both the i-node and zone bitmaps
will be much larger than 1 block, of course. The relative size of the various components in Fig. 5-34 may vary
from file system to file system, depending on their sizes, how many files are allowed maximum, and so on.

3

3

But all the components are always present and in the same order.

Figure 5-34. Disk layout for a floppy disk or small hard disk partition, with 64 i-nodes and a 1-KB block size (i.e.,
two consecutive 512-byte sectors are treated as a single block). (This item is displayed on page 551 in the print

version)

Each file system begins with a boot block. This contains executable code. The size of a boot block is always
1024 bytes (two disk sectors), even though MINIX 3 may (and by default does) use a larger block size
elsewhere. When the computer is turned on, the hardware reads the boot block from the boot device into
memory, jumps to it, and begins executing its code. The boot block code begins the process of loading the
operating system itself. Once the system has been booted, the boot block is not used any more. Not every disk
drive can be used as a boot device, but to keep the structure uniform, every block device has a block reserved
for boot block code. At worst this strategy wastes one block.To prevent the hardware from trying to boot an
unbootable device, a magic number is placed at a known location in the boot block when and only when the
executable code is written to the device. When booting from a device, the hardware (actually, the BIOS code)
will refuse to attempt to load from a device lacking the magic number. Doing this prevents inadvertently using
garbage as a boot program.

[Page 551]

The superblock contains information describing the layout of the file system. Like the boot block, the
superblock is always 1024 bytes, regardless of the block size used for the rest of the file system. It is
illustrated in Fig. 5-35.

Figure 5-35. The MINIX 3 superblock. (This item is displayed on page 552 in the print version)

4

4

The main function of the superblock is to tell the file system how big the various pieces of the file system are.
Given the block size and the number of i-nodes, it is easy to calculate the size of the i-node bitmap and the
number of blocks of inodes. For example, for a 1-KB block, each block of the bitmap has 1024 bytes (8192
bits), and thus can keep track of the status of up to 8192 i-nodes. (Actually the first block can handle only up
to 8191 i-nodes, since there is no 0th i-node, but it is given a bit in the bitmap, anyway). For 10,000 i-nodes,
two bitmap blocks are needed. Since i-nodes each occupy 64 bytes, a 1-KB block holds up to 16 i-nodes. With
64 i-nodes, four disk blocks are needed to contain them all.

We will explain the difference between zones and blocks in detail later, but for the time being it is sufficient
to say that disk storage can be allocated in units (zones) of 1, 2, 4, 8, or in general 2n blocks. The zone bitmap
keeps track of free storage in zones, not blocks. For all standard disks used by MINIX 3 the zone and block
sizes are the same (4 KB by default), so to a first approximation a zone is the same as a block on these
devices. Until we come to the details of storage allocation later in the chapter, it is adequate to think "block"

5

5

whenever you see "zone."

Note that the number of blocks per zone is not stored in the superblock, as it is never needed. All that is
needed is the base 2 logarithm of the zone to block ratio, which is used as the shift count to convert zones to
blocks and vice versa. For example, with 8 blocks per zone, log2 8 = 3, so to find the zone containing block
128 we shift 128 right 3 bits to get zone 16.

[Page 552]

The zone bitmap includes only the data zones (i.e., the blocks used for the bitmaps and i-nodes are not in the
map), with the first data zone designated zone 1 in the bitmap. As with the i-node bitmap, bit 0 in the map is
unused, so the first block in the zone bitmap can map 8191 zones and subsequent blocks can map 8192 zones
each. If you examine the bitmaps on a newly formatted disk, you will find that both the i-node and zone
bitmaps have 2 bits set to 1. One is for the nonexistent 0th i-node or zone; the other is for the i-node and zone
used by the root directory on the device, which is placed there when the file system is created.

The information in the superblock is redundant because sometimes it is needed in one form and sometimes in
another. With 1 KB devoted to the superblock, it makes sense to compute this information in all the forms it is
needed, rather than having to recompute it frequently during execution. The zone number of the first data zone
on the disk, for example, can be calculated from the block size, zone size, number of i-nodes, and number of
zones, but it is faster just to keep it in the superblock. The rest of the superblock is wasted anyhow, so using
up another word of it costs nothing.

[Page 553]

When MINIX 3 is booted, the superblock for the root device is read into a table in memory. Similarly, as
other file systems are mounted, their superblocks are also brought into memory. The superblock table holds a
number of fields not present on the disk. These include flags that allow a device to be specified as read-only
or as following a byte-order convention opposite to the standard, and fields to speed access by indicating
points in the bitmaps below which all bits are marked used. In addition, there is a field describing the device
from which the superblock came.

Before a disk can be used as a MINIX 3 file system, it must be given the structure of Fig. 5-34. The utility
program mkfs has been provided to build file systems. This program can be called either by a command like

mkfs /dev/fd1 1440

to build an empty 1440 block file system on the floppy disk in drive 1, or it can be given a prototype file
listing directories and files to include in the new file system. This command also puts a magic number in the
superblock to identify the file system as a valid MINIX file system. The MINIX file system has evolved, and
some aspects of the file system (for instance, the size of i-nodes) were different previously. The magic number
identifies the version of mkfs that created the file system, so differences can be accommodated. Attempts to
mount a file system not in MINIX 3 format, such as an MS-DOS diskette, will be rejected by the mount
system call, which checks the superblock for a valid magic number and other things.

5.6.3. Bitmaps

MINIX 3 keeps tracks of which i-nodes and zones are free by using two bitmaps. When a file is removed, it is
then a simple matter to calculate which block of the bitmap contains the bit for the i-node being freed and to

6

6

find it using the normal cache mechanism. Once the block is found, the bit corresponding to the freed i-node
is set to 0. Zones are released from the zone bitmap in the same way.

Logically, when a file is to be created, the file system must search through the bit-map blocks one at a time for
the first free i-node. This i-node is then allocated for the new file. In fact, the in-memory copy of the
superblock has a field which points to the first free i-node, so no search is necessary until after a node is used,
when the pointer must be updated to point to the new next free i-node, which will often turn out to be the next
one, or a close one. Similarly, when an i-node is freed, a check is made to see if the free i-node comes before
the currently-pointed-to one, and the pointer is updated if necessary. If every i-node slot on the disk is full, the
search routine returns a 0, which is why i-node 0 is not used (i.e., so it can be used to indicate the search
failed). (When mkfs creates a new file system, it zeroes i-node 0 and sets the lowest bit in the bitmap to 1, so
the file system will never attempt to allocate it.) Everything that has been said here about the i-node bitmaps
also applies to the zone bitmap; logically it is searched for the first free zone when space is needed, but a
pointer to the first free zone is maintained to eliminate most of the need for sequential searches through the
bitmap.

[Page 554]

With this background, we can now explain the difference between zones and blocks. The idea behind zones is
to help ensure that disk blocks that belong to the same file are located on the same cylinder, to improve
performance when the file is read sequentially. The approach chosen is to make it possible to allocate several
blocks at a time. If, for example, the block size is 1 KB and the zone size is 4 KB, the zone bitmap keeps track
of zones, not blocks. A 20-MB disk has 5K zones of 4 KB, hence 5K bits in its zone map.

Most of the file system works with blocks. Disk transfers are always a block at a time, and the buffer cache
also works with individual blocks. Only a few parts of the system that keep track of physical disk addresses
(e.g., the zone bitmap and the i-nodes) know about zones.

Some design decisions had to be made in developing the MINIX 3 file system. In 1985, when MINIX was
conceived, disk capacities were small, and it was expected that many users would have only floppy disks. A
decision was made to restrict disk addresses to 16 bits in the V1 file system, primarily to be able to store many
of them in the indirect blocks. With a 16-bit zone number and a 1-KB zone, only 64-KB zones can be
addressed, limiting disks to 64 MB. This was an enormous amount of storage in those days, and it was
thought that as disks got larger, it would be easy to switch to 2-KB or 4-KB zones, without changing the block
size. The 16-bit zone numbers also made it easy to keep the i-node size to 32 bytes.

As MINIX developed, and larger disks became much more common, it was obvious that changes were
desirable. Many files are smaller than 1 KB, so increasing the block size would mean wasting disk bandwidth,
reading and writing mostly empty blocks and wasting precious main memory storing them in the buffer cache.
The zone size could have been increased, but a larger zone size means more wasted disk space, and it was still
desirable to retain efficient operation on small disks. Another reasonable alternative would have been to have
different zone sizes on large and small devices.

In the end it was decided to increase the size of disk pointers to 32 bits. This made it possible for the MINIX
V2 file system to deal with device sizes up to 4 terabytes with 1-KB blocks and zones and 16 TB with 4-KB
blocks and zones (the default value now). However, other factors restrict this size (e.g., with 32-bit pointers,
raw devices are limited to 4 GB). Increasing the size of disk pointers required an increase in the size of
i-nodes. This is not necessarily a bad thingit means the MINIX V2 (and now, V3) i-node is compatible with
standard UNIX i-nodes, with room for three time values, more indirect and double indirect zones, and room
for later expansion with triple indirect zones.

[Page 555]

7

7

Zones also introduce an unexpected problem, best illustrated by a simple example, again with 4-KB zones and
1-KB blocks. Suppose that a file is of length 1-KB, meaning that one zone has been allocated for it. The three
blocks between offsets 1024 and 4095 contain garbage (residue from the previous owner), but no structural
harm is done to the file system because the file size is clearly marked in the i-node as 1 KB In fact, the blocks
containing garbage will not be read into the block cache, since reads are done by blocks, not by zones. Reads
beyond the end of a file always return a count of 0 and no data.

Now someone seeks to 32,768 and writes 1 byte. The file size is now set to 32,769. Subsequent seeks to byte
1024 followed by attempts to read the data will now be able to read the previous contents of the block, a major
security breach.

The solution is to check for this situation when a write is done beyond the end of a file, and explicitly zero all
the not-yet-allocated blocks in the zone that was previously the last one. Although this situation rarely occurs,
the code has to deal with it, making the system slightly more complex.

5.6.4. I-Nodes

The layout of the MINIX 3 i-node is given in Fig. 5-36. It is almost the same as a standard UNIX i-node. The
disk zone pointers are 32-bit pointers, and there are only 9 pointers, 7 direct and 2 indirect. The MINIX 3
i-nodes occupy 64 bytes, the same as standard UNIX i-nodes, and there is space available for a 10th (triple
indirect) pointer, although its use is not supported by the standard version of the FS. The MINIX 3 i-node
access, modification time and i-node change times are standard, as in UNIX. The last of these is updated for
almost every file operation except a read of the file.

Figure 5-36. The MINIX i-node. (This item is displayed on page 556 in the print version)

[View full size image]

8

8

When a file is opened, its i-node is located and brought into the inode table in memory, where it remains until
the file is closed. The inode table has a few additional fields not present on the disk, such as the i-node's
device and number, so the file system knows where to rewrite the i-node if it is modified while in memory. It
also has a counter per i-node. If the same file is opened more than once, only one copy of the i-node is kept in
memory, but the counter is incremented each time the file is opened and decremented each time the file is
closed. Only when the counter finally reaches zero is the i-node removed from the table. If it has been
modified since being loaded into memory, it is also rewritten to the disk.

The main function of a file's i-node is to tell where the data blocks are. The first seven zone numbers are given
right in the i-node itself. For the standard distribution, with zones and blocks both 1 KB, files up to 7 KB do
not need indirect blocks. Beyond 7 KB, indirect zones are needed, using the scheme of Fig. 5-10, except that
only the single and double indirect blocks are used. With 1-KB blocks and zones and 32-bit zone numbers, a
single indirect block holds 256 entries, representing a quarter megabyte of storage. The double indirect block
points to 256 single indirect blocks, giving access to up to 64 megabytes. With 4-KB blocks, the double
indirect block leads to 1024 x 1024 blocks, which is over a million 4-KB blocks, making the maximum file
zie over 4 GB. In practice the use of 32-bit numbers as file offsets limits the maximum file size to 232 1 bytes.

9

9

As a consequence of these numbers, when 4-KB disk blocks are used MINIX 3 has no need for triple indirect
blocks; the maximum file size is limited by the pointer size, not the ability to keep track of enough blocks.

[Page 556]

[Page 557]

The i-node also holds the mode information, which tells what kind of a file it is (regular, directory, block
special, character special, or pipe), and gives the protection and SETUID and SETGID bits. The link field in
the i-node records how many directory entries point to the i-node, so the file system knows when to release
the file's storage. This field should not be confused with the counter (present only in the inode table in
memory, not on the disk) that tells how many times the file is currently open, typically by different processes.

As a final note on i-nodes, we mention that the structure of Fig. 5-36 may be modified for special purposes.
An example used in MINIX 3 is the i-nodes for block and character device special files. These do not need
zone pointers, because they don't have to reference data areas on the disk. The major and minor device
numbers are stored in the Zone-0 space in Fig. 5-36. Another way an i-node could be used, although not
implemented in MINIX 3, is as an immediate file with a small amount of data stored in the i-node itself.

5.6.5. The Block Cache

MINIX 3 uses a block cache to improve file system performance. The cache is implemented as a fixed array
of buffers, each consisting of a header containing pointers, counters, and flags, and a body with room for one
disk block. All the buffers that are not in use are chained together in a double-linked list, from most recently
used (MRU) to least recently used (LRU) as illustrated in Fig. 5-37.

Figure 5-37. The linked lists used by the block cache.

In addition, to be able to quickly determine if a given block is in the cache or not, a hash table is used. All the
buffers containing a block that has hash code k are linked together on a single-linked list pointed to by entry k
in the hash table. The hash function just extracts the low-order n bits from the block number, so blocks from
different devices appear on the same hash chain. Every buffer is on one of these chains. When the file system
is initialized after MINIX 3 is booted, all buffers are unused, of course, and all are in a single chain pointed to
by the 0th hash table entry. At that time all the other hash table entries contain a null pointer, but once the
system starts, buffers will be removed from the 0th chain and other chains will be built.

10

10

[Page 558]

When the file system needs to acquire a block, it calls a procedure, get_block, which computes the hash code
for that block and searches the appropriate list. Get_block is called with a device number as well as a block
number, and the search compares both numbers with the corresponding fields in the buffer chain. If a buffer
containing the block is found, a counter in the buffer header is incremented to show that the block is in use,
and a pointer to it is returned. If a block is not found on the hash list, the first buffer on the LRU list can be
used; it is guaranteed not to be still in use, and the block it contains may be evicted to free up the buffer.

Once a block has been chosen for eviction from the block cache, another flag in its header is checked to see if
the block has been modified since being read in. If so, it is rewritten to the disk. At this point the block needed
is read in by sending a message to the disk driver. The file system is suspended until the block arrives, at
which time it continues and a pointer to the block is returned to the caller.

When the procedure that requested the block has completed its job, it calls another procedure, put_block, to
free the block. Normally, a block will be used immediately and then released, but since it is possible that
additional requests for a block will be made before it has been released, put_block decrements the use counter
and puts the buffer back onto the LRU list only when the use counter has gone back to zero. While the counter
is nonzero, the block remains in limbo.

One of the parameters to put_block tells what class of block (e.g., i-nodes, directory, data) is being freed.
Depending on the class, two key decisions are made:

1. Whether to put the block on the front or rear of the LRU list.

2. Whether to write the block (if modified) to disk immediately or not.

Almost all blocks go on the rear of the list in true LRU fashion. The exception is blocks from the RAM disk;
since they are already in memory there is little advantage to keeping them in the block cache.

A modified block is not rewritten until either one of two events occurs:

1. It reaches the front of the LRU chain and is evicted.

2. A sync system call is executed.

Sync does not traverse the LRU chain but instead indexes through the array of buffers in the cache. Even if a
buffer has not been released yet, if it has been modified, sync will find it and ensure that the copy on disk is
updated.

[Page 559]

Policies like this invite tinkering. In an older version of MINIX a superblock was modified when a file system
was mounted, and was always rewritten immediately to reduce the chance of corrupting the file system in the
event of a crash. Superblocks are modified only if the size of a RAM disk must be adjusted at startup time
because the RAM disk was created bigger than the RAM image device. However, the superblock is not read
or written as a normal block, because it is always 1024 bytes in size, like the boot block, regardless of the
block size used for blocks handled by the cache. Another abandoned experiment is that in older versions of
MINIX there was a ROBUST macro definable in the system configuration file, include/minix/config.h, which,
if defined, caused the file system to mark i-node, directory, indirect, and bit-map blocks to be written

11

11

immediately upon release. This was intended to make the file system more robust; the price paid was slower
operation. It turned out this was not effective. A power failure occurring when all blocks have not been yet
been written is going to cause a headache whether it is an i-node or a data block that is lost.

Note that the header flag indicating that a block has been modified is set by the procedure within the file
system that requested and used the block. The procedures get_block and put_block are concerned just with
manipulating the linked lists. They have no idea which file system procedure wants which block or why.

5.6.6. Directories and Paths

Another important subsystem within the file system manages directories and path names. Many system calls,
such as open, have a file name as a parameter. What is really needed is the i-node for that file, so it is up to
the file system to look up the file in the directory tree and locate its i-node.

A MINIX directory is a file that in previous versions contained 16-byte entries, 2 bytes for an i-node number
and 14 bytes for the file name. This design limited disk partitions to 64-KB files and file names to 14
characters, the same as V7 UNIX. As disks have grown file names have also grown. In MINIX 3 the V3 file
system provides 64 bytes directory entries, with 4 bytes for the i-node number and 60 bytes for the file name.
Having up to 4 billion files per disk partition is effectively infinite and any programmer choosing a file name
longer than 60 characters should be sent back to programming school.

Note that paths such as

/usr/ast/course_material_for_this_year/operating_systems/examination-1.ps

are not limited to 60 charactersjust the individual component names. The use of fixed-length directory entries,
in this case, 64 bytes, is an example of a tradeoff involving simplicity, speed, and storage. Other operating
systems typically organize directories as a heap, with a fixed header for each file pointing to a name on the
heap at the end of the directory. The MINIX 3 scheme is very simple and required practically no code changes
from V2. It is also very fast for both looking up names and storing new ones, since no heap management is
ever required. The price paid is wasted disk storage, because most files are much shorter than 60 characters.

[Page 560]

It is our firm belief that optimizing to save disk storage (and some RAM storage since directories are
occasionally in memory) is the wrong choice. Code simplicity and correctness should come first and speed
should come second. With modern disks usually exceeding 100 GB, saving a small amount of disk space at
the price of more complicated and slower code is generally not a good idea. Unfortunately, many
programmers grew up in an era of tiny disks and even tinier RAMs, and were trained from day 1 to resolve all
trade-offs between code complexity, speed, and space in favor of minimizing space requirements. This
implicit assumption really has to be reexamined in light of current realities.

Now let us see how the path /usr/ast/mbox/ is looked up. The system first looks up usr in the root directory,
then it looks up ast in /usr/, and finally it looks up mbox in /usr/ast/. The actual lookup proceeds one path
component at a time, as illustrated in Fig. 5-16.

The only complication is what happens when a mounted file system is encountered. The usual configuration
for MINIX 3 and many other UNIX-like systems is to have a small root file system containing the files
needed to start the system and to do basic system maintenance, and to have the majority of the files, including
users' directories, on a separate device mounted on /usr. This is a good time to look at how mounting is done.
When the user types the command

mount /dev/c0d1p2 /usr

12

12

on the terminal, the file system contained on hard disk 1, partition 2 is mounted on top of /usr/ in the root file
system. The file systems before and after mounting are shown in Fig. 5-38.

Figure 5-38. (a) Root file system. (b) An unmounted file system. (c) The result of mounting the file system of (b)
on /usr/. (This item is displayed on page 561 in the print version)

[View full size image]

The key to the whole mount business is a flag set in the memory copy of the i-node of /usr after a successful
mount. This flag indicates that the i-node is mounted on. The mount call also loads the super-block for the
newly mounted file system into the super_block table and sets two pointers in it. Furthermore, it puts the root
i-node of the mounted file system in the inode table.

In Fig. 5-35 we see that super-blocks in memory contain two fields related to mounted file systems. The first
of these, the i-node-for-root-of-mounted-file-system, is set to point to the root i-node of the newly mounted
file system. The second, the i-node-mounted-upon, is set to point to the i-node mounted on, in this case, the
i-node for /usr. These two pointers serve to connect the mounted file system to the root and represent the
"glue" that holds the mounted file system to the root [shown as the dots in Fig. 5-38(c)]. This glue is what
makes mounted file systems work.

[Page 561]

When a path such as /usr/ast/f2 is being looked up, the file system will see a flag in the i-node for /usr/ and
realize that it must continue searching at the root inode of the file system mounted on /usr/. The question is:
"How does it find this root i-node?"

The answer is straightforward. The system searches all the superblocks in memory until it finds the one whose
i-node mounted on field points to /usr/. This must be the superblock for the file system mounted on /usr/.
Once it has the superblock, it is easy to follow the other pointer to find the root i-node for the mounted file
system. Now the file system can continue searching. In this example, it looks for ast in the root directory of
hard disk partition 2.

13

13

5.6.7. File Descriptors

Once a file has been opened, a file descriptor is returned to the user process for use in subsequent read and
write calls. In this section we will look at how file descriptors are managed within the file system.

Like the kernel and the process manager, the file system maintains part of the process table within its address
space. Three of its fields are of particular interest. The first two are pointers to the i-nodes for the root
directory and the working directory. Path searches, such as that of Fig. 5-16, always begin at one or the other,
depending on whether the path is absolute or relative. These pointers are changed by the chroot and chdir
system calls to point to the new root or new working directory, respectively.

[Page 562]

The third interesting field in the process table is an array indexed by file descripttor number. It is used to
locate the proper file when a file descriptor is presented. At first glance, it might seem sufficient to have the
k-th entry in this array just point to the i-node for the file belonging to file descriptor k. After all, the i-node is
fetched into memory when the file is opened and kept there until it is closed, so it is sure to be available.

Unfortunately, this simple plan fails because files can be shared in subtle ways in MINIX 3 (as well as in
UNIX). The trouble arises because associated with each file is a 32-bit number that indicates the next byte to
be read or written. It is this number, called the file position, that is changed by the lseek system call. The
problem can be stated easily: "Where should the file pointer be stored?"

The first possibility is to put it in the i-node. Unfortunately, if two or more processes have the same file open
at the same time, they must all have their own file pointers, since it would hardly do to have an lseek by one
process affect the next read of a different process. Conclusion: the file position cannot go in the inode.

What about putting it in the process table? Why not have a second array, paralleling the file descriptor array,
giving the current position of each file? This idea does not work either, but the reasoning is more subtle.
Basically, the trouble comes from the semantics of the fork system call. When a process forks, both the
parent and the child are required to share a single pointer giving the current position of each open file.

To better understand the problem, consider the case of a shell script whose output has been redirected to a file.
When the shell forks off the first program, its file position for standard output is 0. This position is then
inherited by the child, which writes, say, 1 KB of output. When the child terminates, the shared file position
must now be 1024.

Now the shell reads some more of the shell script and forks off another child. It is essential that the second
child inherit a file position of 1024 from the shell, so it will begin writing at the place where the first program
left off. If the shell did not share the file position with its children, the second program would overwrite the
output from the first one, instead of appending to it.

As a result, it is not possible to put the file position in the process table. It really must be shared. The solution
used in UNIX and MINIX 3 is to introduce a new, shared table, filp, which contains all the file positions. Its
use is illustrated in Fig. 5-39. By having the file position truly shared, the semantics of fork can be
implemented correctly, and shell scripts work properly.

Figure 5-39. How file positions are shared between a parent and a child. (This item is displayed on page 563 in the
print version)

14

14

Although the only thing that the filp table really must contain is the shared file position, it is convenient to put
the i-node pointer there, too. In this way, all that the file descriptor array in the process table contains is a
pointer to a filp entry. The filp entry also contains the file mode (permission bits), some flags indicating
whether the file was opened in a special mode, and a count of the number of processes using it, so the file
system can tell when the last process using the entry has terminated, in order to reclaim the slot.

[Page 563]

5.6.8. File Locking

Yet another aspect of file system management requires a special table. This is file locking. MINIX 3 supports
the POSIX interprocess communication mechanism of advisory file locking. This permits any part, or
multiple parts, of a file to be marked as locked. The operating system does not enforce locking, but processes
are expected to be well behaved and to look for locks on a file before doing anything that would conflict with
another process.

The reasons for providing a separate table for locks are similar to the justifications for the filp table discussed
in the previous section. A single process can have more than one lock active, and different parts of a file may
be locked by more than one process (although, of course, the locks cannot overlap), so neither the process
table nor the filp table is a good place to record locks. Since a file may have more than one lock placed upon
it, the i-node is not a good place either.

MINIX 3 uses another table, the file_lock table, to record all locks. Each slot in this table has space for a lock
type, indicating if the file is locked for reading or writing, the process ID holding the lock, a pointer to the
i-node of the locked file, and the offsets of the first and last bytes of the locked region.

5.6.9. Pipes and Special Files

Pipes and special files differ from ordinary files in an important way. When a process tries to read or write a
block of data from a disk file, it is almost certain that the operation will complete within a few hundred
milliseconds at most. In the worst case, two or three disk accesses might be needed, not more. When reading
from a pipe, the situation is different: if the pipe is empty, the reader will have to wait until some other
process puts data in the pipe, which might take hours. Similarly, when reading from a terminal, a process will
have to wait until somebody types something.

15

15

[Page 564]

As a consequence, the file system's normal rule of handling a request until it is finished does not work. It is
necessary to suspend these requests and restart them later. When a process tries to read or write from a pipe,
the file system can check the state of the pipe immediately to see if the operation can be completed. If it can
be, it is, but if it cannot be, the file system records the parameters of the system call in the process table, so it
can restart the process when the time comes.

Note that the file system need not take any action to have the caller suspended. All it has to do is refrain from
sending a reply, leaving the caller blocked waiting for the reply. Thus, after suspending a process, the file
system goes back to its main loop to wait for the next system call. As soon as another process modifies the
pipe's state so that the suspended process can complete, the file system sets a flag so that next time through the
main loop it extracts the suspended process' parameters from the process table and executes the call.

The situation with terminals and other character special files is slightly different. The i-node for each special
file contains two numbers, the major device and the minor device. The major device number indicates the
device class (e.g., RAM disk, floppy disk, hard disk, terminal). It is used as an index into a file system table
that maps it onto the number of the corresponding I/O device driver. In effect, the major device determines
which I/O driver to call. The minor device number is passed to the driver as a parameter. It specifies which
device is to be used, for example, terminal 2 or drive 1.

In some cases, most notably terminal devices, the minor device number encodes some information about a
category of devices handled by a driver. For instance, the primary MINIX 3 console, /dev/console, is device 4,
0 (major, minor). Virtual consoles are handled by the same part of the driver software. These are devices
/dev/ttyc1 (4,1), /dev/ttyc2 (4,2), and so on. Serial line terminals need different low-level software, and these
devices, /dev/tty00, and /dev/tty01 are assigned device numbers 4, 16 and 4, 17. Similarly, network terminals
use pseudo-terminal drivers, and these also need different low-level software. In MINIX 3 these devices,
ttyp0, ttyp1, etc., are assigned device numbers such as 4, 128 and 4, 129. These pseudo devices each have an
associated device, ptyp0, ptyp1, etc. The major, minor device number pairs for these are 4,192 and 4,193, etc.
These numbers are chosen to make it easy for the device driver to call the low-level functions required for
each group of devices. It is not expected that anyone is going to equip a MINIX 3 system with 192 or more
terminals.

When a process reads from a special file, the file system extracts the major and minor device numbers from
the file's i-node, and uses the major device number as an index into a file system table to map it onto the
process number of the corresponding device driver. Once it has identified the driver, the file system sends it a
message, including as parameters the minor device, the operation to be performed, the caller's process number
and buffer address, and the number of bytes to be transferred. The format is the same as in Fig. 3-15, except
that POSITION is not used.

[Page 565]

If the driver is able to carry out the work immediately (e.g., a line of input has already been typed on the
terminal), it copies the data from its own internal buffers to the user and sends the file system a reply message
saying that the work is done. The file system then sends a reply message to the user, and the call is finished.
Note that the driver does not copy the data to the file system. Data from block devices go through the block
cache, but data from character special files do not.

On the other hand, if the driver is not able to carry out the work, it records the message parameters in its
internal tables, and immediately sends a reply to the file system saying that the call could not be completed.
At this point, the file system is in the same situation as having discovered that someone is trying to read from
an empty pipe. It records the fact that the process is suspended and waits for the next message.

16

16

When the driver has acquired enough data to complete the call, it transfers them to the buffer of the
still-blocked user and then sends the file system a message reporting what it has done. All the file system has
to do is send a reply message to the user to unblock it and report the number of bytes transferred.

5.6.10. An Example: The READ System Call

As we shall see shortly, most of the code of the file system is devoted to carrying out system calls. Therefore,
it is appropriate that we conclude this overview with a brief sketch of how the most important call, read,
works.

When a user program executes the statement

n = read(fd, buffer, nbytes);

to read an ordinary file, the library procedure read is called with three parameters. It builds a message
containing these parameters, along with the code for read as the message type, sends the message to the file
system, and blocks waiting for the reply. When the message arrives, the file system uses the message type as
an index into its tables to call the procedure that handles reading.

This procedure extracts the file descriptor from the message and uses it to locate the filp entry and then the
i-node for the file to be read (see Fig. 5-39). The request is then broken up into pieces such that each piece fits
within a block. For example, if the current file position is 600 and 1024 bytes have been requested, the request
is split into two parts, for 600 to 1023, and for 1024 to 1623 (assuming 1-KB blocks).

For each of these pieces in turn, a check is made to see if the relevant block is in the cache. If the block is not
present, the file system picks the least recently used buffer not currently in use and claims it, sending a
message to the disk device driver to rewrite it if it is dirty. Then the disk driver is asked to fetch the block to
be read.

[Page 566]

Once the block is in the cache, the file system sends a message to the system task asking it to copy the data to
the appropriate place in the user's buffer (i.e., bytes 600 to 1023 to the start of the buffer, and bytes 1024 to
1623 to offset 424 within the buffer). After the copy has been done, the file system sends a reply message to
the user specifying how many bytes have been copied.

When the reply comes back to the user, the library function read extracts the reply code and returns it as the
function value to the caller.

One extra step is not really part of the read call itself. After the file system completes a read and sends a
reply, it initiates reading additional blocks, provided that the read is from a block device and certain other
conditions are met. Since sequential file reads are common, it is reasonable to expect that the next blocks in a
file will be requested in the next read request, and this makes it likely that the desired block will already be in
the cache when it is needed. The number of blocks requested depends upon the size of the block cache; as
many as 32 additional blocks may be requested. The device driver does not necessarily return this many
blocks, and if at least one block is returned a request is considered successful.

17

17

18

18

[Page 566 (continued)]

5.7. Implementation of the MINIX 3 File System

The MINIX 3 file system is relatively large (more than 100 pages of C) but quite
straightforward. Requests to carry out system calls come in, are carried out, and replies are sent.
In the following sections we will go through it a file at a time, pointing out the highlights. The
code itself contains many comments to aid the reader.

In looking at the code for other parts of MINIX 3 we have generally looked at the main loop of
a process first and then looked at the routines that handle the different message types. We will
organize our approach to the file system differently. First we will go through the major
subsystems (cache management, i-node management, etc.). Then we will look at the main loop
and the system calls that operate upon files. Next we will look at systems call that operate upon
directories, and then, we will discuss the remaining system calls that fall into neither category.
Finally we will see how device special files are handled.

5.7.1. Header Files and Global Data Structures

Like the kernel and process manager, various data structures and tables used in the file system
are defined in header files. Some of these data structures are placed in system-wide header files
in include/ and its subdirectories. For instance, include/sys/stat.h defines the format by which
system calls can provide i-node information to other programs and the structure of a directory
entry is defined in include/sys/dir.h. Both of these files are required by POSIX. The file system
is affected by a number of definitions contained in the global configuration file
include/minix/config.h, such as NR_BUFS and NR_BUF_HASH, which control the size of the
block cache.

[Page 567]

File System Headers

The file system's own header files are in the file system source directory src/fs/. Many file
names will be familiar from studying other parts of the MINIX 3 system. The FS master header
file, fs.h (line 20900), is quite analogous to src/kernel/kernel.h and src/pm/pm.h. It includes
other header files needed by all the C source files in the file system. As in the other parts of
MINIX 3, the file system master header includes the file system's own const.h, type.h, proto.h,
and glo.h. We will look at these next.

Const.h (line 21000) defines some constants, such as table sizes and flags, that are used
throughout the file system. MINIX 3 already has a history. Earlier versions of MINIX had
different file systems. Although MINIX 3 does not support the old V1 and V2 file systems,
some definitions have been retained, both for reference and in expectation that someone will
add support for these later. Support for older versions is useful not only for accessing files on
older MINIX file systems, it may also be useful for exchanging files.

Other operating systems may use older MINIX file systemsfor instance, Linux originally used
and still supports MINIX file systems. (It is perhaps somewhat ironic that Linux still supports
the original MINIX file system but MINIX 3 does not.) Some utilities are available for

1

1

MS-DOS and Windows to access older MINIX directories and files. The superblock of a file
system contains a magic number to allow the operating system to identify the file system's type;
the constants SUPER_MAGIC, SUPER_V2, and SUPER_V3 define these numbers for the
three versions of the MINIX file system. There are also _REV-suffixed versions of these for V1
and V2, in which the bytes of the magic number are reversed. These were used with ports of
older MINIX versions to systems with a different byte order (little-endian rather than
big-endian) so a removable disk written on a machine with a different byte order could be
identified as such. As of the release of MINIX 3.1.0 defining a SUPER_V3_REV magic number
has not been necessary, but it is likely this definition will be added in the future.

Type.h (line 21100) defines both the old V1 and new V2 i-node structures as they are laid out
on the disk. The i-node is one structure that did not change in MINIX 3, so the V2 i-node is
used with the V-3 file system. The V2 i-node is twice as big as the old one, which was designed
for compactness on systems with no hard drive and 360-KB diskettes. The new version provides
space for the three time fields which UNIX systems provide. In the V1 i-node there was only
one time field, but a stat or fstat would "fake it" and return a stat structure containing all
three fields. There is a minor difficulty in providing support for the two file system versions.
This is flagged by the comment on line 21116. Older MINIX 3 software expected the gid_t type
to be an 8-bit quantity, so d2_gid must be declared as type u16_t.

[Page 568]

Proto.h (line 21200) provides function prototypes in forms acceptable to either old K&R or
newer ANSI Standard C compilers. It is a long file, but not of great interest. However, there is
one point to note: because there are so many different system calls handled by the file system,
and because of the way the file system is organized, the various do_XXX functions are scattered
through a number of files. Proto.h is organized by file and is a handy way to find the file to
consult when you want to see the code that handles a particular system call.

Finally, glo.h (line 21400) defines global variables. The message buffers for the incoming and
reply messages are also here. The now-familiar trick with the EXTERN macro is used, so these
variables can be accessed by all parts of the file system. As in the other parts of MINIX 3, the
storage space will be reserved when table.c is compiled.

The file system's part of the process table is contained in fproc.h (line 21500). The fproc array is
declared with the EXTERN macro. It holds the mode mask, pointers to the i-nodes for the
current root directory and working directory, the file descriptor array, uid, gid, and terminal
number for each process. The process id and the process group id are also found here. The
process id is duplicated in the part of the process table located in the process manager.

Several fields are used to store the parameters of those system calls that may be suspended part
way through, such as reads from an empty pipe. The fields fp_suspended and fp_revived
actually require only single bits, but nearly all compilers generate better code for characters than
bit fields. There is also a field for the FD_CLOEXEC bits called for by the POSIX standard.
These are used to indicate that a file should be closed when an exec call is made.

Now we come to files that define other tables maintained by the file system. The first, buf.h
(line 21600), defines the block cache. The structures here are all declared with EXTERN. The
array buf holds all the buffers, each of which contains a data part, b, and a header full of
pointers, flags, and counters. The data part is declared as a union of five types (lines 21618 to
21632) because sometimes it is convenient to refer to the block as a character array, sometimes
as a directory, etc.

2

2

The truly proper way to refer to the data part of buffer 3 as a character array is buf[3]. b.b_
data because buf[3].b refers to the union as a whole, from which the b _data field is selected.
Although this syntax is correct, it is cumbersome, so on line 21649 we define a macro b_data,
which allows us to write buf[3].b_data instead. Note that b_ _data (the field of the union)
contains two underscores, whereas b_data (the macro) contains just one, to distinguish them.
Macros for other ways of accessing the block are defined on lines 21650 to 21655.

[Page 569]

The buffer hash table, buf_hash, is defined on line 21657. Each entry points to a list of buffers.
Originally all the lists are empty. Macros at the end of buf.h define different block types. The
WRITE_IMMED bit signals that a block must be rewritten to the disk immediately if it is
changed, and the ONE_SHOT bit is used to indicate a block is unlikely to be needed soon.
Neither of these is used currently but they remain available for anyone who has a bright idea
about improving performance or reliability by modifying the way blocks in the cache are
queued.

Finally, in the last line HASH_MASK is defined, based upon the value of NR_BUF_HASH
configured in include/minix/config.h. HASH_MASK is ANDed with a block number to
determine which entry in buf_hash to use as the starting point in a search for a block buffer.

File.h (line 21700) contains the intermediate table filp (declared as EXTERN), used to hold the
current file position and i-node pointer (see Fig. 5-39). It also tells whether the file was opened
for reading, writing, or both, and how many file descriptors are currently pointing to the entry.

The file locking table, file_lock (declared as EXTERN), is in lock.h (line 21800). The size of
the array is determined by NR_LOCKS, which is defined as 8 in const.h. This number should
be increased if it is desired to implement a multiuser data base on a MINIX 3 system.

In inode.h (line 21900) the i-node table inode is declared (using EXTERN). It holds i-nodes that
are currently in use. As we said earlier, when a file is opened its i-node is read into memory and
kept there until the file is closed. The inode structure definition provides for information that is
kept in memory, but is not written to the disk i-node. Notice that there is only one version, and
nothing is version-specific here. When the i-node is read in from the disk, differences between
V1 and V2/V3 file systems are handled. The rest of the file system does not need to know about
the file system format on the disk, at least until the time comes to write back modified
information.

Most of the fields should be self-explanatory at this point. However, i_seek deserves some
comment. It was mentioned earlier that, as an optimization, when the file system notices that a
file is being read sequentially, it tries to read blocks into the cache even before they are asked
for. For randomly accessed files there is no read ahead. When an lseek call is made, the field
i_seek is set to inhibit read ahead.

The file param.h (line 22000) is analogous to the file of the same name in the process manager.
It defines names for message fields containing parameters, so the code can refer to, for example,
m_in.buffer, instead of m_in.m1_p1, which selects one of the fields of the message buffer m_in.

In super.h (line 22100), we have the declaration of the superblock table. When the system is
booted, the superblock for the root device is loaded here. As file systems are mounted, their
superblocks go here as well. As with other tables, super_block is declared as EXTERN.

3

3

[Page 570]

File System Storage Allocation

The last file we will discuss in this section is not a header. However, just as we did when
discussing the process manager, it seems appropriate to discuss table.c immediately after
reviewing the header files, since they are all included when table.c (line 22200) is compiled.
Most of the data structures we have mentionedthe block cache, the filp table, and so onare
defined with the EXTERN macro, as are also the file system's global variables and the file
system's part of the process table. In the same way we have seen in other parts of the MINIX 3
system, the storage is actually reserved when table.c is compiled. This file also contains one
major initialized array. Call_vector contains the pointer array used in the main loop for
determining which procedure handles which system call number. We saw a similar table inside
the process manager.

5.7.2. Table Management

Associated with each of the main tablesblocks, i-nodes, superblocks, and so forthis a file that
contains procedures that manage the table. These procedures are heavily used by the rest of the
file system and form the principal interface between tables and the file system. For this reason,
it is appropriate to begin our study of the file system code with them.

Block Management

The block cache is managed by the procedures in the file cache.c. This file contains the nine
procedures listed in Fig. 5-40. The first one, get_block (line 22426), is the standard way the file
system gets data blocks. When a file system procedure needs to read a user data block, a
directory block, a superblock, or any other kind of block, it calls get_block, specifying the
device and block number.

Figure 5-40. Procedures used for block management. (This item is displayed on page 571 in the
print version)

Procedure Function
get_block Fetch a block

for reading or
writing

put_block Return a
block
previously
requested
with
get_block

alloc_zone Allocate a
new zone (to
make a file
longer)

free_zone Release a
zone (when a
file is
removed)

rw_block

4

4

Transfer a
block
between disk
and cache

invalidate Purge all the
cache blocks
for some
device

flushall Flush all dirty
blocks for
one device

rw_scattered Read or write
scattered data
from or to a
device

rm_lru Remove a
block from its
LRU chain

When get_block is called, it first examines the block cache to see if the requested block is there. If so, it
returns a pointer to it. Otherwise, it has to read the block in. The blocks in the cache are linked together on
NR_BUF_HASH linked lists. NR_BUF_HASH is a tunable parameter, along with NR_BUFS, the size of the
block cache. Both of these are set in include/minix/config.h. At the end of this section we will say a few
words about optimizing the size of the block cache and the hash table. The HASH_MASK is
NR_BUF_HASH - 1. With 256 hash lists, the mask is 255, so all the blocks on each list have block numbers
that end with the same string of 8 bits, that is 00000000, 00000001, ..., or 11111111.

The first step is usually to search a hash chain for a block, although there is a special case, when a hole in a
sparse file is being read, where this search is skipped. This is the reason for the test on line 22454. Otherwise,
the next two lines set bp to point to the start of the list on which the requested block would be, if it were in the
cache, applying HASH_MASK to the block number. The loop on the next line searches this list to see if the
block can be found. If it is found and is not in use, it is removed from the LRU list. If it is already in use, it is
not on the LRU list anyway. The pointer to the found block is returned to the caller on line 22463.

[Page 571]

If the block is not on the hash list, it is not in the cache, so the least recently used block from the LRU list is
taken. The buffer chosen is removed from its hash chain, since it is about to acquire a new block number and
hence belongs on a different hash chain. If it is dirty, it is rewritten to the disk on line 22495. Doing this with
a call to flushall rewrites any other dirty blocks for the same device. This call is is the way most blocks get
written. Blocks that are currently in use are never chosen for eviction, since they are not on the LRU chain.
Blocks will hardly ever be found to be in use, however; normally a block is released by put_block
immediately upon being used.

As soon as the buffer is available, all of the fields, including b_dev, are updated with the new parameters
(lines 22499 to 22504), and the block may be read in from the disk. However, there are two occasions when it
may not be necessary to read the block from the disk. Get_block is called with a parameter only_search. This
may indicate that this is a prefetch. During a prefetch an available buffer is found, writing the old contents to
the disk if necessary, and a new block number is assigned to the buffer, but the b_dev field is set to NO_DEV
to signal there are as yet no valid data in this block. We will see how this is used when we discuss the
rw_scattered function. Only_search can also be used to signal that the file system needs a block just to rewrite
all of it. In this case it is wasteful to first read the old version in. In either of these cases the parameters are

5

5

updated, but the actual disk read is omitted (lines 22507 to 22513). When the new block has been read in,
get_block returns to its caller with a pointer to it.

[Page 572]

Suppose that the file system needs a directory block temporarily, to look up a file name. It calls get_block to
acquire the directory block. When it has looked up its file name, it calls put_block (line 22520) to return the
block to the cache, thus making the buffer available in case it is needed later for a different block.

Put_block takes care of putting the newly returned block on the LRU list, and in some cases, rewriting it to
the disk. At line 22544 a decision is made to put it on the front or rear of the LRU list. Blocks on a RAM disk
are always put on the front of the queue. The block cache does not really do very much for a RAM disk, since
its data are already in memory and accessible without actual I/O. The ONE_SHOT flag is tested to see if the
block has been marked as one not likely to be needed again soon, and such blocks are put on the front, where
they will be reused quickly. However, this is used rarely, if at all. Almost all blocks except those from the
RAM disk are put on the rear, in case they are needed again soon.

After the block has been repositioned on the LRU list, another check is made to see if the block should be
rewritten to disk immediately. Like the previous test, the test for WRITE_IMMED is a vestige of an
abandoned experiment; currently no blocks are marked for immediate writing.

As a file grows, from time to time a new zone must be allocated to hold the new data. The procedure
alloc_zone (line 22580) takes care of allocating new zones. It does this by finding a free zone in the zone
bitmap. There is no need to search through the bitmap if this is to be the first zone in a file; the s_zsearch field
in the superblock, which always points to the first available zone on the device, is consulted. Otherwise an
attempt is made to find a zone close to the last existing zone of the current file, in order to keep the zones of a
file together. This is done by starting the search of the bitmap at this last zone (line 22603). The mapping
between the bit number in the bitmap and the zone number is handled on line 22615, with bit 1 corresponding
to the first data zone.

When a file is removed, its zones must be returned to the bitmap. Free_zone (line 22621) is responsible for
returning these zones. All it does is call free_bit, passing the zone map and the bit number as parameters.
Free_bit is also used to return free i-nodes, but then with the i-node map as the first parameter, of course.

Managing the cache requires reading and writing blocks. To provide a simple disk interface, the procedure
rw_block (line 22641) has been provided. It reads or writes one block. Analogously, rw_inode exists to read
and write i-nodes.

The next procedure in the file is invalidate (line 22680). It is called when a disk is unmounted, for example, to
remove from the cache all the blocks belonging to the file system just unmounted. If this were not done, then
when the device were reused (with a different floppy disk), the file system might find the old blocks instead of
the new ones.

We mentioned earlier that flushall (line 22694), called from get_block whenever a dirty block is removed
from the LRU list, is the function responsible for writing most data. It is also called by the sync system call
to flush to disk all dirty buffers belonging to a specific device. Sync is activated periodically by the update
daemon, and calls flushall once for each mounted device. Flushall treats the buffer cache as a linear array, so
all dirty buffers are found, even ones that are currently in use and are not in the LRU list. All buffers in the
cache are scanned, and those that belong to the device to be flushed and that need to be written are added to an
array of pointers, dirty. This array is declared as static to keep it off the stack. It is then passed to
rw_scattered.

6

6

[Page 573]

In MINIX 3 scheduling of disk writing has been removed from the disk device drivers and made the sole
responsibility of rw_scattered (line 22711). This function receives a device identifier, a pointer to an array of
pointers to buffers, the size of the array, and a flag indicating whether to read or write. The first thing it does
is sort the array it receives on the block numbers, so the actual read or write operation will be performed in an
efficient order. It then constructs vectors of contiguous blocks to send to the the device driver with a call to
dev_io. The driver does not have to do any additional scheduling. It is likely with a modern disk that the drive
electronics will further optimize the order of requests, but this is not visible to MINIX 3. Rw_scattered is
called with the WRITING flag only from the flushall function described above. In this case the origin of these
block numbers is easy to understand. They are buffers which contain data from blocks previously read but
now modified. The only call to rw_scattered for a read operation is from rahead in read.c. At this point, we
just need to know that before calling rw_scattered, get_block has been called repeatedly in prefetch mode,
thus reserving a group of buffers. These buffers contain block numbers, but no valid device parameter. This is
not a problem, since rw_scattered is called with a device parameter as one of its arguments.

There is an important difference in the way a device driver may respond to a read (as opposed to a write)
request, from rw_scattered. A request to write a number of blocks must be honored completely, but a request
to read a number of blocks may be handled differently by different drivers, depending upon what is most
efficient for the particular driver. Rahead often calls rw_scattered with a request for a list of blocks that may
not actually be needed, so the best response is to get as many blocks as can be gotten easily, but not to go
wildly seeking all over a device that may have a substantial seek time. For instance, the floppy driver may
stop at a track boundary, and many other drivers will read only consecutive blocks. When the read is
complete, rw_scattered marks the blocks read by filling in the device number field in their block buffers.

The last function in Fig. 5-40 is rm_lru (line 22809). This function is used to remove a block from the LRU
list. It is used only by get_block in this file, so it is declared PRIVATE instead of PUBLIC to hide it from
procedures outside the file.

Before we leave the block cache, let us say a few words about fine-tuning it. NR_BUF_HASH must be a
power of 2. If it is larger than NR_BUFS, the average length of a hash chain will be less than one. If there is
enough memory for a large number of buffers, there is space for a large number of hash chains, so the usual
choice is to make NR_BUF_HASH the next power of 2 greater than NR_BUFS. The listing in the text shows
settings of 128 blocks and 128 hash lists. The optimal size depends upon how the system is used, since that
determines how much must be buffered. The full source code used to compile the standard MINIX 3 binaries
that are installed from the CD-ROM that accommpanies this text has settings of 1280 buffers and 2048 hash
chains. Empirically it was found that increasing the number of buffers beyond this did not improve
performance when recompiling the MINIX 3 system, so apparently this is large enough to hold the binaries
for all compiler passes. For some other kind of work a smaller size might be adequate or a larger size might
improve performance.

[Page 574]

The buffers for the standard MINIX 3 system on the CD-ROM occupy more than 5 MB of RAM. An
additional binary, designated image_small is provided that was compiled with just 128 buffers in the block
cache, and the buffers for this system need only a little more than 0.5 MB. This one can be installed on a
system with only 8 MB of RAM. The standard version requires 16 MB of RAM. With some tweaking, it
could no doubt be shoehorned into a memory of 4 MB or smaller.

7

7

I-Node Management

The block cache is not the only file system table that needs support procedures. The i-node table does, too.
Many of the procedures are similar in function to the block management procedures. They are listed in Fig.
5-41.

Figure 5-41. Procedures used for i-node management.

Procedure

Function

get_inode

Fetch an i-node into memory

put_inode

Return an i-node that is no longer needed

alloc_inode

Allocate a new i-node (for a new file)

wipe_inode

Clear some fields in an i-node

free_inode

Release an i-node (when a file is removed)

update_times

Update time fields in an i-node

rw_inode

Transfer an i-node between memory and disk

old_icopy

Convert i-node contents to write to V1 disk i-node

new_icopy

Convert data read from V1 file system disk i-node

dup_inode

Indicate that someone else is using an i-node

8

8

The procedure get_inode (line 22933) is analogous to get_block. When any part of the file system needs an
i-node, it calls get_inode to acquire it. Get_inode first searches the inode table to see if the i-node is already
present. If so, it increments the usage counter and returns a pointer to it. This search is contained on lines
22945 to 22955. If the i-node is not present in memory, the i-node is loaded by calling rw_inode.

[Page 575]

When the procedure that needed the i-node is finished with it, the i-node is returned by calling the procedure
put_inode (line 22976), which decrements the usage count i_count. If the count is then zero, the file is no
longer in use, and the i-node can be removed from the table. If it is dirty, it is rewritten to disk.

If the i_link field is zero, no directory entry is pointing to the file, so all its zones can be freed. Note that the
usage count going to zero and the number of links going to zero are different events, with different causes and
different consequences. If the i-node is for a pipe, all the zones must be released, even though the number of
links may not be zero. This happens when a process reading from a pipe releases the pipe. There is no sense in
having a pipe for one process.

When a new file is created, an i-node must be allocated by alloc_inode (line 23003). MINIX 3 allows
mounting of devices in read-only mode, so the superblock is checked to make sure the device is writable.
Unlike zones, where an attempt is made to keep the zones of a file close together, any i-node will do. In order
to save the time of searching the i-node bitmap, advantage is taken of the field in the superblock where the
first unused i-node is recorded.

After the i-node has been acquired, get_inode is called to fetch the i-node into the table in memory. Then its
fields are initialized, partly in-line (lines 23038 to 23044) and partly using the procedure wipe_inode (line
23060). This particular division of labor has been chosen because wipe_inode is also needed elsewhere in the
file system to clear certain i-node fields (but not all of them).

When a file is removed, its i-node is freed by calling free_inode (line 23079). All that happens here is that the
corresponding bit in the i-node bitmap is set to 0 and the superblock's record of the first unused i-node is
updated.

The next function, update_times (line 23099), is called to get the time from the system clock and change the
time fields that require updating. Update_times is also called by the stat and fstat system calls, so it is
declared PUBLIC.

The procedure rw_inode (line 23125) is analogous to rw_block. Its job is to fetch an i-node from the disk. It
does its work by carrying out the following steps:

1. Calculate which block contains the required i-node.

2. Read in the block by calling get_block.

3. Extract the i-node and copy it to the inode table.

4. Return the block by calling put_block.

Rw_inode is a bit more complex than the basic outline given above, so some additional functions are needed.
First, because getting the current time requires a kernel call, any need for a change to the time fields in the
i-node is only marked by setting bits in the i-node's i_update field while the i-node is in memory. If this field
is nonzero when an i-node must be written, update_times is called.

9

9

[Page 576]

Second, the history of MINIX adds a complication: in the old V1 file system the i-nodes on the disk have a
different structure from V2. Two functions, old_icopy (line 23168) and new_icopy (line 23214) are provided
to take care of the conversions. The first converts between i-node information in memory and the format used
by the V1 filesystem. The second does the same conversion for V2 and V3 filesystem disks. Both of these
functions are called only from within this file, so they are declared PRIVATE. Each function handles
conversions in both directions (disk to memory or memory to disk).

Older versions of MINIX were ported to systems which used a different byte order from Intel processors and
MINIX 3 is also likely to be ported to such architectures in the future. Every implementation uses the native
byte order on its disk; the sp->native field in the superblock identifies which order is used. Both old_icopy
and new_icopy call functions conv2 and conv4 to swap byte orders, if necessary. Of course, much of what we
have just described is not used by MINIX 3, since it does not support the V1 filesystem to the extent that V1
disks can be used. And as of this writing nobody has ported MINIX 3 to a platform that uses a different byte
order. But these bits and pieces remain in place for the day when someone decides to make MINIX 3 more
versatile.

The procedure dup_inode (line 23257) just increments the usage count of the i-node. It is called when an open
file is opened again. On the second open, the inode need not be fetched from disk again.

Superblock Management

The file super.c contains procedures that manage the superblock and the bitmaps. Six procedures are defined
in this file, listed in Fig. 5-42.

Figure 5-42. Procedures used to manage the superblock and bitmaps.

Procedure

Function

alloc_bit

Allocate a bit from the zone or i-node map

free_bit

Free a bit in the zone or i-node map

get_super

Search the superblock table for a device

get_block_size

Find block size to use

mounted

Report whether given i-node is on a mounted (or root) file system

10

10

read_super

Read a superblock

When an i-node or zone is needed, alloc_inode or alloc_zone is called, as we have seen above. Both of these
call alloc_bit (line 23324) to actually search the relevant bitmap. The search involves three nested loops, as
follows:

[Page 577]
1. The outer one loops on all the blocks of a bitmap.

2. The middle one loops on all the words of a block.

3. The inner one loops on all the bits of a word.

The middle loop works by seeing if the current word is equal to the one's complement of zero, that is, a
complete word full of 1s. If so, it has no free i-nodes or zones, so the next word is tried. When a word with a
different value is found, it must have at least one 0 bit in it, so the inner loop is entered to find the free (i.e., 0)
bit. If all the blocks have been tried without success, there are no free i-nodes or zones, so the code NO_BIT
(0) is returned. Searches like this can consume a lot of processor time, but the use of the superblock fields that
point to the first unused i-node and zone, passed to alloc_bit in origin, helps to keep these searches short.

Freeing a bit is simpler than allocating one, because no search is required. Free_bit (line 23400) calculates
which bitmap block contains the bit to free and sets the proper bit to 0 by calling get_block, zeroing the bit in
memory and then calling put_block.

The next procedure, get_super (line 23445), is used to search the superblock table for a specific device. For
example, when a file system is to be mounted, it is necessary to check that it is not already mounted. This
check can be performed by asking get_super to find the file system's device. If it does not find the device, then
the file system is not mounted.

In MINIX 3 the file system server is capable of handling file systems with different block sizes, although
within a given disk partition only a single block size can be used. The get_block_size function (line 23467) is
meant to determine the block size of a file system. It searches the superblock table for the given device and
returns the block size of the device if it is mounted. Otherwise the minimum block size, MIN_BLOCK_SIZE
is returned.

The next function, mounted (line 23489), is called only when a block device is closed. Normally, all cached
data for a device are discarded when it is closed. But, if the device happens to be mounted, this is not
desirable. Mounted is called with a pointer to the i-node for a device. It just returns TRUE if the device is the
root device, or if it is a mounted device.

Finally, we have read_super (line 23509). This is partially analogous to rw_block and rw_inode, but it is
called only to read. The superblock is not read into the block cache at all, a request is made directly to the
device for 1024 bytes starting at an offset of the same amount from the beginning of the device. Writing a
superblock is not necessary in the normal operation of the system. Read_super checks the version of the file
system from which it has just read and performs conversions, if necessary, so the copy of the superblock in
memory will have the standard structure even when read from a disk with a different superblock structure or
byte order.

11

11

[Page 578]

Even though it is not currently used in MINIX 3, the method of determining whether a disk was written on a
system with a different byte order is clever and worth noting. The magic number of a superblock is written
with the native byte order of the system upon which the file system was created, and when a superblock is
read a test for reversed-byte-order superblocks is made.

File Descriptor Management

MINIX 3 contains special procedures to manage file descriptors and the filp table (see Fig. 5-39). They are
contained in the file filedes.c. When a file is created or opened, a free file descriptor and a free filp slot are
needed. The procedure get_fd (line 23716) is used to find them. They are not marked as in use, however,
because many checks must first be made before it is known for sure that the creat or open will succeed.

Get_filp (line 23761) is used to see if a file descriptor is in range, and if so, returns its filp pointer.

The last procedure in this file is find_filp (line 23774). It is needed to find out when a process is writing on a
broken pipe (i.e., a pipe not open for reading by any other process). It locates potential readers by a brute force
search of the filp table. If it cannot find one, the pipe is broken and the write fails.

File Locking

The POSIX record locking functions are shown in Fig. 5-43. A part of a file can be locked for reading and
writing, or for writing only, by an fcntl call specifying a F_SETLK or F_SETLKW request. Whether a lock
exists over a part of a file can be determined using the F_GETLK request.

Figure 5-43. The POSIX advisory record locking operations. These operations are requested by using an FCNTL
system call.

Operation

Meaning

F_SETLK

Lock region for both reading and writing

F_SETLKW

Lock region for writing

F_GETLK

Report if region is locked

The file lock.c contains only two functions. Lock_op (line 23820) is called by the fcntl system call with a
code for one of the operations shown in Fig. 5-43. It does some error checking to be sure the region specified
is valid. When a lock is being set, it must not conflict with an existing lock, and when a lock is being cleared,
an existing lock must not be split in two. When any lock is cleared, the other function in this file, lock_revive

12

12

(line 23964), is called. It wakes up all the processes that are blocked waiting for locks.

[Page 579]

This strategy is a compromise; it would take extra code to figure out exactly which processes were waiting for
a particular lock to be released. Those processes that are still waiting for a locked file will block again when
they start. This strategy is based on an assumption that locking will be used infrequently. If a major multiuser
data base were to be built upon a MINIX 3 system, it might be desirable to reimplement this.

Lock_revive is also called when a locked file is closed, as might happen, for instance, if a process is killed
before it finishes using a locked file.

5.7.3. The Main Program

The main loop of the file system is contained in file main.c, (line 24040). After a call to fs_init for
initialization, the main loop is entered. Structurally, this is very similar to the main loop of the process
manager and the I/O device drivers. The call to get_work waits for the next request message to arrive (unless a
process previously suspended on a pipe or terminal can now be handled). It also sets a global variable, who, to
the caller's process table slot number and another global variable, call_nr, to the number of the system call to
be carried out.

Once back in the main loop the variable fp is pointed to the caller's process table slot, and the super_user flag
tells whether the caller is the superuser or not. Notification messages are high priority, and a SYS_SIG
message is checked for first, to see if the system is shutting down. The second highest priority is a
SYN_ALARM, which means that a timer set by the file system has expired. A NOTIFY_MESSAGE means a
device driver is ready for attention, and is dispatched to dev_status. Then comes the main attractionthe call to
the procedure that carries out the system call. The procedure to call is selected by using call_nr as an index
into the array of procedure pointers, call_vecs.

When control comes back to the main loop, if dont_reply has been set, the reply is inhibited (e.g., a process
has blocked trying to read from an empty pipe). Otherwise a reply is sent by calling reply (line 24087). The
final statement in the main loop has been designed to detect that a file is being read sequentially and to load
the next block into the cache before it is actually requested, to improve performance.

Two other functions in this file are intimately involved with the file system's main loop. Get_work (line
24099) checks to see if any previously blocked procedures have now been revived. If so, these have priority
over new messages. When there is no internal work to do the file system calls the kernel to get a message, on
line 24124. Skipping ahead a few lines, we find reply (line 24159) which is called after a system call has been
completed, successfully or otherwise. It sends a reply back to the caller. The process may have been killed by
a signal, so the status code returned by the kernel is ignored. In this case there is nothing to be done anyway.

[Page 580]

Initialization of the File System

The functions that remain to be discussed in main.c are used at system startup. The major player is fs_init,
which is called by the file system before it enters its main loop during startup of the entire system. In the
context of discussing process scheduling in Chapter 2 we showed in Fig. 2-43 the initial queueing of
processes as the MINIX 3 system starts up. The file system is scheduled on a queue with lower priority than
the process manager, so we can be sure that at startup time the process manager will get a chance to run before

13

13

the file system. In Chapter 4 we examined the initialization of the process manager. As the PM builds its part
of the process table, adding entries for itself and all other processes in the boot image, it sends a message to
the file system for each one so the FS can initialize the corresponding entry in the FS part of the file system.
Now we can see the other half of this interaction.

When the file system starts it immediately enters a loop of its own in fs_init, on lines 24189 to 24202. The
first statement in the loop is a call to receive, to get a message sent at line 18235 in the PM's pm_init
initialization function. Each message contains a process number and a PID. The first is used as an index into
the file system's process table and the second is saved in the fp_pid field of each selected slot. Following this
the real and effective uid and gid for the superuser and a ~0 (all bits set) umask is set up for each selected slot.
When a message with the symbolic value NONE in the process number field is received the loop terminates
and a message is sent back to the process manager to tell it all is OK.

Next, the file system's own initialization is completed. First important constants are tested for valid values.
Then several other functions are invoked to initialize the block cache and the device table, to load the RAM
disk if necessary, and to load the root device superblock. At this point the root device can be accessed, and
another loop is made through the FS part of the process table, so each process loaded from the boot image will
recognize the root directory and use the root directory as its working directory (lines 24228 to 24235).

The first function called by fs_init after it finshes its interaction with the process manager is buf_pool, which
begins on line 24132. It builds the linked lists used by the block cache. Figure 5-37 shows the normal state of
the block cache, in which all blocks are linked on both the LRU chain and a hash chain. It may be helpful to
see how the situation of Fig. 5-37 comes about. Immediately after the cache is initialized by buf_pool, all the
buffers will be on the LRU chain, and all will be linked into the 0th hash chain, as in Fig. 5-44(a). When a
buffer is requested, and while it is in use, we have the situation of Fig. 5-44(b), in which we see that a block
has been removed from the LRU chain and is now on a different hash chain.

Figure 5-44. Block cache initialization. (a) Before any buffers have been used. (b) After one block has been
requested. (c) After the block has been released. (This item is displayed on page 581 in the print version)

14

14

Normally, blocks are released and returned to the LRU chain immediately. Figure 5-44(c) shows the situation
after the block has been returned to the LRU chain. Although it is no longer in use, it can be accessed again to
provide the same data, if need be, and so it is retained on the hash chain. After the system has been in
operation for awhile, almost all of the blocks can be expected to have been used and to be distributed among
the different hash chains at random. Then the LRU chain will look like Fig. 5-37.

[Page 581]

The next thing called after buf_pool is build_dmap, which we will describe later, along with other functions
dealing with device files. After that, load_ram is called, which uses the next function we will examine, igetenv
(line 2641). This function retrieves a numeric device identifier from the kernel, using the name of a boot
parameter as a key. If you have used the sysenv command to to look at the boot parameters on a working
MINIX 3 system, you have seen that sysenv reports devices numerically, displaying strings like

15

15

[Page 582]

rootdev=912

The file system uses numbers like this to identify devices. The number is simply 256 x major + minor,
where major and minor are the major and minor device numbers. In this example, the major, minor pair is
3, 144, which corresponds to /dev/c0d1p0s0, a typical place to install MINIX 3 on a system with two disk
drives.

Load_ram (line 24260) allocates space for a RAM disk, and loads the root file system on it, if required by the
boot parameters. It uses igetenv to get the rootdev, ramimagedev, and ramsize parameters set in the boot
environment (lines 24278 to 24280). If the boot parameters specify

rootdev = ram

the root file system is copied from the device named by ramimagedev to the RAM disk block by block,
starting with the boot block, with no interpretation of the various file system data structures. If the ramsize
boot parameter is smaller than the size of ramimagedev, the RAM disk is made large enough to hold it. If
ramsize specifies a size larger than the boot device file system the requested size is allocated and the RAM
disk file system is adjusted to use the full size specified (lines 24404 to 24420). This is the only time that the
file system ever writes a superblock, but, just as with reading a superblock, the block cache is not used and the
data is written directly to the device using dev_io.

Two items merit note at this point. The first is the code on lines 24291 to 24307 which deals with the case of
booting from a CD-ROM. The cdprobe function, not discussed in this text, is used. Interested readers are
referred to the code in fs/cdprobe.c, which can be found on the CD-ROM or the Web site. Second, regardless
of the disk block size used by MINIX 3 for ordinary disk access, the boot block is always a 1 KB block and
the superblock is loaded from the second 1 KB of the disk device. Anything else would be complicated, since
the block size cannot be known until the superblock has been loaded.

Load_ram allocates space for an empty RAM disk if a nonzero ramsize is specified without a request to use
the RAM disk as the root file system. In this case, since no file system structures are copied, the RAM device
cannot be used as a file system until it has been initialized by the mkfs command. Alternatively, such a RAM
disk can be used for a secondary cache if support for this is compiled into the file system.

The last function in main.c is load_super (line 24426). It initializes the superblock table and reads in the
superblock of the root device.

[Page 583]

5.7.4. Operations on Individual Files

In this section we will look at the system calls that operate on individual files one at a time (as opposed to,
say, operations on directories). We will start with how files are created, opened, and closed. After that we will
examine in some detail the mechanism by which files are read and written. Then that we will look at pipes and
how operations on them differ from those on files.

16

16

Creating, Opening, and Closing Files

The file open.c contains the code for six system calls: creat, open, mknod, mkdir, close, and lseek.
We will examine creat and open together, and then look at each of the others.

In older versions of UNIX, the creat and open calls had distinct purposes. Trying to open a file that did not
exist was an error, and a new file had to be created with creat, which could also be used to truncate an
existing file to zero length. The need for two distinct calls is no longer present in a POSIX system, however.
Under POSIX, the open call now allows creating a new file or truncating an old file, so the creat call now
represents a subset of the possible uses of the open call and is really only necessary for compatibility with
older programs. The procedures that handle creat and open are do_creat (line 24537) and do_open (line
24550). (As in the process manager, the convention is used in the file system that system call XXX is
performed by procedure do_XXX.) Opening or creating a file involves three steps:

1. Finding the i-node (allocating and initializing if the file is new).

2. Finding or creating the directory entry.

3. Setting up and returning a file descriptor for the file.

Both the creat and the open calls do two things: they fetch the name of a file and then they call
common_open which takes care of tasks common to both calls.

Common_open (line 24573) starts by making sure that free file descriptor and filp table slots are available. If
the calling function specified creation of a new file (by calling with the O_CREAT bit set), new_node is
called on line 24594. New_node returns a pointer to an existing i-node if the directory entry already exists;
otherwise it will create both a new directory entry and i-node. If the i-node cannot be created, new_node sets
the global variable err_code. An error code does not always mean an error. If new_node finds an existing file,
the error code returned will indicate that the file exists, but in this case that error is acceptable (line 24597). If
the O_CREAT bit is not set, a search is made for the i-node using an alternative method, the eat_path function
in path.c, which we will discuss further on. At this point, the important thing to understand is that if an i-node
is not found or successfully created, common_open will terminate with an error before line 24606 is reached.
Otherwise, execution continues here with assignment of a file descriptor and claiming of a slot in the filp
table, Following this, if a new file has just been created, lines 24612 to 24680 are skipped.

[Page 584]

If the file is not new, then the file system must test to see what kind of a file it is, what its mode is, and so on,
to determine whether it can be opened. The call to forbidden on line 24614 first makes a general check of the
rwx bits. If the file is a regular file and common_open was called with the O_TRUNC bit set, it is truncated to
length zero and forbidden is called again (line 24620), this time to be sure the file may be written. If the
permissions allow, wipe_inode and rw_inode are called to re-initialize the i-node and write it to the disk.
Other file types (directories, special files, and named pipes) are subjected to appropriate tests. In the case of a
device, a call is made on line 24640 (using the dmap structure) to the appropriate routine to open the device.
In the case of a named pipe, a call is made to pipe_open (line 24646), and various tests relevant to pipes are
made.

The code of common_open, as well as many other file system procedures, contains a large amount of code
that checks for various errors and illegal combinations. While not glamorous, this code is essential to having
an error-free, robust file system. If something is wrong, the file descriptor and filp slot previously allocated
are deallocated and the i-node is released (lines 24683 to 24689). In this case the value returned by
common_open will be a negative number, indicating an error. If there are no problems the file descriptor, a

17

17

positive value, is returned.

This is a good place to discuss in more detail the operation of new_node (line 24697), which does the
allocation of the i-node and the entering of the path name into the file system for creat and open calls. It is
also used for the mknod and mkdir calls, yet to be discussed. The statement on line 24711 parses the path
name (i.e., looks it up component by component) as far as the final directory; the call to advance three lines
later tries to see if the final component can be opened.

For example, on the call

fd = creat("/usr/ast/foobar", 0755);

last_dir tries to load the i-node for /usr/ast/ into the tables and return a pointer to it. If the file does not exist,
we will need this i-node shortly in order to add foobar to the directory. All the other system calls that add or
delete files also use last_dir to first open the final directory in the path.

If new_node discovers that the file does not exist, it calls alloc_inode on line 24717 to allocate and load a new
i-node, returning a pointer to it. If no free inodes are left, new_node fails and returns NIL_INODE.

If an i-node can be allocated, the operation continues at line 24727, filling in some of the fields, writing it
back to the disk, and entering the file name in the final directory (on line 24732). Again we see that the file
system must constantly check for errors, and upon encountering one, carefully release all the resources, such
as i-nodes and blocks that it is holding. If we were prepared to just let MINIX 3 panic when we ran out of,
say, i-nodes, rather than undoing all the effects of the current call and returning an error code to the caller, the
file system would be appreciably simpler.

[Page 585]

As mentioned above, pipes require special treatment. If there is not at least one reader/writer pair for a pipe,
pipe_open (line 24758) suspends the caller. Otherwise, it calls release, which looks through the process table
for processes that are blocked on the pipe. If it is successful, the processes are revived.

The mknod call is handled by do_mknod (line 24785). This procedure is similar to do_creat, except that it
just creates the i-node and makes a directory entry for it. In fact, most of the work is done by the call to
new_node on line 24797. If the i-node already exists, an error code will be returned. This is the same error
code that was an acceptable result from new_node when it was called by common_open; in this case,
however, the error code is passed back to the caller, which presumably will act accordingly. The case-by-case
analysis we saw in common_open is not needed here.

The mkdir call is handled by the function do_mkdir (line 24805). As with the other system calls we have
discussed here, new_node plays an important part. Directories, unlike files, always have links and are never
completely empty because every directory must contain two entries from the time of its creation: the "." and
".." entries that refer to the directory itself and to its parent directory. The number of links a file may have is
limited, it is LINK_MAX (defined in include/limits.h as SHRT_MAX, 32767 for MINIX 3 on a standard
32-bit Intel system). Since the reference to a parent directory in a child is a link to the parent, the first thing
do_mkdir does is to see if it is possible to make another link in the parent directory (lines 24819 and 24820).
Once this test has been passed, new_node is called. If new_node succeeds, then the directory entries for "."
and ".." are made (lines 24841 and 24842). All of this is straightforward, but there could be failures (for
instance, if the disk is full), so to avoid making a mess of things provision is made for undoing the initial
stages of the process if it can not be completed.

18

18

Closing a file is easier than opening one. The work is done by do_close (line 24865). Pipes and special files
need some attention, but for regular files, almost all that needs to be done is to decrement the filp counter and
check to see if it is zero, in which case the i-node is returned with put_inode. The final step is to remove any
locks and to revive any process that may have been suspended waiting for a lock on the file to be released.

Note that returning an i-node means that its counter in the inode table is decremented, so it can be removed
from the table eventually. This operation has nothing to do with freeing the i-node (i.e., setting a bit in the
bitmap saying that it is available). The i-node is only freed when the file has been removed from all
directories.

The final procedure in open.c is do_lseek (line 24939). When a seek is done, this procedure is called to set the
file position to a new value. On line 24968 reading ahead is inhibited; an explicit attempt to seek to a position
in a file is incompatible with sequential access.

[Page 586]

Reading a File

Once a file has been opened, it can be read or written. Many functions are used during both reading and
writing. These are found in the file read.c. We will discuss these first and then proceed to the following file,
write.c, to look at code specifically used for writing. Reading and writing differ in a number of ways, but they
have enough similarities that all that is required of do_read (line 25030) is to call the common procedure
read_write with a flag set to READING. We will see in the next section that do_write is equally simple.

Read_write begins on line 25038. Some special code on lines 25063 to 25066 is used by the process manager
to have the file system load entire segments in user space for it. Normal calls are processed starting on line
25068. Some validity checks follow (e.g., reading from a file opened only for writing) and some variables are
initialized. Reads from character special files do not go through the block cache, so they are filtered out on
line 25122.

The tests on lines 25132 to 25145 apply only to writes and have to do with files that may get bigger than the
device can hold, or writes that will create a hole in the file by writing beyond the end-of-file. As we discussed
in the MINIX 3 overview, the presence of multiple blocks per zone causes problems that must be dealt with
explicitly. Pipes are also special and are checked for.

The heart of the read mechanism, at least for ordinary files, is the loop starting on line 25157. This loop
breaks the request up into chunks, each of which fits in a single disk block. A chunk begins at the current
position and extends until one of the following conditions is met:

1. All the bytes have been read.

2. A block boundary is
encountered.

3. The end-of-file is hit.

These rules mean that a chunk never requires two disk blocks to satisfy it. Figure 5-45 shows three examples
of how the chunk size is determined, for chunk sizes of 6, 2, and 1 bytes, respectively. The actual calculation
is done on lines 25159 to 25169.

19

19

Figure 5-45. Three examples of how the first chunk size is determined for a 10-byte file. The block size is 8 bytes,
and the number of bytes requested is 6. The chunk is shown shaded. (This item is displayed on page 587 in the

print version)

The actual reading of the chunk is done by rw_chunk. When control returns, various counters and pointers are
incremented, and the next iteration begins. When the loop terminates, the file position and other variables may
be updated (e.g., pipe pointers).

Finally, if read ahead is called for, the i-node to read from and the position to read from are stored in global
variables, so that after the reply message is sent to the user, the file system can start getting the next block. In
many cases the file system will block, waiting for the next disk block, during which time the user process will
be able to work on the data it just received. This arrangement overlaps processing and I/O and can improve
performance substantially.

[Page 587]

The procedure rw_chunk (line 25251) is concerned with taking an i-node and a file position, converting them
into a physical disk block number, and requesting the transfer of that block (or a portion of it) to the user
space. The mapping of the relative file position to the physical disk address is done by read_map, which
understands about i-nodes and indirect blocks. For an ordinary file, the variables b and dev on line 25280 and
line 25281 contain the physical block number and device number, respectively. The call to get_block on line
25303 is where the cache handler is asked to find the block, reading it in if need be. Calling rahead on line
25295 then ensures that the block is read into the cache.

Once we have a pointer to the block, the sys_vircopy kernel call on line 25317 takes care of transferring the
required portion of it to the user space. The block is then released by put_block, so that it can be evicted from
the cache later. (After being acquired by get_block, it will not be in the LRU queue and it will not be returned
there while the counter in the block's header shows that it is in use, so it will be exempt from eviction;
put_block decrements the counter and returns the block to the LRU queue when the counter reaches zero.)
The code on line 25327 indicates whether a write operation filled the block. However, the value passed to
put_block in n does not affect how the block is placed on the queue; all blocks are now placed on the rear of
the LRU chain.

Read_map (line 25337) converts a logical file position to the physical block number by inspecting the i-node.
For blocks close enough to the beginning of the file that they fall within one of the first seven zones (the ones
right in the i-node), a simple calculation is sufficient to determine which zone is needed, and then which

20

20

block. For blocks further into the file, one or more indirect blocks may have to be read.

[Page 588]

Rd_indir (line 25400) is called to read an indirect block. The comments for this function are a bit out of date;
code to support the 68000 processor has been removed and the support for the MINIX V1 file system is not
used and could also be dropped. However, it is worth noting that if someone wanted to add support for other
file system versions or other platforms where data might have a different format on the disk, problems of
different data types and byte orders could be relegated to this file. If messy conversions were necessary, doing
them here would let the rest of the file system see data in only one form.

Read_ahead (line 25432) converts the logical position to a physical block number, calls get_block to make
sure the block is in the cache (or bring it in), and then returns the block immediately. It cannot do anything
with the block, after all. It just wants to improve the chance that the block is around if it is needed soon,

Note that read_ahead is called only from the main loop in main. It is not called as part of the processing of the
read system call. It is important to realize that the call to read_ahead is performed after the reply is sent, so
that the user will be able to continue running even if the file system has to wait for a disk block while reading
ahead.

Read_ahead by itself is designed to ask for just one more block. It calls the last function in read.c, rahead, to
actually get the job done. Rahead (line 25451) works according to the theory that if a little more is good, a lot
more is better. Since disks and other storage devices often take a relatively long time to locate the first block
requested but then can relatively quickly read in a number of adjacent blocks, it may be possible to get many
more blocks read with little additional effort. A prefetch request is made to get_block, which prepares the
block cache to receive a number of blocks at once. Then rw_scattered is called with a list of blocks. We have
previously discussed this; recall that when the device drivers are actually called by rw_scattered, each one is
free to answer only as much of the request as it can efficiently handle. This all sounds fairly complicated, but
the complications make possible a significant speedup of applications which read large amounts of data from
the disk.

Figure 5-46 shows the relations between some of the major procedures involved in reading a filein particular,
who calls whom.

Figure 5-46. Some of the procedures involved in reading a file. (This item is displayed on page 589 in the print
version)

21

21

Writing a File

The code for writing to files is in write. c. Writing a file is similar to reading one, and do_write (line 25625)
just calls read_write with the WRITING flag.A major difference between reading and writing is that writing
requires allocating new disk blocks. Write_map (line 25635) is analogous to read_map, only instead of
looking up physical block numbers in the i-node and its indirect blocks, it enters new ones there (to be precise,
it enters zone numbers, not block numbers).

[Page 589]

The code of write_map is long and detailed because it must deal with several cases. If the zone to be inserted
is close to the beginning of the file, it is just inserted into the i-node on (line 25658).

The worst case is when a file exceeds the size that can be handled by a single-indirect block, so a
double-indirect block is now required. Next, a single-indirect block must be allocated and its address put into
the double-indirect block. As with reading, a separate procedure, wr_indir, is called. If the double-indirect
block is acquired correctly, but the disk is full so the single-indirect block cannot be allocated, then the double
one must be returned to avoid corrupting the bitmap.

22

22

Again, if we could just toss in the sponge and panic at this point, the code would be much simpler. However,
from the user's point of view it is much nicer that running out of disk space just returns an error from write,
rather than crashing the computer with a corrupted file system.

[Page 590]

Wr_indir (line 25726) calls the conversion routines, conv4 to do any necessary data conversion and puts a
new zone number into an indirect block. (Again, there is leftover code here to handle the old V1 filesystem,
but only the V2 code is currently used.) Keep in mind that the name of this function, like the names of many
other functions that involve reading and writing, is not literally true. The actual writing to the disk is handled
by the functions that maintain the block cache.

The next procedure in write.c is clear_zone (line 25747), which takes care of the problem of erasing blocks
that are suddenly in the middle of a file. This happens when a seek is done beyond the end of a file, followed
by a write of some data. Fortunately, this situation does not occur very often.

New_block (line 25787) is called by rw_chunk whenever a new block is needed. Figure 5-47 shows six
successive stages of the growth of a sequential file. The block size is 1-KB and the zone size is 2-KB in this
example.

Figure 5-47. (a) (f) The successive allocation of 1-KB blocks with a 2-KB zone.

The first time new_block is called, it allocates zone 12 (blocks 24 and 25). The next time it uses block 25,
which has already been allocated but is not yet in use. On the third call, zone 20 (blocks 40 and 41) is
allocated, and so on. Zero_block (line 25839) clears a block, erasing its previous contents. This description is
considerably longer than the actual code.

Pipes

Pipes are similar to ordinary files in many respects. In this section we will focus on the differences. The code
we will discuss is all in pipe.c.

First of all, pipes are created differently, by the pipe call, rather than the creat call. The pipe call is
handled by do_pipe (line 25933). All do_pipe really does is allocate an i-node for the pipe and return two file
descriptors for it. Pipes are owned by the system, not by the user, and are located on the designated pipe
device (configured in include/minix/config.h), which could very well be a RAM disk, since pipe data do not

23

23

have to be preserved permanently.

[Page 591]

Reading and writing a pipe is slightly different from reading and writing a file, because a pipe has a finite
capacity. An attempt to write to a pipe that is already full will cause the writer to be suspended. Similarly,
reading from an empty pipe will suspend the reader. In effect, a pipe has two pointers, the current position
(used by readers) and the size (used by writers), to determine where data come from or go to.

The various checks to see if an operation on a pipe is possible are carried out by pipe_check (line 25986). In
addition to the above tests, which may lead to the caller being suspended, pipe_check calls release to see if a
process previously suspended due to no data or too much data can now be revived. These revivals are done on
line 26017 and line 26052, for sleeping writers and readers, respectively. Writing on a broken pipe (no
readers) is also detected here.

The act of suspending a process is done by suspend (line 26073). All it does is save the parameters of the call
in the process table and set the flag dont_reply to TRUE, to inhibit the file system's reply message.

The procedure release (line 26099) is called to check if a process that was suspended on a pipe can now be
allowed to continue. If it finds one, it calls revive to set a flag so that the main loop will notice it later. This
function is not a system call, but is listed in Fig. 5-33(c) because it uses the message-passing mechanism.

The last procedure in pipe.c is do_unpause (line 26189). When the process manager is trying to signal a
process, it must find out if that process is hanging on a pipe or special file (in which case it must be awakened
with an EINTR error). Since the process manager knows nothing about pipes or special files, it sends a
message to the file system to ask. That message is processed by do_unpause, which revives the process, if it is
blocked. Like revive, do_unpause has some similarity to a system call, although it is not one.

The last two functions in pipe.c, select_request_pipe (line 26247) and select_match_pipe (line 26278), support
the select call, which is not discussed here.

5.7.5. Directories and Paths

We have now finished looking at how files are read and written. Our next task is to see how path names and
directories are handled.

Converting a Path to an I-Node

Many system calls (e.g., open, unlink, and mount) have path names (i.e., file names) as a parameter. Most
of these calls must fetch the i-node for the named file before they can start working on the call itself. How a
path name is converted to an i-node is a subject we will now look at in detail. We already saw the general
outline in Fig. 5-16.

[Page 592]

The parsing of path names is done in the file path.c. The first procedure, eat_path (line 26327), accepts a
pointer to a path name, parses it, arranges for its i-node to be loaded into memory, and returns a pointer to the
i-node. It does its work by calling last_dir to get the i-node to the final directory and then calling advance to
get the final component of the path. If the search fails, for example, because one of the directories along the
path does not exist, or exists but is protected against being searched, NIL_INODE is returned instead of a

24

24

pointer to the i-node.

Path names may be absolute or relative and may have arbitrarily many components, separated by slashes.
These issues are dealt with by last_dir, which begins by examining the first character of the path name to see
if it is an absolute path or a relative one (line 26371). For absolute paths, rip is set to point to the root i-node;
for relative ones, it is set to point to the i-node for the current working directory.

At this point, last_dir has the path name and a pointer to the i-node of the directory to look up the first
component in. It enters a loop on line 26382 now, parsing the path name, component by component. When it
gets to the end, it returns a pointer to the final directory.

Get_name (line 26413) is a utility procedure that extracts components from strings. More interesting is
advance (line 26454), which takes as parameters a directory pointer and a string, and looks up the string in the
directory. If it finds the string, advance returns a pointer to its i-node. The details of transferring across
mounted file systems are handled here.

Although advance controls the string lookup, the actual comparison of the string against the directory entries
is done in search_dir (line 26535), which is the only place in the file system where directory files are actually
examined. It contains two nested loops, one to loop over the blocks in a directory, and one to loop over the
entries in a block. Search_dir is also used to enter and delete names from directories. Figure 5-48 shows the
relationships between some of the major procedures used in looking up path names.

Figure 5-48. Some of the procedures used in looking up path names. (This item is displayed on page 593 in the
print version)

[View full size image]

Mounting File Systems

Two system calls that affect the file system as a whole are mount and umount. They allow independent file
systems on different minor devices to be "glued" together to form a single, seamless naming tree. Mounting,
as we saw in Fig. 5-38, is effectively achieved by reading in the root i-node and superblock of the file system
to be mounted and setting two pointers in its superblock. One of them points to the i-node mounted on, and
the other points to the root i-node of the mounted file system. These pointers hook the file systems together.

[Page 593]

25

25

The setting of these pointers is done in the file mount.c by do_mount on lines 26819 and 26820. The two
pages of code that precede setting the pointers are almost entirely concerned with checking for all the errors
that can occur while mounting a file system, among them:

1. The special file given is not a block device.

2. The special file is a block device but is already mounted.

3. The file system to be mounted has a rotten magic number.

4. The file system to be mounted is invalid (e.g., no i-nodes).

5. The file to be mounted on does not exist or is a special file.

6. There is no room for the mounted file system's bitmaps.

7. There is no room for the mounted file system's superblock.

8. There is no room for the mounted file system's root i-node.

Perhaps it seems inappropriate to keep harping on this point, but the reality of any practical operating system
is that a substantial fraction of the code is devoted to doing minor chores that are not intellectually very
exciting but are crucial to making a system usable. If a user attempts to mount the wrong floppy disk by
accident, say, once a month, and this leads to a crash and a corrupted file system, the user will perceive the
system as being unreliable and blame the designer, not himself.

The famous inventor Thomas Edison once made a remark that is relevant here. He said that "genius" is 1
percent inspiration and 99 percent perspiration. The difference between a good system and a mediocre one is
not the brilliance of the former's scheduling algorithm, but its attention to getting all the details right.

[Page 594]

Unmounting a file system is easier than mounting onethere are fewer things that can go wrong. Do_umount
(line 26828) is called to start the job, which is divided into two parts. Do_umount itself checks that the call
was made by the superuser, converts the name into a device number, and then calls unmount (line 26846),
which completes the operation. The only real issue is making sure that no process has any open files or
working directories on the file system to be removed. This check is straightforward: just scan the whole i-node
table to see if any i-nodes in memory belong to the file system to be removed (other than the root i-node). If
so, the umount call fails.

The last procedure in mount.c is name_to_dev (line 26893), which takes a special file pathname, gets its
i-node, and extracts its major and minor device numbers. These are stored in the i-node itself, in the place
where the first zone would normally go. This slot is available because special files do not have zones.

Linking and Unlinking Files

The next file to consider is link.c, which deals with linking and unlinking files. The procedure do_link (line
27034) is very much like do_mount in that nearly all of the code is concerned with error checking. Some of
the possible errors that can occur in the call

26

26

link(file_name, link_name);

are listed below:

1. File_name does not exist or cannot be accessed.

2. File_name already has the maximum number of links.

3. File_name is a directory (only superuser can link to it).

4. Link_name already exists.

5. File_name and link_name are on different devices.

If no errors are present, a new directory entry is made with the string link_name and the i-node number of
file_name. In the code, name1 corresponds to file_name and name2 corresponds to link_name. The actual
entry is made by search_dir, called from do_ link on line 27086.

Files and directories are removed by unlinking them. The work of both the unlink and rmdir system calls
is done by do_unlink (line 27104). Again, a variety of checks must be made; testing that a file exists and that a
directory is not a mount point are done by the common code in do_unlink, and then either remove_dir or
unlink_file is called, depending upon the system call being supported. We will discuss these shortly.

The other system call supported in link.c is rename. UNIX users are familiar with the mv shell command
which ultimately uses this call; its name reflects another aspect of the call. Not only can it change the name of
a file within a directory, it can also effectively move the file from one directory to another, and it can do this
atomically, which prevents certain race conditions. The work is done by do_rename (line 27162). Many
conditions must be tested before this command can be completed. Among these are:

[Page 595]

1. The original file must exist (line 27177).

2. The old pathname must not be a directory above the new pathname in the directory tree (lines 27195 to
27212).

3. Neither . nor .. is acceptable as an old or new name (lines 27217 and 27218).

4. Both parent directories must be on the same device (line 27221).

5. Both parent directories must be writable, searchable, and on a writable device (lines 27224 and 27225).

6. Neither the old nor the new name may be a directory with a file system mounted upon it.

Some other conditions must be checked if the new name already exists. Most importantly it must be possible
to remove an existing file with the new name.

27

27

In the code for do_rename there are a few examples of design decisions that were taken to minimize the
possibility of certain problems. Renaming a file to a name that already exists could fail on a full disk, even
though in the end no additional space is used, if the old file were not removed first, and this is what is done at
lines 27260 to 27266. The same logic is used at line 27280, removing the old file name before creating a new
name in the same directory, to avoid the possibility that the directory might need to acquire an additional
block. However, if the new file and the old file are to be in different directories, that concern is not relevant,
and at line 27285 a new file name is created (in a different directory) before the old one is removed, because
from a system integrity standpoint a crash that left two filenames pointing to an i-node would be much less
serious than a crash that left an i-node not pointed to by any directory entry. The probability of running out of
space during a rename operation is low, and that of a system crash even lower, but in these cases it costs
nothing more to be prepared for the worst case.

The remaining functions in link.c support the ones that we have already discussed. In addition, the first of
them, truncate (line 27316), is called from several other places in the file system. It steps through an i-node
one zone at a time, freeing all the zones it finds, as well as the indirect blocks. Remove_dir (line 27375)
carries out a number of additional tests to be sure the directory can be removed, and then it in turn calls
unlink_file (line 27415). If no errors are found, the directory entry is cleared and the link count in the i-node is
reduced by one.

[Page 596]

5.7.6. Other System Calls

The last group of system calls is a mixed bag of things involving status, directories, protection, time, and other
services.

Changing Directories and File Status

The file stadir.c contains the code for six system calls: chdir, fchdir, chroot, stat, fstat, and
fstatfs. In studying last_dir we saw how path searches start out by looking at the first character of the
path, to see if it is a slash or not. Depending on the result, a pointer is then set to the working directory or the
root directory.

Changing from one working directory (or root directory) to another is just a matter of changing these two
pointers within the caller's process table. These changes are made by do_chdir (line 27542) and do_chroot
(line 27580). Both of them do the necessary checking and then call change (line 27594), which does some
more tests, then calls change_into (line 27611) to open the new directory and replace the old one.

Do_fchdir (line 27529) supports fchdir, which is an alternate way of effecting the same operation as
chdir, with the calling argument a file descriptor rather than a path. It tests for a valid descriptor, and if the
descriptor is valid it calls change_into to do the job.

In do_chdir the code on lines 27552 to 27570 is not executed on chdir calls made by user processes. It is
specifically for calls made by the process manager, to change to a user's directory for the purpose of handling
exec calls. When a user tries to execute a file, say, a.out in his working directory, it is easier for the process
manager to change to that directory than to try to figure out where it is.

The two system calls stat and fstat are basically the same, except for how the file is specified. The
former gives a path name, whereas the latter provides the file descriptor of an open file, similar to what we
saw for chdir and fchdir. The top-level procedures, do_stat (line 27638) and do_fstat (line 27658), both
call stat_inode to do the work. Before calling stat_inode, do_stat opens the file to get its i-node. In this way,
both do_stat and do_fstat pass an i-node pointer to stat_inode.

28

28

All stat_inode (line 27673) does is to extract information from the i-node and copy it into a buffer. The buffer
must be explicitly copied to user space by a sys_datacopy kernel call on lines 27713 and 27714 because it
is too large to fit in a message.

Finally, we come to do_fstatfs (line 27721). Fstatfs is not a POSIX call, although POSIX defines a similar
fstatvfs call which returns a much bigger data structure. The MINIX 3 fstatfs returns only one piece
of information, the block size of a file system. The prototype for the call is

_PROTOTYPE(int fstatfs, (int fd, struct statfs *st));

[Page 597]

The statfs structure it uses is simple, and can be displayed on a single line:

struct statfs { off_t f_bsize; /* file system block size */ };

These definitions are in include/sys/statfs.h, which is not listed in Appendix B.

Protection

The MINIX 3 protection mechanism uses the rwx bits. Three sets of bits are present for each file: for the
owner, for his group, and for others. The bits are set by the chmod system call, which is carried out by
do_chmod, in file protect.c (line 27824). After making a series of validity checks, the mode is changed on line
27850.

The chown system call is similar to chmod in that both of them change an internal i-node field in some file.
The implementation is also similar although do_chown (line 27862) can be used to change the owner only by
the superuser. Ordinary users can use this call to change the group of their own files.

The umask system call allows the user to set a mask (stored in the process table), which then masks out bits
in subsequent creat system calls. The complete implementation would be only one statement, line 27907,
except that the call must return the old mask value as its result. This additional burden triples the number of
lines of code required (lines 27906 to 27908).

The access system call makes it possible for a process to find out if it can access a file in a specified way
(e.g., for reading). It is implemented by do_access (line 27914), which fetches the file's i-node and calls the
internal procedure, forbidden (line 27938), to see if the access is forbidden. Forbidden checks the uid and gid,
as well as the information in the i-node. Depending on what it finds, it selects one of the three rwx groups and
checks to see if the access is permitted or forbidden.

Read_only (line 27999) is a little internal procedure that tells whether the file system on which its i-node
parameter is located is mounted read only or read-write. It is needed to prevent writes on file systems mounted
read only.

5.7.7. The I/O Device Interface

As we have mentioned more than once, a design goal was to make MINIX 3a more robust operating system
by having all device drivers run as user-space processes without direct access to kernel data structures or

29

29

kernel code. The primary advantage of this approach is that a faulty device driver will not cause the entire
system to crash, but there are some other implications of this approach. One is that device drivers not needed
immediately upon startup can be started at any time after startup is complete. This also implies that a device
driver can be stopped, restarted, or replaced by a different driver for the same device at any time while the
system is running. This flexibility is subject, of course to some restrictionsyou cannot start multiple drivers for
the same device. However, if the hard disk driver crashes, it can be restarted from a copy on the RAM disk.

[Page 598]

MINIX 3 device drivers are accessed from the file system. In response to user requests for I/O the file system
sends messages to the user-space device drivers. The dmap table has an entry for every possible major device
type. It provides the mapping between the major device number and the corresponding device driver. The next
two files we will consider deal with the dmap table. The table itself is declared in dmap.c. This file also
supports initialization of the table and a new system call, devctl, which is intended to support starting,
stopping, and restarting of device drivers. After that we will look at device.c which supports normal runtime
operations on devices, such as open, close, read, write, and ioctl.

When a device is opened, closed, read, or written, dmap provides the name of the procedure to call to handle
the operation. All of these procedures are located in the file system's address space. Many of these procedures
do nothing, but some call a device driver to request actual I/O. The process number corresponding to each
major device is also provided by the table.

Whenever a new major device is added to MINIX 3, a line must be added to this table telling what action, if
any, is to be taken when the device is opened, closed, read, or written. As a simple example, if a tape drive is
added to MINIX 3, when its special file is opened, the procedure in the table could check to see if the tape
drive is already in use.

Dmap.c begins with a macro definition, DT (lines 28115 to 28117), which is used to initialize the dmap table.
This macro makes it easier to add a new device driver when reconfiguring MINIX 3. Elements of the dmap
table are defined in include/minix/dmap.h; each element consists of a pointer to a function to be called on an
open or close, another pointer to a function to be called on a read or write, a process number (index
into process table, not a PID), and a set of flags. The actual table is an array of such elements, declared on line
28132. This table is globally available within the file server. The size of the table is NR_DEVICES, which is
32 in the version of MINIX 3 described here, and almost twice as big as needed for the number of devices
currently supported. Fortunately, the C language behavior of setting all uninitialized variables to zero will
ensure that no spurious information appears in unused slots.

Following the declaration of dmap is a PRIVATE declaration of init_dmap. It is defined by an array of DT
macros, one for each possible major device. Each of these macros expands to initialize an entry in the global
array at compile time. A look at a few of the macros will help with understanding how they are used.
Init_dmap[1] defines the entry for the memory driver, which is major device 1. The macro looks like this:

DT(1, gen_opcl, gen_io, MEM_PROC_NR, 0)

The memory driver is always present and is loaded with the system boot image. The "1" as first parameter
means that this driver must be present. In this case, a pointer to gen_opcl will be entered as the function to call
to open or close, and a pointer to gen_io will be entered to specify the function to call for reading or writing,
MEM_PROC_NR tells which slot in the process table the memory driver uses, and "0" means no flags are set.
Now look at the next entry, init_dmap[2]. This is the entry for the floppy disk driver, and it looks like this:

30

30

[Page 599]

DT(0, no_dev, 0, 0, DMAP_MUTABLE)

The first "0" indicates this entry is for a driver not required to be in the boot image. The default for the first
pointer field specifies a call to no_dev on an attempt to open the device. This function returns an
ENODEV"no such device" error to the caller. The next two zeros are also defaults: since the device cannot be
opened there is no need to specify a function to call to do I/O, and a zero in the process table slot is interpreted
as no process specified. The meaning of the flag DMAP_MUTABLE is that changes to this entry are
permitted. (Note that the absence of this flag for the memory driver entry means its entry cannot be changed
after initialization.) MINIX 3 can be configured with or without a floppy disk driver in the boot image. If the
floppy disk driver is in the boot image and it is specified by a label=FLOPPY boot parameter to be the default
disk device, this entry will be changed when the file system starts. If the floppy driver is not in the boot
image, or if it is in the image but is not specified to be the default disk device, this field will not be changed
when FS starts. However, it is still possible for the floppy driver to be activated later. Typically this is done by
the /etc/rc script run when init is run.

Do_devctl (line 28157) is the first function executed to service a devctl call. The current version is very
simple, it recognizes two requests, DEV_MAP and DEV_UNMAP, and the latter returns a ENOSYS error,
which means "function not implemented." Obviously, this is a stopgap. In the case of DEV_MAP the next
function, map_driver is called.

It might be helpful to describe how the devctl call is used, and plans for its use in the future. A server
process, the reincarnation server (RS) is used in MINIX 3 to support starting user-space servers and drivers
after the operating system is up and running. The interface to the reincarnation server is the service utility, and
examples of its use can be seen in /etc/rc. An example is

service up /sbin/floppy dev /dev/fd0

This action results in the reincarnation server making a devctl call to start the binary /sbin/floppy as the
device driver for the device special file /dev/fd0. To do this, RS execs the specified binary, but sets a flag
that inhibits it from running until it has been transformed into a system process. Once the process is in
memory and its slot number in the process table is known, the major device number for the specified device is
determined. This information is then included in a message to the file server that requested the devctl
DEV_MAP operation. This is the most important part of the reincarnation server's job from the point of view
of initializing the I/O interface. For the sake of completeness we will also mention that to complete
initialization of the device driver, RS also makes a sys_privctl call to have the system task initialize the
driver process's priv table entry and allow it to execute. Recall from Chapter 2 that a dedicated priv table slot
is what makes an otherwise ordinary user-space process into a system process.

[Page 600]

The reincarnation server is new, and in the release of MINIX 3 described here it is still rudimentary. Plans for
future releases of MINIX 3 include a more powerful reincarnation server that will be able to stop and restart
drivers in addition to starting them. It will also be able to monitor drivers and restart them automatically if
problems develop. Check the Web site (www.minix3.org) and the newsgroup (comp.os.minix) for the current
status.

Continuing with dmap.c, the function map_driver begins on line 28178. Its operation is straightforward. If the
DMAP_MUTABLE flag is set for the entry in the dmap table, appropriate values are written into each entry.

31

31

http://www.minix3.org

Three different variants of the function for handling opening and closing of the device are available; one is
selected by a style parameter passed in the message from RS to the file system (lines 28204 to 28206). Notice
that dmap_flags is not altered. If the entry was marked DMAP_MUTABLE originally it retains this status
after the devctl call.

The third function in dmap.c is build_map. This is called by fs_init when the file system is first started, before
it enters its main loop. The first thing done is to loop over all of the entries in the local init_dmap table and
copy the expanded macros to the global dmap table for each entry that does not have no_dev specified as the
dmap_opcl member. This correctly initializes these entries. Otherwise the default values for an uninitialized
driver are set in place in dmap. The rest of build_map is more interesting. A boot image can be built with
multiple disk device drivers. By default at_wini, bios_wini, and floppy drivers are added to the boot image by
the Makefile in the src/tools/. A label is added to each of these, and a label= item in the boot parameters
determines which one will actually be loaded in the image and activated as the default disk driver. The
env_get_param calls on line 28248 and line 28250 use library routines that ultimately use the sys_getinfo
kernel call to get the label and controller boot parameter strings. Finally, build_map is called on line 28267 to
modify the entry in dmap that corresponds to the boot device. The key thing here is setting the process number
to DRVR_PROC_NR, which happens to be slot 6 in the process table. This slot is magic; the driver in this
slot is the default driver.

Now we come to the file device.c, which contains the procedures needed for device I/O at run time.

The first one is dev_open (line 28334). It is called by other parts of the file system, most often from
common_open in main.c when a open operation is determined to be accessing a device special file, but also
from load_ram and do_mount. Its operation is typical of several procedures we will see here. It determines the
major device number, verifies that it is valid, and then uses it to set a pointer to an entry in the dmap table, and
then makes a call to the function pointed to in that entry, at line 28349:

[Page 601]

r = (*dp->dmap_opcl)(DEV_OPEN, dev, proc, flags)

In the case of a disk drive, the function called will be gen_opcl, in the case of a terminal device it will be
tty_opcl. If a SUSPEND return code is received there is a serious problem; an open call should not fail this
way.

The next call, dev_close (line 28357) is simpler. It is not expected that a call will be made to an invalid
device, and no harm is done if a close operation fails, so the code is shorter than this text describing it, just
one line that will end up calling the same *_opcl procedure as dev_open called when the device was opened.

When the file system receives a notification message from a device driver dev_status (line 28366) is called. A
notification means an event has occurred, and this function is responsible for finding out what kind of event
and initiating appropriate action. The origin of the notification is specified as a process number, so the first
step is to search through the dmap table to find an entry that corresponds to the notifying process (lines 18371
to 18373). It is possible the notification could have been bogus, so it is not an error if no corresponding entry
is found and dev_status returns without finding a match. If a match is found, the loop on lines 28378 to 28398
is entered. On each iteration a message is sent to the driver process requesting its status. Three possible reply
types are expected. A DEV_REVIVE message may be received if the process that originally requested I/O
was previously suspended. In this case revive (in pipe.c, line 26146) is called. A DEV_IO_READY message
may be received if a select call has been made on the device. Finally, a DEV_NO_STATUS message may
be received, and is, in fact expected, but possibly not until one or both of the first two message types are
received. For this reason, the get_more variable is used to cause the loop to repeat until the
DEV_NO_STATUS message is received.

32

32

When actual device I/O is needed, dev_io (line 28406) is called from read_write (line 25124) to handle
character special files, and from rw_block (line 22661) to handle block special files. It builds a standard
message (see Fig. 3-17) and sends it to the specified device driver by calling either gen_io or ctty_io as
specified in the dp->dmap_driver field of the dmap table. While dev_io is waiting for a reply from the driver,
the file system waits. It has no internal multiprogramming. Usually, these waits are quite short though (e.g.,
50 msec). But it is possible no data will be availablethis is especially likely if the data was requested from a
terminal device. In that case the reply message may indicate SUSPEND, to temporarily suspend the calling
application but let the file system continue.

The procedure gen_opcl (line 28455) is called for disk devices, whether floppy disks, hard disks, or
memory-based devices. A message is constructed, and, as with reading and writing, the dmap table is used to
determine whether gen_io or ctty_io will be used to send the message to the driver process for the device.
Gen_opcl is also used to close the same devices.

[Page 602]

To open a terminal device tty_opcl (line 28482) is called. It calls gen_opcl after possibly modifying the flags,
and if the call made the tty the controlling tty for the active process this is recorded in the process table fp_tty
entry for that process.

The device /dev/tty is a fiction which does not correspond to any particular device. This is a magic
designation that an interactive user can use to refer to his own terminal, no matter which physical terminal is
actually in use. To open or close /dev/tty, a call is made to ctty_opcl (line 28518). It determines whether the
fp_tty process table entry for the current process has indeed been modified by a previous ctty_opcl call to
indicate a controlling tty.

The setsid system call requires some work by the file system, and this is performed by do_setsid (line
28534). It modifies the process table entry for the current process to record that the process is a session leader
and has no controlling process.

One system call, ioctl, is handled primarily in device.c. This call has been put here because it is closely tied
to the device driver interface. When an ioctl is done, do_ioctl (line 28554) is called to build a message and
send it to the proper device driver.

To control terminal devices one of the functions declared in include/termios.h should be used in programs
written to be POSIX compliant. The C library will translate such functions into ioctl calls. For devices
other than terminals ioctl is used for many operations, many of which were described in Chap. 3.

The next function, gen_io (line 28575), is the real workhorse of this file. Whether the operation on a device is
an open or a close, a read or a write, or an ioctl this function is called to complete the work. Since
/dev/tty is not a physical device, when a message that refers to it must be sent, the next function, ctty_io (line
28652), finds the correct major and minor device and substitutes them into the message before passing the
message on. The call is made using the dmap entry for the physical device that is actually in use. As MINIX 3
is currently configured a call to gen_io will result.

The function no_dev (line 28677), is called from slots in the table for which a device does not exist, for
example when a network device is referenced on a machine with no network support. It returns an ENODEV
status. It prevents crashes when nonexistent devices are accessed.

The last function in device.c is clone_opcl (line 28691). Some devices need special processing upon open.
Such a device is "cloned," that is, on a successful open it is replaced by a new device with a new unique minor
device number. In MINIX 3 as described here this capability is not used. However, it is used when networking
is enabled. A device that needs this will, of course, have an entry in the dmap table that specifies clone_opcl

33

33

in the dmap_opcl field. This is accomplished by a call from the reincarnation server that specifies
STYLE_CLONE. When clone_opcl opens a device the operation starts in exactly the same way as gen_opcl,
but on the return a new minor device number may be returned in the REP_STATUS field of the reply
message. If so, a temporary file is created if it is possible to allocate a new i-node. A visible directory entry is
not created. That is not necessary, since the file is already open.

[Page 603]

Time

Associated with each file are three 32-bit numbers relating to time. Two of these record the times when the
file was last accessed and last modified. The third records when the status of the i-node itself was last
changed. This time will change for almost every access to a file except a read or exec. These times are kept
in the i-node. With the utime system call, the access and modification times can be set by the owner of the
file or the superuser. The procedure do_utime (line 28818) in file time.c performs the system call by fetching
the i-node and storing the time in it. At line 28848 the flags that indicate a time update is required are reset, so
the system will not make an expensive and redundant call to clock_time.

As we saw in the previous chapter, the real time is determined by adding the time since the system was started
(maintained by the clock task) to the real time when startup occurred. The stime system call returns the real
time. Most of its work is done by the process manager, but the file system also maintains a record of the
startup time in a global variable, boottime. The process manager sends a message to the file system whenever
a stime call is made. The file system's do_stime (line 28859) updates boottime from this message.

5.7.8. Additional System Call Support

There are a number of files that are not listed in Appendix B, but which are required to compile a working
system. In this section we will review some files that support additional system calls. In the next section we
will mention files and functions that provide more general support for the file system.

The file misc.c contains procedures for a few system and kernel calls that do not fit in anywhere else.

Do_getsysinfo is an interface to the sys_datacopy kernel call. It is meant to support the information server
(IS) for debugging purposes. It allows IS to request a copy of file system data structures so it can display them
to the user.

The dup system call duplicates a file descriptor. In other words, it creates a new file descriptor that points to
the same file as its argument. The call has a variant dup2. Both versions of the call are handled by do_dup
This function is included in MINIX 3 to support old binary programs. Both of these calls are obsolete. The
current version of the MINIX 3 C library will invoke the fcntl system call when either of these are
encountered in a C source file.

[Page 604]

Fcntl, handled by do_fcntl is the preferred way to request operations on an open file. Services are requested
using POSIX-defined flags described in Fig. 5-49. The call is invoked with a file descriptor, a request code,
and additional arguments as necessary for the particular request. For instance, the equivalent of the old call

34

34

Figure 5-49. The POSIX request parameters for the FCNTL system call.

Operation

Meaning

F_DUPFD

Duplicate a file descriptor

F_GETFD

Get the close-on-exec flag

F_SETFD

Set the close-on-exec flag

F_GETFL

Get file status flags

F_SETFL

Set file status flags

F_GETLK

Get lock status of a file

F_SETLK

Set read/write lock on a file

F_SETLKW

Set write lock on a file

dup2(fd, fd2);

would be

fcntl(fd, F_DUPFD, fd2);

Several of these requests set or read a flag; the code consists of just a few lines. For instance, the F_SETFD
request sets a bit that forces closing of a file when its owner process does an exec. The F_GETFD request is
used to determine whether a file must be closed when an exec call is made. The F_SETFL and F_GETFL
requests permit setting flags to indicate a particular file is available in nonblocking mode or for append
operations.

35

35

Do_fcntl handles file locking, also. A call with the F_GETLK, F_SETLK, or F_SETLKW command specified
is translated into a call to lock_op, discussed in an earlier section.

The next system call is sync, which copies all blocks and i-nodes that have been modified since being loaded
back to the disk. The call is processed by do_sync. It simply searches through all the tables looking for dirty
entries. The i-nodes must be processed first, since rw_inode leaves its results in the block cache. After all dirty
i-nodes are written to the block cache, then all dirty blocks are written to the disk.

The system calls fork, exec, exit, and set are really process manager calls, but the results have to be
posted here as well. When a process forks, it is essential that the kernel, process manager, and file system all
know about it. These "system calls" do not come from user processes, but from the process manager. Do_fork,
do_exit, and do_set record the relevant information in the file system's part of the process table. Do_exec
searches for and closes (using do_close) any files marked to be closed-on-exec.

[Page 605]

The last function in misc.c is not really a system call but is handled like one. Do_revive is called when a
device driver that was previously unable to complete work that the file system had requested, such as
providing input data for a user process, has now completed the work. The file system then revives the process
and sends it the reply message.

One system call merits a header file as well as a C source file to support it. Select.h and select.c provide
support for the select system call. Select is used when a single process has to do deal with multiple I/O
streams, as, for instance, a communications or network program. Describing it in detail is beyond the scope of
this book.

5.7.9. File System Utilities

The file system contains a few general purpose utility procedures that are used in various places. They are
collected together in the file utility.c.

Clock_time sends messages to the system task to find out what the current real time is.

Fetch_name is needed because many system calls have a file name as parameter. If the file name is short, it is
included in the message from the user to the file system. If it is long, a pointer to the name in user space is put
in the message. Fetch_name checks for both cases, and either way, gets the name.

Two functions here handle general classes of errors. No_sys is the error handler that is called when the file
system receives a system call that is not one of its calls. Panic prints a message and tells the kernel to throw in
the towel when something catastrophic happens. Similar functions can be found in pm/utility.c in the process
manager's source directory.

The last two functions, conv2 and conv4, exist to help MINIX 3 deal with the problem of differences in byte
order between different CPU families. These routines are called when reading from or writing to a disk data
structure, such as an i-node or bitmap. The byte order in the system that created the disk is recorded in the
superblock. If it is different from the order used by the local processor the order will be swapped. The rest of
the file system does not need to know anything about the byte order on the disk.

Finally, there are two other files that provide specialized utility services to the file manager. The file system
can ask the system task to set an alarm for it, but if it needs more than one timer it can maintain its own linked
list of timers, similar to what we saw for the process manager in the previous chapter. The file timers.c
provides this support for the file system. Finally, MINIX 3 implements a unique way of using a CD-ROM that

36

36

hides a simulated MINIX 3 disk with several partitions on a CD-ROM, and allows booting a live MINIX 3
system from the CD-ROM. The MINIX 3 files are not visible to operating systems that support only standard
CD-ROM file formats. The file cdprobe.c is used at boot time to locate a CD-ROM device and the files on it
needed to start MINIX 3.

[Page 606]

5.7.10. Other MINIX 3 Components

The process manager discussed in the previous chapter and the file system discussed in this chapter are
user-space servers which provide support that would be integrated into a monolithic kernel in an operating
system of conventional design. These are not the only server processes in a MINIX 3 system, however. There
are other user-space processes that have system privileges and should be considered part of the operating
system. We do not have enough space in this book to discuss their internals, but we should at least mention
them here.

One we have already mentioned in this chapter. This is the reincarnation server, RS, which can start an
ordinary process and turn it into a system process. It is used in the current version of MINIX 3 to launch
device drivers that are not part of the system boot image. In future releases it will also be able to stop and
restart drivers, and, indeed, to monitor drivers and stop and restart them automatically if they seem to be
malfunctioning. The source code for the reincarnation server is in the src/servers/rs/ directory.

Another server that has been mentioned in passing is the information server, IS. It is used to generate the
debugging dumps that can be triggered by pressing the function keys on a PC-style keyboard. The source code
for the information server is in the src/servers/is/ directory.

The information server and the reincarnation servers are relatively small programs. There is a third, optional,
server, the network server, or INET. It is quite large. The INET program image on disk is comparable in size
to the MINIX 3 boot image. It is started by the reincarnation server in much the same way that device drivers
are started. The inet source code is in the src/servers/inet/ directory.

Finally, we will mention one other system component which is considered a device driver, not a server. This
is the log driver. With so many different components of the operating system running as independent
processes, it is desirable to provide a standardized way of handling diagnostic, warning, and error messages.
The MINIX 3 solution is to have a device driver for a pseudo-device known as /dev/klog which can receive
messages and handle writing them to a file. The source code for the log driver is in the src/drivers/log/
directory.

37

37

38

38

[Page 606 (continued)]

5.8. Summary

When seen from the outside, a file system is a collection of files and directories, plus operations on them.
Files can be read and written, directories can be created and destroyed, and files can be moved from directory
to directory. Most modern file systems support a hierarchical directory system, in which directories may have
subdirectories ad infinitum.

[Page 607]

When seen from the inside, a file system looks quite different. The file system-designers have to be concerned
with how storage is allocated, and how the system keeps track of which block goes with which file. We have
also seen how different systems have different directory structures. File system reliability and performance are
also important issues.

Security and protection are of vital concern to both the system users and system designers. We discussed some
security flaws in older systems, and generic problems that many systems have. We also looked at
authentication, with and without passwords, access control lists, and capabilities, as well as a matrix model for
thinking about protection.

Finally, we studied the MINIX 3 file system in detail. It is large but not very complicated. It accepts requests
for work from user processes, indexes into a table of procedure pointers, and calls that procedure to carry out
the requested system call. Due to its modular structure and position outside the kernel, it can be removed from
MINIX 3 and used as a free-standing network file server with only minor modifications.

Internally, MINIX 3 buffers data in a block cache and attempts to read ahead when making sequential access
to file. If the cache is made large enough, most program text will be found to be already in memory during
operations that repeatedly access a particular set of programs, such as a compilation.

1

1

2

2

[Page 607 (continued)]

Problems

1. NTFS uses Unicode for naming files. Unicode supports 16-bit characters. Give an
advantage of Unicode file naming over ASCII file naming.

2. Some files begin with a magic number. Of what use is this?

3. Fig. 5-4 lists some file attributes. Not listed in this table is parity. Would that be a
useful file attribute? If so, how might it be used?

4. Give 5 different path names for the file /etc/passwd. (Hint: think about the directory
entries "." and "..".)

5. Systems that support sequential files always have an operation to rewind files. Do
systems that support random access files need this too?

6. Some operating systems provide a system call rename to give a file a new name. Is
there any difference at all between using this call to rename a file, and just copying the
file to a new file with the new name, followed by deleting the old one?

7. Consider the directory tree of Fig. 5-7. If /usr/jim/ is the working directory, what is the
absolute path name for the file whose relative path name is ../ast/x?

[Page 608]

8. Consider the following proposal. Instead of having a single root for the file system,
give each user a personal root. Does that make the system more flexible? Why or why
not?

9. The UNIX file system has a call chroot that changes the root to a given directory.
Does this have any security implications? If so, what are they?

10. The UNIX system has a call to read a directory entry. Since directories are just files,
why is it necessary to have a special call? Can users not just read the raw directories
themselves?

11. A standard PC can hold only four operating systems at once. Is there any way to
increase this limit? What consequences would your proposal have?

12. Contiguous allocation of files leads to disk fragmentation, as mentioned in the text. Is
this internal fragmentation or external fragmentation? Make an analogy with something
discussed in the previous chapter.

13. Figure 5-10 shows the structure of the original FAT file system used on MS-DOS.
Originally this file system had only 4096 blocks, so a table with 4096 (12-bit) entries
was enough. If that scheme were to be directly extended to file systems with 232
blocks, how much space would the FAT occupy?

14. An operating system only supports a single directory but allows that directory to have
arbitrarily many files with arbitrarily long file names. Can something approximating a
hierarchical file system be simulated? How?

1

1

15. Free disk space can be kept track of using a free list or a bitmap. Disk addresses require
D bits. For a disk with B blocks, F of which are free, state the condition under which
the free list uses less space than the bitmap. For D having the value 16 bits, express
your answer as a percentage of the disk space that must be free.

16. It has been suggested that the first part of each UNIX file be kept in the same disk
block as its i-node. What good would this do?

17. The performance of a file system depends upon the cache hit rate (fraction of blocks
found in the cache). If it takes 1 msec to satisfy a request from the cache, but 40 msec
to satisfy a request if a disk read is needed, give a formula for the mean time required
to satisfy a request if the hit rate is h. Plot this function for values of h from 0 to 1.0.

18. What is the difference between a hard link and a symbolic link? Give an advantage of
each one.

19. Name three pitfalls to watch out for when backing up a file system.

20. A disk has 4000 cylinders, each with 8 tracks of 512 blocks. A seek takes 1 msec per
cylinder moved. If no attempt is made to put the blocks of a file close to each other,
two blocks that are logically consecutive (i.e., follow one another in the file) will
require an average seek, which takes 5 msec. If, however, the operating system makes
an attempt to cluster related blocks, the mean interblock distance can be reduced to 2
cylinders and the seek time reduced to 100 microsec. How long does it take to read a
100 block file in both cases, if the rotational latency is 10 msec and the transfer time is
20 microsec per block?

[Page 609]

21. Would compacting disk storage periodically be of any conceivable value? Explain.

22. What is the difference between a virus and a worm? How do they each reproduce?

23. After getting your degree, you apply for a job as director of a large university computer
center that has just put its ancient operating system out to pasture and switched over to
UNIX. You get the job. Fifteen minutes after starting work, your assistant bursts into
your office screaming: "Some students discovered the algorithm we use for encrypting
passwords and posted it on the Internet." What should you do?

24. Two computer science students, Carolyn and Elinor, are having a discussion about
i-nodes. Carolyn maintains that memories have gotten so large and so cheap that when
a file is opened, it is simpler and faster just to fetch a new copy of the i-node into the
i-node table, rather than search the entire table to see if it is already there. Elinor
disagrees. Who is right?

25. The Morris-Thompson protection scheme with the n-bit random numbers was designed
to make it difficult for an intruder to discover a large number of passwords by
encrypting common strings in advance. Does the scheme also offer protection against a
student user who is trying to guess the superuser password on his machine?

26. A computer science department has a large collection of UNIX machines on its local
network. Users on any machine can issue a command of the form

machine4 who

2

2

and have it executed on machine4, without having the user log in on the remote
machine. This feature is implemented by having the user's kernel send the command
and his uid to the remote machine. Is this scheme secure if the kernels are all
trustworthy (e.g., large timeshared minicomputers with protection hardware)? What if
some of the machines are students' personal computers, with no protection hardware?

27. When a file is removed, its blocks are generally put back on the free list, but they are
not erased. Do you think it would be a good idea to have the operating system erase
each block before releasing it? Consider both security and performance factors in your
answer, and explain the effect of each.

28. Three different protection mechanisms that we have discussed are capabilities, access
control lists, and the UNIX rwx bits. For each of the following protection problems, tell
which of these mechanisms can be used.

(a) Ken wants his files readable by everyone except his office mate.

(b) Mitch and Steve want to share some secret files.

(c) Linda wants some of her files to be public.

For UNIX, assume that groups are categories such as faculty, students, secretaries, etc.

29. Can the Trojan horse attack work in a system protected by capabilities?

30. The size of the filp table is currently defined as a constant, NR_FILPS, in fs/const.h. In
order to accommodate more users on a networked system you want to increase
NR_PROCS in include/minix/config.h. How should NR_FILPS be defined as a
function of NR_PROCS?

31. Suppose that a technological breakthrough occurs, and that nonvolatile RAM, which
retains its contents reliably following a power failure, becomes available with no price
or performance disadvantage over conventional RAM. What aspects of file system
design would be affected by this development?

[Page 610]

32. Symbolic links are files that point to other files or directories indirectly. Unlike
ordinary links such as those currently implemented in MINIX 3, a symbolic link has its
own i-node, which points to a data block. The data block contains the path to the file
being linked to, and the i-node makes it possible for the link to have different
ownership and permissions from the file linked to. A symbolic link and the file or
directory to which it points can be located on different devices. Symbolic links are not
part of MINIX 3. Implement symbolic links for MINIX 3.

33. Although the current limit to a MINIX 3 file size is determined by the 32-file pointer,
in the future, with 64-bit file pointers, files larger than 232 1 bytes may be allowed, in
which case triple indirect blocks may be needed. Modify FS to add triple indirect
blocks.

34. Show if setting the (now-unused) ROBUST flag might make the file system more or
less robust in the face of a crash. Whether this is the case in the current version of

3

3

MINIX 3 has not been researched, so it may be either way. Take a good look at what
happens when a modified block is evicted from the cache. Take into account that a
modified data block may be accompanied by a modified i-node and bitmap.

35. Design a mechanism to add support for a "foreign" file system, so that one could, for
instance, mount an MS-DOS file system on a directory in the MINIX 3 file system.

36. Write a pair of programs, in C or as shell scripts, to send and receive a message by a
covert channel on a MINIX 3 system. Hint: A permission bit can be seen even when a
file is otherwise inaccessible, and the sleep command or system call is guaranteed to
delay for a fixed time, set by its argument. Measure the data rate on an idle system.
Then create an artificially heavy load by starting up numerous different background
processes and measure the data rate again.

37. Implement immediate files in MINIX 3, that is small files actually stored in the i-node
itself, thus saving a disk access to retrieve them.

4

4

[Page 611]

6. Reading List and Bibliography

In the previous five chapters we have touched upon a variety of topics. This chapter is intended as an aid to
readers interested in pursuing their study of operating systems further. Section 6.1 is a list of suggested
readings. Section 6.2 is an alphabetical bibliography of all books and articles cited in this book.

In addition to the references given below, the Proceedings of the n-th ACM Symposium on Operating
Systems Principles (ACM) held every other year and the Proceedings of the n-th International Conference on
Distributed Computing Systems (IEEE) held every year are good places to look for recent papers on operating
systems. So is the USENIX Symposium on Operating Systems Design and Implementation. Furthermore,
ACM Transactions on Computer Systems and Operating Systems Review are two journals that often have
relevant articles.

1

1

2

2

[Page 611 (continued)]

6.1. Suggestions for Further Reading

Below is a list of suggested readings keyed by chapter.

6.1.1. Introduction and General Works

Bovet and Cesati, Understanding the Linux Kernel, 3rd Ed.

For anyone wishing to understand how the Linux kernel works internally, this book is probably your best bet.

[Page 612]

Brinch Hansen, Classic Operating Systems

Operating system have been around long enough now that some of them can be considered classic: systems
that changed how the world looked at computers. This book is a collection of 24 papers about seminal
operating systems, categorized as open shop, batch, multiprogramming, timesharing, personal computer, and
distributed operating systems. Anyone interested in the history of operating systems should read this book.

Brooks, The Mythical Man-Month: Essays on Software Engineering

A witty, amusing, and informative book on how not to write an operating system by someone who learned the
hard way. Full of good advice.

Corbató, "On Building Systems That Will Fail"

In his Turing Award lecture, the father of timesharing addresses many of the same concerns that Brooks does
in the Mythical Man-Month. His conclusion is that all complex systems will ultimately fail, and that to have
any chance for success at all, it is absolutely essential to avoid complexity and strive for simplicity and
elegance in design.

Deitel et al, Operating Systems, 3rd Ed.

A general textbook on operating systems. In addition to the standard material, it contains detailed case studies
of Linux and Windows XP.

Dijkstra, "My Recollections of Operating System Design"

Reminiscences by one of the pioneers of operating system design, starting back in the days when the term
"operating system" was not yet known.

IEEE, Information TechnologyPortable Operating System Interface (POSIX), Part 1: System Application
Program Interface (API) [C Language]

This is the standard. Some parts are actually quite readable, especially Annex B, "Rationale and Notes," which
sheds light on why things are done as they are. One advantage of referring to the standard document is that, by
definition, there are no errors. If a typographical error in a macro name makes it through the editing process it
is no longer an error, it is official.

1

1

Lampson, "Hints for Computer System Design"

Butler Lampson, one of the world's leading designers of innovative operating systems, has collected many
hints, suggestions, and guidelines from his years of experience and put them together in this entertaining and
informative article. Like Brooks' book, this is required reading for every aspiring operating system designer.

[Page 613]

Lewine, POSIX Programmer's Guide

This book describes the POSIX standard in a much more readable way than the standards document itself, and
includes discussions on how to convert older programs to POSIX and how to develop new programs for the
POSIX environment. There are numerous examples of code, including several complete programs. All
POSIX-required library functions and header files are described.

McKusick and Neville-Neil, The Design and Implementation of the FreeBSD Operating System

For a thorough explanation of how a modern version of UNIX, in this case FreeBSD, works inside, this is the
place to look. It covers processes, I/O, memory management, networking, and just about everything else.

Milojicic, "Operating Systems: Now and in the Future,"

Suppose you were to ask six of the world's leading experts in operating systems a series of questions about the
field and where it was going. Would you get the same answers? Hint: No. Find out what they said here.

Ray and Ray, Visual Quickstart Guide: UNIX, 2nd Ed.

It will help you understand examples in this book if you are comfortable as a UNIX user. This is just one of a
number of available beginners' guides to working with the UNIX operating system. Although implemented
differently, MINIX looks like UNIX to a user, and this or a similar book will also be helpful in your work
with MINIX.

Russinovich and Solomon, Microsoft Windows Internals, 4th Ed.

Ever wondered how Windows works inside? Wonder no more. This book tells you everything you
conceivably wanted to know about processes, memory management, I/O, networking, security, and a great
deal more.

Silberschatz et al, Operating System Concepts, 7th Ed.

Another textbook on operating systems. It covers processes, storage management, files, and distributed
systems. Two case studies are given: Linux and Windows XP.

Stallings, Operating Systems, 5th Ed.

Still another textbook on operating systems. It covers all the usual topics, and also includes a small amount of
material on distributed systems, plus an appendix on queueing theory.

Stevens and Rago, Advanced Programming in the UNIX Environment, 2nd Ed.

This book tells how to write C programs that use the UNIX system call interface and the standard C library.
Examples have been tested on FreeBSD 5.2.1, Linux 2.4.22 kernel; Solaris 9; and Darwin 7.4.0, and the
FreeBSD/Mach base of Mac OS X 10.3. The relationship of these implementations to POSIX is described in

2

2

detail.

[Page 614]

6.1.2. Processes

Andrews and Schneider, "Concepts and Notations for Concurrent Programming"

A tutorial and survey of processes and interprocess communication, including busy waiting, semaphores,
monitors, message passing, and other techniques. The article also shows how these concepts are embedded in
various programming languages.

Ben-Ari, Principles of Concurrent and Distributed Programming

This book consists of three parts; the first has chapters on mutual exclusion, semaphores, monitors, and the
dining philosophers problem, among others. The second part discusses distributed programming and
languages useful for distributed programming. The third part is on principles of implementation of
concurrency.

Bic and Shaw, Operating System Principles

This operating systems textbook has four chapters on processes, including not only the usual principles, but
also quite a bit of material on implementation.

Milo et al., "Process Migration"

As clusters of PCs gradually replace supercomputers, the issue of moving processes from one machine to
another (e.g., for load balancing) is becoming more relevant. In this survey, the authors discuss how process
migration works, along with its benefits and pitfalls.

Silberschatz et al, Operating System Concepts, 7th Ed.

Chapters 3 through 7 cover processes and interprocess communication, including scheduling, critical sections,
semaphores, monitors, and classical interprocess communication problems.

6.1.3. Input/Output

Chen et al., "RAID: High Performance Reliable Secondary Storage"

The use of multiple disk drives in parallel for fast I/O is a trend in high end systems. The authors discuss this
idea and examine different organizations in terms of performance, cost, and reliability.

Coffman et al., "System Deadlocks"

A short introduction to deadlocks, what causes them, and how they can be prevented or detected.

[Page 615]

Corbet et al., Linux Device Drivers, 3rd Ed.

3

3

If you really really really want to know how I/O works, try writing a device driver. This book tells you how to
do it for Linux.

Geist and Daniel, "A Continuum of Disk Scheduling Algorithms"

A generalized disk arm scheduling algorithm is presented. Extensive simulation and experimental results are
given.

Holt, "Some Deadlock Properties of Computer Systems"

A discussion of deadlocks. Holt introduces a directed graph model that can be used to analyze some deadlock
situations.

IEEE Computer Magazine, March 1994

This issue of Computer contains eight articles on advanced I/O, and covers simulation, high performance
storage, caching, I/O for parallel computers, and multimedia.

Levine, "Defining Deadlocks"

In this short article, Levine raises interesting questions about conventional definitions and examples of
deadlock.

Swift et al., "Recovering Device Drivers"

Device drivers have an error rate an order of magnitude higher than other operating system code. Is there
anything that can be done to improve reliability then? This paper describes how shadow drivers can be used to
achieve this goal.

Tsegaye and Foss, "A Comparison of the Linux and Windows Device Driver Architecture"

Linux and Windows have quite different architectures for their device drivers. This papers discusses both of
them and shows how they are similar and how they are different.

Wilkes et al., "The HP AutoRAID Hierarchical Storage System"

An important new development in high-performance disk systems is RAID (Redundant Array of Inexpensive
Disks), in which an array of small disks work together to produce a high-bandwidth system. In this paper, the
authors describe in some detail the system they built at HP Labs.

6.1.4. Memory Management

Bic and Shaw, Operating System Principles

Three chapters of this book are devoted to memory management, physical memory, virtual memory, and
shared memory.

[Page 616]

Denning, "Virtual Memory"

A classic paper on many aspects of virtual memory. Denning was one of the pioneers in this field, and was the

4

4

inventor of the working set concept.

Denning, "Working Sets Past and Present"

A good overview of numerous memory management and paging algorithms. A comprehensive bibliography is
included.

Denning, "The Locality Principle"

A recent look back at the history of the locality principle and a discussion of its applicability to a number of
problems beyond memory paging issues.

Halpern, "VIM: Taming Software with Hardware"

In this provocative article, Halpern argues that a tremendous amount of money is being spent to produce,
debug, and maintain software that deals with memory optimization, not only in operating systems, but also in
compilers and other software. He argues that seen macro-economically, it would be better to spend this money
just buying more memory and having simple straightforward, more reliable software.

Knuth, The Art of Computer Programming, Vol. 1

First fit, best fit, and other memory management algorithms are discussed and compared in this book.

Silberschatz et al, Operating System Concepts, 7th Ed.

Chapters 8 and 9 deal with memory management, including swapping, paging, and segmentation. A variety of
paging algorithms are mentioned.

6.1.5. File Systems

Denning, "The United States vs. Craig Neidorf"

When a young hacker discovered and published information about how the telephone system works, he was
indicted for computer fraud. This article describes the case, which involved many fundamental issues,
including freedom of speech. The article is followed by some dissenting views and a rebuttal by Denning.

Ghemawat et al., "The Google File System"

Suppose you decided you wanted to store the entire Internet at home so you could find things really quickly.
How would you go about it? Step 1 would be to buy, say, 200,000 PCs. Ordinary garden-variety PCs will do.
Nothing fancy needed. Step 2 would be to read this paper to find out how Google does it.

[Page 617]

Hafner and Markoff, Cyberpunk: Outlaws and Hackers on the Computer Frontier

Three compelling tales of young hackers breaking into computers around the world are told here by the New
York Times computer reporter who broke the Internet worm story and his coauthor.

Harbron, File Systems: Structures and Algorithms

A book on file system design, applications, and performance. Both structure and algorithms are covered.

5

5

Harris et al., Gray Hat Hacking: The Ethical Hacker's Handbook

This book discusses legal and ethical aspects of testing computer systems for vulnerabilities, as well as
providing technical information about how they are created and how they can be detected.

McKusick et al., "A Fast File System for UNIX"

The UNIX file system was completely reimplemented for 4.2 BSD. This paper describes the design of the
new file system, and discusses its performance.

Satyanarayanan, "The Evolution of Coda"

As mobile computing becomes more common, the need to integrate and synchronize mobile and fixed file
systems becomes more urgent. Coda was a pioneer in this area. Its evolution and operation is described in this
paper.

Silberschatz et al Operating System Concepts, 7th Ed.

Chapters 10 and 11 are about file systems. They cover file operations, access methods, consistency semantics,
directories, and protection, and implementation, among other topics.

Stallings, Operating Systems, 5th Ed.

Chapter 16 contains a fair amount of material about the security environment especially about hackers, viruses
and other threats.

Uppuluri et al., "Preventing Race Condition Attacks on File Systems"

Situations exist in which a process assumes that two operations will be performed atomically, with no
intervening operations. If another process manages to sneak in and perform an operation between them,
security may be breached. This paper discusses the problem and proposes a solution.

Yang et al., "Using Model Checking to Find Serious File System Errors"

File system errors can lead to lost data, so getting them debugged is very important. This paper describes a
formal technique that helps detect file system errors before they can do any damage. The results of using the
model checker on actual file system code is presented.

6

6

[Page 618]

6.2. Alphabetical Bibliography

ANDERSON, T. E., BERSHAD, B. N., LAZOWSKA, E. D., and LEVY, H. M.: "Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism," ACM Trans. on Computer
Systems, vol. 10, pp. 53-79, Feb. 1992.

ANDREWS, G. R., and SCHNEIDER, F. B.: "Concepts and Notations for Concurrent Programming,"
Computing Surveys, vol. 15, pp. 3-43, March 1983.

AYCOCK, J., and BARKER, K.: "Viruses 101," Proc. Tech. Symp. on Comp. Sci. Education, ACM, pp.
152-156, 2005.

BACH, M. J.: The Design of the UNIX Operating System, Upper Saddle River, NJ: Prentice Hall, 1987.

BALA, K., KAASHOEK, M. F., and WEIHL, W.: "Software Prefetching and Caching for Translation
Lookaside Buffers," Proc. First Symp. on Oper. Syst. Design and Implementation, USENIX, pp. 243-254,
1994.

BASILI, V. R., and PERRICONE, B. T.: "Software errors and Complexity: An Empirical Investigation,"
Commun. of the ACM, vol. 27, pp. 43-52, Jan. 1984.

BAYS, C.: "A Comparison of Next-Fit, First-Fit, and Best-Fit," Commun. of the ACM, vol. 20, pp. 191-192,
March 1977.

BEN-ARI, M: Principles of Concurrent and Distributed Programming, Upper Saddle River, NJ: Prentice Hall,
1990.

BIC, L. F., and SHAW, A. C.: Operating System Principles, Upper Saddle River, NJ: Prentice Hall, 2003.

BOEHM, H. -J.: "Threads Cannot be Implemented as a Library," Proc. 2004 ACM SIG-PLAN Conf. on Prog.
Lang. Design and Impl., ACM, pp. 261-268, 2005.

BOVET, D. P., and CESATI, M.: Understanding the Linux Kernel, 2nd Ed., Sebastopol, CA, O'Reilly, 2002.

BRINCH HANSEN, P.: Operating System Principles Upper Saddle River, NJ: Prentice Hall, 1973.

1

1

BRINCH HANSEN, P.: Classic Operating Systems, New York: Springer-Verlag, 2001.

BROOKS, F. P., Jr.: The Mythical Man-Month: Essays on Software Engineering, Anniversary Ed., Boston:
Addison-Wesley, 1995.

CERF, V. G.: "Spam, Spim, and Spit," Commun. of the ACM, vol. 48, pp. 39-43, April 2005.

CHEN, H, WAGNER, D., and DEAN, D.: "Setuid Demystified," Proc. 11th USENIX Security Symposium,
pp. 171-190, 2002.

CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., and PATTERSON, D. A.: "RAID: High
Performance Reliable Secondary Storage," Computing Surveys, vol. 26, pp. 145-185, June 1994.

[Page 619]

CHERITON, D. R.: "An Experiment Using Registers for Fast Message-Based Interprocess Communication,"
Operating Systems Review, vol. 18, pp. 12-20, Oct. 1984.

CHERVENAK, A., VELLANSKI, V., and KURMAS, Z.: "Protecting File Systems: A Survey of Backup
Techniques," Proc. 15th Symp. on Mass Storage Systems, IEEE, 1998

CHOU, A., YANG, J. -F., CHELF, B., and HALLEM, S.: "An Empirical Study of Operating System Errors,"
Proc. 18th Symp. on Oper. Syst. Prin., ACM, pp. 73-88, 2001.

COFFMAN, E. G., ELPHICK, M. J., and SHOSHANI, A.: "System Deadlocks," Computing Surveys, vol. 3,
pp. 67-78, June 1971.

CORBATO', F. J.: "On Building Systems That Will Fail," Commun. of the ACM, vol. 34, pp. 72-81, Sept.
1991.

CORBATO', F. J., MERWIN-DAGGETT, M., and DALEY, R. C: "An Experimental Time-Sharing System,"
Proc. AFIPS Fall Joint Computer Conf., AFIPS, pp. 335-344, 1962.

CORBATO', F. J., SALTZER, J. H., and CLINGEN, C. T.: "MULTICSThe First Seven Years," Proc. AFIPS
Spring Joint Computer Conf., AFIPS, pp. 571-583, 1972.

CORBATO', F. J., and VYSSOTSKY, V. A.: "Introduction and Overview of the MULTICS System," Proc.
AFIPS Fall Joint Computer Conf., AFIPS, pp. 185-196, 1965.

CORBET, J., RUBINI, A., and KROAH-HARTMAN, G.: Linux Device Drivers, 3rd Ed. Sebastopol, CA:

2

2

O'Reilly, 2005.

COURTOIS, P. J., HEYMANS, F., and PARNAS, D. L.: "Concurrent Control with Readers and Writers,"
Commun. of the ACM, vol. 10, pp. 667-668, Oct. 1971.

DALEY, R. C., and DENNIS, J. B.: "Virtual Memory, Processes, and Sharing in MULTICS," Commun. of
the ACM, vol. 11, pp. 306-312, May 1968.

DEITEL, H. M., DEITEL, P. J., and CHOFFNES, D. R.: Operating Systems, 3rd Ed., Upper Saddle River,
NJ: Prentice-Hall, 2004.

DENNING, D.: "The United states vs. Craig Neidorf," Commun. of the ACM, vol. 34, pp. 22-43, March
1991.

DENNING, P. J.: "The Working Set Model for Program Behavior," Commun. of the ACM, vol. 11, pp.
323-333, 1968a.

DENNING, P. J.: "Thrashing: Its Causes and Prevention," Proc. AFIPS National Computer Conf., AFIPS, pp.
915-922, 1968b.

DENNING, P. J.: "Virtual Memory," Computing Surveys, vol. 2, pp. 153-189, Sept. 1970.

DENNING, P. J.: "Working Sets Past and Present," IEEE Trans. on Software Engineering, vol. SE-6, pp.
64-84, Jan. 1980.

DENNING, P. J.: "The Locality Principle," Commun. of the ACM, vol. 48, pp. 19-24, July 2005.

[Page 620]

DENNIS, J. B., and VAN HORN, E. C.: "Programming Semantics for Multiprogrammed Computations,"
Commun. of the ACM, vol. 9, pp. 143-155, March 1966.

DIBONA, C., OCKMAN, S., and STONE, M. eds.: Open Sources: Voices from the Open Source Revolution,
Sebastopol, CA: O'Reilly, 1999.

DIJKSTRA, E. W.: "Co-operating Sequential Processes," in Programming Languages, Genuys, F. (Ed.),
London: Academic Press, 1965.

DIJKSTRA, E. W.: "The Structure of THE Multiprogramming System," Commun. of the ACM, vol. 11, pp.
341-346, May 1968.

3

3

DIJKSTRA, E. W.: "My Recollections of Operating System Design," Operating Systems Review, vol. 39, pp.
4-40, April 2005.

DODGE, C., IRVINE, C., and NGUYEN, T.: "A Study of Initialization in Linux and OpenBSD," Operating
Systems Review, vol. 39, pp. 79-93 April 2005.

ENGLER, D., CHEN, D. Y., and CHOU, A.: "Bugs as Inconsistent Behavior: A General Approach to
Inferring Errors in Systems Code," Proc. 18th Symp. on Oper. Syst. Prin., ACM, pp. 57-72, 2001.

ENGLER, D. R., KAASHOEK, M. F., and O'TOOLE, J. Jr.: "Exokernel: An Operating System Architecture
for Application-Level Resource Management," Proc. 15th Symp. on Oper. Syst. Prin., ACM, pp. 251-266,
1995.

FABRY, R. S.: "Capability-Based Addressing," Commun. of the ACM, vol. 17, pp. 403-412, July 1974.

FEELEY, M. J., MORGAN, W. E., PIGHIN, F. H., KARLIN, A. R., LEVY, H. M., and THEKKATH, C. A.:
"Implementing Global Memory Management in a Workstation CLuster," Proc. 15th Symp. on Oper. Syst.
Prin., ACM, pp. 201-212, 1995.

FEUSTAL, E. A.: "The Rice Research ComputerA Tagged Architecture," Proc. AFIPS Conf. 1972.

FOTHERINGHAM, J.: "Dynamic Storage Allocation in the Atlas Including an Automatic Use of a Backing
Store," Commun. of the ACM, vol. 4, pp. 435-436, Oct. 1961.

GARFINKEL, S. L., and SHELAT, A.: "Remembrance of Data Passed: A Study of Disk Sanitization
Practices," IEEE Security & Privacy, vol. 1, pp. 17-27, Jan.-Feb. 2003.

GEIST, R., and DANIEL, S.: "A Continuum of Disk Scheduling Algorithms," ACM Trans. on Computer
Systems, vol. 5, pp. 77-92, Feb. 1987.

GHEMAWAT, S., GOBIOFF, H., and LEUNG., S.-T.: "The Google File System," Proc. 19th Symp. on Oper.
Syst. Prin., ACM, pp. 29-43, 2003.

GRAHAM, R.: "Use of High-Level Languages for System Programming," Project MAC Report TM-13,
M.I.T., Sept. 1970.

HAFNER, K., and MARKOFF, J.: Cyberpunk: Outlaws and Hackers on the Computer Frontier, New York:
Simon and Schuster, 1991.

[Page 621]

4

4

HALPERN, M.: "VIM: Taming Software with Hardware," IEEE Computer, vol. 36, pp. 21-25, Oct. 2003.

HARBRON, T. R.: File Systems: Structures and Algorithms, Upper Saddle River, NJ: Prentice Hall, 1988.

HARRIS, S., HARPER, A., EAGLE, C., NESS, J., and LESTER, M.: Gray Hat Hacking: The Ethical
Hacker's Handbook, New York: McGraw-Hill Osborne Media, 2004.

HAUSER, C., JACOBI, C., THEIMER, M., WELCH, B., and WEISER, M.: "Using Threads in Interactive
Systems: A Case Study," Proc. 14th Symp. on Oper. Syst. Prin., ACM, pp. 94-105, 1993.

HEBBARD, B. et al.: "A Penetration Analysis of the Michigan Terminal System," Operating Systems
Review, vol. 14, pp. 7-20, Jan. 1980.

HERBORTH, C.: UNIX Advanced: Visual Quickpro Guide, Berkeley, CA: Peachpit Press, 2005

HERDER, J. N.: "Towards a True Microkernel Operating System," M.S. Thesis, Vrije Universiteit,
Amsterdam, Feb. 2005.

HOARE, C. A.R.: "Monitors, An Operating System Structuring Concept," Commun. of the ACM, vol. 17, pp.
549-557, Oct. 1974; Erratum in Commun. of the ACM, vol. 18, p. 95, Feb. 1975.

HOLT, R. C: "Some Deadlock Properties of Computer Systems," Computing Surveys, vol. 4, pp. 179-196,
Sept. 1972.

HUCK, J., and HAYS, J.: "Architectural Support for Translation Table Management in Large Address Space
Machines," Proc. 20th Annual Int'l Symp. on Computer Arch., ACM, pp. 39-50, 1993.

HUTCHINSON, N. C., MANLEY, S., FEDERWISCH, M., HARRIS, G., HITZ, D, KLEIMAN, S, and
O'MALLEY, S.: "Logical vs. Physical File System Backup," Proc. Third USENIX Symp. on Oper. Syst.
Design and Implementation, USENIX, pp. 239-249, 1999.

IEEE: Information technologyPortable Operating System Interface (POSIX), Part 1: System Application
Program Interface (API) [C Language], New York: IEEE, 1990.

JACOB, B., and MUDGE, T.: "Virtual Memory: Issues of Implementation," IEEE Computer, vol. 31, pp.
33-43, June 1998.

JOHANSSON, J., and RILEY, S: Protect Your Windows Network: From Perimeter to Data, Boston:
Addison-Wesley, 2005.

5

5

KERNIGHAN, B. W., and RITCHIE, D. M.: The C Programming Language, 2nd Ed., Upper Saddle River,
NJ: Prentice Hall, 1988.

KLEIN, D. V.: "Foiling the Cracker: A Survey of, and Improvements to, Password Security," Proc. UNIX
Security Workshop II, USENIX, Aug. 1990.

[Page 622]

KLEINROCK, L.: Queueing Systems, vol. 1, New York: John Wiley, 1975.

KNUTH, D. E.: The Art of Computer Programming, Volume 1: Fundamental Algorithms, 3rd Ed., Boston:
Addison-Wesley, 1997.

LAMPSON, B. W.: "A Scheduling Philosophy for Multiprogramming Systems," Commun. of the ACM, vol.
11, pp. 347-360, May 1968.

LAMPSON, B. W.: "A Note on the Confinement Problem," Commun. of the ACM, vol. 10, pp. 613-615, Oct.
1973.

LAMPSON, B. W.: "Hints for Computer System Design," IEEE Software, vol. 1, pp. 11-28, Jan. 1984.

LEDIN, G., Jr.: "Not Teaching Viruses and Worms is Harmful," Commun. of the ACM, vol. 48, p. 144, Jan.
2005.

LESCHKE, T.: "Achieving Speed and Flexibility by Separating Management from Protection: Embracing the
Exokernel Operating System," Operating Systems Review, vol. 38, pp. 5-19, Oct. 2004.

LEVINE, G. N.: "Defining Deadlocks," Operating Systems Review vol. 37, pp. 54-64, Jan. 2003a.

LEVINE, G. N.: "Defining Deadlock with Fungible Resources," Operating Systems Review, vol. 37, pp. 5-11,
July 2003b.

LEVINE, G. N.: "The Classification of Deadlock Prevention and Avoidance is Erroneous," Operating
Systems Review, vol. 39, 47-50, April 2005.

LEWINE, D.: POSIX Programmer's Guide, Sebastopol, CA: O'Reilly & Associates, 1991.

LI, K., and HUDAK, P.: "Memory Coherence in Shared Virtual Memory Systems," ACM Trans. on
Computer Systems, vol. 7, pp. 321-359, Nov. 1989.

6

6

LINDE, R. R.: "Operating System Penetration," Proc. AFIPS National Computer Conf., AFIPS, pp. 361-368,
1975.

LIONS, J.: Lions' Commentary on Unix 6th Edition, with Source Code, San Jose, CA: Peer-to-Peer
Communications, 1996.

MARSH, B. D., SCOTT, M. L., LEBLANC, T. J., and MARKATOS, E. P.: "First-Class User-Level
Threads," Proc. 13th Symp. on Oper. Syst. Prin., ACM, pp. 110-121, 1991.

MCHUGH, J. A.M., and DEEK, F. P.: "An Incentive System for Reducing Malware Attacks," Commun. of
the ACM, vol. 48, pp. 94-99, June 2005.

MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J., and FABRY, R. S.: "A Fast File System for UNIX," ACM
Trans. on Computer Systems, vol. 2, pp. 181-197, Aug. 1984.

MCKUSICK, M. K., and NEVILLE-NEIL, G. V.: The Design and Implementation of the FreeBSD Operating
System, Addison-Wesley: Boston, 2005.

[Page 623]

MILO, D., DOUGLIS, F., PAINDAVEINE, Y, WHEELER, R., and ZHOU, S.: "Process Migration," ACM
Computing Surveys, vol. 32, pp. 241-299, July-Sept. 2000.

MILOJICIC, D.: "Operating Systems: Now and in the Future," IEEE Concurrency, vol. 7, pp. 12-21,
Jan.-March 1999.

MOODY, G.: Rebel Code Cambridge, MA: Perseus, 2001.

MORRIS, R., and THOMPSON, K.: "Password Security: A Case History," Commun. of the ACM, vol. 22,
pp. 594-597, Nov. 1979.

MULLENDER, S. J., and TANENBAUM, A. S.: "Immediate Files," SoftwarePractice and Experience, vol.
14, pp. 365-368, April 1984.

NAUGHTON, J.: A Brief History of the Future, Woodstock, NY: Overlook Books, 2000.

NEMETH, E., SNYDER, G., SEEBASS, S., and HEIN, T. R.: UNIX System Administation, 3rd Ed., Upper
Saddle River, NJ, Prentice Hall, 2000.

ORGANICK, E. I.: The Multics System, Cambridge, MA: M.I.T. Press, 1972.

7

7

OSTRAND, T. J., WEYUKER, E. J., and BELL, R. M.: "Where the Bugs Are," Proc. 2004 ACM Symp. on
Softw. Testing and Analysis, ACM, 86-96, 2004.

PETERSON, G. L.: "Myths about the Mutual Exclusion Problem," Information Processing Letters, vol. 12,
pp. 115-116, June 1981.

PRECHELT, L.: "An Empirical Comparison of Seven Programming Languages," IEEE Computer, vol. 33,
pp. 23-29, Oct. 2000.

RAY, D. S., and RAY, E. J.: Visual Quickstart Guide: UNIX, 2nd Ed., Berkeley, CA: Peachpit Press, 2003.

ROSENBLUM, M., and OUSTERHOUT, J. K.: "The Design and Implementation of a Log-Structured File
System," Proc. 13th Symp. on Oper. Syst. Prin., ACM, pp. 1-15, 1991.

RUSSINOVICH, M. E., and SOLOMON, D. A.: Microsoft Windows Internals, 4th Ed., Redmond, WA:
Microsoft Press, 2005.

SALTZER, J. H.: "Protection and Control of Information Sharing in MULTICS," Commun. of the ACM, vol.
17, pp. 388-402, July 1974.

SALTZER, J. H., and SCHROEDER, M. D.: "The Protection of Information in Computer Systems," Proc.
IEEE, vol. 63, pp. 1278-1308, Sept. 1975.

SALUS, P. H.: A Quarter Century of UNIX, Boston: Addison-Wesley, 1994.

SANDHU, R. S.: "Lattice-Based Access Control Models," Computer, vol. 26, pp. 9-19, Nov. 1993.

SATYANARAYANAN, M.: "The Evolution of Coda," ACM Trans. on Computer Systems, vol. 20, pp.
85-124, May 2002.

SEAWRIGHT, L. H., and MACKINNON, R. A.: "VM/370A Study of Multiplicity and Usefulness," IBM
Systems Journal, vol. 18, pp. 4-17, 1979.

[Page 624]

SILBERSCHATZ, A., GALVIN, P. B., and GAGNE, G.: Operating System Concepts, 7th Ed., New York:
John Wiley, 2004.

STALLINGS, W.: Operating Systems, 5th Ed., Upper Saddle River, NJ: Prentice Hall, 2005.

8

8

STEVENS, W. R., and RAGO, S. A.: Advanced Programming in the UNIX Environment, 2nd Ed., Boston:
Addison-Wesley, 2005.

STOLL, C.: The Cuckoo's Egg: Tracking a Spy through the Maze of Computer Espionage, New York:
Doubleday, 1989.

SWIFT, M. M., ANNAMALAI, M., BERSHAD, B. N., and LEVY, H. M.: "Recovering Device Drivers,"
Proc. Sixth Symp. on Oper. Syst. Design and Implementation, USENIX, pp. 1-16, 2004.

TAI, K. C., and CARVER, R. H.: "VP: A New Operation for Semaphores," Operating Systems Review, vol.
30, pp. 5-11, July 1996.

TALLURI, M., and HILL, M. D.: "Surpassing the TLB Performance of Superpages with Less Operating
System Support," Proc. Sixth Int'l Conf. on Architectural Support for Progr. Lang. and Operating Systems,
ACM, pp. 171-182, 1994.

TALLURI, M., HILL, M. D., and KHALIDI, Y. A.: "A New Page Table for 64-bit Address Spaces," Proc.
15th Symp. on Oper. Syst. Prin., ACM, pp. 184-200, 1995.

TANENBAUM, A. S.: Modern Operating Systems, 2nd Ed., Upper Saddle River: NJ, Prentice Hall, 2001

TANENBAUM, A. S., VAN RENESSE, R., STAVEREN, H. VAN, SHARP, G.J., MULLENDER, S. J.,
JANSEN, J., and ROSSUM, G. VAN: "Experiences with the Amoeba Distributed Operating System,"
Commun. of the ACM, vol. 33, pp. 46-63, Dec. 1990.

TANENBAUM, A. S., and VAN STEEN, M. R.: Distributed Systems: Principles and Paradigms, Upper
Saddle River, NJ, Prentice Hall, 2002.

TEORY, T. J.: "Properties of Disk Scheduling Policies in Multiprogrammed Computer Systems," Proc.
AFIPS Fall Joint Computer Conf., AFIPS, pp. 1-11, 1972.

THOMPSON, K.: "UNIX Implementation," Bell System Technical Journal, vol. 57, pp. 1931-1946, July-Aug.
1978.

TREESE, W.: "The State of Security on the Internet," NetWorker, vol. 8, pp. 13-15, Sept. 2004.

TSEGAYE, M., and FOSS, R.: "A Comparison of the Linux and Windows Device Driver Architectures,"
Operating Systems Review, vol. 38, pp. 8-33, April 2004.

UHLIG, R., NAGLE, D., STANLEY, T, MUDGE, T., SECREST, S., and BROWN, R: "Design Tradeoffs for
Software-Managed TLBs," ACM Trans. on Computer Systems, vol. 12, pp. 175-205, Aug. 1994.

9

9

[Page 625]

UPPULURI, P., JOSHI, U., and RAY, A.: "Preventing Race Condition Attacks on File Systems," Proc. 2005
ACM Symp. on Applied Computing, ACM, pp. 346-353, 2005.

VAHALIA, U.: UNIX InternalsThe New Frontiers, 2nd Ed., Upper Saddle River, NJ: Prentice Hall, 1996.

VOGELS, W.: "File System Usage in Windows NT 4.0," Proc. ACM Symp. on Operating System Principles,
ACM, pp. 93-109, 1999.

WALDSPURGER, C. A., and WEIHL, W. E.: "Lottery Scheduling: Flexible Proportional-Share Resource
Management," Proc. First Symp. on Oper. Syst. Design and Implementation, USENIX, pp. 1-11, 1994.

WEISS, A.: "Spyware Be Gone," NetWorker, vol. 9, pp. 18-25, March 2005.

WILKES, J., GOLDING, R., STAELIN, C, abd SULLIVAN, T.: "The HP AutoRAID Hierarchical Storage
System," ACM Trans. on Computer Systems, vol. 14, pp. 108-136, Feb. 1996.

WULF, W. A., COHEN, E. S., CORWIN, W. M., JONES, A. K., LEVIN, R., PIERSON, C., and POLLACK,
F. J.: "HYDRA: The Kernel of a Multiprocessor Operating System," Commun. of the ACM, vol. 17, pp.
337-345, June 1974.

YANG, J., TWOHEY, P., ENGLER, D. and MUSUVATHI, M.: "Using Model Checking to Find Serious File
System Errors," Proc. Sixth Symp. on Oper. Syst. Design and Implementation, USENIX, 2004.

ZEKAUSKAS, M. J., SAWDON, W. A., and BERSHAD, B. N.: "Software Write Detection for a Distributed
Shared Memory," Proc. First Symp. on Oper. Syst. Design and Implementation, USENIX, pp. 87-100, 1994.

ZWICKY, E. D.: "Torture-Testing Backup and Archive Programs: Things You Ought to Know but Probably
Would Rather Not," Prof. Fifth Conf. on Large Installation Systems Admin., USENIX, pp. 181-190, 1991.

10

10

[Page 629]

Appendix A. Installing MINIX 3

This appendix explains how to install MINIX 3. A complete MINIX 3 installation requires a Pentium (or
compatible) with at least 16-MB of RAM, 1 GB of free disk space, an IDE CD-ROM and an IDE hard disk. A
minimal installation (without the commands sources) requires 8 MB RAM and 50 MB of disk space. Serial
ATA, USB, and SCSI disks are not supported at present. For USB CD-ROMS, see the Website:
www.minix3.org.

1

1

http://www.minix3.org

2

2

[Page 629 (continued)]

A.1. Preparation

If you already have the CD-ROM (e.g., from the book), you can skip steps 1 and 2, but it is wise to check
www.minix3.org to see if a newer version is available. If you want to run MINIX 3 on a simulator instead of
native, see Part V first. If you do not have an IDE CD-ROM, either get the special USB CD-ROM boot image
or use a simulator.

1. Download the MINIX 3 CD-ROM image

Download the MINIX 3 CD-ROM image from the MINIX 3 Website at www.minix3.org.

2. Create a bootable MINIX 3 CD-ROM

Decompress the downloaded file. You will get a CD-ROM image file with extension .iso and this
manual. The .iso file is a bit-for-bit CD-ROM image. Burn it to a CD-ROM to make a bootable
CD-ROM.

[Page 630]

If you are using Easy CD Creator 5, select "Record CD from CD image" from the File menu and change
the file type from .cif to .iso in the dialog box that appears. Select the image file and click "Open." Then
click "Start Recording."

If you are using Nero Express 5, choose "Disc Image or Saved Project" and change the type to "Image
Files," select the image file and click "Open." Select your CD recorder and click on "Next."

If you are running Windows XP and do not have a CD-ROM burning program, take a look at
alexfeinman.brinkster.net/isorecorder.htm for a free one and use it to create a CD image.

3. Determine which Ethernet Chip you have

MINIX 3 supports several Ethernet chips for networking over LAN, ADSL, and cable. These include
Intel Pro/100, RealTek 8029 and 8139, AMD LANCE, and several 3Com chips. During setup you will be
asked which Ethernet chip you have, if any. Determine that now by looking at your documentation.
Alternatively, if you are using Windows, go to the device manager as follows:

Windows 2000:Start > Settings > Control Panel > System > Hardware > Device Manager

Windows XP: Start > Control Panel > System > Hardware > Device Manager

System requires double clicking; the rest are single. Expand the + next to "Network adapters" to see what
you have. Write it down. If you do not have a supported chip, you can still run MINIX 3, but without
Ethernet.

4. Partition your hard disk

1

1

http://www.minix3.org
http://www.minix3.org

You can boot the computer from your CD-ROM if you like and MINIX 3 will start, but to do anything
useful, you have to create a partition for it on your hard disk. But before partitioning, be sure to back up
your data to an external medium like CD-ROM or DVD as a safety precaution, just in case something
goes wrong. Your files are valuable; protect them.

Unless you are sure you are an expert on disk partitioning with much experience, it is strongly suggested
that you read the online tutorial on disk partitioning at www.minix3.org/doc/partitions.html. If you
already know how to manage partitions, create a contiguous chunk of free disk space of at least 50 MB,
or, if you want all the commands sources, 1 GB. If you do not know how to manage partitions but have a
partitioning program like Partition Magic, use it to create a region of free disk space. Also make sure
there is at least one primary partition (i.e., Master Boot Record slot) free. The MINIX 3 setup script will
guide you through creating a MINIX partition in the free space, which can be on either the first or second
IDE disk.

If you are running Windows 95, 98, ME, or 2000 and your disk consists of a single FAT partition, you
can use the presz134.exe program on the CD-ROM (also available at zeleps.com) to reduce its size to
leave room for MINIX. In all other cases, please read the online tutorial cited above.

[Page 631]

If your disk is larger than 128 GB, the MINIX 3 partition must fall entirely in the first 128 GB (due to the
way disk blocks are addressed).

WARNING: If you make a mistake during disk partitioning, you can lose all the data on the disk, so be sure to
back it up to CD-ROM or DVD before starting. Disk partitioning requires great care, so proceed with caution.

2

2

http://www.minix3.org/doc/partitions.html

[Page 631 (continued)]

A.2. Booting

By now you should have allocated some free space on your disk. If you have not done so yet, please do it now
unless there is an existing partition you are willing to convert to MINIX 3.

Boot from the CD-ROM

Insert the CD-ROM into your CD-ROM drive and boot the computer from it. If you have 16 MB of
RAM or more, choose "Regular;" if you have only 8 MB choose "small." If the computer boots from
the hard disk instead of the CD-ROM, boot again and enter the BIOS setup program to change the
order of boot devices, putting the CD-ROM before the hard disk.

1.

Login as root

When the login prompt appears, login as root. After a successful login as root, you will see the shell
prompt (#). At this point you are running fully-operational MINIX 3. If you type:

ls /usr/bin | more

you can see what software is available. Hit space to scroll the list. To see what program foo does,
type:

man foo

The manual pages are also available at www.minix3.org/manpages.

2.

Start the setup script

To start the installation of MINIX 3 on the hard disk, type

setup

After this and all other commands, be sure to type ENTER (RETURN). When the installation script
ends a screen with a colon, hit ENTER to continue. If the screen suddenly goes blank, press CTRL-F3
to select software scrolling (should only be needed on very old computers). Note that CTRL-key
means depress the CTRL key and while holding it down, press "key."

3.

1

1

http://www.minix3.org/manpages

2

2

[Page 632]

A.3. Installing to the Hard Disk

These steps correspond to the steps on the screen.

1. Select keyboard type

When you are asked to select your national keyboard, do so. This and other steps have a default choice, in
square brackets. If you agree with it, just hit ENTER. In most steps, the default is generally a good choice
for beginners. The us-swap keyboard interchanges the CAPS LOCK and CTRL keys, as is conventional
on UNIX systems.

2. Select your Ethernet chip

You will now be asked which of the available Ethernet drivers you want installed (or none). Please
choose one of the options.

3. Basic minimal or full distribution?

If you are tight on disk space, select M for a minimal installation which includes all the binaries but only
the system sources installed. The minimal option does not install the sources of the commands. 50 MB is
enough for a bare-bones system. If you have 1 GB or more, choose F for a full installation.

4. Create or select a partition for MINIX 3

You will first be asked if you are an expert in MINIX 3 disk partitioning. If so, you will be placed in the
part program to give you full power to edit the Master Boot Record (and enough rope to hang yourself).
If you are not an expert, press ENTER for the default action, which is an automated step-by-step guide to
formatting a disk partition for MINIX 3.

Substep 4.1. Select a disk to install MINIX 3

An IDE controller may have up to four disks. The setup script will now look for each one. Just
ignore any error messages. When the drives are listed, select one. and confirm your choice. If you
have two hard disks and you decide to install MINIX 3 to the second one and have trouble
booting from it, please see www.minix3.org/doc/using2disks.html for the solution.

Substep 4.2. Select a disk region

Now choose a region to install MINIX 3 into. You have three choices:

(1) Select a free region

(2) Select a partition to overwrite

(3) Delete a partition to free up space and merge with adjacent free space

1

1

http://www.minix3.org/doc/using2disks.html

For choices (1) and (2), type the region number. For (3) type

delete

[Page 633]

then give the region number when asked. This region will be overwritten and its previous
contents lost forever.

Substep 4.3. Confirm your choices

You have now reached the point of no return. You will be asked if you want to continue. If you
do, the data in the selected region will be lost forever. If you are sure, type:

yes

and then ENTER. To exit the setup script without changing the partition table, hit CTRL-C.

5. Reinstall choice

If you chose an existing MINIX 3 partition, in this step you will be offered a choice between a Full
install, which erases everything in the partition, and a Reinstall, which does not affect your existing
/home partition. This design means that you can put your personal files on /home and reinstall a newer
version of MINIX 3 when it is available without losing your personal files.

6. Select the size of/home

The selected partition will be divided into three subpartitions: root, /usr, and /home. The latter is for your
own personal files. Specify how much of the partition should be set aside for your files. You will be
asked to confirm your choice.

7. Select a block size

Disk block sizes of 1-KB, 2-KB, 4-KB, and 8-KB are supported, but to use a size larger than 4-KB you
have to change a constant and recompile the system. If your memory is 16 MB or more, use the default (4
KB); otherwise, use 1 KB.

8. Wait for bad block detection

The setup script will now scan each partition for bad disk blocks. This will take several minutes, possibly
10 minutes or more on a large partition. Please be patient. If you are absolutely certain there are no bad
blocks, you can kill each scan by hitting CTRL-C.

9. Wait for files to be copied

When the scan finishes, files will be automatically copied from the CD-ROM to the hard disk. Every file
will be announced as it is copied. When the copying is complete, MINIX 3 is installed. Shut the system
down by typing

2

2

shutdown

Always stop MINIX 3 this way to avoid data loss as MINIX 3 keeps some files on the RAM disk and
only copies them back to the hard disk at shutdown time.

3

3

4

4

[Page 634]

A.4. Testing

This section tells you how to test your installation, rebuild the system after modifying it, and boot it later. To
start, boot your new MINIX 3 system. For example, if you used controller 0, disk 0, partition 3, type

boot c0d0p3

and log in as root. Under very rare conditions the drive number seen by the BIOS (and used by the boot
monitor) may not agree with the one used by MINIX 3. Try the one announced by the setup script first. This is
a good time to create a root password. See man passwd for help.

Compile the test suite

To test MINIX 3, at the command prompt (#) type

cd /usr/src/test
make

and wait until it completes all 40 compilations. Log out by typing CTRL-D,

1.

Run the test suite

To test the system, log in as bin (required) and type

cd /usr/src/test
./run

to run the test programs. They should all run correctly but they can take 20 min on a fast machine and
over an hour on a slow one. Note: It is necessary to compile the test suite when running as root but
execute it as bin in order to see if the setuid bit works correctly.

2.

Rebuild the entire operating system

If all the tests work correctly, you can now rebuild the system. Doing so is not necessary since it
comes prebuilt, but if you plan to modify the system, you will need to know how to rebuild it.
Besides, rebuilding the system is a good test to see if it works. Type:

cd /usr/src/tools
make

to see the various options available. Now make a new bootable image by typing

su
make clean
time make image

You just rebuilt the operating system, including all the kernel and user-mode parts. That did not take
very long, did it? If you have a legacy floppy disk drive, you can make a bootable floppy for use later
by inserting a formatted floppy and typing

[Page 635]

3.

1

1

make fdboot

When you are asked to complete the path, type:

fd0

This approach does not currently work with USB floppies since there is no MINIX 3 USB floppy disk
driver yet. To update the boot image currently installed on the hard disk, type

make hdboot

Shut down and reboot the new system

To boot the new system, first shut down by typing:

shutdown

This command saves certain files and returns you to the MINIX 3 boot monitor. To get a summary of
what the boot monitor can do, while in it, type:

help

For more details, see www.minix3.org/manpages/man8/boot.8.html. You can now remove any
CD-ROM or floppy disk and turn off the computer.

4.

Booting Tomorrow

If you have a legacy floppy disk drive, the simplest way to boot MINIX 3 is by inserting your new
boot floppy and turning on the power. It takes only a few seconds. Alternatively, boot from the
MINIX 3 CD-ROM, login as bin and type:

shutdown

to get back to the MINIX 3 boot monitor. Now type:

boot c0d0p0

to boot from the operating system image file on controller 0, driver 0, partition 0. Of course, if you
put MINIX 3 on drive 0 partition 1, use:

boot c0d0p1

and so on.

A third possibility for booting is to make the MINIX 3 partition the active one, and use the MINIX 3
boot monitor to start MINIX 3 or any other operating system. For details see
www.minix3.org/manpages/man8/boot.8.html.

[Page 636]

Finally, a fourth option is for you to install a multiboot loader such as LILO or GRUB
(www.gnu.org/software/grub). Then you can boot any of your operating systems easily. Discussion of
multiboot loaders is beyond the scope of this guide, but there is some information on the subject at
www.minix3.org/doc.

5.

2

2

http://www.minix3.org/manpages/man8/boot.8.html
http://www.minix3.org/manpages/man8/boot.8.html
http://www.gnu.org/software/grub
http://www.minix3.org/doc

[Page 636 (continued)]

A.5. Using a Simulator

A completely different approach to running MINIX 3 is to run it on top of another operating system instead of
native on the bare metal. Various virtual machines, simulators, and emulators are available for this purpose.
Some of the most popular ones are:

VMware (www.vmware.com)•
Bochs (www.bochs.org)•
QEMU (www.qemu.org)•

See the documentation for each of them. Running a program on a simulator is similar to running it on the
actual machine, so you should go back to Part I and acquire the latest CD-ROM and continue from there.

1

1

http://www.vmware.com
http://www.bochs.org
http://www.qemu.org

2

2

[Page 637]

Appendix B. The MINIX Source Code

[Page 639]

[View full width]++
 include/ansi.h
++

 00000 /* The <ansi.h> header attempts to decide whether the compiler has enough
 00001 * conformance to Standard C for Minix to take advantage of. If so, the
 00002 * symbol _ANSI is defined (as 31459). Otherwise _ANSI is not defined
 00003 * here, but it may be defined by applications that want to bend the rules.
 00004 * The magic number in the definition is to inhibit unnecessary bending
 00005 * of the rules. (For consistency with the new '#ifdef _ANSI" tests in
 00006 * the headers, _ANSI should really be defined as nothing, but that would
 00007 * break many library routines that use "#if _ANSI".)
 00008
 00009 * If _ANSI ends up being defined, a macro
 00010 *
 00011 * _PROTOTYPE(function, params)
 00012 *
 00013 * is defined. This macro expands in different ways, generating either
 00014 * ANSI Standard C prototypes or old-style K&R (Kernighan & Ritchie)
 00015 * prototypes, as needed. Finally, some programs use _CONST, _VOIDSTAR etc
 00016 * in such a way that they are portable over both ANSI and K&R compilers.
 00017 * The appropriate macros are defined here.
 00018 */
 00019
 00020 #ifndef _ANSI_H
 00021 #define _ANSI_H
 00022
 00023 #if __STDC__ == 1
 00024 #define _ANSI 31459 /* compiler claims full ANSI conformance */
 00025 #endif
 00026
 00027 #ifdef __GNUC__
 00028 #define _ANSI 31459 /* gcc conforms enough even in non-ANSI mode */
 00029 #endif
 00030
 00031 #ifdef _ANSI
 00032
 00033 /* Keep everything for ANSI prototypes. */
 00034 #define _PROTOTYPE(function, params) function params
 00035 #define _ARGS(params) params
 00036
 00037 #define _VOIDSTAR void *
 00038 #define _VOID void
 00039 #define _CONST const
 00040 #define _VOLATILE volatile
 00041 #define _SIZET size_t
 00042
 00043 #else
 00044
 00045 /* Throw away the parameters for K&R prototypes. */
 00046 #define _PROTOTYPE(function, params) function()
 00047 #define _ARGS(params) ()
 00048
 00049 #define _VOIDSTAR void *
 00050 #define _VOID void

1

1

 00051 #define _CONST
 00052 #define _VOLATILE
 00053 #define _SIZET int
 00054

[Page 640]

00055 #endif /* _ANSI */ 00056 00057 /* This should be defined as restrict when a C99 compiler is used. */ 00058
#define _RESTRICT 00059 00060 /* Setting any of _MINIX, _POSIX_C_SOURCE or _POSIX2_SOURCE implies
00061 * _POSIX_SOURCE. (Seems wrong to put this here in ANSI space.) 00062 */ 00063 #if defined(_MINIX) ||
_POSIX_C_SOURCE > 0 || defined(_POSIX2_SOURCE) 00064 #undef _POSIX_SOURCE 00065 #define
_POSIX_SOURCE 1 00066 #endif 00067 00068 #endif /* ANSI_H */
++
include/limits.h
++
00100 /* The <limits.h> header defines some basic sizes, both of the language types 00101 * (e.g., the number of bits
in an integer), and of the operating system (e.g. 00102 * the number of characters in a file name. 00103 */ 00104
00105 #ifndef _LIMITS_H 00106 #define _LIMITS_H 00107 00108 /* Definitions about chars (8 bits in MINIX, and
signed). */ 00109 #define CHAR_BIT 8 /* # bits in a char */ 00110 #define CHAR_MIN -128 /* minimum value of a
char */ 00111 #define CHAR_MAX 127 /* maximum value of a char */ 00112 #define SCHAR_MIN -128 /*
minimum value of a signed char */ 00113 #define SCHAR_MAX 127 /* maximum value of a signed char */ 00114
#define UCHAR_MAX 255 /* maximum value of an unsigned char */ 00115 #define MB_LEN_MAX 1 /* maximum
length of a multibyte char */ 00116 00117 /* Definitions about shorts (16 bits in MINIX). */ 00118 #define
SHRT_MIN (-32767-1) /* minimum value of a short */ 00119 #define SHRT_MAX 32767 /* maximum value of a
short */ 00120 #define USHRT_MAX 0xFFFF /* maximum value of unsigned short */ 00121 00122 /* _EM_WSIZE
is a compiler-generated symbol giving the word size in bytes. */ 00123 #define INT_MIN (-2147483647-1) /*
minimum value of a 32-bit int */ 00124 #define INT_MAX 2147483647 /* maximum value of a 32-bit int */ 00125
#define UINT_MAX 0xFFFFFFFF /* maximum value of an unsigned 32-bit int */ 00126 00127 /*Definitions about
longs (32 bits in MINIX). */ 00128 #define LONG_MIN (-2147483647L-1)/* minimum value of a long */ 00129
#define LONG_MAX 2147483647L /* maximum value of a long */ 00130 #define ULONG_MAX 0xFFFFFFFFL /*
maximum value of an unsigned long */ 00131 00132 #include <sys/dir.h> 00133 00134 /* Minimum sizes required by
the POSIX P1003.1 standard (Table 2-3). */ 00135 #ifdef _POSIX_SOURCE /* these are only visible for POSIX */
00136 #define _POSIX_ARG_MAX 4096 /* exec() may have 4K worth of args */ 00137 #define
_POSIX_CHILD_MAX 6 /* a process may have 6 children */ 00138 #define _POSIX_LINK_MAX 8 /* a file may
have 8 links */ 00139 #define _POSIX_MAX_CANON 255 /* size of the canonical input queue */

[Page 641]

00140 #define _POSIX_MAX_INPUT 255 /* you can type 255 chars ahead */ 00141 #define _POSIX_NAME_MAX
DIRSIZ /* a file name may have 14 chars */ 00142 #define _POSIX_NGROUPS_MAX 0 /* supplementary group IDs
are optional */ 00143 #define _POSIX_OPEN_MAX 16 /* a process may have 16 files open */ 00144 #define
_POSIX_PATH_MAX 255 /* a pathname may contain 255 chars */ 00145 #define _POSIX_PIPE_BUF 512 /* pipes
writes of 512 bytes must be atomic */ 00146 #define _POSIX_STREAM_MAX 8 /* at least 8 FILEs can be open at
once */ 00147 #define _POSIX_TZNAME_MAX 3 /* time zone names can be at least 3 chars */ 00148 #define
_POSIX_SSIZE_MAX 32767 /* read() must support 32767 byte reads */ 00149 00150 /* Values actually
implemented by MINIX (Tables 2-4, 2-5, 2-6, and 2-7). */ 00151 /* Some of these old names had better be defined
when not POSIX. */ 00152 #define _NO_LIMIT 100 /* arbitrary number; limit not enforced */ 00153 00154 #define
NGROUPS_MAX 0 /* supplemental group IDs not available */ 00155 #define ARG_MAX 16384 /* # bytes of args +
environ for exec() */ 00156 #define CHILD_MAX _NO_LIMIT /* MINIX does not limit children */ 00157 #define
OPEN_MAX 20 /* # open files a process may have */ 00158 #define LINK_MAX SHRT_MAX /* # links a file may
have */ 00159 #define MAX_CANON 255 /* size of the canonical input queue */ 00160 #define MAX_INPUT 255 /*
size of the type-ahead buffer */ 00161 #define NAME_MAX DIRSIZ /* # chars in a file name */ 00162 #define
PATH_MAX 255 /* # chars in a path name */ 00163 #define PIPE_BUF 7168 /* # bytes in atomic write to a pipe */
00164 #define STREAM_MAX 20 /* must be the same as FOPEN_MAX in stdio.h */ 00165 #define
TZNAME_MAX 3 /* maximum bytes in a time zone name is 3 */ 00166 #define SSIZE_MAX 32767 /* max defined

2

2

byte count for read() */ 00167 00168 #endif /* _POSIX_SOURCE */ 00169 00170 #endif /* _LIMITS_H */
++
include/errno.h
++
00200 /* The <errno.h> header defines the numbers of the various errors that can 00201 * occur during program
execution. They are visible to user programs and 00202 * should be small positive integers. However, they are also
used within 00203 * MINIX, where they must be negative. For example, the READ system call is 00204 * executed
internally by calling do_read(). This function returns either a 00205 * (negative) error number or a (positive) number
of bytes actually read. 00206 * 00207 * To solve the problem of having the error numbers be negative inside the 00208
* the system and positive outside, the following mechanism is used. All the 00209 * definitions are are the form:
00210 * 00211 * #define EPERM (_SIGN 1) 00212 * 00213 * If the macro _SYSTEM is defined, then _SIGN is set to
"-", otherwise it is 00214 * set to "". Thus when compiling the operating system, the macro _SYSTEM 00215 * will be
defined, setting EPERM to (- 1), whereas when when this 00216 * file is included in an ordinary user program,
EPERM has the value (1). 00217 */ 00218 00219 #ifndef _ERRNO_H /* check if <errno.h> is already included */

[Page 642]

00220 #define _ERRNO_H /* it is not included; note that fact */ 00221 00222 /* Now define _SIGN as "" or "-"
depending on _SYSTEM. */ 00223 #ifdef _SYSTEM 00224 # define _SIGN - 00225 # define OK 0 00226 #else
00227 # define _SIGN 00228 #endif 00229 00230 extern int errno; /* place where the error numbers go */ 00231
00232 /* Here are the numerical values of the error numbers. */ 00233 #define _NERROR 70 /* number of errors */
00234 00235 #define EGENERIC (_SIGN 99) /* generic error */ 00236 #define EPERM (_SIGN 1) /* operation not
permitted */ 00237 #define ENOENT (_SIGN 2) /* no such file or directory */ 00238 #define ESRCH (_SIGN 3) /* no
such process */ 00239 #define EINTR (_SIGN 4) /* interrupted function call */ 00240 #define EIO (_SIGN 5) /*
input/output error */ 00241 #define ENXIO (_SIGN 6) /* no such device or address */ 00242 #define E2BIG (_SIGN
7) /* arg list too long */ 00243 #define ENOEXEC (_SIGN 8) /* exec format error */ 00244 #define EBADF (_SIGN
9) /* bad file descriptor */ 00245 #define ECHILD (_SIGN 10) /* no child process */ 00246 #define EAGAIN (_SIGN
11) /* resource temporarily unavailable */ 00247 #define ENOMEM (_SIGN 12) /* not enough space */ 00248 #define
EACCES (_SIGN 13) /* permission denied */ 00249 #define EFAULT (_SIGN 14) /* bad address */ 00250 #define
ENOTBLK (_SIGN 15) /* Extension: not a block special file */ 00251 #define EBUSY (_SIGN 16) /* resource busy
/ 00252 #define EEXIST (_SIGN 17) / file exists */ 00253 #define EXDEV (_SIGN 18) /* improper link */ 00254
#define ENODEV (_SIGN 19) /* no such device */ 00255 #define ENOTDIR (_SIGN 20) /* not a directory */ 00256
#define EISDIR (_SIGN 21) /* is a directory */ 00257 #define EINVAL (_SIGN 22) /* invalid argument */ 00258
#define ENFILE (_SIGN 23) /* too many open files in system */ 00259 #define EMFILE (_SIGN 24) /* too many
open files */ 00260 #define ENOTTY (_SIGN 25) /* inappropriate I/O control operation */ 00261 #define ETXTBSY
(_SIGN 26) /* no longer used */ 00262 #define EFBIG (_SIGN 27) /* file too large */ 00263 #define ENOSPC
(_SIGN 28) /* no space left on device */ 00264 #define ESPIPE (_SIGN 29) /* invalid seek */ 00265 #define EROFS
(_SIGN 30) /* read-only file system */ 00266 #define EMLINK (_SIGN 31) /* too many links */ 00267 #define
EPIPE (_SIGN 32) /* broken pipe */ 00268 #define EDOM (_SIGN 33) /* domain error (from ANSI C std) */ 00269
#define ERANGE (_SIGN 34) /* result too large (from ANSI C std) */ 00270 #define EDEADLK (_SIGN 35) /*
resource deadlock avoided */ 00271 #define ENAMETOOLONG (_SIGN 36) /* file name too long */ 00272 #define
ENOLCK (_SIGN 37) /* no locks available */ 00273 #define ENOSYS (_SIGN 38) /* function not implemented */
00274 #define ENOTEMPTY (_SIGN 39) /* directory not empty */ 00275 00276 /* The following errors relate to
networking. */ 00277 #define EPACKSIZE (_SIGN 50) /* invalid packet size for some protocol */ 00278 #define
EOUTOFBUFS (_SIGN 51) /* not enough buffers left */ 00279 #define EBADIOCTL (_SIGN 52) /* illegal ioctl for
device */

[Page 643]

00280 #define EBADMODE (_SIGN 53) /* badmode in ioctl */ 00281 #define EWOULDBLOCK (_SIGN 54) 00282
#define EBADDEST (_SIGN 55) /* not a valid destination address */ 00283 #define EDSTNOTRCH (_SIGN 56) /*
destination not reachable */ 00284 #define EISCONN (_SIGN 57) /* all ready connected */ 00285 #define
EADDRINUSE (_SIGN 58) /* address in use */ 00286 #define ECONNREFUSED (_SIGN 59) /* connection refused
/ 00287 #define ECONNRESET (_SIGN 60) / connection reset */ 00288 #define ETIMEDOUT (_SIGN 61) /*

3

3

connection timed out */ 00289 #define EURG (_SIGN 62) /* urgent data present */ 00290 #define ENOURG (_SIGN
63) /* no urgent data present */ 00291 #define ENOTCONN (_SIGN 64) /* no connection (yet or anymore) */ 00292
#define ESHUTDOWN (_SIGN 65) /* a write call to a shutdown connection */ 00293 #define ENOCONN (_SIGN
66) /* no such connection */ 00294 #define EAFNOSUPPORT (_SIGN 67) /* address family not supported */ 00295
#define EPROTONOSUPPORT (_SIGN 68) /* protocol not supported by AF */ 00296 #define EPROTOTYPE
(_SIGN 69) /* Protocol wrong type for socket */ 00297 #define EINPROGRESS (_SIGN 70) /* Operation now in
progress */ 00298 #define EADDRNOTAVAIL (_SIGN 71) /* Can't assign requested address */ 00299 #define
EALREADY (_SIGN 72) /* Connection already in progress */ 00300 #define EMSGSIZE (_SIGN 73) /* Message too
long */ 00301 00302 /* The following are not POSIX errors, but they can still happen. 00303 * All of these are
generated by the kernel and relate to message passing. 00304 */ 00305 #define ELOCKED (_SIGN 101) /* can't send
message due to deadlock */ 00306 #define EBADCALL (_SIGN 102) /* illegal system call number */ 00307 #define
EBADSRCDST (_SIGN 103) /* bad source or destination process */ 00308 #define ECALLDENIED (_SIGN 104) /*
no permission for system call */ 00309 #define EDEADDST (_SIGN 105) /* send destination is not alive */ 00310
#define ENOTREADY (_SIGN 106) /* source or destination is not ready */ 00311 #define EBADREQUEST (_SIGN
107) /* destination cannot handle request */ 00312 #define EDONTREPLY (_SIGN 201) /* pseudo-code: don't send a
reply */ 00313 00314 #endif /* _ERRNO_H */
++
include/unistd.h
++
00400 /* The <unistd.h> header contains a few miscellaneous manifest constants. */ 00401 00402 #ifndef
_UNISTD_H 00403 #define _UNISTD_H 00404 00405 #ifndef _TYPES_H 00406 #include <sys/types.h> 00407
#endif 00408 00409 /* Values used by access(). POSIX Table 2-8. */ 00410 #define F_OK 0 /* test if file exists */
00411 #define X_OK 1 /* test if file is executable */ 00412 #define W_OK 2 /* test if file is writable */ 00413 #define
R_OK 4 /* test if file is readable */ 00414 00415 /* Values used for whence in lseek(fd, offset, whence). POSIX Table
2-9. */ 00416 #define SEEK_SET 0 /* offset is absolute */ 00417 #define SEEK_CUR 1 /* offset is relative to current
position */ 00418 #define SEEK_END 2 /* offset is relative to end of file */ 00419

[Page 644]

00420 /* This value is required by POSIX Table 2-10. */ 00421 #define _POSIX_VERSION 199009L /* which
standard is being conformed to */ 00422 00423 /* These three definitions are required by POSIX Sec. 8.2.1.2. */ 00424
#define STDIN_FILENO 0 /* file descriptor for stdin */ 00425 #define STDOUT_FILENO 1 /* file descriptor for
stdout */ 00426 #define STDERR_FILENO 2 /* file descriptor for stderr */ 00427 00428 #ifdef _MINIX 00429 /*
How to exit the system or stop a server process. */ 00430 #define RBT_HALT 0 00431 #define RBT_REBOOT 1
00432 #define RBT_PANIC 2 /* a server panics */ 00433 #define RBT_MONITOR 3 /* let the monitor do this */
00434 #define RBT_RESET 4 /* hard reset the system */ 00435 #endif 00436 00437 /* What system info to retrieve
with sysgetinfo(). */ 00438 #define SI_KINFO 0 /* get kernel info via PM */ 00439 #define SI_PROC_ADDR 1 /*
address of process table */ 00440 #define SI_PROC_TAB 2 /* copy of entire process table */ 00441 #define
SI_DMAP_TAB 3 /* get device <-> driver mappings */ 00442 00443 /* NULL must be defined in <unistd.h>
according to POSIX Sec. 2.7.1. */ 00444 #define NULL ((void *)0) 00445 00446 /* The following relate to
configurable system variables. POSIX Table 4-2. */ 00447 #define _SC_ARG_MAX 1 00448 #define
_SC_CHILD_MAX 2 00449 #define _SC_CLOCKS_PER_SEC 3 00450 #define _SC_CLK_TCK 3 00451 #define
_SC_NGROUPS_MAX 4 00452 #define _SC_OPEN_MAX 5 00453 #define _SC_JOB_CONTROL 6 00454 #define
_SC_SAVED_IDS 7 00455 #define _SC_VERSION 8 00456 #define _SC_STREAM_MAX 9 00457 #define
_SC_TZNAME_MAX 10 00458 00459 /* The following relate to configurable pathname variables. POSIX Table 5-2.
/ 00460 #define _PC_LINK_MAX 1 / link count */ 00461 #define _PC_MAX_CANON 2 /* size of the canonical
input queue */ 00462 #define _PC_MAX_INPUT 3 /* type-ahead buffer size */ 00463 #define _PC_NAME_MAX 4
/* file name size */ 00464 #define _PC_PATH_MAX 5 /* pathname size */ 00465 #define _PC_PIPE_BUF 6 /* pipe
size */ 00466 #define _PC_NO_TRUNC 7 /* treatment of long name components */ 00467 #define _PC_VDISABLE
8 /* tty disable */ 00468 #define _PC_CHOWN_RESTRICTED 9 /* chown restricted or not */ 00469 00470 /* POSIX
defines several options that may be implemented or not, at the 00471 * implementer's whim. This implementer has
made the following choices: 00472 * 00473 * _POSIX_JOB_CONTROL not defined: no job control 00474 *
_POSIX_SAVED_IDS not defined: no saved uid/gid 00475 * _POSIX_NO_TRUNC defined as -1: long path names
are truncated 00476 * _POSIX_CHOWN_RESTRICTED defined: you can't give away files 00477 *

4

4

_POSIX_VDISABLE defined: tty functions can be disabled 00478 */ 00479 #define _POSIX_NO_TRUNC (-1)

[Page 645]

00480 #define _POSIX_CHOWN_RESTRICTED 1 00481 00482 /* Function Prototypes. */ 00483 _PROTOTYPE(
void _exit, (int _status)); 00484 _PROTOTYPE(int access, (const char *_path, int _amode)); 00485 _PROTOTYPE(
unsigned int alarm, (unsigned int _seconds)); 00486 _PROTOTYPE(int chdir, (const char *_path)); 00487
_PROTOTYPE(int fchdir, (int fd)); 00488 _PROTOTYPE(int chown, (const char *_path, _mnx_Uid_t _owner,
_mnx_Gid_t _group)); 00489 _PROTOTYPE(int close, (int _fd)); 00490 _PROTOTYPE(char *ctermid, (char *_s)
); 00491 _PROTOTYPE(char *cuserid, (char *_s)); 00492 _PROTOTYPE(int dup, (int _fd)); 00493
_PROTOTYPE(int dup2, (int _fd, int _fd2)); 00494 _PROTOTYPE(int execl, (const char *_path, const char *_arg,
...)); 00495 _PROTOTYPE(int execle, (const char *_path, const char *_arg, ...)); 00496 _PROTOTYPE(int execlp,
(const char *_file, const char *arg, ...)); 00497 _PROTOTYPE(int execv, (const char *_path, char *const _argv[]));
00498 _PROTOTYPE(int execve, (const char *_path, char *const _argv[], 00499 char *const _envp[])); 00500
_PROTOTYPE(int execvp, (const char *_file, char *const _argv[])); 00501 _PROTOTYPE(pid_t fork, (void));
00502 _PROTOTYPE(long fpathconf, (int _fd, int _name)); 00503 _PROTOTYPE(char *getcwd, (char *_buf, size_t
_size)); 00504 _PROTOTYPE(gid_t getegid, (void)); 00505 _PROTOTYPE(uid_t geteuid, (void)); 00506
_PROTOTYPE(gid_t getgid, (void)); 00507 _PROTOTYPE(int getgroups, (int _gidsetsize, gid_t _grouplist[]));
00508 _PROTOTYPE(char *getlogin, (void)); 00509 _PROTOTYPE(pid_t getpgrp, (void)); 00510
_PROTOTYPE(pid_t getpid, (void)); 00511 _PROTOTYPE(pid_t getppid, (void)); 00512 _PROTOTYPE(uid_t
getuid, (void)); 00513 _PROTOTYPE(int isatty, (int _fd)); 00514 _PROTOTYPE(int link, (const char *_existing,
const char *_new)); 00515 _PROTOTYPE(off_t lseek, (int _fd, off_t _offset, int _whence)); 00516 _PROTOTYPE(
long pathconf, (const char *_path, int _name)); 00517 _PROTOTYPE(int pause, (void)); 00518 _PROTOTYPE(int
pipe, (int _fildes[2])); 00519 _PROTOTYPE(ssize_t read, (int _fd, void *_buf, size_t _n)); 00520 _PROTOTYPE(
int rmdir, (const char *_path)); 00521 _PROTOTYPE(int setgid, (_mnx_Gid_t _gid)); 00522 _PROTOTYPE(int
setpgid, (pid_t _pid, pid_t _pgid)); 00523 _PROTOTYPE(pid_t setsid, (void)); 00524 _PROTOTYPE(int setuid,
(_mnx_Uid_t _uid)); 00525 _PROTOTYPE(unsigned int sleep, (unsigned int _seconds)); 00526 _PROTOTYPE(
long sysconf, (int _name)); 00527 _PROTOTYPE(pid_t tcgetpgrp, (int _fd)); 00528 _PROTOTYPE(int tcsetpgrp,
(int _fd, pid_t _pgrp_id)); 00529 _PROTOTYPE(char *ttyname, (int _fd)); 00530 _PROTOTYPE(int unlink, (const
char *_path)); 00531 _PROTOTYPE(ssize_t write, (int _fd, const void *_buf, size_t _n)); 00532 00533 /* Open
Group Base Specifications Issue 6 (not complete) */ 00534 _PROTOTYPE(int symlink, (const char *path1, const char
*path2)); 00535 _PROTOTYPE(int getopt, (int _argc, char **_argv, char *_opts)); 00536 extern char *optarg;
00537 extern int optind, opterr, optopt; 00538 _PROTOTYPE(int usleep, (useconds_t _useconds)); 00539

[Page 646]

00540 #ifdef _MINIX 00541 #ifndef _TYPE_H 00542 #include <minix/type.h> 00543 #endif 00544 _PROTOTYPE(
int brk, (char *_addr)); 00545 _PROTOTYPE(int chroot, (const char *_name)); 00546 _PROTOTYPE(int mknod,
(const char *_name, _mnx_Mode_t _mode, Dev_t _addr)); 00547 _PROTOTYPE(int mknod4, (const char *_name,
_mnx_Mode_t _mode, Dev_t _addr, 00548 long _size)); 00549 _PROTOTYPE(char *mktemp, (char *_template));
00550 _PROTOTYPE(int mount, (char *_spec, char *_name, int _flag)); 00551 _PROTOTYPE(long ptrace, (int
_req, pid_t _pid, long _addr, long _data)); 00552 _PROTOTYPE(char *sbrk, (int _incr)); 00553 _PROTOTYPE(int
sync, (void)); 00554 _PROTOTYPE(int fsync, (int fd)); 00555 _PROTOTYPE(int umount, (const char *_name));
00556 _PROTOTYPE(int reboot, (int _how, ...)); 00557 _PROTOTYPE(int gethostname, (char *_hostname, size_t
_len)); 00558 _PROTOTYPE(int getdomainname, (char *_domain, size_t _len)); 00559 _PROTOTYPE(int ttyslot,
(void)); 00560 _PROTOTYPE(int fttyslot, (int _fd)); 00561 _PROTOTYPE(char *crypt, (const char *_key, const
char *_salt)); 00562 _PROTOTYPE(int getsysinfo, (int who, int what, void *where)); 00563 _PROTOTYPE(int
getprocnr, (void)); 00564 _PROTOTYPE(int findproc, (char *proc_name, int *proc_nr)); 00565 _PROTOTYPE(int
allocmem, (phys_bytes size, phys_bytes *base)); 00566 _PROTOTYPE(int freemem, (phys_bytes size, phys_bytes
base)); 00567 #define DEV_MAP 1 00568 #define DEV_UNMAP 2 00569 #define mapdriver(driver, device, style)
devctl(DEV_MAP, driver, device, style) 00570 #define unmapdriver(device) devctl(DEV_UNMAP, 0, device, 0)
00571 _PROTOTYPE(int devctl, (int ctl_req, int driver, int device, int style)); 00572 00573 /* For compatibility with
other Unix systems */ 00574 _PROTOTYPE(int getpagesize, (void)); 00575 _PROTOTYPE(int setgroups, (int
ngroups, const gid_t *gidset)); 00576 00577 #endif 00578 00579 _PROTOTYPE(int readlink, (const char *, char *,

5

5

int)); 00580 _PROTOTYPE(int getopt, (int, char **, char *)); 00581 extern int optind, opterr, optopt; 00582 00583
#endif /* _UNISTD_H */
++
include/string.h
++
00600 /* The <string.h> header contains prototypes for the string handling 00601 * functions. 00602 */ 00603 00604
#ifndef _STRING_H 00605 #define _STRING_H 00606 00607 #define NULL ((void *)0) 00608 00609 #ifndef
_SIZE_T

[Page 647]

00610 #define _SIZE_T 00611 typedef unsigned int size_t; /* type returned by sizeof */ 00612 #endif /*_SIZE_T */
00613 00614 /* Function Prototypes. */ 00615 #ifndef _ANSI_H 00616 #include <ansi.h> 00617 #endif 00618 00619
_PROTOTYPE(void *memchr, (const void *_s, int _c, size_t _n)); 00620 _PROTOTYPE(int memcmp, (const void
*_s1, const void *_s2, size_t _n)); 00621 _PROTOTYPE(void *memcpy, (void *_s1, const void *_s2, size_t _n));
00622 _PROTOTYPE(void *memmove, (void *_s1, const void *_s2, size_t _n)); 00623 _PROTOTYPE(void
*memset, (void *_s, int _c, size_t _n)); 00624 _PROTOTYPE(char *strcat, (char *_s1, const char *_s2)); 00625
_PROTOTYPE(char *strchr, (const char *_s, int _c)); 00626 _PROTOTYPE(int strncmp, (const char *_s1, const
char *_s2, size_t _n)); 00627 _PROTOTYPE(int strcmp, (const char *_s1, const char *_s2)); 00628 _PROTOTYPE(
int strcoll, (const char *_s1, const char *_s2)); 00629 _PROTOTYPE(char *strcpy, (char *_s1, const char *_s2));
00630 _PROTOTYPE(size_t strcspn, (const char *_s1, const char *_s2)); 00631 _PROTOTYPE(char *strerror, (int
_errnum)); 00632 _PROTOTYPE(size_t strlen, (const char *_s)); 00633 _PROTOTYPE(char *strncat, (char *_s1,
const char *_s2, size_t _n)); 00634 _PROTOTYPE(char *strncpy, (char *_s1, const char *_s2, size_t _n)); 00635
_PROTOTYPE(char *strpbrk, (const char *_s1, const char *_s2)); 00636 _PROTOTYPE(char *strrchr, (const char
*_s, int _c)); 00637 _PROTOTYPE(size_t strspn, (const char *_s1, const char *_s2)); 00638 _PROTOTYPE(char
*strstr, (const char *_s1, const char *_s2)); 00639 _PROTOTYPE(char *strtok, (char *_s1, const char *_s2)); 00640
_PROTOTYPE(size_t strxfrm, (char *_s1, const char *_s2, size_t _n)); 00641 00642 #ifdef _POSIX_SOURCE
00643 /* Open Group Base Specifications Issue 6 (not complete) */ 00644 char *strdup(const char *_s1); 00645 #endif
00646 00647 #ifdef _MINIX 00648 /* For backward compatibility. */ 00649 _PROTOTYPE(char *index, (const char
*_s, int _charwanted)); 00650 _PROTOTYPE(char *rindex, (const char *_s, int _charwanted)); 00651
_PROTOTYPE(void bcopy, (const void *_src, void *_dst, size_t _length)); 00652 _PROTOTYPE(int bcmp, (const
void *_s1, const void *_s2, size_t _length)); 00653 _PROTOTYPE(void bzero, (void *_dst, size_t _length)); 00654
_PROTOTYPE(void *memccpy, (char *_dst, const char *_src, int _ucharstop, 00655 size_t _size)); 00656 00657 /*
Misc. extra functions */ 00658 _PROTOTYPE(int strcasecmp, (const char *_s1, const char *_s2)); 00659
_PROTOTYPE(int strncasecmp, (const char *_s1, const char *_s2, 00660 size_t _len)); 00661 _PROTOTYPE(
size_t strnlen, (const char *_s, size_t _n)); 00662 #endif 00663 00664 #endif /* _STRING_H */

[Page 648]

++
include/signal.h
++
00700 /* The <signal.h> header defines all the ANSI and POSIX signals. 00701 * MINIX supports all the signals
required by POSIX. They are defined below. 00702 * Some additional signals are also supported. 00703 */ 00704
00705 #ifndef _SIGNAL_H 00706 #define _SIGNAL_H 00707 00708 #ifndef _ANSI_H 00709 #include <ansi.h>
00710 #endif 00711 #ifdef _POSIX_SOURCE 00712 #ifndef _TYPES_H 00713 #include <sys/types.h> 00714 #endif
00715 #endif 00716 00717 /* Here are types that are closely associated with signal handling. */ 00718 typedef int
sig_atomic_t; 00719 00720 #ifdef _POSIX_SOURCE 00721 #ifndef _SIGSET_T 00722 #define _SIGSET_T 00723
typedef unsigned long sigset_t; 00724 #endif 00725 #endif 00726 00727 #define _NSIG 20 /* number of signals used
/ 00728 00729 #define SIGHUP 1 / hangup */ 00730 #define SIGINT 2 /* interrupt (DEL) */ 00731 #define
SIGQUIT 3 /* quit (ASCII FS) */ 00732 #define SIGILL 4 /* illegal instruction */ 00733 #define SIGTRAP 5 /* trace
trap (not reset when caught) */ 00734 #define SIGABRT 6 /* IOT instruction */ 00735 #define SIGIOT 6 /*
SIGABRT for people who speak PDP-11 */ 00736 #define SIGUNUSED 7 /* spare code */ 00737 #define SIGFPE 8
/* floating point exception */ 00738 #define SIGKILL 9 /* kill (cannot be caught or ignored) */ 00739 #define

6

6

SIGUSR1 10 /* user defined signal # 1 */ 00740 #define SIGSEGV 11 /* segmentation violation */ 00741 #define
SIGUSR2 12 /* user defined signal # 2 */ 00742 #define SIGPIPE 13 /* write on a pipe with no one to read it */ 00743
#define SIGALRM 14 /* alarm clock */ 00744 #define SIGTERM 15 /* software termination signal from kill */ 00745
#define SIGCHLD 17 /* child process terminated or stopped */ 00746 00747 #define SIGEMT 7 /* obsolete */ 00748
#define SIGBUS 10 /* obsolete */ 00749 00750 /* MINIX specific signals. These signals are not used by user
proceses, 00751 * but meant to inform system processes, like the PM, about system events. 00752 */ 00753 #define
SIGKMESS 18 /* new kernel message */ 00754 #define SIGKSIG 19 /* kernel signal pending */

[Page 649]

00755 #define SIGKSTOP 20 /* kernel shutting down */ 00756 00757 /* POSIX requires the following signals to be
defined, even if they are 00758 * not supported. Here are the definitions, but they are not supported. 00759 */ 00760
#define SIGCONT 18 /* continue if stopped */ 00761 #define SIGSTOP 19 /* stop signal */ 00762 #define SIGTSTP
20 /* interactive stop signal */ 00763 #define SIGTTIN 21 /* background process wants to read */ 00764 #define
SIGTTOU 22 /* background process wants to write */ 00765 00766 /* The sighandler_t type is not allowed unless
_POSIX_SOURCE is defined. */ 00767 typedef void _PROTOTYPE((*__sighandler_t), (int)); 00768 00769 /*
Macros used as function pointers. */ 00770 #define SIG_ERR ((__sighandler_t) -1) /* error return */ 00771 #define
SIG_DFL ((__sighandler_t) 0) /* default signal handling */ 00772 #define SIG_IGN ((__sighandler_t) 1) /* ignore
signal */ 00773 #define SIG_HOLD ((__sighandler_t) 2) /* block signal */ 00774 #define SIG_CATCH
((__sighandler_t) 3) /* catch signal */ 00775 #define SIG_MESS ((__sighandler_t) 4) /* pass as message (MINIX) */
00776 00777 #ifdef _POSIX_SOURCE 00778 struct sigaction { 00779 __sighandler_t sa_handler; /* SIG_DFL,
SIG_IGN, or pointer to function */ 00780 sigset_t sa_mask; /* signals to be blocked during handler */ 00781 int
sa_flags; /* special flags */ 00782 }; 00783 00784 /* Fields for sa_flags. */ 00785 #define SA_ONSTACK 0x0001 /*
deliver signal on alternate stack */ 00786 #define SA_RESETHAND 0x0002 /* reset signal handler when signal
caught */ 00787 #define SA_NODEFER 0x0004 /* don't block signal while catching it */ 00788 #define
SA_RESTART 0x0008 /* automatic system call restart */ 00789 #define SA_SIGINFO 0x0010 /* extended signal
handling */ 00790 #define SA_NOCLDWAIT 0x0020 /* don't create zombies */ 00791 #define SA_NOCLDSTOP
0x0040 /* don't receive SIGCHLD when child stops */ 00792 00793 /* POSIX requires these values for use with
sigprocmask(2). */ 00794 #define SIG_BLOCK 0 /* for blocking signals */ 00795 #define SIG_UNBLOCK 1 /* for
unblocking signals */ 00796 #define SIG_SETMASK 2 /* for setting the signal mask */ 00797 #define SIG_INQUIRE
4 /* for internal use only */ 00798 #endif /* _POSIX_SOURCE */ 00799 00800 /* POSIX and ANSI function
prototypes. */ 00801 _PROTOTYPE(int raise, (int _sig)); 00802 _PROTOTYPE(__sighandler_t signal, (int _sig,
__sighandler_t _func)); 00803 00804 #ifdef _POSIX_SOURCE 00805 _PROTOTYPE(int kill, (pid_t _pid, int _sig)
); 00806 _PROTOTYPE(int sigaction, 00807 (int _sig, const struct sigaction *_act, struct sigaction *_oact)); 00808
_PROTOTYPE(int sigaddset, (sigset_t *_set, int _sig)); 00809 _PROTOTYPE(int sigdelset, (sigset_t *_set, int _sig)
); 00810 _PROTOTYPE(int sigemptyset, (sigset_t *_set)); 00811 _PROTOTYPE(int sigfillset, (sigset_t *_set));
00812 _PROTOTYPE(int sigismember, (const sigset_t *_set, int _sig)); 00813 _PROTOTYPE(int sigpending,
(sigset_t *_set)); 00814 _PROTOTYPE(int sigprocmask,

[Page 650]

00815 (int _how, const sigset_t *_set, sigset_t *_oset)); 00816 _PROTOTYPE(int sigsuspend, (const sigset_t
_sigmask)); 00817 #endif 00818 00819 #endif / _SIGNAL_H */
++
include/fcntl.h
++
00900 /* The <fcntl.h> header is needed by the open() and fcntl() system calls, 00901 * which have a variety of
parameters and flags. They are described here. 00902 * The formats of the calls to each of these are: 00903 * 00904 *
open(path, oflag [,mode]) open a file 00905 * fcntl(fd, cmd [,arg]) get or set file attributes 00906 * 00907 */ 00908
00909 #ifndef _FCNTL_H 00910 #define _FCNTL_H 00911 00912 #ifndef _TYPES_H 00913 #include
<sys/types.h> 00914 #endif 00915 00916 /* These values are used for cmd in fcntl(). POSIX Table 6-1. */ 00917
#define F_DUPFD 0 /* duplicate file descriptor */ 00918 #define F_GETFD 1 /* get file descriptor flags */ 00919
#define F_SETFD 2 /* set file descriptor flags */ 00920 #define F_GETFL 3 /* get file status flags */ 00921 #define
F_SETFL 4 /* set file status flags */ 00922 #define F_GETLK 5 /* get record locking information */ 00923 #define

7

7

F_SETLK 6 /* set record locking information */ 00924 #define F_SETLKW 7 /* set record locking info; wait if
blocked */ 00925 00926 /* File descriptor flags used for fcntl(). POSIX Table 6-2. */ 00927 #define FD_CLOEXEC 1
/* close on exec flag for third arg of fcntl */ 00928 00929 /* L_type values for record locking with fcntl(). POSIX
Table 6-3. */ 00930 #define F_RDLCK 1 /* shared or read lock */ 00931 #define F_WRLCK 2 /* exclusive or write
lock */ 00932 #define F_UNLCK 3 /* unlock */ 00933 00934 /* Oflag values for open(). POSIX Table 6-4. */ 00935
#define O_CREAT 00100 /* creat file if it doesn't exist */ 00936 #define O_EXCL 00200 /* exclusive use flag */
00937 #define O_NOCTTY 00400 /* do not assign a controlling terminal */ 00938 #define O_TRUNC 01000 /*
truncate flag */ 00939 00940 /* File status flags for open() and fcntl(). POSIX Table 6-5. */ 00941 #define
O_APPEND 02000 /* set append mode */ 00942 #define O_NONBLOCK 04000 /* no delay */ 00943 00944 /* File
access modes for open() and fcntl(). POSIX Table 6-6. */ 00945 #define O_RDONLY 0 /* open(name, O_RDONLY)
opens read only */ 00946 #define O_WRONLY 1 /* open(name, O_WRONLY) opens write only */ 00947 #define
O_RDWR 2 /* open(name, O_RDWR) opens read/write */ 00948 00949 /* Mask for use with file access modes.
POSIX Table 6-7. */

[Page 651]

00950 #define O_ACCMODE 03 /* mask for file access modes */ 00951 00952 /* Struct used for locking. POSIX
Table 6-8. */ 00953 struct flock { 00954 short l_type; /* type: F_RDLCK, F_WRLCK, or F_UNLCK */ 00955 short
l_whence; /* flag for starting offset */ 00956 off_t l_start; /* relative offset in bytes */ 00957 off_t l_len; /* size; if 0,
then until EOF */ 00958 pid_t l_pid; /* process id of the locks' owner */ 00959 }; 00960 00961 /* Function Prototypes.
*/ 00962 _PROTOTYPE(int creat, (const char *_path, _mnx_Mode_t _mode)); 00963 _PROTOTYPE(int fcntl, (int
_filedes, int _cmd, ...)); 00964 _PROTOTYPE(int open, (const char *_path, int _oflag, ...)); 00965 00966 #endif /*
_FCNTL_H */
++
include/termios.h
++
01000 /* The <termios.h> header is used for controlling tty modes. */ 01001 01002 #ifndef _TERMIOS_H 01003
#define _TERMIOS_H 01004 01005 typedef unsigned short tcflag_t; 01006 typedef unsigned char cc_t; 01007
typedef unsigned int speed_t; 01008 01009 #define NCCS 20 /* size of cc_c array, some extra space 01010 * for
extensions. */ 01011 01012 /* Primary terminal control structure. POSIX Table 7-1. */ 01013 struct termios { 01014
tcflag_t c_iflag; /* input modes */ 01015 tcflag_t c_oflag; /* output modes */ 01016 tcflag_t c_cflag; /* control modes
/ 01017 tcflag_t c_lflag; / local modes */ 01018 speed_t c_ispeed; /* input speed */ 01019 speed_t c_ospeed; /*
output speed */ 01020 cc_t c_cc[NCCS]; /* control characters */ 01021 }; 01022 01023 /* Values for termios c_iflag
bit map. POSIX Table 7-2. */ 01024 #define BRKINT 0x0001 /* signal interrupt on break */ 01025 #define ICRNL
0x0002 /* map CR to NL on input */ 01026 #define IGNBRK 0x0004 /* ignore break */ 01027 #define IGNCR
0x0008 /* ignore CR */ 01028 #define IGNPAR 0x0010 /* ignore characters with parity errors */ 01029 #define
INLCR 0x0020 /* map NL to CR on input */ 01030 #define INPCK 0x0040 /* enable input parity check */ 01031
#define ISTRIP 0x0080 /* mask off 8th bit */ 01032 #define IXOFF 0x0100 /* enable start/stop input control */ 01033
#define IXON 0x0200 /* enable start/stop output control */ 01034 #define PARMRK 0x0400 /* mark parity errors in
the input queue */

[Page 652]

01035 01036 /* Values for termios c_oflag bit map. POSIX Sec. 7.1.2.3. */ 01037 #define OPOST 0x0001 /* perform
output processing */ 01038 01039 /* Values for termios c_cflag bit map. POSIX Table 7-3. */ 01040 #define
CLOCAL 0x0001 /* ignore modem status lines */ 01041 #define CREAD 0x0002 /* enable receiver */ 01042 #define
CSIZE 0x000C /* number of bits per character */ 01043 #define CS5 0x0000 /* if CSIZE is CS5, characters are 5 bits
/ 01044 #define CS6 0x0004 / if CSIZE is CS6, characters are 6 bits */ 01045 #define CS7 0x0008 /* if CSIZE is
CS7, characters are 7 bits */ 01046 #define CS8 0x000C /* if CSIZE is CS8, characters are 8 bits */ 01047 #define
CSTOPB 0x0010 /* send 2 stop bits if set, else 1 */ 01048 #define HUPCL 0x0020 /* hang up on last close */ 01049
#define PARENB 0x0040 /* enable parity on output */ 01050 #define PARODD 0x0080 /* use odd parity if set, else
even */ 01051 01052 /* Values for termios c_lflag bit map. POSIX Table 7-4. */ 01053 #define ECHO 0x0001 /*
enable echoing of input characters */ 01054 #define ECHOE 0x0002 /* echo ERASE as backspace */ 01055 #define
ECHOK 0x0004 /* echo KILL */ 01056 #define ECHONL 0x0008 /* echo NL */ 01057 #define ICANON 0x0010 /*

8

8

canonical input (erase and kill enabled) */ 01058 #define IEXTEN 0x0020 /* enable extended functions */ 01059
#define ISIG 0x0040 /* enable signals */ 01060 #define NOFLSH 0x0080 /* disable flush after interrupt or quit */
01061 #define TOSTOP 0x0100 /* send SIGTTOU (job control, not implemented*/ 01062 01063 /* Indices into c_cc
array. Default values in parentheses. POSIX Table 7-5. */ 01064 #define VEOF 0 /* cc_c[VEOF] = EOF char (^D) */
01065 #define VEOL 1 /* cc_c[VEOL] = EOL char (undef) */ 01066 #define VERASE 2 /* cc_c[VERASE] =
ERASE char (^H) */ 01067 #define VINTR 3 /* cc_c[VINTR] = INTR char (DEL) */ 01068 #define VKILL 4 /*
cc_c[VKILL] = KILL char (^U) */ 01069 #define VMIN 5 /* cc_c[VMIN] = MIN value for timer */ 01070 #define
VQUIT 6 /* cc_c[VQUIT] = QUIT char (^\) */ 01071 #define VTIME 7 /* cc_c[VTIME] = TIME value for timer */
01072 #define VSUSP 8 /* cc_c[VSUSP] = SUSP (^Z, ignored) */ 01073 #define VSTART 9 /* cc_c[VSTART] =
START char (^S) */ 01074 #define VSTOP 10 /* cc_c[VSTOP] = STOP char (^Q) */ 01075 01076 #define
_POSIX_VDISABLE (cc_t)0xFF /* You can't even generate this 01077 * character with 'normal' keyboards. 01078 *
But some language specific keyboards 01079 * can generate 0xFF. It seems that all 01080 * 256 are used, so cc_t
should be a 01081 * short... 01082 */ 01083 01084 /* Values for the baud rate settings. POSIX Table 7-6. */ 01085
#define B0 0x0000 /* hang up the line */ 01086 #define B50 0x1000 /* 50 baud */ 01087 #define B75 0x2000 /* 75
baud */ 01088 #define B110 0x3000 /* 110 baud */ 01089 #define B134 0x4000 /* 134.5 baud */ 01090 #define B150
0x5000 /* 150 baud */ 01091 #define B200 0x6000 /* 200 baud */ 01092 #define B300 0x7000 /* 300 baud */ 01093
#define B600 0x8000 /* 600 baud */ 01094 #define B1200 0x9000 /* 1200 baud */

[Page 653]

01095 #define B1800 0xA000 /* 1800 baud */ 01096 #define B2400 0xB000 /* 2400 baud */ 01097 #define B4800
0xC000 /* 4800 baud */ 01098 #define B9600 0xD000 /* 9600 baud */ 01099 #define B19200 0xE000 /* 19200 baud
/ 01100 #define B38400 0xF000 / 38400 baud */ 01101 01102 /* Optional actions for tcsetattr(). POSIX Sec.
7.2.1.2. */ 01103 #define TCSANOW 1 /* changes take effect immediately */ 01104 #define TCSADRAIN 2 /*
changes take effect after output is done */ 01105 #define TCSAFLUSH 3 /* wait for output to finish and flush input */
01106 01107 /* Queue_selector values for tcflush(). POSIX Sec. 7.2.2.2. */ 01108 #define TCIFLUSH 1 /* flush
accumulated input data */ 01109 #define TCOFLUSH 2 /* flush accumulated output data */ 01110 #define
TCIOFLUSH 3 /* flush accumulated input and output data */ 01111 01112 /* Action values for tcflow(). POSIX Sec.
7.2.2.2. */ 01113 #define TCOOFF 1 /* suspend output */ 01114 #define TCOON 2 /* restart suspended output */
01115 #define TCIOFF 3 /* transmit a STOP character on the line */ 01116 #define TCION 4 /* transmit a START
character on the line */ 01117 01118 /* Function Prototypes. */ 01119 #ifndef _ANSI_H 01120 #include <ansi.h>
01121 #endif 01122 01123 _PROTOTYPE(int tcsendbreak, (int _fildes, int _duration)); 01124 _PROTOTYPE(int
tcdrain, (int _filedes)); 01125 _PROTOTYPE(int tcflush, (int _filedes, int _queue_selector)); 01126 _PROTOTYPE(
int tcflow, (int _filedes, int _action)); 01127 _PROTOTYPE(speed_t cfgetispeed, (const struct termios *_termios_p)
); 01128 _PROTOTYPE(speed_t cfgetospeed, (const struct termios *_termios_p)); 01129 _PROTOTYPE(int
cfsetispeed, (struct termios *_termios_p, speed_t _speed)); 01130 _PROTOTYPE(int cfsetospeed, (struct termios
*_termios_p, speed_t _speed)); 01131 _PROTOTYPE(int tcgetattr, (int _filedes, struct termios *_termios_p)); 01132
_PROTOTYPE(int tcsetattr, \ 01133 (int _filedes, int _opt_actions, const struct termios *_termios_p)); 01134 01135
#define cfgetispeed(termios_p) ((termios_p)->c_ispeed) 01136 #define cfgetospeed(termios_p)
((termios_p)->c_ospeed) 01137 #define cfsetispeed(termios_p, speed) ((termios_p)->c_ispeed = (speed), 0) 01138
#define cfsetospeed(termios_p, speed) ((termios_p)->c_ospeed = (speed), 0) 01139 01140 #ifdef _MINIX 01141 /*
Here are the local extensions to the POSIX standard for Minix. Posix 01142 * conforming programs are not able to
access these, and therefore they are 01143 * only defined when a Minix program is compiled. 01144 */ 01145 01146 /*
Extensions to the termios c_iflag bit map. */ 01147 #define IXANY 0x0800 /* allow any key to continue ouptut */
01148 01149 /* Extensions to the termios c_oflag bit map. They are only active iff 01150 * OPOST is enabled. */
01151 #define ONLCR 0x0002 /* Map NL to CR-NL on output */ 01152 #define XTABS 0x0004 /* Expand tabs to
spaces */ 01153 #define ONOEOT 0x0008 /* discard EOT's (^D) on output) */ 01154

[Page 654]

01155 /* Extensions to the termios c_lflag bit map. */ 01156 #define LFLUSHO 0x0200 /* Flush output. */ 01157
01158 /* Extensions to the c_cc array. */ 01159 #define VREPRINT 11 /* cc_c[VREPRINT] (^R) */ 01160 #define
VLNEXT 12 /* cc_c[VLNEXT] (^V) */ 01161 #define VDISCARD 13 /* cc_c[VDISCARD] (^O) */ 01162 01163 /*
Extensions to baud rate settings. */ 01164 #define B57600 0x0100 /* 57600 baud */ 01165 #define B115200 0x0200

9

9

/* 115200 baud */ 01166 01167 /* These are the default settings used by the kernel and by 'stty sane' */ 01168 01169
#define TCTRL_DEF (CREAD | CS8 | HUPCL) 01170 #define TINPUT_DEF (BRKINT | ICRNL | IXON | IXANY)
01171 #define TOUTPUT_DEF (OPOST | ONLCR) 01172 #define TLOCAL_DEF (ISIG | IEXTEN | ICANON |
ECHO | ECHOE) 01173 #define TSPEED_DEF B9600 01174 01175 #define TEOF_DEF '\4' /* ^D */ 01176 #define
TEOL_DEF _POSIX_VDISABLE 01177 #define TERASE_DEF '\10' /* ^H */ 01178 #define TINTR_DEF '\3' /* ^C
/ 01179 #define TKILL_DEF '\25' / ^U */ 01180 #define TMIN_DEF 1 01181 #define TQUIT_DEF '\34' /* ^\ */
01182 #define TSTART_DEF '\21' /* ^Q */ 01183 #define TSTOP_DEF '\23' /* ^S */ 01184 #define TSUSP_DEF
'\32' /* ^Z */ 01185 #define TTIME_DEF 0 01186 #define TREPRINT_DEF '\22' /* ^R */ 01187 #define
TLNEXT_DEF '\26' /* ^V */ 01188 #define TDISCARD_DEF '\17' /* ^O */ 01189 01190 /* Window size. This
information is stored in the TTY driver but not used. 01191 * This can be used for screen based applications in a
window environment. 01192 * The ioctls TIOCGWINSZ and TIOCSWINSZ can be used to get and set this 01193 *
information. 01194 */ 01195 01196 struct winsize 01197 { 01198 unsigned short ws_row; /* rows, in characters */
01199 unsigned short ws_col; /* columns, in characters */ 01200 unsigned short ws_xpixel; /* horizontal size, pixels
/ 01201 unsigned short ws_ypixel; / vertical size, pixels */ 01202 }; 01203 #endif /* _MINIX */ 01204 01205 #endif
/* _TERMIOS_H */

[Page 655]

++
include/timers.h
++
01300 /* This library provides generic watchdog timer management functionality. 01301 * The functions operate on a
timer queue provided by the caller. Note that 01302 * the timers must use absolute time to allow sorting. The library
provides: 01303 * 01304 * tmrs_settimer: (re)set a new watchdog timer in the timers queue 01305 * tmrs_clrtimer:
remove a timer from both the timers queue 01306 * tmrs_exptimers: check for expired timers and run watchdog
functions 01307 * 01308 * Author: 01309 * Jorrit N. Herder <jnherder@cs.vu.nl> 01310 * Adapted from tmr_settimer
and tmr_clrtimer in src/kernel/clock.c. 01311 * Last modified: September 30, 2004. 01312 */ 01313 01314 #ifndef
_TIMERS_H 01315 #define _TIMERS_H 01316 01317 #include <limits.h> 01318 #include <sys/types.h> 01319
01320 struct timer; 01321 typedef void (*tmr_func_t)(struct timer *tp); 01322 typedef union { int ta_int; long ta_long;
void *ta_ptr; } tmr_arg_t; 01323 01324 /* A timer_t variable must be declare for each distinct timer to be used. 01325
* The timers watchdog function and expiration time are automatically set 01326 * by the library function
tmrs_settimer, but its argument is not. 01327 */ 01328 typedef struct timer 01329 { 01330 struct timer *tmr_next; /*
next in a timer chain */ 01331 clock_t tmr_exp_time; /* expiration time */ 01332 tmr_func_t tmr_func; /* function to
call when expired */ 01333 tmr_arg_t tmr_arg; /* random argument */ 01334 } timer_t; 01335 01336 /* Used when the
timer is not active. */ 01337 #define TMR_NEVER ((clock_t) -1 < 0) ? ((clock_t) LONG_MAX) : ((clock_t) -1)
01338 #undef TMR_NEVER 01339 #define TMR_NEVER ((clock_t) LONG_MAX) 01340 01341 /* These
definitions can be used to set or get data from a timer variable. */ 01342 #define tmr_arg(tp) (&(tp)->tmr_arg) 01343
#define tmr_exp_time(tp) (&(tp)->tmr_exp_time) 01344 01345 /* Timers should be initialized once before they are
being used. Be careful 01346 * not to reinitialize a timer that is in a list of timers, or the chain 01347 * will be broken.
01348 */ 01349 #define tmr_inittimer(tp) (void)((tp)->tmr_exp_time = TMR_NEVER, \ 01350 (tp)->tmr_next =
NULL) 01351 01352 /* The following generic timer management functions are available. They 01353 * can be used to
operate on the lists of timers. Adding a timer to a list 01354 * automatically takes care of removing it.

[Page 656]

01355 */ 01356 _PROTOTYPE(clock_t tmrs_clrtimer, (timer_t **tmrs, timer_t *tp, clock_t *new_head) 01357
_PROTOTYPE(void tmrs_exptimers, (timer_t **tmrs, clock_t now, clock_t *new_head) 01358 _PROTOTYPE(
clock_t tmrs_settimer, (timer_t **tmrs, timer_t *tp, 01359 clock_t exp_time, tmr_func_t watchdog, clock_t
new_head) 01360 01361 #endif / _TIMERS_H */ 01362
++
include/sys/types.h
++
01400 /* The <sys/types.h> header contains important data type definitions. 01401 * It is considered good
programming practice to use these definitions, 01402 * instead of the underlying base type. By convention, all type

10

10

names end 01403 * with _t. 01404 */ 01405 01406 #ifndef _TYPES_H 01407 #define _TYPES_H 01408 01409
#ifndef _ANSI_H 01410 #include <ansi.h> 01411 #endif 01412 01413 /* The type size_t holds all results of the sizeof
operator. At first glance, 01414 * it seems obvious that it should be an unsigned int, but this is not always 01415 * the
case. For example, MINIX-ST (68000) has 32-bit pointers and 16-bit 01416 * integers. When one asks for the size of a
70K struct or array, the result 01417 * requires 17 bits to express, so size_t must be a long type. The type 01418 *
ssize_t is the signed version of size_t. 01419 */ 01420 #ifndef _SIZE_T 01421 #define _SIZE_T 01422 typedef
unsigned int size_t; 01423 #endif 01424 01425 #ifndef _SSIZE_T 01426 #define _SSIZE_T 01427 typedef int ssize_t;
01428 #endif 01429 01430 #ifndef _TIME_T 01431 #define _TIME_T 01432 typedef long time_t; /* time in sec since
1 Jan 1970 0000 GMT */ 01433 #endif 01434 01435 #ifndef _CLOCK_T 01436 #define _CLOCK_T 01437 typedef
long clock_t; /* unit for system accounting */ 01438 #endif 01439 01440 #ifndef _SIGSET_T 01441 #define
_SIGSET_T 01442 typedef unsigned long sigset_t; 01443 #endif 01444

[Page 657]

01445 /* Open Group Base Specifications Issue 6 (not complete) */ 01446 typedef long useconds_t; /* Time in
microseconds */ 01447 01448 /* Types used in disk, inode, etc. data structures. */ 01449 typedef short dev_t; /* holds
(major|minor) device pair */ 01450 typedef char gid_t; /* group id */ 01451 typedef unsigned long ino_t; /* i-node
number (V3 filesystem) */ 01452 typedef unsigned short mode_t; /* file type and permissions bits */ 01453 typedef
short nlink_t; /* number of links to a file */ 01454 typedef unsigned long off_t; /* offset within a file */ 01455 typedef
int pid_t; /* process id (must be signed) */ 01456 typedef short uid_t; /* user id */ 01457 typedef unsigned long
zone_t; /* zone number */ 01458 typedef unsigned long block_t; /* block number */ 01459 typedef unsigned long
bit_t; /* bit number in a bit map */ 01460 typedef unsigned short zone1_t; /* zone number for V1 file systems */ 01461
typedef unsigned short bitchunk_t; /* collection of bits in a bitmap */ 01462 01463 typedef unsigned char u8_t; /* 8 bit
type */ 01464 typedef unsigned short u16_t; /* 16 bit type */ 01465 typedef unsigned long u32_t; /* 32 bit type */
01466 01467 typedef char i8_t; /* 8 bit signed type */ 01468 typedef short i16_t; /* 16 bit signed type */ 01469 typedef
long i32_t; /* 32 bit signed type */ 01470 01471 typedef struct { u32_t _[2]; } u64_t; 01472 01473 /* The following
types are needed because MINIX uses K&R style function 01474 * definitions (for maximum portability). When a
short, such as dev_t, is 01475 * passed to a function with a K&R definition, the compiler automatically 01476 *
promotes it to an int. The prototype must contain an int as the parameter, 01477 * not a short, because an int is what an
old-style function definition 01478 * expects. Thus using dev_t in a prototype would be incorrect. It would be 01479 *
sufficient to just use int instead of dev_t in the prototypes, but Dev_t 01480 * is clearer. 01481 */ 01482 typedef int
Dev_t; 01483 typedef int _mnx_Gid_t; 01484 typedef int Nlink_t; 01485 typedef int _mnx_Uid_t; 01486 typedef int
U8_t; 01487 typedef unsigned long U32_t; 01488 typedef int I8_t; 01489 typedef int I16_t; 01490 typedef long I32_t;
01491 01492 /* ANSI C makes writing down the promotion of unsigned types very messy. When 01493 *
sizeof(short) == sizeof(int), there is no promotion, so the type stays 01494 * unsigned. When the compiler is not ANSI,
there is usually no loss of 01495 * unsignedness, and there are usually no prototypes so the promoted type 01496 *
doesn't matter. The use of types like Ino_t is an attempt to use ints 01497 * (which are not promoted) while providing
information to the reader. 01498 */ 01499 01500 typedef unsigned long Ino_t; 01501 01502 #if _EM_WSIZE == 2
01503 /*typedef unsigned int Ino_t; Ino_t is now 32 bits */ 01504 typedef unsigned int Zone1_t;

[Page 658]

01505 typedef unsigned int Bitchunk_t; 01506 typedef unsigned int U16_t; 01507 typedef unsigned int _mnx_Mode_t;
01508 01509 #else /* _EM_WSIZE == 4, or _EM_WSIZE undefined */ 01510 /*typedef int Ino_t; Ino_t is now 32
bits */ 01511 typedef int Zone1_t; 01512 typedef int Bitchunk_t; 01513 typedef int U16_t; 01514 typedef int
_mnx_Mode_t; 01515 01516 #endif /* _EM_WSIZE == 2, etc */ 01517 01518 /* Signal handler type, e.g. SIG_IGN */
01519 typedef void _PROTOTYPE((*sighandler_t), (int)); 01520 01521 /* Compatibility with other systems */
01522 typedef unsigned char u_char; 01523 typedef unsigned short u_short; 01524 typedef unsigned int u_int; 01525
typedef unsigned long u_long; 01526 typedef char *caddr_t; 01527 01528 #endif /* _TYPES_H */
++
include/sys/sigcontext.h
++
01600 #ifndef _SIGCONTEXT_H 01601 #define _SIGCONTEXT_H 01602 01603 /* The sigcontext structure is used
by the sigreturn(2) system call. 01604 * sigreturn() is seldom called by user programs, but it is used internally 01605 *

11

11

by the signal catching mechanism. 01606 */ 01607 01608 #ifndef _ANSI_H 01609 #include <ansi.h> 01610 #endif
01611 01612 #ifndef _MINIX_SYS_CONFIG_H 01613 #include <minix/sys_config.h> 01614 #endif 01615 01616
#if !defined(_MINIX_CHIP) 01617 #include "error, configuration is not known" 01618 #endif 01619 01620 /* The
following structure should match the stackframe_s structure used 01621 * by the kernel's context switching code.
Floating point registers should 01622 * be added in a different struct. 01623 */ 01624 struct sigregs { 01625 short
sr_gs; 01626 short sr_fs; 01627 short sr_es; 01628 short sr_ds; 01629 int sr_di;

[Page 659]

01630 int sr_si; 01631 int sr_bp; 01632 int sr_st; /* stack top -- used in kernel */ 01633 int sr_bx; 01634 int sr_dx;
01635 int sr_cx; 01636 int sr_retreg; 01637 int sr_retadr; /* return address to caller of save -- used 01638 * in kernel */
01639 int sr_pc; 01640 int sr_cs; 01641 int sr_psw; 01642 int sr_sp; 01643 int sr_ss; 01644 }; 01645 01646 struct
sigframe { /* stack frame created for signalled process */ 01647 _PROTOTYPE(void (*sf_retadr), (void)); 01648 int
sf_signo; 01649 int sf_code; 01650 struct sigcontext *sf_scp; 01651 int sf_fp; 01652 _PROTOTYPE(void
(*sf_retadr2), (void)); 01653 struct sigcontext *sf_scpcopy; 01654 }; 01655 01656 struct sigcontext { 01657 int
sc_flags; /* sigstack state to restore */ 01658 long sc_mask; /* signal mask to restore */ 01659 struct sigregs sc_regs;
/* register set to restore */ 01660 }; 01661 01662 #define sc_gs sc_regs.sr_gs 01663 #define sc_fs sc_regs.sr_fs 01664
#define sc_es sc_regs.sr_es 01665 #define sc_ds sc_regs.sr_ds 01666 #define sc_di sc_regs.sr_di 01667 #define sc_si
sc_regs.sr_si 01668 #define sc_fp sc_regs.sr_bp 01669 #define sc_st sc_regs.sr_st /* stack top -- used in kernel */
01670 #define sc_bx sc_regs.sr_bx 01671 #define sc_dx sc_regs.sr_dx 01672 #define sc_cx sc_regs.sr_cx 01673
#define sc_retreg sc_regs.sr_retreg 01674 #define sc_retadr sc_regs.sr_retadr /* return address to caller of 01675 save
-- used in kernel */ 01676 #define sc_pc sc_regs.sr_pc 01677 #define sc_cs sc_regs.sr_cs 01678 #define sc_psw
sc_regs.sr_psw 01679 #define sc_sp sc_regs.sr_sp 01680 #define sc_ss sc_regs.sr_ss 01681 01682 /* Values for
sc_flags. Must agree with <minix/jmp_buf.h>. */ 01683 #define SC_SIGCONTEXT 2 /* nonzero when signal context
is included */ 01684 #define SC_NOREGLOCALS 4 /* nonzero when registers are not to be 01685 saved and restored
*/ 01686 01687 _PROTOTYPE(int sigreturn, (struct sigcontext *_scp)); 01688 01689 #endif /* _SIGCONTEXT_H
*/

[Page 660]

++
include/sys/stat.h
++
01700 /* The <sys/stat.h> header defines a struct that is used in the stat() and 01701 * fstat functions. The information
in this struct comes from the i-node of 01702 * some file. These calls are the only approved way to inspect i-nodes.
01703 */ 01704 01705 #ifndef _STAT_H 01706 #define _STAT_H 01707 01708 #ifndef _TYPES_H 01709 #include
<sys/types.h> 01710 #endif 01711 01712 struct stat { 01713 dev_t st_dev; /* major/minor device number */ 01714
ino_t st_ino; /* i-node number */ 01715 mode_t st_mode; /* file mode, protection bits, etc. */ 01716 short int st_nlink;
/* # links; TEMPORARY HACK: should be nlink_t*/ 01717 uid_t st_uid; /* uid of the file's owner */ 01718 short int
st_gid; /* gid; TEMPORARY HACK: should be gid_t */ 01719 dev_t st_rdev; 01720 off_t st_size; /* file size */
01721 time_t st_atime; /* time of last access */ 01722 time_t st_mtime; /* time of last data modification */ 01723
time_t st_ctime; /* time of last file status change */ 01724 }; 01725 01726 /* Traditional mask definitions for st_mode.
/ 01727 / The ugly casts on only some of the definitions are to avoid suprising sign 01728 * extensions such as
S_IFREG != (mode_t) S_IFREG when ints are 32 bits. 01729 */ 01730 #define S_IFMT ((mode_t) 0170000) /* type
of file */ 01731 #define S_IFLNK ((mode_t) 0120000) /* symbolic link, not implemented */ 01732 #define S_IFREG
((mode_t) 0100000) /* regular */ 01733 #define S_IFBLK 0060000 /* block special */ 01734 #define S_IFDIR
0040000 /* directory */ 01735 #define S_IFCHR 0020000 /* character special */ 01736 #define S_IFIFO 0010000 /*
this is a FIFO */ 01737 #define S_ISUID 0004000 /* set user id on execution */ 01738 #define S_ISGID 0002000 /*
set group id on execution */ 01739 /* next is reserved for future use */ 01740 #define S_ISVTX 01000 /* save
swapped text even after use */ 01741 01742 /* POSIX masks for st_mode. */ 01743 #define S_IRWXU 00700 /*
owner: rwx------ */ 01744 #define S_IRUSR 00400 /* owner: r-------- */ 01745 #define S_IWUSR 00200 /* owner:
-w------- */ 01746 #define S_IXUSR 00100 /* owner: --x------ */ 01747 01748 #define S_IRWXG 00070 /* group:
---rwx--- */ 01749 #define S_IRGRP 00040 /* group: ---r----- */ 01750 #define S_IWGRP 00020 /* group: ----w---- */
01751 #define S_IXGRP 00010 /* group: -----x--- */ 01752 01753 #define S_IRWXO 00007 /* others: ------rwx */

12

12

01754 #define S_IROTH 00004 /* others: ------r-- */

[Page 661]

01755 #define S_IWOTH 00002 /* others: -------w- */ 01756 #define S_IXOTH 00001 /* others: --------x */ 01757
01758 /* The following macros test st_mode (from POSIX Sec. 5.6.1.1). */ 01759 #define S_ISREG(m) (((m) &
S_IFMT) == S_IFREG) /* is a reg file */ 01760 #define S_ISDIR(m) (((m) & S_IFMT) == S_IFDIR) /* is a directory
/ 01761 #define S_ISCHR(m) (((m) & S_IFMT) == S_IFCHR) / is a char spec */ 01762 #define S_ISBLK(m) (((m)
& S_IFMT) == S_IFBLK) /* is a block spec */ 01763 #define S_ISFIFO(m) (((m) & S_IFMT) == S_IFIFO) /* is a
pipe/FIFO */ 01764 #define S_ISLNK(m) (((m) & S_IFMT) == S_IFLNK) /* is a sym link */ 01765 01766 /*
Function Prototypes. */ 01767 _PROTOTYPE(int chmod, (const char *_path, _mnx_Mode_t _mode)); 01768
_PROTOTYPE(int fstat, (int _fildes, struct stat *_buf)); 01769 _PROTOTYPE(int mkdir, (const char *_path,
_mnx_Mode_t _mode)); 01770 _PROTOTYPE(int mkfifo, (const char *_path, _mnx_Mode_t _mode)); 01771
_PROTOTYPE(int stat, (const char *_path, struct stat *_buf)); 01772 _PROTOTYPE(mode_t umask,
(_mnx_Mode_t _cmask)); 01773 01774 /* Open Group Base Specifications Issue 6 (not complete) */ 01775
_PROTOTYPE(int lstat, (const char *_path, struct stat *_buf)); 01776 01777 #endif /* _STAT_H */
++
include/sys/dir.h
++
01800 /* The <dir.h> header gives the layout of a directory. */ 01801 01802 #ifndef _DIR_H 01803 #define _DIR_H
01804 01805 #include <sys/types.h> 01806 01807 #define DIRBLKSIZ 512 /* size of directory block */ 01808 01809
#ifndef DIRSIZ 01810 #define DIRSIZ 60 01811 #endif 01812 01813 struct direct { 01814 ino_t d_ino; 01815 char
d_name[DIRSIZ]; 01816 }; 01817 01818 #endif /* _DIR_H */
++
include/sys/wait.h
++
01900 /* The <sys/wait.h> header contains macros related to wait(). The value 01901 * returned by wait() and
waitpid() depends on whether the process 01902 * terminated by an exit() call, was killed by a signal, or was stopped
01903 * due to job control, as follows: 01904 *

[Page 662]

01905 * High byte Low byte 01906 * +---------------------+ 01907 * exit(status) | status | 0 | 01908 *
+---------------------+ 01909 * killed by signal | 0 | signal | 01910 * +---------------------+ 01911 * stopped (job control) |
signal | 0177 | 01912 * +---------------------+ 01913 */ 01914 01915 #ifndef _WAIT_H 01916 #define _WAIT_H 01917
01918 #ifndef _TYPES_H 01919 #include <sys/types.h> 01920 #endif 01921 01922 #define _LOW(v) ((v) & 0377)
01923 #define _HIGH(v) (((v) >> 8) & 0377) 01924 01925 #define WNOHANG 1 /* do not wait for child to exit */
01926 #define WUNTRACED 2 /* for job control; not implemented */ 01927 01928 #define WIFEXITED(s)
(_LOW(s) == 0) /* normal exit */ 01929 #define WEXITSTATUS(s) (_HIGH(s)) /* exit status */ 01930 #define
WTERMSIG(s) (_LOW(s) & 0177) /* sig value */ 01931 #define WIFSIGNALED(s) (((unsigned int)(s)-1 & 0xFFFF)
< 0xFF) /* signaled */ 01932 #define WIFSTOPPED(s) (_LOW(s) == 0177) /* stopped */ 01933 #define
WSTOPSIG(s) (_HIGH(s) & 0377) /* stop signal */ 01934 01935 /* Function Prototypes. */ 01936 _PROTOTYPE(
pid_t wait, (int *_stat_loc)); 01937 _PROTOTYPE(pid_t waitpid, (pid_t _pid, int *_stat_loc, int _options)); 01938
01939 #endif /* _WAIT_H */
++
include/sys/ioctl.h
++
02000 /* sys/ioctl.h - All ioctl() command codes. Author: Kees J. Bot 02001 * 23 Nov 2002 02002 * 02003 * This
header file includes all other ioctl command code headers. 02004 */ 02005 02006 #ifndef _S_IOCTL_H 02007 #define
_S_IOCTL_H 02008 02009 /* A driver that uses ioctls claims a character for its series of commands. 02010 * For
instance: #define TCGETS _IOR('T', 8, struct termios) 02011 * This is a terminal ioctl that uses the character 'T'. The
character(s) 02012 * used in each header file are shown in the comment following. 02013 */ 02014 02015 #include
<sys/ioc_tty.h> /* 'T' 't' 'k' */ 02016 #include <sys/ioc_disk.h> /* 'd' */ 02017 #include <sys/ioc_memory.h> /* 'm' */
02018 #include <sys/ioc_cmos.h> /* 'c' */ 02019

13

13

[Page 663]

02020 #endif /* _S_IOCTL_H */
++
include/sys/ioc_disk.h
++
02100 /* sys/ioc_disk.h - Disk ioctl() command codes. Author: Kees J. Bot 02101 * 23 Nov 2002 02102 * 02103 */
02104 02105 #ifndef _S_I_DISK_H 02106 #define _S_I_DISK_H 02107 02108 #include <minix/ioctl.h> 02109
02110 #define DIOCSETP _IOW('d', 3, struct partition) 02111 #define DIOCGETP _IOR('d', 4, struct partition) 02112
#define DIOCEJECT _IO ('d', 5) 02113 #define DIOCTIMEOUT _IOW('d', 6, int) 02114 #define DIOCOPENCT
_IOR('d', 7, int) 02115 02116 #endif /* _S_I_DISK_H */
++
include/minix/ioctl.h
++
02200 /* minix/ioctl.h - Ioctl helper definitions. Author: Kees J. Bot 02201 * 23 Nov 2002 02202 * 02203 * This file
is included by every header file that defines ioctl codes. 02204 */ 02205 02206 #ifndef _M_IOCTL_H 02207 #define
_M_IOCTL_H 02208 02209 #ifndef _TYPES_H 02210 #include <sys/types.h> 02211 #endif 02212 02213 #if
_EM_WSIZE >= 4 02214 /* Ioctls have the command encoded in the low-order word, and the size 02215 * of the
parameter in the high-order word. The 3 high bits of the high- 02216 * order word are used to encode the in/out/void
status of the parameter. 02217 */ 02218 #define _IOCPARM_MASK 0x1FFF 02219 #define _IOC_VOID
0x20000000 02220 #define _IOCTYPE_MASK 0xFFFF 02221 #define _IOC_IN 0x40000000 02222 #define
_IOC_OUT 0x80000000 02223 #define _IOC_INOUT (_IOC_IN | _IOC_OUT) 02224

[Page 664]

02225 #define _IO(x,y) ((x << 8) | y | _IOC_VOID) 02226 #define _IOR(x,y,t) ((x << 8) | y | ((sizeof(t) &
_IOCPARM_MASK) << 16) |\ 02227 _IOC_OUT) 02228 #define _IOW(x,y,t) ((x << 8) | y | ((sizeof(t) &
_IOCPARM_MASK) << 16) |\ 02229 _IOC_IN) 02230 #define _IORW(x,y,t) ((x << 8) | y | ((sizeof(t) &
_IOCPARM_MASK) << 16) |\ 02231 _IOC_INOUT) 02232 #else 02233 /* No fancy encoding on a 16-bit machine.
*/ 02234 02235 #define _IO(x,y) ((x << 8) | y) 02236 #define _IOR(x,y,t) _IO(x,y) 02237 #define _IOW(x,y,t)
_IO(x,y) 02238 #define _IORW(x,y,t) _IO(x,y) 02239 #endif 02240 02241 int ioctl(int _fd, int _request, void *_data);
02242 02243 #endif /* _M_IOCTL_H */
++
include/minix/config.h
++
02300 #ifndef _CONFIG_H 02301 #define _CONFIG_H 02302 02303 /* Minix release and version numbers. */
02304 #define OS_RELEASE "3" 02305 #define OS_VERSION "1.0" 02306 02307 /* This file sets configuration
parameters for the MINIX kernel, FS, and PM. 02308 * It is divided up into two main sections. The first section
contains 02309 * user-settable parameters. In the second section, various internal system 02310 * parameters are set
based on the user-settable parameters. 02311 * 02312 * Parts of config.h have been moved to sys_config.h, which can
be included 02313 * by other include files that wish to get at the configuration data, but 02314 * don't want to pollute
the users namespace. Some editable values have 02315 * gone there. 02316 * 02317 * This is a modified version of
config.h for compiling a small Minix system 02318 * with only the options described in the text, Operating Systems
Design and 02319 * Implementation, 3rd edition. See the version of config.h in the full 02320 * source code directory
for information on alternatives omitted here. 02321 */ 02322 02323 /* The MACHINE (called _MINIX_MACHINE)
setting can be done 02324 * in <minix/machine.h>. 02325 */ 02326 #include <minix/sys_config.h> 02327 02328
#define MACHINE _MINIX_MACHINE 02329 02330 #define IBM_PC _MACHINE_IBM_PC 02331 #define
SUN_4 _MACHINE_SUN_4 02332 #define SUN_4_60 _MACHINE_SUN_4_60 02333 #define ATARI
_MACHINE_ATARI 02334 #define MACINTOSH _MACHINE_MACINTOSH

[Page 665]

14

14

02335 02336 /* Number of slots in the process table for non-kernel processes. The number 02337 * of system
processes defines how many processes with special privileges 02338 * there can be. User processes share the
same properties and count for one. 02339 * 02340 * These can be changed in sys_config.h. 02341 */ 02342
#define NR_PROCS _NR_PROCS 02343 #define NR_SYS_PROCS _NR_SYS_PROCS 02344 02345 #define
NR_BUFS 128 02346 #define NR_BUF_HASH 128 02347 02348 /* Number of controller tasks (/dev/cN
device classes). */ 02349 #define NR_CTRLRS 2 02350 02351 /* Enable or disable the second level file system
cache on the RAM disk. */ 02352 #define ENABLE_CACHE2 0 02353 02354 /* Enable or disable swapping
processes to disk. */ 02355 #define ENABLE_SWAP 0 02356 02357 /* Include or exclude an image of
/dev/boot in the boot image. 02358 * Please update the makefile in /usr/src/tools/ as well. 02359 */ 02360
#define ENABLE_BOOTDEV 0 /* load image of /dev/boot at boot time */ 02361 02362 /* DMA_SECTORS
may be increased to speed up DMA based drivers. */ 02363 #define DMA_SECTORS 1 /* DMA buffer size
(must be >= 1) */ 02364 02365 /* Include or exclude backwards compatibility code. */ 02366 #define
ENABLE_BINCOMPAT 0 /* for binaries using obsolete calls */ 02367 #define ENABLE_SRCCOMPAT 0 /*
for sources using obsolete calls */ 02368 02369 /* Which process should receive diagnostics from the kernel
and system? 02370 * Directly sending it to TTY only displays the output. Sending it to the 02371 * log driver
will cause the diagnostics to be buffered and displayed. 02372 */ 02373 #define OUTPUT_PROC_NR
LOG_PROC_NR /* TTY_PROC_NR or LOG_PROC_NR */ 02374 02375 /* NR_CONS, NR_RS_LINES, and
NR_PTYS determine the number of terminals the 02376 * system can handle. 02377 */ 02378 #define
NR_CONS 4 /* # system consoles (1 to 8) */ 02379 #define NR_RS_LINES 0 /* # rs232 terminals (0 to 4) */
02380 #define NR_PTYS 0 /* # pseudo terminals (0 to 64) */ 02381 02382
/*===*
02383 * There are no user-settable parameters after this line * 02384
===/
02385 /* Set the CHIP type based on the machine selected. The symbol CHIP is actually 02386 * indicative of
more than just the CPU. For example, machines for which 02387 * CHIP == INTEL are expected to have
8259A interrrupt controllers and the 02388 * other properties of IBM PC/XT/AT/386 types machines in general.
/ 02389 #define INTEL _CHIP_INTEL / CHIP type for PC, XT, AT, 386 and clones */ 02390 #define
M68000 _CHIP_M68000 /* CHIP type for Atari, Amiga, Macintosh */ 02391 #define SPARC _CHIP_SPARC
/* CHIP type for SUN-4 (e.g. SPARCstation) */ 02392 02393 /* Set the FP_FORMAT type based on the
machine selected, either hw or sw */ 02394 #define FP_NONE _FP_NONE /* no floating point support */

15

15

[Page 666]

02395 #define FP_IEEE _FP_IEEE /* conform IEEE floating point standard */ 02396 02397 /* _MINIX_CHIP is
defined in sys_config.h. */ 02398 #define CHIP _MINIX_CHIP 02399 02400 /* _MINIX_FP_FORMAT is defined in
sys_config.h. */ 02401 #define FP_FORMAT _MINIX_FP_FORMAT 02402 02403 /* _ASKDEV and _FASTLOAD
are defined in sys_config.h. */ 02404 #define ASKDEV _ASKDEV 02405 #define FASTLOAD _FASTLOAD 02406
02407 #endif /* _CONFIG_H */
++
include/minix/sys_config.h
++
02500 #ifndef _MINIX_SYS_CONFIG_H 02501 #define _MINIX_SYS_CONFIG_H 1 02502 02503 /* This is a
modified sys_config.h for compiling a small Minix system 02504 * with only the options described in the text,
Operating Systems Design and 02505 * Implementation, 3rd edition. See the sys_config.h in the full 02506 * source
code directory for information on alternatives omitted here. 02507 */ 02508 02509
/*===* 02510 *
This section contains user-settable parameters * 02511
===/ 02512
#define _MINIX_MACHINE _MACHINE_IBM_PC 02513 02514 #define _MACHINE_IBM_PC 1 /* any 8088 or
80x86-based system */ 02515 02516 /* Word size in bytes (a constant equal to sizeof(int)). */ 02517 #if __ACK__ ||
__GNUC__ 02518 #define _WORD_SIZE _EM_WSIZE 02519 #define _PTR_SIZE _EM_WSIZE 02520 #endif
02521 02522 #define _NR_PROCS 64 02523 #define _NR_SYS_PROCS 32 02524 02525 /* Set the CHIP type based
on the machine selected. The symbol CHIP is actually 02526 * indicative of more than just the CPU. For example,
machines for which 02527 * CHIP == INTEL are expected to have 8259A interrrupt controllers and the 02528 * other
properties of IBM PC/XT/AT/386 types machines in general. */ 02529 #define _CHIP_INTEL 1 /* CHIP type for PC,
XT, AT, 386 and clones */ 02530 02531 /* Set the FP_FORMAT type based on the machine selected, either hw or sw
/ 02532 #define _FP_NONE 0 / no floating point support */ 02533 #define _FP_IEEE 1 /* conform IEEE floating
point standard */ 02534 02535 #define _MINIX_CHIP _CHIP_INTEL 02536 02537 #define _MINIX_FP_FORMAT
_FP_NONE 02538 02539 #ifndef _MINIX_MACHINE

[Page 667]

02540 error "In <minix/sys_config.h> please define _MINIX_MACHINE" 02541 #endif 02542 02543 #ifndef
_MINIX_CHIP 02544 error "In <minix/sys_config.h> please define _MINIX_MACHINE to have a legal value"
02545 #endif 02546 02547 #if (_MINIX_MACHINE == 0) 02548 error "_MINIX_MACHINE has incorrect value (0)"
02549 #endif 02550 02551 #endif /* _MINIX_SYS_CONFIG_H */ 02552 02553
++
include/minix/const.h
++
02600 /* Copyright (C) 2001 by Prentice-Hall, Inc. See the copyright notice in 02601 * the file /usr/src/LICENSE.
02602 */ 02603 02604 #ifndef CHIP 02605 #error CHIP is not defined 02606 #endif 02607 02608 #define EXTERN
extern /* used in *.h files */ 02609 #define PRIVATE static /* PRIVATE x limits the scope of x */ 02610 #define
PUBLIC /* PUBLIC is the opposite of PRIVATE */ 02611 #define FORWARD static /* some compilers require this
to be 'static'*/ 02612 02613 #define TRUE 1 /* used for turning integers into Booleans */ 02614 #define FALSE 0 /*
used for turning integers into Booleans */ 02615 02616 #define HZ 60 /* clock freq (software settable on IBM-PC) */
02617 02618 #define SUPER_USER (uid_t) 0 /* uid_t of superuser */ 02619 02620 /* Devices. */ 02621 #define
MAJOR 8 /* major device = (dev>>MAJOR) & 0377 */ 02622 #define MINOR 0 /* minor device = (dev>>MINOR)
& 0377 */ 02623 02624 #define NULL ((void *)0) /* null pointer */ 02625 #define CPVEC_NR 16 /* max # of entries
in a SYS_VCOPY request */ 02626 #define CPVVEC_NR 64 /* max # of entries in a SYS_VCOPY request */ 02627
#define NR_IOREQS MIN(NR_BUFS, 64) 02628 /* maximum number of entries in an iorequest */ 02629 02630 /*
Message passing constants. */ 02631 #define MESS_SIZE (sizeof(message)) /* might need usizeof from FS here */
02632 #define NIL_MESS ((message *) 0) /* null pointer */ 02633 02634 /* Memory related constants. */ 02635
#define SEGMENT_TYPE 0xFF00 /* bit mask to get segment type */ 02636 #define SEGMENT_INDEX 0x00FF /*
bit mask to get segment index */ 02637 02638 #define LOCAL_SEG 0x0000 /* flags indicating local memory

16

16

segment */ 02639 #define NR_LOCAL_SEGS 3 /* # local segments per process (fixed) */

[Page 668]

02640 #define T 0 /* proc[i].mem_map[T] is for text */ 02641 #define D 1 /* proc[i].mem_map[D] is for data */
02642 #define S 2 /* proc[i].mem_map[S] is for stack */ 02643 02644 #define REMOTE_SEG 0x0100 /* flags
indicating remote memory segment */ 02645 #define NR_REMOTE_SEGS 3 /* # remote memory regions (variable)
/ 02646 02647 #define BIOS_SEG 0x0200 / flags indicating BIOS memory segment */ 02648 #define
NR_BIOS_SEGS 3 /* # BIOS memory regions (variable) */ 02649 02650 #define PHYS_SEG 0x0400 /* flag
indicating entire physical memory */ 02651 02652 /* Labels used to disable code sections for different reasons. */
02653 #define DEAD_CODE 0 /* unused code in normal configuration */ 02654 #define FUTURE_CODE 0 /* new
code to be activated + tested later */ 02655 #define TEMP_CODE 1 /* active code to be removed later */ 02656 02657
/* Process name length in the PM process table, including '\0'. */ 02658 #define PROC_NAME_LEN 16 02659 02660
/* Miscellaneous */ 02661 #define BYTE 0377 /* mask for 8 bits */ 02662 #define READING 0 /* copy data to user
/ 02663 #define WRITING 1 / copy data from user */ 02664 #define NO_NUM 0x8000 /* used as numerical
argument to panic() */ 02665 #define NIL_PTR (char *) 0 /* generally useful expression */ 02666 #define
HAVE_SCATTERED_IO 1 /* scattered I/O is now standard */ 02667 02668 /* Macros. */ 02669 #define MAX(a, b)
((a) > (b) ? (a) : (b)) 02670 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 02671 02672 /* Memory is allocated in clicks. */
02673 #if (CHIP == INTEL) 02674 #define CLICK_SIZE 1024 /* unit in which memory is allocated */ 02675 #define
CLICK_SHIFT 10 /* log2 of CLICK_SIZE */ 02676 #endif 02677 02678 #if (CHIP == SPARC) || (CHIP ==
M68000) 02679 #define CLICK_SIZE 4096 /* unit in which memory is allocated */ 02680 #define CLICK_SHIFT 12
/* log2 of CLICK_SIZE */ 02681 #endif 02682 02683 /* Click to byte conversions (and vice versa). */ 02684 #define
HCLICK_SHIFT 4 /* log2 of HCLICK_SIZE */ 02685 #define HCLICK_SIZE 16 /* hardware segment conversion
magic */ 02686 #if CLICK_SIZE >= HCLICK_SIZE 02687 #define click_to_hclick(n) ((n) << (CLICK_SHIFT -
HCLICK_SHIFT)) 02688 #else 02689 #define click_to_hclick(n) ((n) >> (HCLICK_SHIFT - CLICK_SHIFT)) 02690
#endif 02691 #define hclick_to_physb(n) ((phys_bytes) (n) << HCLICK_SHIFT) 02692 #define physb_to_hclick(n)
((n) >> HCLICK_SHIFT) 02693 02694 #define ABS -999 /* this process means absolute memory */ 02695 02696 /*
Flag bits for i_mode in the inode. */ 02697 #define I_TYPE 0170000 /* this field gives inode type */ 02698 #define
I_REGULAR 0100000 /* regular file, not dir or special */ 02699 #define I_BLOCK_SPECIAL 0060000 /* block
special file */

[Page 669]

02700 #define I_DIRECTORY 0040000 /* file is a directory */ 02701 #define I_CHAR_SPECIAL 0020000 /*
character special file */ 02702 #define I_NAMED_PIPE 0010000 /* named pipe (FIFO) */ 02703 #define
I_SET_UID_BIT 0004000 /* set effective uid_t on exec */ 02704 #define I_SET_GID_BIT 0002000 /* set effective
gid_t on exec */ 02705 #define ALL_MODES 0006777 /* all bits for user, group and others */ 02706 #define
RWX_MODES 0000777 /* mode bits for RWX only */ 02707 #define R_BIT 0000004 /* Rwx protection bit */ 02708
#define W_BIT 0000002 /* rWx protection bit */ 02709 #define X_BIT 0000001 /* rwX protection bit */ 02710
#define I_NOT_ALLOC 0000000 /* this inode is free */ 02711 02712 /* Flag used only in flags argument of
dev_open. */ 02713 #define RO_BIT 0200000 /* Open device readonly; fail if writable. */ 02714 02715 /* Some
limits. */ 02716 #define MAX_BLOCK_NR ((block_t) 077777777) /* largest block number */ 02717 #define
HIGHEST_ZONE ((zone_t) 077777777) /* largest zone number */ 02718 #define MAX_INODE_NR ((ino_t)
037777777777) /* largest inode number */ 02719 #define MAX_FILE_POS ((off_t) 037777777777) /* largest legal
file offset */ 02720 02721 #define NO_BLOCK ((block_t) 0) /* absence of a block number */ 02722 #define
NO_ENTRY ((ino_t) 0) /* absence of a dir entry */ 02723 #define NO_ZONE ((zone_t) 0) /* absence of a zone
number */ 02724 #define NO_DEV ((dev_t) 0) /* absence of a device numb */
++
include/minix/type.h
++
02800 #ifndef _TYPE_H 02801 #define _TYPE_H 02802 02803 #ifndef _MINIX_SYS_CONFIG_H 02804 #include
<minix/sys_config.h> 02805 #endif 02806 02807 #ifndef _TYPES_H 02808 #include <sys/types.h> 02809 #endif
02810 02811 /* Type definitions. */ 02812 typedef unsigned int vir_clicks; /* virtual addr/length in clicks */ 02813
typedef unsigned long phys_bytes; /* physical addr/length in bytes */ 02814 typedef unsigned int phys_clicks; /*

17

17

physical addr/length in clicks */ 02815 02816 #if (_MINIX_CHIP == _CHIP_INTEL) 02817 typedef unsigned int
vir_bytes; /* virtual addresses and lengths in bytes */ 02818 #endif 02819 02820 #if (_MINIX_CHIP ==
_CHIP_M68000) 02821 typedef unsigned long vir_bytes;/* virtual addresses and lengths in bytes */ 02822 #endif
02823 02824 #if (_MINIX_CHIP == _CHIP_SPARC) 02825 typedef unsigned long vir_bytes;/* virtual addresses and
lengths in bytes */ 02826 #endif 02827 02828 /* Memory map for local text, stack, data segments. */ 02829 struct
mem_map {

[Page 670]

02830 vir_clicks mem_vir; /* virtual address */ 02831 phys_clicks mem_phys; /* physical address */ 02832 vir_clicks
mem_len; /* length */ 02833 }; 02834 02835 /* Memory map for remote memory areas, e.g., for the RAM disk. */
02836 struct far_mem { 02837 int in_use; /* entry in use, unless zero */ 02838 phys_clicks mem_phys; /* physical
address */ 02839 vir_clicks mem_len; /* length */ 02840 }; 02841 02842 /* Structure for virtual copying by means of
a vector with requests. */ 02843 struct vir_addr { 02844 int proc_nr; 02845 int segment; 02846 vir_bytes offset; 02847
}; 02848 02849 #define phys_cp_req vir_cp_req 02850 struct vir_cp_req { 02851 struct vir_addr src; 02852 struct
vir_addr dst; 02853 phys_bytes count; 02854 }; 02855 02856 typedef struct { 02857 vir_bytes iov_addr; /* address of
an I/O buffer */ 02858 vir_bytes iov_size; /* sizeof an I/O buffer */ 02859 } iovec_t; 02860 02861 /* PM passes the
address of a structure of this type to KERNEL when 02862 * sys_sendsig() is invoked as part of the signal catching
mechanism. 02863 * The structure contain all the information that KERNEL needs to build 02864 * the signal stack.
02865 */ 02866 struct sigmsg { 02867 int sm_signo; /* signal number being caught */ 02868 unsigned long sm_mask;
/* mask to restore when handler returns */ 02869 vir_bytes sm_sighandler; /* address of handler */ 02870 vir_bytes
sm_sigreturn; /* address of _sigreturn in C library */ 02871 vir_bytes sm_stkptr; /* user stack pointer */ 02872 };
02873 02874 /* This is used to obtain system information through SYS_GETINFO. */ 02875 struct kinfo { 02876
phys_bytes code_base; /* base of kernel code */ 02877 phys_bytes code_size; 02878 phys_bytes data_base; /* base of
kernel data */ 02879 phys_bytes data_size; 02880 vir_bytes proc_addr; /* virtual address of process table */ 02881
phys_bytes kmem_base; /* kernel memory layout (/dev/kmem) */ 02882 phys_bytes kmem_size; 02883 phys_bytes
bootdev_base; /* boot device from boot image (/dev/boot) */ 02884 phys_bytes bootdev_size; 02885 phys_bytes
bootdev_mem; 02886 phys_bytes params_base; /* parameters passed by boot monitor */ 02887 phys_bytes
params_size; 02888 int nr_procs; /* number of user processes */ 02889 int nr_tasks; /* number of kernel tasks */

[Page 671]

02890 char release[6]; /* kernel release number */ 02891 char version[6]; /* kernel version number */ 02892 int
relocking; /* relocking check (for debugging) */ 02893 }; 02894 02895 struct machine { 02896 int pc_at; 02897 int
ps_mca; 02898 int processor; 02899 int protected; 02900 int vdu_ega; 02901 int vdu_vga; 02902 }; 02903 02904
#endif /* _TYPE_H */
++
include/minix/ipc.h
++
03000 #ifndef _IPC_H 03001 #define _IPC_H 03002 03003
/*==* 03004 *
Types relating to messages. * 03005
==/ 03006
03007 #define M1 1 03008 #define M3 3 03009 #define M4 4 03010 #define M3_STRING 14 03011 03012 typedef
struct {int m1i1, m1i2, m1i3; char *m1p1, *m1p2, *m1p3;} mess_1; 03013 typedef struct {int m2i1, m2i2, m2i3; long
m2l1, m2l2; char *m2p1;} mess_2; 03014 typedef struct {int m3i1, m3i2; char *m3p1; char m3ca1[M3_STRING];}
mess_3; 03015 typedef struct {long m4l1, m4l2, m4l3, m4l4, m4l5;} mess_4; 03016 typedef struct {short m5c1, m5c2;
int m5i1, m5i2; long m5l1, m5l2, m5l3;}mess_5; 03017 typedef struct {int m7i1, m7i2, m7i3, m7i4; char *m7p1,
*m7p2;} mess_7; 03018 typedef struct {int m8i1, m8i2; char *m8p1, *m8p2, *m8p3, *m8p4;} mess_8; 03019 03020
typedef struct { 03021 int m_source; /* who sent the message */ 03022 int m_type; /* what kind of message is it */
03023 union { 03024 mess_1 m_m1; 03025 mess_2 m_m2; 03026 mess_3 m_m3; 03027 mess_4 m_m4; 03028
mess_5 m_m5; 03029 mess_7 m_m7; 03030 mess_8 m_m8; 03031 } m_u; 03032 } message; 03033 03034 /* The
following defines provide names for useful members. */ 03035 #define m1_i1 m_u.m_m1.m1i1 03036 #define m1_i2
m_u.m_m1.m1i2 03037 #define m1_i3 m_u.m_m1.m1i3 03038 #define m1_p1 m_u.m_m1.m1p1 03039 #define

18

18

m1_p2 m_u.m_m1.m1p2

[Page 672]

03040 #define m1_p3 m_u.m_m1.m1p3 03041 03042 #define m2_i1 m_u.m_m2.m2i1 03043 #define m2_i2
m_u.m_m2.m2i2 03044 #define m2_i3 m_u.m_m2.m2i3 03045 #define m2_l1 m_u.m_m2.m2l1 03046 #define m2_l2
m_u.m_m2.m2l2 03047 #define m2_p1 m_u.m_m2.m2p1 03048 03049 #define m3_i1 m_u.m_m3.m3i1 03050
#define m3_i2 m_u.m_m3.m3i2 03051 #define m3_p1 m_u.m_m3.m3p1 03052 #define m3_ca1 m_u.m_m3.m3ca1
03053 03054 #define m4_l1 m_u.m_m4.m4l1 03055 #define m4_l2 m_u.m_m4.m4l2 03056 #define m4_l3
m_u.m_m4.m4l3 03057 #define m4_l4 m_u.m_m4.m4l4 03058 #define m4_l5 m_u.m_m4.m4l5 03059 03060 #define
m5_c1 m_u.m_m5.m5c1 03061 #define m5_c2 m_u.m_m5.m5c2 03062 #define m5_i1 m_u.m_m5.m5i1 03063
#define m5_i2 m_u.m_m5.m5i2 03064 #define m5_l1 m_u.m_m5.m5l1 03065 #define m5_l2 m_u.m_m5.m5l2 03066
#define m5_l3 m_u.m_m5.m5l3 03067 03068 #define m7_i1 m_u.m_m7.m7i1 03069 #define m7_i2 m_u.m_m7.m7i2
03070 #define m7_i3 m_u.m_m7.m7i3 03071 #define m7_i4 m_u.m_m7.m7i4 03072 #define m7_p1
m_u.m_m7.m7p1 03073 #define m7_p2 m_u.m_m7.m7p2 03074 03075 #define m8_i1 m_u.m_m8.m8i1 03076
#define m8_i2 m_u.m_m8.m8i2 03077 #define m8_p1 m_u.m_m8.m8p1 03078 #define m8_p2 m_u.m_m8.m8p2
03079 #define m8_p3 m_u.m_m8.m8p3 03080 #define m8_p4 m_u.m_m8.m8p4 03081 03082
/*==* 03083 *
Minix run-time system (IPC). * 03084
==/ 03085
03086 /* Hide names to avoid name space pollution. */ 03087 #define echo _echo 03088 #define notify _notify 03089
#define sendrec _sendrec 03090 #define receive _receive 03091 #define send _send 03092 #define nb_receive
_nb_receive 03093 #define nb_send _nb_send 03094 03095 _PROTOTYPE(int echo, (message *m_ptr)); 03096
_PROTOTYPE(int notify, (int dest)); 03097 _PROTOTYPE(int sendrec, (int src_dest, message *m_ptr)); 03098
_PROTOTYPE(int receive, (int src, message *m_ptr)); 03099 _PROTOTYPE(int send, (int dest, message *m_ptr));

[Page 673]

03100 _PROTOTYPE(int nb_receive, (int src, message *m_ptr)); 03101 _PROTOTYPE(int nb_send, (int dest,
message *m_ptr)); 03102 03103 #endif /* _IPC_H */
++
include/minix/syslib.h
++
03200 /* Prototypes for system library functions. */ 03201 03202 #ifndef _SYSLIB_H 03203 #define _SYSLIB_H
03204 03205 #ifndef _TYPES_H 03206 #include <sys/types.h> 03207 #endif 03208 03209 #ifndef _IPC_H 03210
#include <minix/ipc.h> 03211 #endif 03212 03213 #ifndef _DEVIO_H 03214 #include <minix/devio.h> 03215 #endif
03216 03217 /* Forward declaration */ 03218 struct reg86u; 03219 03220 #define SYSTASK SYSTEM 03221 03222
/*==* 03223 *
Minix system library. * 03224
==/ 03225
_PROTOTYPE(int _taskcall, (int who, int syscallnr, message *msgptr)); 03226 03227 _PROTOTYPE(int sys_abort,
(int how, ...)); 03228 _PROTOTYPE(int sys_exec, (int proc, char *ptr, 03229 char *aout, vir_bytes initpc)); 03230
_PROTOTYPE(int sys_fork, (int parent, int child)); 03231 _PROTOTYPE(int sys_newmap, (int proc, struct
mem_map *ptr)); 03232 _PROTOTYPE(int sys_exit, (int proc)); 03233 _PROTOTYPE(int sys_trace, (int req, int
proc, long addr, long *data_p)); 03234 03235 _PROTOTYPE(int sys_svrctl, (int proc, int req, int priv,vir_bytes
argp)); 03236 _PROTOTYPE(int sys_nice, (int proc, int priority)); 03237 03238 _PROTOTYPE(int sys_int86,
(struct reg86u *reg86p)); 03239 03240 /* Shorthands for sys_sdevio() system call. */ 03241 #define sys_insb(port,
proc_nr, buffer, count) \ 03242 sys_sdevio(DIO_INPUT, port, DIO_BYTE, proc_nr, buffer, count) 03243 #define
sys_insw(port, proc_nr, buffer, count) \ 03244 sys_sdevio(DIO_INPUT, port, DIO_WORD, proc_nr, buffer, count)
03245 #define sys_outsb(port, proc_nr, buffer, count) \ 03246 sys_sdevio(DIO_OUTPUT, port, DIO_BYTE, proc_nr,
buffer, count) 03247 #define sys_outsw(port, proc_nr, buffer, count) \ 03248 sys_sdevio(DIO_OUTPUT, port,
DIO_WORD, proc_nr, buffer, count) 03249 _PROTOTYPE(int sys_sdevio, (int req, long port, int type, int proc_nr,

19

19

[Page 674]

03250 void *buffer, int count)); 03251 03252 /* Clock functionality: get system times or (un)schedule an alarm call. */
03253 _PROTOTYPE(int sys_times, (int proc_nr, clock_t *ptr)); 03254 _PROTOTYPE(int sys_setalarm, (clock_t
exp_time, int abs_time)); 03255 03256 /* Shorthands for sys_irqctl() system call. */ 03257 #define
sys_irqdisable(hook_id) \ 03258 sys_irqctl(IRQ_DISABLE, 0, 0, hook_id) 03259 #define sys_irqenable(hook_id) \
03260 sys_irqctl(IRQ_ENABLE, 0, 0, hook_id) 03261 #define sys_irqsetpolicy(irq_vec, policy, hook_id) \ 03262
sys_irqctl(IRQ_SETPOLICY, irq_vec, policy, hook_id) 03263 #define sys_irqrmpolicy(irq_vec, hook_id) \ 03264
sys_irqctl(IRQ_RMPOLICY, irq_vec, 0, hook_id) 03265 _PROTOTYPE (int sys_irqctl, (int request, int irq_vec, int
policy, 03266 int *irq_hook_id)); 03267 03268 /* Shorthands for sys_vircopy() and sys_physcopy() system calls. */
03269 #define sys_biosin(bios_vir, dst_vir, bytes) \ 03270 sys_vircopy(SELF, BIOS_SEG, bios_vir, SELF, D, dst_vir,
bytes) 03271 #define sys_biosout(src_vir, bios_vir, bytes) \ 03272 sys_vircopy(SELF, D, src_vir, SELF, BIOS_SEG,
bios_vir, bytes) 03273 #define sys_datacopy(src_proc, src_vir, dst_proc, dst_vir, bytes) \ 03274 sys_vircopy(src_proc,
D, src_vir, dst_proc, D, dst_vir, bytes) 03275 #define sys_textcopy(src_proc, src_vir, dst_proc, dst_vir, bytes) \ 03276
sys_vircopy(src_proc, T, src_vir, dst_proc, T, dst_vir, bytes) 03277 #define sys_stackcopy(src_proc, src_vir, dst_proc,
dst_vir, bytes) \ 03278 sys_vircopy(src_proc, S, src_vir, dst_proc, S, dst_vir, bytes) 03279 _PROTOTYPE(int
sys_vircopy, (int src_proc, int src_seg, vir_bytes src_vir, 03280 int dst_proc, int dst_seg, vir_bytes dst_vir, phys_bytes
bytes)); 03281 03282 #define sys_abscopy(src_phys, dst_phys, bytes) \ 03283 sys_physcopy(NONE, PHYS_SEG,
src_phys, NONE, PHYS_SEG, dst_phys, bytes) 03284 _PROTOTYPE(int sys_physcopy, (int src_proc, int src_seg,
vir_bytes src_vir, 03285 int dst_proc, int dst_seg, vir_bytes dst_vir, phys_bytes bytes)); 03286 _PROTOTYPE(int
sys_memset, (unsigned long pattern, 03287 phys_bytes base, phys_bytes bytes)); 03288 03289 /* Vectored virtual /
physical copy calls. */ 03290 #if DEAD_CODE /* library part not yet implemented */ 03291 _PROTOTYPE(int
sys_virvcopy, (phys_cp_req *vec_ptr,int vec_size,int *nr_ok)); 03292 _PROTOTYPE(int sys_physvcopy,
(phys_cp_req *vec_ptr,int vec_size,int *nr_ok)); 03293 #endif 03294 03295 _PROTOTYPE(int sys_umap, (int
proc_nr, int seg, vir_bytes vir_addr, 03296 vir_bytes bytes, phys_bytes *phys_addr)); 03297 _PROTOTYPE(int
sys_segctl, (int *index, u16_t *seg, vir_bytes *off, 03298 phys_bytes phys, vir_bytes size)); 03299 03300 /*
Shorthands for sys_getinfo() system call. */ 03301 #define sys_getkmessages(dst) sys_getinfo(GET_KMESSAGES,
dst, 0,0,0) 03302 #define sys_getkinfo(dst) sys_getinfo(GET_KINFO, dst, 0,0,0) 03303 #define sys_getmachine(dst)
sys_getinfo(GET_MACHINE, dst, 0,0,0) 03304 #define sys_getproctab(dst) sys_getinfo(GET_PROCTAB, dst, 0,0,0)
03305 #define sys_getprivtab(dst) sys_getinfo(GET_PRIVTAB, dst, 0,0,0) 03306 #define sys_getproc(dst,nr)
sys_getinfo(GET_PROC, dst, 0,0, nr) 03307 #define sys_getrandomness(dst) sys_getinfo(GET_RANDOMNESS, dst,
0,0,0) 03308 #define sys_getimage(dst) sys_getinfo(GET_IMAGE, dst, 0,0,0) 03309 #define sys_getirqhooks(dst)
sys_getinfo(GET_IRQHOOKS, dst, 0,0,0)

[Page 675]

03310 #define sys_getmonparams(v,vl) sys_getinfo(GET_MONPARAMS, v,vl, 0,0) 03311 #define
sys_getschedinfo(v1,v2) sys_getinfo(GET_SCHEDINFO, v1,0, v2,0) 03312 #define sys_getlocktimings(dst)
sys_getinfo(GET_LOCKTIMING, dst, 0,0,0) 03313 #define sys_getbiosbuffer(virp, sizep)
sys_getinfo(GET_BIOSBUFFER, virp, \ 03314 sizeof(*virp), sizep, sizeof(*sizep)) 03315 _PROTOTYPE(int
sys_getinfo, (int request, void *val_ptr, int val_len, 03316 void *val_ptr2, int val_len2)); 03317 03318 /* Signal
control. */ 03319 _PROTOTYPE(int sys_kill, (int proc, int sig)); 03320 _PROTOTYPE(int sys_sigsend, (int proc_nr,
struct sigmsg *sig_ctxt)); 03321 _PROTOTYPE(int sys_sigreturn, (int proc_nr, struct sigmsg *sig_ctxt)); 03322
_PROTOTYPE(int sys_getksig, (int *k_proc_nr, sigset_t *k_sig_map)); 03323 _PROTOTYPE(int sys_endksig, (int
proc_nr)); 03324 03325 /* NOTE: two different approaches were used to distinguish the device I/O 03326 * types
'byte', 'word', 'long': the latter uses #define and results in a 03327 * smaller implementation, but looses the static type
checking. 03328 */ 03329 _PROTOTYPE(int sys_voutb, (pvb_pair_t *pvb_pairs, int nr_ports)); 03330
_PROTOTYPE(int sys_voutw, (pvw_pair_t *pvw_pairs, int nr_ports)); 03331 _PROTOTYPE(int sys_voutl,
(pvl_pair_t *pvl_pairs, int nr_ports)); 03332 _PROTOTYPE(int sys_vinb, (pvb_pair_t *pvb_pairs, int nr_ports));
03333 _PROTOTYPE(int sys_vinw, (pvw_pair_t *pvw_pairs, int nr_ports)); 03334 _PROTOTYPE(int sys_vinl,
(pvl_pair_t *pvl_pairs, int nr_ports)); 03335 03336 /* Shorthands for sys_out() system call. */ 03337 #define
sys_outb(p,v) sys_out((p), (unsigned long) (v), DIO_BYTE) 03338 #define sys_outw(p,v) sys_out((p), (unsigned long)
(v), DIO_WORD) 03339 #define sys_outl(p,v) sys_out((p), (unsigned long) (v), DIO_LONG) 03340
_PROTOTYPE(int sys_out, (int port, unsigned long value, int type)); 03341 03342 /* Shorthands for sys_in() system

20

20

call. */ 03343 #define sys_inb(p,v) sys_in((p), (unsigned long*) (v), DIO_BYTE) 03344 #define sys_inw(p,v)
sys_in((p), (unsigned long*) (v), DIO_WORD) 03345 #define sys_inl(p,v) sys_in((p), (unsigned long*) (v),
DIO_LONG) 03346 _PROTOTYPE(int sys_in, (int port, unsigned long *value, int type)); 03347 03348 #endif /*
_SYSLIB_H */ 03349
++
include/minix/sysutil.h
++
03400 #ifndef _EXTRALIB_H 03401 #define _EXTRALIB_H 03402 03403 /* Extra system library definitions to
support device drivers and servers. 03404 * 03405 * Created: 03406 * Mar 15, 2004 by Jorrit N. Herder 03407 *
03408 * Changes: 03409 * May 31, 2005: added printf, kputc (relocated from syslib) 03410 * May 31, 2005: added
getuptime 03411 * Mar 18, 2005: added tickdelay 03412 * Oct 01, 2004: added env_parse, env_prefix, env_panic
03413 * Jul 13, 2004: added fkey_ctl 03414 * Apr 28, 2004: added report, panic

[Page 676]

03415 * Mar 31, 2004: setup like other libraries, such as syslib 03416 */ 03417 03418
/*==* 03419 *
Miscellaneous helper functions. 03420
==/ 03421
03422 /* Environment parsing return values. */ 03423 #define EP_BUF_SIZE 128 /* local buffer for env value */
03424 #define EP_UNSET 0 /* variable not set */ 03425 #define EP_OFF 1 /* var = off */ 03426 #define EP_ON 2 /*
var = on (or field left blank) */ 03427 #define EP_SET 3 /* var = 1:2:3 (nonblank field) */ 03428 #define
EP_EGETKENV 4 /* sys_getkenv() failed ... */ 03429 03430 _PROTOTYPE(void env_setargs, (int argc, char
*argv[])); 03431 _PROTOTYPE(int env_get_param, (char *key, char *value, int max_size)); 03432 _PROTOTYPE(
int env_prefix, (char *env, char *prefix)); 03433 _PROTOTYPE(void env_panic, (char *key)); 03434
_PROTOTYPE(int env_parse, (char *env, char *fmt, int field, long *param, 03435 long min, long max)); 03436
03437 #define fkey_map(fkeys, sfkeys) fkey_ctl(FKEY_MAP, (fkeys), (sfkeys)) 03438 #define fkey_unmap(fkeys,
sfkeys) fkey_ctl(FKEY_UNMAP, (fkeys), (sfkeys)) 03439 #define fkey_events(fkeys, sfkeys)
fkey_ctl(FKEY_EVENTS, (fkeys), (sfkeys)) 03440 _PROTOTYPE(int fkey_ctl, (int req, int *fkeys, int *sfkeys));
03441 03442 _PROTOTYPE(int printf, (const char *fmt, ...)); 03443 _PROTOTYPE(void kputc, (int c)); 03444
_PROTOTYPE(void report, (char *who, char *mess, int num)); 03445 _PROTOTYPE(void panic, (char *who, char
*mess, int num)); 03446 _PROTOTYPE(int getuptime, (clock_t *ticks)); 03447 _PROTOTYPE(int tickdelay,
(clock_t ticks)); 03448 03449 #endif /* _EXTRALIB_H */ 03450
++
include/minix/callnr.h
++
03500 #define NCALLS 91 /* number of system calls allowed */ 03501 03502 #define EXIT 1 03503 #define FORK
2 03504 #define READ 3 03505 #define WRITE 4 03506 #define OPEN 5 03507 #define CLOSE 6 03508 #define
WAIT 7 03509 #define CREAT 8 03510 #define LINK 9 03511 #define UNLINK 10 03512 #define WAITPID 11
03513 #define CHDIR 12 03514 #define TIME 13

[Page 677]

03515 #define MKNOD 14 03516 #define CHMOD 15 03517 #define CHOWN 16 03518 #define BRK 17 03519
#define STAT 18 03520 #define LSEEK 19 03521 #define GETPID 20 03522 #define MOUNT 21 03523 #define
UMOUNT 22 03524 #define SETUID 23 03525 #define GETUID 24 03526 #define STIME 25 03527 #define
PTRACE 26 03528 #define ALARM 27 03529 #define FSTAT 28 03530 #define PAUSE 29 03531 #define UTIME
30 03532 #define ACCESS 33 03533 #define SYNC 36 03534 #define KILL 37 03535 #define RENAME 38 03536
#define MKDIR 39 03537 #define RMDIR 40 03538 #define DUP 41 03539 #define PIPE 42 03540 #define TIMES
43 03541 #define SETGID 46 03542 #define GETGID 47 03543 #define SIGNAL 48 03544 #define IOCTL 54 03545
#define FCNTL 55 03546 #define EXEC 59 03547 #define UMASK 60 03548 #define CHROOT 61 03549 #define
SETSID 62 03550 #define GETPGRP 63 03551 03552 /* The following are not system calls, but are processed like
them. */ 03553 #define UNPAUSE 65 /* to MM or FS: check for EINTR */ 03554 #define REVIVE 67 /* to FS:
revive a sleeping process */ 03555 #define TASK_REPLY 68 /* to FS: reply code from tty task */ 03556 03557 /*

21

21

Posix signal handling. */ 03558 #define SIGACTION 71 03559 #define SIGSUSPEND 72 03560 #define
SIGPENDING 73 03561 #define SIGPROCMASK 74 03562 #define SIGRETURN 75 03563 03564 #define
REBOOT 76 /* to PM */ 03565 03566 /* MINIX specific calls, e.g., to support system services. */ 03567 #define
SVRCTL 77 03568 /* unused */ 03569 #define GETSYSINFO 79 /* to PM or FS */ 03570 #define GETPROCNR 80
/* to PM */ 03571 #define DEVCTL 81 /* to FS */ 03572 #define FSTATFS 82 /* to FS */ 03573 #define
ALLOCMEM 83 /* to PM */ 03574 #define FREEMEM 84 /* to PM */

[Page 678]

03575 #define SELECT 85 /* to FS */ 03576 #define FCHDIR 86 /* to FS */ 03577 #define FSYNC 87 /* to FS */
03578 #define GETPRIORITY 88 /* to PM */ 03579 #define SETPRIORITY 89 /* to PM */ 03580 #define
GETTIMEOFDAY 90 /* to PM */
++
include/minix/com.h
++
03600 #ifndef _MINIX_COM_H 03601 #define _MINIX_COM_H 03602 03603
/*===* 03604 *
Magic process numbers * 03605
===/ 03606
03607 #define ANY 0x7ace /* used to indicate 'any process' */ 03608 #define NONE 0x6ace /* used to indicate 'no
process at all' */ 03609 #define SELF 0x8ace /* used to indicate 'own process' */ 03610 03611
/*===* 03612 *
Process numbers of processes in the system image * 03613
===/ 03614
03615 /* The values of several task numbers depend on whether they or other tasks 03616 * are enabled. They are
defined as (PREVIOUS_TASK - ENABLE_TASK) in general. 03617 * ENABLE_TASK is either 0 or 1, so a task
either gets a new number, or gets 03618 * the same number as the previous task and is further unused. Note that the
03619 * order should correspond to the order in the task table defined in table.c. 03620 */ 03621 03622 /* Kernel
tasks. These all run in the same address space. */ 03623 #define IDLE -4 /* runs when no one else can run */ 03624
#define CLOCK -3 /* alarms and other clock functions */ 03625 #define SYSTEM -2 /* request system functionality
/ 03626 #define KERNEL -1 / pseudo-process for IPC and scheduling */ 03627 #define HARDWARE KERNEL /*
for hardware interrupt handlers */ 03628 03629 /* Number of tasks. Note that NR_PROCS is defined in
<minix/config.h>. */ 03630 #define NR_TASKS 4 03631 03632 /* User-space processes, that is, device drivers,
servers, and INIT. */ 03633 #define PM_PROC_NR 0 /* process manager */ 03634 #define FS_PROC_NR 1 /* file
system */ 03635 #define RS_PROC_NR 2 /* reincarnation server */ 03636 #define MEM_PROC_NR 3 /* memory
driver (RAM disk, null, etc.) */ 03637 #define LOG_PROC_NR 4 /* log device driver */ 03638 #define
TTY_PROC_NR 5 /* terminal (TTY) driver */ 03639 #define DRVR_PROC_NR 6 /* device driver for boot medium
/ 03640 #define INIT_PROC_NR 7 / init -- goes multiuser */ 03641 03642 /* Number of processes contained in the
system image. */ 03643 #define NR_BOOT_PROCS (NR_TASKS + INIT_PROC_NR + 1) 03644

[Page 679]

03645 /*===*
03646 * Kernel notification types * 03647
===/ 03648
03649 /* Kernel notification types. In principle, these can be sent to any process, 03650 * so make sure that these types
do not interfere with other message types. 03651 * Notifications are prioritized because of the way they are unhold()
and 03652 * blocking notifications are delivered. The lowest numbers go first. The 03653 * offset are used for the
per-process notification bit maps. 03654 */ 03655 #define NOTIFY_MESSAGE 0x1000 03656 #define
NOTIFY_FROM(p_nr) (NOTIFY_MESSAGE | ((p_nr) + NR_TASKS)) 03657 # define SYN_ALARM
NOTIFY_FROM(CLOCK) /* synchronous alarm */ 03658 # define SYS_SIG NOTIFY_FROM(SYSTEM) /* system
signal */ 03659 # define HARD_INT NOTIFY_FROM(HARDWARE) /* hardware interrupt */ 03660 # define
NEW_KSIG NOTIFY_FROM(HARDWARE) /* new kernel signal */ 03661 # define FKEY_PRESSED
NOTIFY_FROM(TTY_PROC_NR)/* function key press */ 03662 03663 /* Shorthands for message parameters

22

22

passed with notifications. */ 03664 #define NOTIFY_SOURCE m_source 03665 #define NOTIFY_TYPE m_type
03666 #define NOTIFY_ARG m2_l1 03667 #define NOTIFY_TIMESTAMP m2_l2 03668 #define NOTIFY_FLAGS
m2_i1 03669 03670
/*===* 03671 *
Messages for BLOCK and CHARACTER device drivers * 03672
===/ 03673
03674 /* Message types for device drivers. */ 03675 #define DEV_RQ_BASE 0x400 /* base for device request types
/ 03676 #define DEV_RS_BASE 0x500 / base for device response types */ 03677 03678 #define CANCEL
(DEV_RQ_BASE + 0) /* general req to force a task to cancel */ 03679 #define DEV_READ (DEV_RQ_BASE + 3)
/* read from minor device */ 03680 #define DEV_WRITE (DEV_RQ_BASE + 4) /* write to minor device */ 03681
#define DEV_IOCTL (DEV_RQ_BASE + 5) /* I/O control code */ 03682 #define DEV_OPEN (DEV_RQ_BASE +
6) /* open a minor device */ 03683 #define DEV_CLOSE (DEV_RQ_BASE + 7) /* close a minor device */ 03684
#define DEV_SCATTER (DEV_RQ_BASE + 8) /* write from a vector */ 03685 #define DEV_GATHER
(DEV_RQ_BASE + 9) /* read into a vector */ 03686 #define TTY_SETPGRP (DEV_RQ_BASE + 10) /* set process
group */ 03687 #define TTY_EXIT (DEV_RQ_BASE + 11) /* process group leader exited */ 03688 #define
DEV_SELECT (DEV_RQ_BASE + 12) /* request select() attention */ 03689 #define DEV_STATUS
(DEV_RQ_BASE + 13) /* request driver status */ 03690 03691 #define DEV_REPLY (DEV_RS_BASE + 0) /*
general task reply */ 03692 #define DEV_CLONED (DEV_RS_BASE + 1) /* return cloned minor */ 03693 #define
DEV_REVIVE (DEV_RS_BASE + 2) /* driver revives process */ 03694 #define DEV_IO_READY
(DEV_RS_BASE + 3) /* selected device ready */ 03695 #define DEV_NO_STATUS (DEV_RS_BASE + 4) /* empty
status reply */ 03696 03697 /* Field names for messages to block and character device drivers. */ 03698 #define
DEVICE m2_i1 /* major-minor device */ 03699 #define PROC_NR m2_i2 /* which (proc) wants I/O? */ 03700
#define COUNT m2_i3 /* how many bytes to transfer */ 03701 #define REQUEST m2_i3 /* ioctl request code */
03702 #define POSITION m2_l1 /* file offset */ 03703 #define ADDRESS m2_p1 /* core buffer address */ 03704

[Page 680]

03705 /* Field names for DEV_SELECT messages to device drivers. */ 03706 #define DEV_MINOR m2_i1 /* minor
device */ 03707 #define DEV_SEL_OPS m2_i2 /* which select operations are requested */ 03708 #define
DEV_SEL_WATCH m2_i3 /* request notify if no operations are ready */ 03709 03710 /* Field names used in reply
messages from tasks. */ 03711 #define REP_PROC_NR m2_i1 /* # of proc on whose behalf I/O was done */ 03712
#define REP_STATUS m2_i2 /* bytes transferred or error number */ 03713 # define SUSPEND -998 /* status to
suspend caller, reply later */ 03714 03715 /* Field names for messages to TTY driver. */ 03716 #define TTY_LINE
DEVICE /* message parameter: terminal line */ 03717 #define TTY_REQUEST COUNT /* message parameter: ioctl
request code */ 03718 #define TTY_SPEK POSITION/* message parameter: ioctl speed, erasing */ 03719 #define
TTY_FLAGS m2_l2 /* message parameter: ioctl tty mode */ 03720 #define TTY_PGRP m2_i3 /* message parameter:

23

23

process group */ 03721 03722 /* Field names for the QIC 02 status reply from tape driver */ 03723 #define
TAPE_STAT0 m2_l1 03724 #define TAPE_STAT1 m2_l2 03725 03726
/*===* 03727 *
Messages for networking layer * 03728
===/ 03729
03730 /* Message types for network layer requests. This layer acts like a driver. */ 03731 #define NW_OPEN
DEV_OPEN 03732 #define NW_CLOSE DEV_CLOSE 03733 #define NW_READ DEV_READ 03734 #define
NW_WRITE DEV_WRITE 03735 #define NW_IOCTL DEV_IOCTL 03736 #define NW_CANCEL CANCEL
03737 03738 /* Base type for data link layer requests and responses. */ 03739 #define DL_RQ_BASE 0x800 03740
#define DL_RS_BASE 0x900 03741 03742 /* Message types for data link layer requests. */ 03743 #define
DL_WRITE (DL_RQ_BASE + 3) 03744 #define DL_WRITEV (DL_RQ_BASE + 4) 03745 #define DL_READ
(DL_RQ_BASE + 5) 03746 #define DL_READV (DL_RQ_BASE + 6) 03747 #define DL_INIT (DL_RQ_BASE + 7)
03748 #define DL_STOP (DL_RQ_BASE + 8) 03749 #define DL_GETSTAT (DL_RQ_BASE + 9) 03750 03751 /*
Message type for data link layer replies. */ 03752 #define DL_INIT_REPLY (DL_RS_BASE + 20) 03753 #define
DL_TASK_REPLY (DL_RS_BASE + 21) 03754 03755 /* Field names for data link layer messages. */ 03756 #define
DL_PORT m2_i1 03757 #define DL_PROC m2_i2 03758 #define DL_COUNT m2_i3 03759 #define DL_MODE
m2_l1 03760 #define DL_CLCK m2_l2 03761 #define DL_ADDR m2_p1 03762 #define DL_STAT m2_l1 03763
03764 /* Bits in 'DL_STAT' field of DL replies. */

[Page 681]

03765 # define DL_PACK_SEND 0x01 03766 # define DL_PACK_RECV 0x02 03767 # define DL_READ_IP 0x04
03768 03769 /* Bits in 'DL_MODE' field of DL requests. */ 03770 # define DL_NOMODE 0x0 03771 # define
DL_PROMISC_REQ 0x2 03772 # define DL_MULTI_REQ 0x4 03773 # define DL_BROAD_REQ 0x8 03774
03775 /*===*
03776 * SYSTASK request types and field names * 03777
===/ 03778
03779 /* System library calls are dispatched via a call vector, so be careful when 03780 * modifying the system call
numbers. The numbers here determine which call 03781 * is made from the call vector. 03782 */ 03783 #define
KERNEL_CALL 0x600 /* base for kernel calls to SYSTEM */ 03784 03785 # define SYS_FORK (KERNEL_CALL
+ 0) /* sys_fork() */ 03786 # define SYS_EXEC (KERNEL_CALL + 1) /* sys_exec() */ 03787 # define SYS_EXIT
(KERNEL_CALL + 2) /* sys_exit() */ 03788 # define SYS_NICE (KERNEL_CALL + 3) /* sys_nice() */ 03789 #
define SYS_PRIVCTL (KERNEL_CALL + 4) /* sys_privctl() */ 03790 # define SYS_TRACE (KERNEL_CALL + 5)
/* sys_trace() */ 03791 # define SYS_KILL (KERNEL_CALL + 6) /* sys_kill() */ 03792 03793 # define
SYS_GETKSIG (KERNEL_CALL + 7) /* sys_getsig() */ 03794 # define SYS_ENDKSIG (KERNEL_CALL + 8) /*
sys_endsig() */ 03795 # define SYS_SIGSEND (KERNEL_CALL + 9) /* sys_sigsend() */ 03796 # define
SYS_SIGRETURN (KERNEL_CALL + 10) /* sys_sigreturn() */ 03797 03798 # define SYS_NEWMAP
(KERNEL_CALL + 11) /* sys_newmap() */ 03799 # define SYS_SEGCTL (KERNEL_CALL + 12) /* sys_segctl() */
03800 # define SYS_MEMSET (KERNEL_CALL + 13) /* sys_memset() */ 03801 03802 # define SYS_UMAP
(KERNEL_CALL + 14) /* sys_umap() */ 03803 # define SYS_VIRCOPY (KERNEL_CALL + 15) /* sys_vircopy()
/ 03804 # define SYS_PHYSCOPY (KERNEL_CALL + 16) / sys_physcopy() */ 03805 # define SYS_VIRVCOPY
(KERNEL_CALL + 17) /* sys_virvcopy() */ 03806 # define SYS_PHYSVCOPY (KERNEL_CALL + 18) /*
sys_physvcopy() */ 03807 03808 # define SYS_IRQCTL (KERNEL_CALL + 19) /* sys_irqctl() */ 03809 # define
SYS_INT86 (KERNEL_CALL + 20) /* sys_int86() */ 03810 # define SYS_DEVIO (KERNEL_CALL + 21) /*
sys_devio() */ 03811 # define SYS_SDEVIO (KERNEL_CALL + 22) /* sys_sdevio() */ 03812 # define
SYS_VDEVIO (KERNEL_CALL + 23) /* sys_vdevio() */ 03813 03814 # define SYS_SETALARM
(KERNEL_CALL + 24) /* sys_setalarm() */ 03815 # define SYS_TIMES (KERNEL_CALL + 25) /* sys_times() */
03816 # define SYS_GETINFO (KERNEL_CALL + 26) /* sys_getinfo() */ 03817 # define SYS_ABORT
(KERNEL_CALL + 27) /* sys_abort() */ 03818 03819 #define NR_SYS_CALLS 28 /* number of system calls */
03820 03821 /* Field names for SYS_MEMSET, SYS_SEGCTL. */ 03822 #define MEM_PTR m2_p1 /* base */
03823 #define MEM_COUNT m2_l1 /* count */ 03824 #define MEM_PATTERN m2_l2 /* pattern to write */

[Page 682]

24

24

03825 #define MEM_CHUNK_BASE m4_l1 /* physical base address */ 03826 #define MEM_CHUNK_SIZE m4_l2
/* size of mem chunk */ 03827 #define MEM_TOT_SIZE m4_l3 /* total memory size */ 03828 #define
MEM_CHUNK_TAG m4_l4 /* tag to identify chunk of mem */ 03829 03830 /* Field names for SYS_DEVIO,
SYS_VDEVIO, SYS_SDEVIO. */ 03831 #define DIO_REQUEST m2_i3 /* device in or output */ 03832 # define
DIO_INPUT 0 /* input */ 03833 # define DIO_OUTPUT 1 /* output */ 03834 #define DIO_TYPE m2_i1 /* flag
indicating byte, word, or long */ 03835 # define DIO_BYTE 'b' /* byte type values */ 03836 # define DIO_WORD 'w'
/* word type values */ 03837 # define DIO_LONG 'l' /* long type values */ 03838 #define DIO_PORT m2_l1 /* single
port address */ 03839 #define DIO_VALUE m2_l2 /* single I/O value */ 03840 #define DIO_VEC_ADDR m2_p1 /*
address of buffer or (p,v)-pairs */ 03841 #define DIO_VEC_SIZE m2_l2 /* number of elements in vector */ 03842
#define DIO_VEC_PROC m2_i2 /* number of process where vector is */ 03843 03844 /* Field names for
SYS_SIGNARLM, SYS_FLAGARLM, SYS_SYNCALRM. */ 03845 #define ALRM_EXP_TIME m2_l1 /* expire
time for the alarm call */ 03846 #define ALRM_ABS_TIME m2_i2 /* set to 1 to use absolute alarm time */ 03847
#define ALRM_TIME_LEFT m2_l1 /* how many ticks were remaining */ 03848 #define ALRM_PROC_NR m2_i1
/* which process wants the alarm? */ 03849 #define ALRM_FLAG_PTR m2_p1 /* virtual address of timeout flag */
03850 03851 /* Field names for SYS_IRQCTL. */ 03852 #define IRQ_REQUEST m5_c1 /* what to do? */ 03853 #
define IRQ_SETPOLICY 1 /* manage a slot of the IRQ table */ 03854 # define IRQ_RMPOLICY 2 /* remove a slot
of the IRQ table */ 03855 # define IRQ_ENABLE 3 /* enable interrupts */ 03856 # define IRQ_DISABLE 4 /* disable
interrupts */ 03857 #define IRQ_VECTOR m5_c2 /* irq vector */ 03858 #define IRQ_POLICY m5_i1 /* options for
IRQCTL request */ 03859 # define IRQ_REENABLE 0x001 /* reenable IRQ line after interrupt */ 03860 # define
IRQ_BYTE 0x100 /* byte values */ 03861 # define IRQ_WORD 0x200 /* word values */ 03862 # define IRQ_LONG
0x400 /* long values */ 03863 #define IRQ_PROC_NR m5_i2 /* process number, SELF, NONE */ 03864 #define
IRQ_HOOK_ID m5_l3 /* id of irq hook at kernel */ 03865 03866 /* Field names for SYS_SEGCTL. */ 03867 #define
SEG_SELECT m4_l1 /* segment selector returned */ 03868 #define SEG_OFFSET m4_l2 /* offset in segment
returned */ 03869 #define SEG_PHYS m4_l3 /* physical address of segment */ 03870 #define SEG_SIZE m4_l4 /*
segment size */ 03871 #define SEG_INDEX m4_l5 /* segment index in remote map */ 03872 03873 /* Field names
for SYS_VIDCOPY. */ 03874 #define VID_REQUEST m4_l1 /* what to do? */ 03875 # define VID_VID_COPY 1 /*
request vid_vid_copy() */ 03876 # define MEM_VID_COPY 2 /* request mem_vid_copy() */ 03877 #define
VID_SRC_ADDR m4_l2 /* virtual address in memory */ 03878 #define VID_SRC_OFFSET m4_l3 /* offset in video
memory */ 03879 #define VID_DST_OFFSET m4_l4 /* offset in video memory */ 03880 #define VID_CP_COUNT
m4_l5 /* number of words to be copied */ 03881 03882 /* Field names for SYS_ABORT. */ 03883 #define
ABRT_HOW m1_i1 /* RBT_REBOOT, RBT_HALT, etc. */ 03884 #define ABRT_MON_PROC m1_i2 /* process
where monitor params are */

[Page 683]

03885 #define ABRT_MON_LEN m1_i3 /* length of monitor params */ 03886 #define ABRT_MON_ADDR m1_p1
/* virtual address of monitor params */ 03887 03888 /* Field names for _UMAP, _VIRCOPY, _PHYSCOPY. */
03889 #define CP_SRC_SPACE m5_c1 /* T or D space (stack is also D) */ 03890 #define CP_SRC_PROC_NR
m5_i1 /* process to copy from */ 03891 #define CP_SRC_ADDR m5_l1 /* address where data come from */ 03892
#define CP_DST_SPACE m5_c2 /* T or D space (stack is also D) */ 03893 #define CP_DST_PROC_NR m5_i2 /*
process to copy to */ 03894 #define CP_DST_ADDR m5_l2 /* address where data go to */ 03895 #define
CP_NR_BYTES m5_l3 /* number of bytes to copy */ 03896 03897 /* Field names for SYS_VCOPY and
SYS_VVIRCOPY. */ 03898 #define VCP_NR_OK m1_i2 /* number of successfull copies */ 03899 #define
VCP_VEC_SIZE m1_i3 /* size of copy vector */ 03900 #define VCP_VEC_ADDR m1_p1 /* pointer to copy vector
/ 03901 03902 / Field names for SYS_GETINFO. */ 03903 #define I_REQUEST m7_i3 /* what info to get */ 03904
define GET_KINFO 0 /* get kernel information structure */ 03905 # define GET_IMAGE 1 /* get system image
table */ 03906 # define GET_PROCTAB 2 /* get kernel process table */ 03907 # define GET_RANDOMNESS 3 /*
get randomness buffer */ 03908 # define GET_MONPARAMS 4 /* get monitor parameters */ 03909 # define
GET_KENV 5 /* get kernel environment string */ 03910 # define GET_IRQHOOKS 6 /* get the IRQ table */ 03911 #
define GET_KMESSAGES 7 /* get kernel messages */ 03912 # define GET_PRIVTAB 8 /* get kernel privileges
table */ 03913 # define GET_KADDRESSES 9 /* get various kernel addresses */ 03914 # define GET_SCHEDINFO
10 /* get scheduling queues */ 03915 # define GET_PROC 11 /* get process slot if given process */ 03916 # define
GET_MACHINE 12 /* get machine information */ 03917 # define GET_LOCKTIMING 13 /* get lock()/unlock()
latency timing */ 03918 # define GET_BIOSBUFFER 14 /* get a buffer for BIOS calls */ 03919 #define I_PROC_NR

25

25

m7_i4 /* calling process */ 03920 #define I_VAL_PTR m7_p1 /* virtual address at caller */ 03921 #define
I_VAL_LEN m7_i1 /* max length of value */ 03922 #define I_VAL_PTR2 m7_p2 /* second virtual address */ 03923
#define I_VAL_LEN2 m7_i2 /* second length, or proc nr */ 03924 03925 /* Field names for SYS_TIMES. */ 03926
#define T_PROC_NR m4_l1 /* process to request time info for */ 03927 #define T_USER_TIME m4_l1 /* user time
consumed by process */ 03928 #define T_SYSTEM_TIME m4_l2 /* system time consumed by process */ 03929
#define T_CHILD_UTIME m4_l3 /* user time consumed by process' children */ 03930 #define T_CHILD_STIME
m4_l4 /* sys time consumed by process' children */ 03931 #define T_BOOT_TICKS m4_l5 /* number of clock ticks
since boot time */ 03932 03933 /* Field names for SYS_TRACE, SYS_SVRCTL. */ 03934 #define CTL_PROC_NR
m2_i1 /* process number of the caller */ 03935 #define CTL_REQUEST m2_i2 /* server control request */ 03936
#define CTL_MM_PRIV m2_i3 /* privilege as seen by PM */ 03937 #define CTL_ARG_PTR m2_p1 /* pointer to
argument */ 03938 #define CTL_ADDRESS m2_l1 /* address at traced process' space */ 03939 #define CTL_DATA
m2_l2 /* data field for tracing */ 03940 03941 /* Field names for SYS_KILL, SYS_SIGCTL */ 03942 #define
SIG_REQUEST m2_l2 /* PM signal control request */ 03943 #define S_GETSIG 0 /* get pending kernel signal */
03944 #define S_ENDSIG 1 /* finish a kernel signal */

[Page 684]

03945 #define S_SENDSIG 2 /* POSIX style signal handling */ 03946 #define S_SIGRETURN 3 /* return from
POSIX handling */ 03947 #define S_KILL 4 /* servers kills process with signal */ 03948 #define SIG_PROC m2_i1
/* process number for inform */ 03949 #define SIG_NUMBER m2_i2 /* signal number to send */ 03950 #define
SIG_FLAGS m2_i3 /* signal flags field */ 03951 #define SIG_MAP m2_l1 /* used by kernel to pass signal bit map */
03952 #define SIG_CTXT_PTR m2_p1 /* pointer to info to restore signal context */ 03953 03954 /* Field names for
SYS_FORK, _EXEC, _EXIT, _NEWMAP. */ 03955 #define PR_PROC_NR m1_i1 /* indicates a (child) process */
03956 #define PR_PRIORITY m1_i2 /* process priority */ 03957 #define PR_PPROC_NR m1_i2 /* indicates a
(parent) process */ 03958 #define PR_PID m1_i3 /* process id at process manager */ 03959 #define PR_STACK_PTR
m1_p1 /* used for stack ptr in sys_exec, sys_getsp */ 03960 #define PR_TRACING m1_i3 /* flag to indicate tracing is
on/ off */ 03961 #define PR_NAME_PTR m1_p2 /* tells where program name is for dmp */ 03962 #define
PR_IP_PTR m1_p3 /* initial value for ip after exec */ 03963 #define PR_MEM_PTR m1_p1 /* tells where memory
map is for sys_newmap */ 03964 03965 /* Field names for SYS_INT86 */ 03966 #define INT86_REG86 m1_p1 /*
pointer to registers */ 03967 03968 /* Field names for SELECT (FS). */ 03969 #define SEL_NFDS m8_i1 03970
#define SEL_READFDS m8_p1 03971 #define SEL_WRITEFDS m8_p2 03972 #define SEL_ERRORFDS m8_p3
03973 #define SEL_TIMEOUT m8_p4 03974 03975
/*===* 03976 *
Messages for system management server * 03977
===/ 03978
03979 #define SRV_RQ_BASE 0x700 03980 03981 #define SRV_UP (SRV_RQ_BASE + 0) /* start system service
/ 03982 #define SRV_DOWN (SRV_RQ_BASE + 1) / stop system service */ 03983 #define SRV_STATUS
(SRV_RQ_BASE + 2) /* get service status */ 03984 03985 # define SRV_PATH_ADDR m1_p1 /* path of binary */
03986 # define SRV_PATH_LEN m1_i1 /* length of binary */ 03987 # define SRV_ARGS_ADDR m1_p2 /*
arguments to be passed */ 03988 # define SRV_ARGS_LEN m1_i2 /* length of arguments */ 03989 # define
SRV_DEV_MAJOR m1_i3 /* major device number */ 03990 # define SRV_PRIV_ADDR m1_p3 /* privileges string
/ 03991 # define SRV_PRIV_LEN m1_i3 / length of privileges */ 03992 03993
/*===* 03994 *
Miscellaneous messages used by TTY * 03995
===/ 03996
03997 /* Miscellaneous request types and field names, e.g. used by IS server. */ 03998 #define PANIC_DUMPS 97 /*
debug dumps at the TTY on RBT_PANIC */ 03999 #define FKEY_CONTROL 98 /* control a function key at the
TTY */ 04000 # define FKEY_REQUEST m2_i1 /* request to perform at TTY */ 04001 # define FKEY_MAP 10 /*
observe function key */ 04002 # define FKEY_UNMAP 11 /* stop observing function key */ 04003 # define
FKEY_EVENTS 12 /* request open key presses */ 04004 # define FKEY_FKEYS m2_l1 /* F1-F12 keys pressed */

[Page 685]

26

26

04005 # define FKEY_SFKEYS m2_l2 /* Shift-F1-F12 keys pressed */ 04006 #define DIAGNOSTICS 100 /* output
a string without FS in between */ 04007 # define DIAG_PRINT_BUF m1_p1 04008 # define DIAG_BUF_COUNT
m1_i1 04009 # define DIAG_PROC_NR m1_i2 04010 04011 #endif /* _MINIX_COM_H */
++
include/minix/devio.h
++
04100 /* This file provides basic types and some constants for the 04101 * SYS_DEVIO and SYS_VDEVIO system
calls, which allow user-level 04102 * processes to perform device I/O. 04103 * 04104 * Created: 04105 * Apr 08,
2004 by Jorrit N. Herder 04106 */ 04107 04108 #ifndef _DEVIO_H 04109 #define _DEVIO_H 04110 04111 #include
<minix/sys_config.h> /* needed to include <minix/type.h> */ 04112 #include <sys/types.h> /* u8_t, u16_t, u32_t
needed */ 04113 04114 typedef u16_t port_t; 04115 typedef U16_t Port_t; 04116 04117 /* We have different
granularities of port I/O: 8, 16, 32 bits. 04118 * Also see <ibm/portio.h>, which has functions for bytes, words, 04119
* and longs. Hence, we need different (port,value)-pair types. 04120 */ 04121 typedef struct { u16_t port; u8_t value; }
pvb_pair_t; 04122 typedef struct { u16_t port; u16_t value; } pvw_pair_t; 04123 typedef struct { u16_t port; u32_t
value; } pvl_pair_t; 04124 04125 /* Macro shorthand to set (port,value)-pair. */ 04126 #define pv_set(pv, p, v)
((pv).port = (p), (pv).value = (v)) 04127 #define pv_ptr_set(pv_ptr, p, v) ((pv_ptr)->port = (p), (pv_ptr)->value = (v))
04128 04129 #endif /* _DEVIO_H */
++
include/minix/dmap.h
++
04200 #ifndef _DMAP_H 04201 #define _DMAP_H 04202 04203 #include <minix/sys_config.h> 04204 #include
<minix/ipc.h> 04205

[Page 686]

04206 /*===*
04207 * Device <-> Driver Table * 04208
===/ 04209
04210 /* Device table. This table is indexed by major device number. It provides 04211 * the link between major
device numbers and the routines that process them. 04212 * The table can be update dynamically. The field
'dmap_flags' describe an 04213 * entry's current status and determines what control options are possible. 04214 */
04215 #define DMAP_MUTABLE 0x01 /* mapping can be overtaken */ 04216 #define DMAP_BUSY 0x02 /* driver
busy with request */ 04217 04218 enum dev_style { STYLE_DEV, STYLE_NDEV, STYLE_TTY, STYLE_CLONE
}; 04219 04220 extern struct dmap { 04221 int _PROTOTYPE ((*dmap_opcl), (int, Dev_t, int, int)); 04222 void
_PROTOTYPE ((*dmap_io), (int, message *)); 04223 int dmap_driver; 04224 int dmap_flags; 04225 } dmap[];
04226 04227
/*===* 04228 *
Major and minor device numbers * 04229
===/ 04230
04231 /* Total number of different devices. */ 04232 #define NR_DEVICES 32 /* number of (major) devices */
04233 04234 /* Major and minor device numbers for MEMORY driver. */ 04235 #define MEMORY_MAJOR 1 /*
major device for memory devices */ 04236 # define RAM_DEV 0 /* minor device for /dev/ram */ 04237 # define
MEM_DEV 1 /* minor device for /dev/mem */ 04238 # define KMEM_DEV 2 /* minor device for /dev/kmem */
04239 # define NULL_DEV 3 /* minor device for /dev/null */ 04240 # define BOOT_DEV 4 /* minor device for
/dev/boot */ 04241 # define ZERO_DEV 5 /* minor device for /dev/zero */ 04242 04243 #define CTRLR(n) ((n)==0 ?
3 : (8 + 2*((n)-1))) /* magic formula */ 04244 04245 /* Full device numbers that are special to the boot monitor and
FS. */ 04246 # define DEV_RAM 0x0100 /* device number of /dev/ram */ 04247 # define DEV_BOOT 0x0104 /*
device number of /dev/boot */ 04248 04249 #define FLOPPY_MAJOR 2 /* major device for floppy disks */ 04250
#define TTY_MAJOR 4 /* major device for ttys */ 04251 #define CTTY_MAJOR 5 /* major device for /dev/tty */
04252 04253 #define INET_MAJOR 7 /* major device for inet */ 04254 04255 #define LOG_MAJOR 15 /* major
device for log driver */ 04256 # define IS_KLOG_DEV 0 /* minor device for /dev/klog */ 04257 04258 #endif /*
_DMAP_H */

[Page 687]

27

27

++
include/ibm/portio.h
++
04300 /* 04301 ibm/portio.h 04302 04303 Created: Jan 15, 1992 by Philip Homburg 04304 */ 04305 04306 #ifndef
_PORTIO_H_ 04307 #define _PORTIO_H_ 04308 04309 #ifndef _TYPES_H 04310 #include <sys/types.h> 04311
#endif 04312 04313 unsigned inb(U16_t _port); 04314 unsigned inw(U16_t _port); 04315 unsigned inl(U32_t _port);
04316 void outb(U16_t _port, U8_t _value); 04317 void outw(U16_t _port, U16_t _value); 04318 void outl(U16_t
_port, U32_t _value); 04319 void insb(U16_t _port, void *_buf, size_t _count); 04320 void insw(U16_t _port, void
*_buf, size_t _count); 04321 void insl(U16_t _port, void *_buf, size_t _count); 04322 void outsb(U16_t _port, void
*_buf, size_t _count); 04323 void outsw(U16_t _port, void *_buf, size_t _count); 04324 void outsl(U16_t _port, void
_buf, size_t _count); 04325 void intr_disable(void); 04326 void intr_enable(void); 04327 04328 #endif /
_PORTIO_H_ */
++
include/ibm/interrupt.h
++
04400 /* Interrupt numbers and hardware vectors. */ 04401 04402 #ifndef _INTERRUPT_H 04403 #define
_INTERRUPT_H 04404 04405 #if (CHIP == INTEL) 04406 04407 /* 8259A interrupt controller ports. */ 04408
#define INT_CTL 0x20 /* I/O port for interrupt controller */ 04409 #define INT_CTLMASK 0x21 /* setting bits in
this port disables ints */ 04410 #define INT2_CTL 0xA0 /* I/O port for second interrupt controller */ 04411 #define
INT2_CTLMASK 0xA1 /* setting bits in this port disables ints */ 04412 04413 /* Magic numbers for interrupt
controller. */ 04414 #define END_OF_INT 0x20 /* code used to re-enable after an interrupt */ 04415 04416 /*
Interrupt vectors defined/reserved by processor. */ 04417 #define DIVIDE_VECTOR 0 /* divide error */ 04418
#define DEBUG_VECTOR 1 /* single step (trace) */ 04419 #define NMI_VECTOR 2 /* non-maskable interrupt */

[Page 688]

04420 #define BREAKPOINT_VECTOR 3 /* software breakpoint */ 04421 #define OVERFLOW_VECTOR 4 /*
from INTO */ 04422 04423 /* Fixed system call vector. */ 04424 #define SYS_VECTOR 32 /* system calls are made
with int SYSVEC */ 04425 #define SYS386_VECTOR 33 /* except 386 system calls use this */ 04426 #define
LEVEL0_VECTOR 34 /* for execution of a function at level 0 */ 04427 04428 /* Suitable irq bases for hardware
interrupts. Reprogram the 8259(s) from 04429 * the PC BIOS defaults since the BIOS doesn't respect all the
processor's 04430 * reserved vectors (0 to 31). 04431 */ 04432 #define BIOS_IRQ0_VEC 0x08 /* base of IRQ0-7
vectors used by BIOS */ 04433 #define BIOS_IRQ8_VEC 0x70 /* base of IRQ8-15 vectors used by BIOS */ 04434
#define IRQ0_VECTOR 0x50 /* nice vectors to relocate IRQ0-7 to */ 04435 #define IRQ8_VECTOR 0x70 /* no need
to move IRQ8-15 */ 04436 04437 /* Hardware interrupt numbers. */ 04438 #define NR_IRQ_VECTORS 16 04439
#define CLOCK_IRQ 0 04440 #define KEYBOARD_IRQ 1 04441 #define CASCADE_IRQ 2 /* cascade enable for
2nd AT controller */ 04442 #define ETHER_IRQ 3 /* default ethernet interrupt vector */ 04443 #define
SECONDARY_IRQ 3 /* RS232 interrupt vector for port 2 */ 04444 #define RS232_IRQ 4 /* RS232 interrupt vector
for port 1 */ 04445 #define XT_WINI_IRQ 5 /* xt winchester */ 04446 #define FLOPPY_IRQ 6 /* floppy disk */
04447 #define PRINTER_IRQ 7 04448 #define AT_WINI_0_IRQ 14 /* at winchester controller 0 */ 04449 #define
AT_WINI_1_IRQ 15 /* at winchester controller 1 */ 04450 04451 /* Interrupt number to hardware vector. */ 04452
#define BIOS_VECTOR(irq) \ 04453 (((irq) < 8 ? BIOS_IRQ0_VEC : BIOS_IRQ8_VEC) + ((irq) & 0x07)) 04454
#define VECTOR(irq) \ 04455 (((irq) < 8 ? IRQ0_VECTOR : IRQ8_VECTOR) + ((irq) & 0x07)) 04456 04457 #endif
/* (CHIP == INTEL) */ 04458 04459 #endif /* _INTERRUPT_H */
++
include/ibm/ports.h
++
04500 /* Addresses and magic numbers for miscellaneous ports. */ 04501 04502 #ifndef _PORTS_H 04503 #define
_PORTS_H 04504 04505 #if (CHIP == INTEL) 04506 04507 /* Miscellaneous ports. */ 04508 #define PCR 0x65 /*
Planar Control Register */ 04509 #define PORT_B 0x61 /* I/O port for 8255 port B (kbd, beeper...) */ 04510 #define
TIMER0 0x40 /* I/O port for timer channel 0 */ 04511 #define TIMER2 0x42 /* I/O port for timer channel 2 */ 04512
#define TIMER_MODE 0x43 /* I/O port for timer mode control */ 04513 04514 #endif /* (CHIP == INTEL) */

[Page 689]

28

28

04515 04516 #endif /* _PORTS_H */
++
kernel/kernel.h
++
04600 #ifndef KERNEL_H 04601 #define KERNEL_H 04602 04603 /* This is the master header for the kernel. It
includes some other files 04604 * and defines the principal constants. 04605 */ 04606 #define _POSIX_SOURCE 1 /*
tell headers to include POSIX stuff */ 04607 #define _MINIX 1 /* tell headers to include MINIX stuff */ 04608
#define _SYSTEM 1 /* tell headers that this is the kernel */ 04609 04610 /* The following are so basic, all the *.c files
get them automatically. */ 04611 #include <minix/config.h> /* global configuration, MUST be first */ 04612 #include
<ansi.h> /* C style: ANSI or K&R, MUST be second */ 04613 #include <sys/types.h> /* general system types */
04614 #include <minix/const.h> /* MINIX specific constants */ 04615 #include <minix/type.h> /* MINIX specific
types, e.g. message */ 04616 #include <minix/ipc.h> /* MINIX run-time system */ 04617 #include <timers.h> /*
watchdog timer management */ 04618 #include <errno.h> /* return codes and error numbers */ 04619 #include
<ibm/portio.h> /* device I/O and toggle interrupts */ 04620 04621 /* Important kernel header files. */ 04622 #include
"config.h" /* configuration, MUST be first */ 04623 #include "const.h" /* constants, MUST be second */ 04624
#include "type.h" /* type definitions, MUST be third */ 04625 #include "proto.h" /* function prototypes */ 04626
#include "glo.h" /* global variables */ 04627 #include "ipc.h" /* IPC constants */ 04628 /* #include "debug.h" */ /*
debugging, MUST be last kernel header */ 04629 04630 #endif /* KERNEL_H */ 04631
++
kernel/config.h
++
04700 #ifndef CONFIG_H 04701 #define CONFIG_H 04702 04703 /* This file defines the kernel configuration. It
allows to set sizes of some 04704 * kernel buffers and to enable or disable debugging code, timing features, 04705 *
and individual kernel calls. 04706 * 04707 * Changes: 04708 * Jul 11, 2005 Created. (Jorrit N. Herder) 04709 */

[Page 690]

04710 04711 /* In embedded and sensor applications, not all the kernel calls may be 04712 * needed. In this section
you can specify which kernel calls are needed 04713 * and which are not. The code for unneeded kernel calls is not
included in 04714 * the system binary, making it smaller. If you are not sure, it is best 04715 * to keep all kernel calls
enabled. 04716 */ 04717 #define USE_FORK 1 /* fork a new process */ 04718 #define USE_NEWMAP 1 /* set a
new memory map */ 04719 #define USE_EXEC 1 /* update process after execute */ 04720 #define USE_EXIT 1 /*
clean up after process exit */ 04721 #define USE_TRACE 1 /* process information and tracing */ 04722 #define
USE_GETKSIG 1 /* retrieve pending kernel signals */ 04723 #define USE_ENDKSIG 1 /* finish pending kernel
signals */ 04724 #define USE_KILL 1 /* send a signal to a process */ 04725 #define USE_SIGSEND 1 /* send
POSIX-style signal */ 04726 #define USE_SIGRETURN 1 /* sys_sigreturn(proc_nr, ctxt_ptr, flags) */ 04727 #define
USE_ABORT 1 /* shut down MINIX */ 04728 #define USE_GETINFO 1 /* retrieve a copy of kernel data */ 04729
#define USE_TIMES 1 /* get process and system time info */ 04730 #define USE_SETALARM 1 /* schedule a
synchronous alarm */ 04731 #define USE_DEVIO 1 /* read or write a single I/O port */ 04732 #define USE_VDEVIO
1 /* process vector with I/O requests */ 04733 #define USE_SDEVIO 1 /* perform I/O request on a buffer */ 04734
#define USE_IRQCTL 1 /* set an interrupt policy */ 04735 #define USE_SEGCTL 1 /* set up a remote segment */
04736 #define USE_PRIVCTL 1 /* system privileges control */ 04737 #define USE_NICE 1 /* change scheduling
priority */ 04738 #define USE_UMAP 1 /* map virtual to physical address */ 04739 #define USE_VIRCOPY 1 /*
copy using virtual addressing */ 04740 #define USE_VIRVCOPY 1 /* vector with virtual copy requests */ 04741
#define USE_PHYSCOPY 1 /* copy using physical addressing */ 04742 #define USE_PHYSVCOPY 1 /* vector with
physical copy requests */ 04743 #define USE_MEMSET 1 /* write char to a given memory area */ 04744 04745 /*
Length of program names stored in the process table. This is only used 04746 * for the debugging dumps that can be
generated with the IS server. The PM 04747 * server keeps its own copy of the program name. 04748 */ 04749 #define
P_NAME_LEN 8 04750 04751 /* Kernel diagnostics are written to a circular buffer. After each message, 04752 * a
system server is notified and a copy of the buffer can be retrieved to 04753 * display the message. The buffers size can
safely be reduced. 04754 */ 04755 #define KMESS_BUF_SIZE 256 04756 04757 /* Buffer to gather randomness.
This is used to generate a random stream by 04758 * the MEMORY driver when reading from /dev/random. 04759 */
04760 #define RANDOM_ELEMENTS 32 04761 04762 /* This section contains defines for valuable system
resources that are used 04763 * by device drivers. The number of elements of the vectors is determined by 04764 * the

29

29

maximum needed by any given driver. The number of interrupt hooks may 04765 * be incremented on systems with
many device drivers. 04766 */ 04767 #define NR_IRQ_HOOKS 16 /* number of interrupt hooks */ 04768 #define
VDEVIO_BUF_SIZE 64 /* max elements per VDEVIO request */ 04769 #define VCOPY_VEC_SIZE 16 /* max
elements per VCOPY request */

[Page 691]

04770 04771 /* How many bytes for the kernel stack. Space allocated in mpx.s. */ 04772 #define K_STACK_BYTES
1024 04773 04774 /* This section allows to enable kernel debugging and timing functionality. 04775 * For normal
operation all options should be disabled. 04776 */ 04777 #define DEBUG_SCHED_CHECK 0 /* sanity check of
scheduling queues */ 04778 #define DEBUG_LOCK_CHECK 0 /* kernel lock() sanity check */ 04779 #define
DEBUG_TIME_LOCKS 0 /* measure time spent in locks */ 04780 04781 #endif /* CONFIG_H */ 04782
++
kernel/const.h
++
04800 /* General macros and constants used by the kernel. */ 04801 #ifndef CONST_H 04802 #define CONST_H
04803 04804 #include <ibm/interrupt.h> /* interrupt numbers and hardware vectors */ 04805 #include <ibm/ports.h>
/* port addresses and magic numbers */ 04806 #include <ibm/bios.h> /* BIOS addresses, sizes and magic numbers */
04807 #include <ibm/cpu.h> /* BIOS addresses, sizes and magic numbers */ 04808 #include <minix/config.h> 04809
#include "config.h" 04810 04811 /* To translate an address in kernel space to a physical address. This is 04812 * the
same as umap_local(proc_ptr, D, vir, sizeof(*vir)), but less costly. 04813 */ 04814 #define vir2phys(vir)
(kinfo.data_base + (vir_bytes) (vir)) 04815 04816 /* Map a process number to a privilege structure id. */ 04817
#define s_nr_to_id(n) (NR_TASKS + (n) + 1) 04818 04819 /* Translate a pointer to a field in a structure to a pointer
to the structure 04820 * itself. So it translates '&struct_ptr->field' back to 'struct_ptr'. 04821 */ 04822 #define
structof(type, field, ptr) \ 04823 ((type *) (((char *) (ptr)) - offsetof(type, field))) 04824 04825 /* Constants used in
virtual_copy(). Values must be 0 and 1, respectively. */ 04826 #define _SRC_ 0 04827 #define _DST_ 1 04828 04829
/* Number of random sources */ 04830 #define RANDOM_SOURCES 16 04831 04832 /* Constants and macros for
bit map manipulation. */ 04833 #define BITCHUNK_BITS (sizeof(bitchunk_t) * CHAR_BIT) 04834 #define
BITMAP_CHUNKS(nr_bits) (((nr_bits)+BITCHUNK_BITS-1)/BITCHUNK_BITS) 04835 #define
MAP_CHUNK(map,bit) (map)[((bit)/BITCHUNK_BITS)] 04836 #define CHUNK_OFFSET(bit)
((bit)%BITCHUNK_BITS)) 04837 #define GET_BIT(map,bit) (MAP_CHUNK(map,bit) & (1 <<
CHUNK_OFFSET(bit)) 04838 #define SET_BIT(map,bit) (MAP_CHUNK(map,bit) |= (1 << CHUNK_OFFSET(bit)
) 04839 #define UNSET_BIT(map,bit) (MAP_CHUNK(map,bit) &= ~(1 << CHUNK_OFFSET(bit))

[Page 692]

04840 04841 #define get_sys_bit(map,bit) \ 04842 (MAP_CHUNK(map.chunk,bit) & (1 << CHUNK_OFFSET(bit))
04843 #define set_sys_bit(map,bit) \ 04844 (MAP_CHUNK(map.chunk,bit) |= (1 << CHUNK_OFFSET(bit)) 04845
#define unset_sys_bit(map,bit) \ 04846 (MAP_CHUNK(map.chunk,bit) &= ~(1 << CHUNK_OFFSET(bit)) 04847
#define NR_SYS_CHUNKS BITMAP_CHUNKS(NR_SYS_PROCS) 04848 04849 /* Program stack words and
masks. */ 04850 #define INIT_PSW 0x0200 /* initial psw */ 04851 #define INIT_TASK_PSW 0x1200 /* initial psw
for tasks (with IOPL 1) */ 04852 #define TRACEBIT 0x0100 /* OR this with psw in proc[] for tracing */ 04853
#define SETPSW(rp, new) /* permits only certain bits to be set */ \ 04854 ((rp)->p_reg.psw = (rp)->p_reg.psw &
~0xCD5 | (new) & 0xCD5) 04855 #define IF_MASK 0x00000200 04856 #define IOPL_MASK 0x003000 04857
04858 /* Disable/ enable hardware interrupts. The parameters of lock() and unlock() 04859 * are used when debugging
is enabled. See debug.h for more information. 04860 */ 04861 #define lock(c, v) intr_disable(); 04862 #define
unlock(c) intr_enable(); 04863 04864 /* Sizes of memory tables. The boot monitor distinguishes three memory areas,
04865 * namely low mem below 1M, 1M-16M, and mem after 16M. More chunks are needed 04866 * for DOS
MINIX. 04867 */ 04868 #define NR_MEMS 8 04869 04870 #endif /* CONST_H */ 04871 04872 04873 04874 04875
++
kernel/type.h
++
04900 #ifndef TYPE_H 04901 #define TYPE_H 04902 04903 typedef _PROTOTYPE(void task_t, (void)); 04904
04905 /* Process table and system property related types. */ 04906 typedef int proc_nr_t; /* process table entry number

30

30

/ 04907 typedef short sys_id_t; / system process index */ 04908 typedef struct { /* bitmap for system indexes */
04909 bitchunk_t chunk[BITMAP_CHUNKS(NR_SYS_PROCS)]; 04910 } sys_map_t; 04911 04912 struct
boot_image { 04913 proc_nr_t proc_nr; /* process number to use */ 04914 task_t *initial_pc; /* start function for tasks
*/

[Page 693]

04915 int flags; /* process flags */ 04916 unsigned char quantum; /* quantum (tick count) */ 04917 int priority; /*
scheduling priority */ 04918 int stksize; /* stack size for tasks */ 04919 short trap_mask; /* allowed system call traps
/ 04920 bitchunk_t ipc_to; / send mask protection */ 04921 long call_mask; /* system call protection */ 04922 char
proc_name[P_NAME_LEN]; /* name in process table */ 04923 }; 04924 04925 struct memory { 04926 phys_clicks
base; /* start address of chunk */ 04927 phys_clicks size; /* size of memory chunk */ 04928 }; 04929 04930 /* The
kernel outputs diagnostic messages in a circular buffer. */ 04931 struct kmessages { 04932 int km_next; /* next index
to write */ 04933 int km_size; /* current size in buffer */ 04934 char km_buf[KMESS_BUF_SIZE]; /* buffer for
messages */ 04935 }; 04936 04937 struct randomness { 04938 struct { 04939 int r_next; /* next index to write */
04940 int r_size; /* number of random elements */ 04941 unsigned short r_buf[RANDOM_ELEMENTS]; /* buffer
for random info */ 04942 } bin[RANDOM_SOURCES]; 04943 }; 04944 04945 #if (CHIP == INTEL) 04946 typedef
unsigned reg_t; /* machine register */ 04947 04948 /* The stack frame layout is determined by the software, but for
efficiency 04949 * it is laid out so the assembly code to use it is as simple as possible. 04950 * 80286 protected mode
and all real modes use the same frame, built with 04951 * 16-bit registers. Real mode lacks an automatic stack switch,
so little 04952 * is lost by using the 286 frame for it. The 386 frame differs only in 04953 * having 32-bit registers and
more segment registers. The same names are 04954 * used for the larger registers to avoid differences in the code.
04955 */ 04956 struct stackframe_s { /* proc_ptr points here */ 04957 #if _WORD_SIZE == 4 04958 u16_t gs; /* last
item pushed by save */ 04959 u16_t fs; /* ^ */ 04960 #endif 04961 u16_t es; /* | */ 04962 u16_t ds; /* | */ 04963 reg_t
di; /* di through cx are not accessed in C */ 04964 reg_t si; /* order is to match pusha/popa */ 04965 reg_t fp; /* bp */
04966 reg_t st; /* hole for another copy of sp */ 04967 reg_t bx; /* | */ 04968 reg_t dx; /* | */ 04969 reg_t cx; /* | */
04970 reg_t retreg; /* ax and above are all pushed by save */ 04971 reg_t retadr; /* return address for assembly code
save() */ 04972 reg_t pc; /* ^ last item pushed by interrupt */ 04973 reg_t cs; /* | */ 04974 reg_t psw; /* | */

[Page 694]

04975 reg_t sp; /* | */ 04976 reg_t ss; /* these are pushed by CPU during interrupt */ 04977 }; 04978 04979 struct
segdesc_s { /* segment descriptor for protected mode */ 04980 u16_t limit_low; 04981 u16_t base_low; 04982 u8_t
base_middle; 04983 u8_t access; /* |P|DL|1|X|E|R|A| */ 04984 u8_t granularity; /* |G|X|0|A|LIMT| */ 04985 u8_t
base_high; 04986 }; 04987 04988 typedef unsigned long irq_policy_t; 04989 typedef unsigned long irq_id_t; 04990
04991 typedef struct irq_hook { 04992 struct irq_hook *next; /* next hook in chain */ 04993 int (*handler)(struct
irq_hook *); /* interrupt handler */ 04994 int irq; /* IRQ vector number */ 04995 int id; /* id of this hook */ 04996 int
proc_nr; /* NONE if not in use */ 04997 irq_id_t notify_id; /* id to return on interrupt */ 04998 irq_policy_t policy; /*
bit mask for policy */ 04999 } irq_hook_t; 05000 05001 typedef int (*irq_handler_t)(struct irq_hook *); 05002 05003
#endif /* (CHIP == INTEL) */ 05004 05005 #if (CHIP == M68000) 05006 /* M68000 specific types go here. */ 05007
#endif /* (CHIP == M68000) */ 05008 05009 #endif /* TYPE_H */
++
kernel/proto.h
++
05100 /* Function prototypes. */ 05101 05102 #ifndef PROTO_H 05103 #define PROTO_H 05104 05105 /* Struct
declarations. */ 05106 struct proc; 05107 struct timer; 05108 05109 /* clock.c */ 05110 _PROTOTYPE(void
clock_task, (void)); 05111 _PROTOTYPE(void clock_stop, (void)); 05112 _PROTOTYPE(clock_t get_uptime,
(void)); 05113 _PROTOTYPE(unsigned long read_clock, (void)); 05114 _PROTOTYPE(void set_timer, (struct
timer *tp, clock_t t, tmr_func_t f)); 05115 _PROTOTYPE(void reset_timer, (struct timer *tp)); 05116 05117 /*
main.c */ 05118 _PROTOTYPE(void main, (void)); 05119 _PROTOTYPE(void prepare_shutdown, (int how));

[Page 695]

31

31

05120 05121 /* utility.c */ 05122 _PROTOTYPE(void kprintf, (const char *fmt, ...)); 05123 _PROTOTYPE(void
panic, (_CONST char *s, int n)); 05124 05125 /* proc.c */ 05126 _PROTOTYPE(int sys_call, (int function, int
src_dest, message *m_ptr)); 05127 _PROTOTYPE(int lock_notify, (int src, int dst)); 05128 _PROTOTYPE(int
lock_send, (int dst, message *m_ptr)); 05129 _PROTOTYPE(void lock_enqueue, (struct proc *rp)); 05130
_PROTOTYPE(void lock_dequeue, (struct proc *rp)); 05131 05132 /* start.c */ 05133 _PROTOTYPE(void cstart,
(U16_t cs, U16_t ds, U16_t mds, 05134 U16_t parmoff, U16_t parmsize)); 05135 05136 /* system.c */ 05137
_PROTOTYPE(int get_priv, (register struct proc *rc, int proc_type)); 05138 _PROTOTYPE(void send_sig, (int
proc_nr, int sig_nr)); 05139 _PROTOTYPE(void cause_sig, (int proc_nr, int sig_nr)); 05140 _PROTOTYPE(void
sys_task, (void)); 05141 _PROTOTYPE(void get_randomness, (int source)); 05142 _PROTOTYPE(int
virtual_copy, (struct vir_addr *src, struct vir_addr *dst, 05143 vir_bytes bytes)); 05144 #define numap_local(proc_nr,
vir_addr, bytes) \ 05145 umap_local(proc_addr(proc_nr), D, (vir_addr), (bytes)) 05146 _PROTOTYPE(phys_bytes
umap_local, (struct proc *rp, int seg, 05147 vir_bytes vir_addr, vir_bytes bytes)); 05148 _PROTOTYPE(phys_bytes
umap_remote, (struct proc *rp, int seg, 05149 vir_bytes vir_addr, vir_bytes bytes)); 05150 _PROTOTYPE(
phys_bytes umap_bios, (struct proc *rp, vir_bytes vir_addr, 05151 vir_bytes bytes)); 05152 05153 /* exception.c */
05154 _PROTOTYPE(void exception, (unsigned vec_nr)); 05155 05156 /* i8259.c */ 05157 _PROTOTYPE(void
intr_init, (int mine)); 05158 _PROTOTYPE(void intr_handle, (irq_hook_t *hook)); 05159 _PROTOTYPE(void
put_irq_handler, (irq_hook_t *hook, int irq, 05160 irq_handler_t handler)); 05161 _PROTOTYPE(void
rm_irq_handler, (irq_hook_t *hook)); 05162 05163 /* klib*.s */ 05164 _PROTOTYPE(void int86, (void)); 05165
_PROTOTYPE(void cp_mess, (int src,phys_clicks src_clicks,vir_bytes src_offset, 05166 phys_clicks dst_clicks,
vir_bytes dst_offset)); 05167 _PROTOTYPE(void enable_irq, (irq_hook_t *hook)); 05168 _PROTOTYPE(int
disable_irq, (irq_hook_t *hook)); 05169 _PROTOTYPE(u16_t mem_rdw, (U16_t segm, vir_bytes offset)); 05170
_PROTOTYPE(void phys_copy, (phys_bytes source, phys_bytes dest, 05171 phys_bytes count)); 05172
_PROTOTYPE(void phys_memset, (phys_bytes source, unsigned long pattern, 05173 phys_bytes count)); 05174
_PROTOTYPE(void phys_insb, (U16_t port, phys_bytes buf, size_t count)); 05175 _PROTOTYPE(void phys_insw,
(U16_t port, phys_bytes buf, size_t count)); 05176 _PROTOTYPE(void phys_outsb, (U16_t port, phys_bytes buf,
size_t count)); 05177 _PROTOTYPE(void phys_outsw, (U16_t port, phys_bytes buf, size_t count)); 05178
_PROTOTYPE(void reset, (void)); 05179 _PROTOTYPE(void level0, (void (*func)(void)));

[Page 696]

05180 _PROTOTYPE(void monitor, (void)); 05181 _PROTOTYPE(void read_tsc, (unsigned long *high, unsigned
long *low)); 05182 _PROTOTYPE(unsigned long read_cpu_flags, (void)); 05183 05184 /* mpx*.s */ 05185
_PROTOTYPE(void idle_task, (void)); 05186 _PROTOTYPE(void restart, (void)); 05187 05188 /* The following
are never called from C (pure asm procs). */ 05189 05190 /* Exception handlers (real or protected mode), in numerical
order. */ 05191 void _PROTOTYPE(int00, (void)), _PROTOTYPE(divide_error, (void)); 05192 void
_PROTOTYPE(int01, (void)), _PROTOTYPE(single_step_exception, (void)); 05193 void _PROTOTYPE(int02,
(void)), _PROTOTYPE(nmi, (void)); 05194 void _PROTOTYPE(int03, (void)), _PROTOTYPE(
breakpoint_exception, (void)); 05195 void _PROTOTYPE(int04, (void)), _PROTOTYPE(overflow, (void)); 05196
void _PROTOTYPE(int05, (void)), _PROTOTYPE(bounds_check, (void)); 05197 void _PROTOTYPE(int06,
(void)), _PROTOTYPE(inval_opcode, (void)); 05198 void _PROTOTYPE(int07, (void)), _PROTOTYPE(
copr_not_available, (void)); 05199 void _PROTOTYPE(double_fault, (void)); 05200 void _PROTOTYPE(
copr_seg_overrun, (void)); 05201 void _PROTOTYPE(inval_tss, (void)); 05202 void _PROTOTYPE(
segment_not_present, (void)); 05203 void _PROTOTYPE(stack_exception, (void)); 05204 void _PROTOTYPE(
general_protection, (void)); 05205 void _PROTOTYPE(page_fault, (void)); 05206 void _PROTOTYPE(copr_error,
(void)); 05207 05208 /* Hardware interrupt handlers. */ 05209 _PROTOTYPE(void hwint00, (void)); 05210
_PROTOTYPE(void hwint01, (void)); 05211 _PROTOTYPE(void hwint02, (void)); 05212 _PROTOTYPE(void
hwint03, (void)); 05213 _PROTOTYPE(void hwint04, (void)); 05214 _PROTOTYPE(void hwint05, (void)); 05215
_PROTOTYPE(void hwint06, (void)); 05216 _PROTOTYPE(void hwint07, (void)); 05217 _PROTOTYPE(void
hwint08, (void)); 05218 _PROTOTYPE(void hwint09, (void)); 05219 _PROTOTYPE(void hwint10, (void)); 05220
_PROTOTYPE(void hwint11, (void)); 05221 _PROTOTYPE(void hwint12, (void)); 05222 _PROTOTYPE(void
hwint13, (void)); 05223 _PROTOTYPE(void hwint14, (void)); 05224 _PROTOTYPE(void hwint15, (void)); 05225
05226 /* Software interrupt handlers, in numerical order. */ 05227 _PROTOTYPE(void trp, (void)); 05228
_PROTOTYPE(void s_call, (void)), _PROTOTYPE(p_s_call, (void)); 05229 _PROTOTYPE(void level0_call,
(void)); 05230 05231 /* protect.c */ 05232 _PROTOTYPE(void prot_init, (void)); 05233 _PROTOTYPE(void

32

32

init_codeseg, (struct segdesc_s *segdp, phys_bytes base, 05234 vir_bytes size, int privilege)); 05235 _PROTOTYPE(
void init_dataseg, (struct segdesc_s *segdp, phys_bytes base, 05236 vir_bytes size, int privilege)); 05237
_PROTOTYPE(phys_bytes seg2phys, (U16_t seg)); 05238 _PROTOTYPE(void phys2seg, (u16_t *seg, vir_bytes
*off, phys_bytes phys)); 05239 _PROTOTYPE(void enable_iop, (struct proc *pp));

[Page 697]

05240 _PROTOTYPE(void alloc_segments, (struct proc *rp)); 05241 05242 #endif /* PROTO_H */ 05243 05244
++
kernel/glo.h
++
05300 #ifndef GLO_H 05301 #define GLO_H 05302 05303 /* Global variables used in the kernel. This file contains
the declarations; 05304 * storage space for the variables is allocated in table.c, because EXTERN is 05305 * defined as
extern unless the _TABLE definition is seen. We rely on the 05306 * compiler's default initialization (0) for several
global variables. 05307 */ 05308 #ifdef _TABLE 05309 #undef EXTERN 05310 #define EXTERN 05311 #endif
05312 05313 #include <minix/config.h> 05314 #include "config.h" 05315 05316 /* Variables relating to shutting
down MINIX. */ 05317 EXTERN char kernel_exception; /* TRUE after system exceptions */ 05318 EXTERN char
shutdown_started; /* TRUE after shutdowns / reboots */ 05319 05320 /* Kernel information structures. This groups
vital kernel information. */ 05321 EXTERN phys_bytes aout; /* address of a.out headers */ 05322 EXTERN struct
kinfo kinfo; /* kernel information for users */ 05323 EXTERN struct machine machine; /* machine information for
users */ 05324 EXTERN struct kmessages kmess; /* diagnostic messages in kernel */ 05325 EXTERN struct
randomness krandom; /* gather kernel random information */ 05326 05327 /* Process scheduling information and the
kernel reentry count. */ 05328 EXTERN struct proc *prev_ptr; /* previously running process */ 05329 EXTERN struct
proc *proc_ptr; /* pointer to currently running process */ 05330 EXTERN struct proc *next_ptr; /* next process to run
after restart() */ 05331 EXTERN struct proc *bill_ptr; /* process to bill for clock ticks */ 05332 EXTERN char
k_reenter; /* kernel reentry count (entry count less 1) */ 05333 EXTERN unsigned lost_ticks; /* clock ticks counted
outside clock task */ 05334 05335 /* Interrupt related variables. */ 05336 EXTERN irq_hook_t
irq_hooks[NR_IRQ_HOOKS]; /* hooks for general use */ 05337 EXTERN irq_hook_t
irq_handlers[NR_IRQ_VECTORS];/ list of IRQ handlers */ 05338 EXTERN int irq_actids[NR_IRQ_VECTORS];
/* IRQ ID bits active */ 05339 EXTERN int irq_use; /* map of all in-use irq's */ 05340 05341 /* Miscellaneous. */
05342 EXTERN reg_t mon_ss, mon_sp; /* boot monitor stack */ 05343 EXTERN int mon_return; /* true if we can
return to monitor */ 05344 05345 /* Variables that are initialized elsewhere are just extern here. */ 05346 extern struct
boot_image image[]; /* system image processes */ 05347 extern char *t_stack[]; /* task stack space */ 05348 extern
struct segdesc_s gdt[]; /* global descriptor table */ 05349

[Page 698]

05350 EXTERN _PROTOTYPE(void (*level0_func), (void)); 05351 05352 #endif /* GLO_H */ 05353 05354 05355
05356 05357
++
kernel/ipc.h
++
05400 #ifndef IPC_H 05401 #define IPC_H 05402 05403 /* This header file defines constants for MINIX
inter-process communication. 05404 * These definitions are used in the file proc.c. 05405 */ 05406 #include
<minix/com.h> 05407 05408 /* Masks and flags for system calls. */ 05409 #define SYSCALL_FUNC 0x0F /* mask
for system call function */ 05410 #define SYSCALL_FLAGS 0xF0 /* mask for system call flags */ 05411 #define
NON_BLOCKING 0x10 /* prevent blocking, return error */ 05412 05413 /* System call numbers that are passed
when trapping to the kernel. The 05414 * numbers are carefully defined so that it can easily be seen (based on 05415 *
the bits that are on) which checks should be done in sys_call(). 05416 */ 05417 #define SEND 1 /* 0 0 0 1 : blocking
send */ 05418 #define RECEIVE 2 /* 0 0 1 0 : blocking receive */ 05419 #define SENDREC 3 /* 0 0 1 1 : SEND +
RECEIVE */ 05420 #define NOTIFY 4 /* 0 1 0 0 : nonblocking notify */ 05421 #define ECHO 8 /* 1 0 0 0 : echo a
message */ 05422 05423 /* The following bit masks determine what checks that should be done. */ 05424 #define
CHECK_PTR 0x0B /* 1 0 1 1 : validate message buffer */ 05425 #define CHECK_DST 0x05 /* 0 1 0 1 : validate
message destination */ 05426 #define CHECK_SRC 0x02 /* 0 0 1 0 : validate message source */ 05427 05428 #endif

33

33

/* IPC_H */
++
kernel/proc.h
++
05500 #ifndef PROC_H 05501 #define PROC_H 05502 05503 /* Here is the declaration of the process table. It
contains all process 05504 * data, including registers, flags, scheduling priority, memory map, 05505 * accounting,
message passing (IPC) information, and so on. 05506 * 05507 * Many assembly code routines reference fields in it.
The offsets to these 05508 * fields are defined in the assembler include file sconst.h. When changing 05509 * struct
proc, be sure to change sconst.h to match.

[Page 699]

05510 */ 05511 #include <minix/com.h> 05512 #include "protect.h" 05513 #include "const.h" 05514 #include "priv.h"
05515 05516 struct proc { 05517 struct stackframe_s p_reg; /* process' registers saved in stack frame */ 05518 reg_t
p_ldt_sel; /* selector in gdt with ldt base and limit */ 05519 struct segdesc_s p_ldt[2+NR_REMOTE_SEGS]; /* CS,
DS and remote segments */ 05520 05521 proc_nr_t p_nr; /* number of this process (for fast access) */ 05522 struct
priv *p_priv; /* system privileges structure */ 05523 char p_rts_flags; /* SENDING, RECEIVING, etc. */ 05524
05525 char p_priority; /* current scheduling priority */ 05526 char p_max_priority; /* maximum scheduling priority */
05527 char p_ticks_left; /* number of scheduling ticks left */ 05528 char p_quantum_size; /* quantum size in ticks */
05529 05530 struct mem_map p_memmap[NR_LOCAL_SEGS]; /* memory map (T, D, S) */ 05531 05532 clock_t
p_user_time; /* user time in ticks */ 05533 clock_t p_sys_time; /* sys time in ticks */ 05534 05535 struct proc
p_nextready; / pointer to next ready process */ 05536 struct proc *p_caller_q; /* head of list of procs wishing to
send */ 05537 struct proc *p_q_link; /* link to next proc wishing to send */ 05538 message *p_messbuf; /* pointer to
passed message buffer */ 05539 proc_nr_t p_getfrom; /* from whom does process want to receive? */ 05540 proc_nr_t
p_sendto; /* to whom does process want to send? */ 05541 05542 sigset_t p_pending; /* bit map for pending kernel
signals */ 05543 05544 char p_name[P_NAME_LEN]; /* name of the process, including \0 */ 05545 }; 05546 05547
/* Bits for the runtime flags. A process is runnable iff p_rts_flags == 0. */ 05548 #define SLOT_FREE 0x01 /* process
slot is free */ 05549 #define NO_MAP 0x02 /* keeps unmapped forked child from running */ 05550 #define
SENDING 0x04 /* process blocked trying to SEND */ 05551 #define RECEIVING 0x08 /* process blocked trying to
RECEIVE */ 05552 #define SIGNALED 0x10 /* set when new kernel signal arrives */ 05553 #define SIG_PENDING
0x20 /* unready while signal being processed */ 05554 #define P_STOP 0x40 /* set when process is being traced */
05555 #define NO_PRIV 0x80 /* keep forked system process from running */ 05556 05557 /* Scheduling priorities
for p_priority. Values must start at zero (highest 05558 * priority) and increment. Priorities of the processes in the boot
image 05559 * can be set in table.c. IDLE must have a queue for itself, to prevent low 05560 * priority user processes
to run round-robin with IDLE. 05561 */ 05562 #define NR_SCHED_QUEUES 16 /* MUST equal minimum priority +
1 */ 05563 #define TASK_Q 0 /* highest, used for kernel tasks */ 05564 #define MAX_USER_Q 0 /* highest priority
for user processes */ 05565 #define USER_Q 7 /* default (should correspond to nice 0) */ 05566 #define
MIN_USER_Q 14 /* minimum priority for user processes */ 05567 #define IDLE_Q 15 /* lowest, only IDLE process
goes here */ 05568 05569 /* Magic process table addresses. */

[Page 700]

05570 #define BEG_PROC_ADDR (&proc[0]) 05571 #define BEG_USER_ADDR (&proc[NR_TASKS]) 05572
#define END_PROC_ADDR (&proc[NR_TASKS + NR_PROCS]) 05573 05574 #define NIL_PROC ((struct proc *)
0) 05575 #define NIL_SYS_PROC ((struct proc *) 1) 05576 #define cproc_addr(n) (&(proc + NR_TASKS)[(n)])
05577 #define proc_addr(n) (pproc_addr + NR_TASKS)[(n)] 05578 #define proc_nr(p) ((p)->p_nr) 05579 05580
#define isokprocn(n) ((unsigned) ((n) + NR_TASKS) < NR_PROCS + NR_TASKS) 05581 #define isemptyn(n)
isemptyp(proc_addr(n)) 05582 #define isemptyp(p) ((p)->p_rts_flags == SLOT_FREE) 05583 #define iskernelp(p)
iskerneln((p)->p_nr) 05584 #define iskerneln(n) ((n) < 0) 05585 #define isuserp(p) isusern((p)->p_nr) 05586 #define
isusern(n) ((n) >= 0) 05587 05588 /* The process table and pointers to process table slots. The pointers allow 05589 *
faster access because now a process entry can be found by indexing the 05590 * pproc_addr array, while accessing an
element i requires a multiplication 05591 * with sizeof(struct proc) to determine the address. 05592 */ 05593 EXTERN
struct proc proc[NR_TASKS + NR_PROCS]; /* process table */ 05594 EXTERN struct proc
*pproc_addr[NR_TASKS + NR_PROCS]; 05595 EXTERN struct proc *rdy_head[NR_SCHED_QUEUES]; /* ptrs to

34

34

ready list headers */ 05596 EXTERN struct proc *rdy_tail[NR_SCHED_QUEUES]; /* ptrs to ready list tails */ 05597
05598 #endif /* PROC_H */
++
kernel/sconst.h
++
05600 ! Miscellaneous constants used in assembler code. 05601 W = _WORD_SIZE ! Machine word size. 05602
05603 ! Offsets in struct proc. They MUST match proc.h. 05604 P_STACKBASE = 0 05605 GSREG =
P_STACKBASE 05606 FSREG = GSREG + 2 ! 386 introduces FS and GS segments 05607 ESREG = FSREG + 2
05608 DSREG = ESREG + 2 05609 DIREG = DSREG + 2 05610 SIREG = DIREG + W 05611 BPREG = SIREG +
W 05612 STREG = BPREG + W ! hole for another SP 05613 BXREG = STREG + W 05614 DXREG = BXREG + W
05615 CXREG = DXREG + W 05616 AXREG = CXREG + W 05617 RETADR = AXREG + W ! return address for
save() call 05618 PCREG = RETADR + W 05619 CSREG = PCREG + W 05620 PSWREG = CSREG + W 05621
SPREG = PSWREG + W 05622 SSREG = SPREG + W 05623 P_STACKTOP = SSREG + W 05624 P_LDT_SEL =
P_STACKTOP

[Page 701]

05625 P_LDT = P_LDT_SEL + W 05626 05627 Msize = 9 ! size of a message in 32-bit words
++
kernel/priv.h
++
05700 #ifndef PRIV_H 05701 #define PRIV_H 05702 05703 /* Declaration of the system privileges structure. It
defines flags, system 05704 * call masks, an synchronous alarm timer, I/O privileges, pending hardware 05705 *
interrupts and notifications, and so on. 05706 * System processes each get their own structure with properties, whereas
all 05707 * user processes share one structure. This setup provides a clear separation 05708 * between common and
privileged process fields and is very space efficient. 05709 * 05710 * Changes: 05711 * Jul 01, 2005 Created. (Jorrit
N. Herder) 05712 */ 05713 #include <minix/com.h> 05714 #include "protect.h" 05715 #include "const.h" 05716
#include "type.h" 05717 05718 struct priv { 05719 proc_nr_t s_proc_nr; /* number of associated process */ 05720
sys_id_t s_id; /* index of this system structure */ 05721 short s_flags; /* PREEMTIBLE, BILLABLE, etc. */ 05722
05723 short s_trap_mask; /* allowed system call traps */ 05724 sys_map_t s_ipc_from; /* allowed callers to receive
from */ 05725 sys_map_t s_ipc_to; /* allowed destination processes */ 05726 long s_call_mask; /* allowed kernel
calls */ 05727 05728 sys_map_t s_notify_pending; /* bit map with pending notifications */ 05729 irq_id_t
s_int_pending; /* pending hardware interrupts */ 05730 sigset_t s_sig_pending; /* pending signals */ 05731 05732
timer_t s_alarm_timer; /* synchronous alarm timer */ 05733 struct far_mem s_farmem[NR_REMOTE_SEGS]; /*
remote memory map */ 05734 reg_t *s_stack_guard; /* stack guard word for kernel tasks */ 05735 }; 05736 05737 /*
Guard word for task stacks. */ 05738 #define STACK_GUARD ((reg_t) (sizeof(reg_t) == 2 ? 0xBEEF :
0xDEADBEEF)) 05739 05740 /* Bits for the system property flags. */ 05741 #define PREEMPTIBLE 0x01 /* kernel
tasks are not preemptible */ 05742 #define BILLABLE 0x04 /* some processes are not billable */ 05743 #define
SYS_PROC 0x10 /* system processes are privileged */ 05744 #define SENDREC_BUSY 0x20 /* sendrec() in
progress */ 05745 05746 /* Magic system structure table addresses. */ 05747 #define BEG_PRIV_ADDR (&priv[0])
05748 #define END_PRIV_ADDR (&priv[NR_SYS_PROCS]) 05749

[Page 702]

05750 #define priv_addr(i) (ppriv_addr)[(i)] 05751 #define priv_id(rp) ((rp)->p_priv->s_id) 05752 #define priv(rp)
((rp)->p_priv) 05753 05754 #define id_to_nr(id) priv_addr(id)->s_proc_nr 05755 #define nr_to_id(nr)
priv(proc_addr(nr))->s_id 05756 05757 /* The system structures table and pointers to individual table slots. The 05758
* pointers allow faster access because now a process entry can be found by 05759 * indexing the psys_addr array,
while accessing an element i requires a 05760 * multiplication with sizeof(struct sys) to determine the address. 05761
/ 05762 EXTERN struct priv priv[NR_SYS_PROCS]; / system properties table */ 05763 EXTERN struct priv
ppriv_addr[NR_SYS_PROCS]; / direct slot pointers */ 05764 05765 /* Unprivileged user processes all share the
same privilege structure. 05766 * This id must be fixed because it is used to check send mask entries. 05767 */ 05768
#define USER_PRIV_ID 0 05769 05770 /* Make sure the system can boot. The following sanity check verifies that
05771 * the system privileges table is large enough for the number of processes 05772 * in the boot image. 05773 */

35

35

05774 #if (NR_BOOT_PROCS > NR_SYS_PROCS) 05775 #error NR_SYS_PROCS must be larger than
NR_BOOT_PROCS 05776 #endif 05777 05778 #endif /* PRIV_H */
++
kernel/protect.h
++
05800 /* Constants for protected mode. */ 05801 05802 /* Table sizes. */ 05803 #define GDT_SIZE
(FIRST_LDT_INDEX + NR_TASKS + NR_PROCS) 05804 /* spec. and LDT's */ 05805 #define IDT_SIZE
(IRQ8_VECTOR + 8) /* only up to the highest vector */ 05806 #define LDT_SIZE (2 + NR_REMOTE_SEGS) /* CS,
DS and remote segments */ 05807 05808 /* Fixed global descriptors. 1 to 7 are prescribed by the BIOS. */ 05809
#define GDT_INDEX 1 /* GDT descriptor */ 05810 #define IDT_INDEX 2 /* IDT descriptor */ 05811 #define
DS_INDEX 3 /* kernel DS */ 05812 #define ES_INDEX 4 /* kernel ES (386: flag 4 Gb at startup) */ 05813 #define
SS_INDEX 5 /* kernel SS (386: monitor SS at startup) */ 05814 #define CS_INDEX 6 /* kernel CS */ 05815 #define
MON_CS_INDEX 7 /* temp for BIOS (386: monitor CS at startup) */ 05816 #define TSS_INDEX 8 /* kernel TSS */
05817 #define DS_286_INDEX 9 /* scratch 16-bit source segment */ 05818 #define ES_286_INDEX 10 /* scratch
16-bit destination segment */ 05819 #define A_INDEX 11 /* 64K memory segment at A0000 */ 05820 #define
B_INDEX 12 /* 64K memory segment at B0000 */ 05821 #define C_INDEX 13 /* 64K memory segment at C0000 */
05822 #define D_INDEX 14 /* 64K memory segment at D0000 */ 05823 #define FIRST_LDT_INDEX 15 /* rest of
descriptors are LDT's */ 05824

[Page 703]

05825 #define GDT_SELECTOR 0x08 /* (GDT_INDEX * DESC_SIZE) bad for asld */ 05826 #define
IDT_SELECTOR 0x10 /* (IDT_INDEX * DESC_SIZE) */ 05827 #define DS_SELECTOR 0x18 /* (DS_INDEX *
DESC_SIZE) */ 05828 #define ES_SELECTOR 0x20 /* (ES_INDEX * DESC_SIZE) */ 05829 #define
FLAT_DS_SELECTOR 0x21 /* less privileged ES */ 05830 #define SS_SELECTOR 0x28 /* (SS_INDEX *
DESC_SIZE) */ 05831 #define CS_SELECTOR 0x30 /* (CS_INDEX * DESC_SIZE) */ 05832 #define
MON_CS_SELECTOR 0x38 /* (MON_CS_INDEX * DESC_SIZE) */ 05833 #define TSS_SELECTOR 0x40 /*
(TSS_INDEX * DESC_SIZE) */ 05834 #define DS_286_SELECTOR 0x49 /*
(DS_286_INDEX*DESC_SIZE+TASK_PRIVILEGE) */ 05835 #define ES_286_SELECTOR 0x51 /*
(ES_286_INDEX*DESC_SIZE+TASK_PRIVILEGE) */ 05836 05837 /* Fixed local descriptors. */ 05838 #define
CS_LDT_INDEX 0 /* process CS */ 05839 #define DS_LDT_INDEX 1 /* process DS=ES=FS=GS=SS */ 05840
#define EXTRA_LDT_INDEX 2 /* first of the extra LDT entries */ 05841 05842 /* Privileges. */ 05843 #define
INTR_PRIVILEGE 0 /* kernel and interrupt handlers */ 05844 #define TASK_PRIVILEGE 1 /* kernel tasks */ 05845
#define USER_PRIVILEGE 3 /* servers and user processes */ 05846 05847 /* 286 hardware constants. */ 05848
05849 /* Exception vector numbers. */ 05850 #define BOUNDS_VECTOR 5 /* bounds check failed */ 05851 #define
INVAL_OP_VECTOR 6 /* invalid opcode */ 05852 #define COPROC_NOT_VECTOR 7 /* coprocessor not
available */ 05853 #define DOUBLE_FAULT_VECTOR 8 05854 #define COPROC_SEG_VECTOR 9 /*
coprocessor segment overrun */ 05855 #define INVAL_TSS_VECTOR 10 /* invalid TSS */ 05856 #define
SEG_NOT_VECTOR 11 /* segment not present */ 05857 #define STACK_FAULT_VECTOR 12 /* stack exception
/ 05858 #define PROTECTION_VECTOR 13 / general protection */ 05859 05860 /* Selector bits. */ 05861 #define
TI 0x04 /* table indicator */ 05862 #define RPL 0x03 /* requester privilege level */ 05863 05864 /* Descriptor
structure offsets. */ 05865 #define DESC_BASE 2 /* to base_low */ 05866 #define DESC_BASE_MIDDLE 4 /* to
base_middle */ 05867 #define DESC_ACCESS 5 /* to access byte */ 05868 #define DESC_SIZE 8 /* sizeof (struct
segdesc_s) */ 05869 05870 /* Base and limit sizes and shifts. */ 05871 #define BASE_MIDDLE_SHIFT 16 /* shift for
base --> base_middle */ 05872 05873 /* Access-byte and type-byte bits. */ 05874 #define PRESENT 0x80 /* set for
descriptor present */ 05875 #define DPL 0x60 /* descriptor privilege level mask */ 05876 #define DPL_SHIFT 5
05877 #define SEGMENT 0x10 /* set for segment-type descriptors */ 05878 05879 /* Access-byte bits. */ 05880
#define EXECUTABLE 0x08 /* set for executable segment */ 05881 #define CONFORMING 0x04 /* set for
conforming segment if executable */ 05882 #define EXPAND_DOWN 0x04 /* set for expand-down segment if
!executable*/ 05883 #define READABLE 0x02 /* set for readable segment if executable */ 05884 #define
WRITEABLE 0x02 /* set for writeable segment if !executable */

[Page 704]

36

36

05885 #define TSS_BUSY 0x02 /* set if TSS descriptor is busy */ 05886 #define ACCESSED 0x01 /* set if segment
accessed */ 05887 05888 /* Special descriptor types. */ 05889 #define AVL_286_TSS 1 /* available 286 TSS */
05890 #define LDT 2 /* local descriptor table */ 05891 #define BUSY_286_TSS 3 /* set transparently to the software
/ 05892 #define CALL_286_GATE 4 / not used */ 05893 #define TASK_GATE 5 /* only used by debugger */
05894 #define INT_286_GATE 6 /* interrupt gate, used for all vectors */ 05895 #define TRAP_286_GATE 7 /* not
used */ 05896 05897 /* Extra 386 hardware constants. */ 05898 05899 /* Exception vector numbers. */ 05900 #define
PAGE_FAULT_VECTOR 14 05901 #define COPROC_ERR_VECTOR 16 /* coprocessor error */ 05902 05903 /*
Descriptor structure offsets. */ 05904 #define DESC_GRANULARITY 6 /* to granularity byte */ 05905 #define
DESC_BASE_HIGH 7 /* to base_high */ 05906 05907 /* Base and limit sizes and shifts. */ 05908 #define
BASE_HIGH_SHIFT 24 /* shift for base --> base_high */ 05909 #define BYTE_GRAN_MAX 0xFFFFFL /*
maximum size for byte granular segment */ 05910 #define GRANULARITY_SHIFT 16 /* shift for limit -->
granularity */ 05911 #define OFFSET_HIGH_SHIFT 16 /* shift for (gate) offset --> offset_high */ 05912 #define
PAGE_GRAN_SHIFT 12 /* extra shift for page granular limits */ 05913 05914 /* Type-byte bits. */ 05915 #define
DESC_386_BIT 0x08 /* 386 types are obtained by ORing with this */ 05916 /* LDT's and TASK_GATE's don't need
it */ 05917 05918 /* Granularity byte. */ 05919 #define GRANULAR 0x80 /* set for 4K granularilty */ 05920 #define
DEFAULT 0x40 /* set for 32-bit defaults (executable seg) */ 05921 #define BIG 0x40 /* set for "BIG" (expand-down
seg) */ 05922 #define AVL 0x10 /* 0 for available */ 05923 #define LIMIT_HIGH 0x0F /* mask for high bits of limit
*/ ++
kernel/table.c
++
06000 /* The object file of "table.c" contains most kernel data. Variables that 06001 * are declared in the *.h files
appear with EXTERN in front of them, as in 06002 * 06003 * EXTERN int x; 06004 * 06005 * Normally EXTERN is
defined as extern, so when they are included in another 06006 * file, no storage is allocated. If EXTERN were not
present, but just say, 06007 * 06008 * int x; 06009 * 06010 * then including this file in several source files would
cause 'x' to be 06011 * declared several times. While some linkers accept this, others do not, 06012 * so they are
declared extern when included normally. However, it must be 06013 * declared for real somewhere. That is done here,
by redefining EXTERN as 06014 * the null string, so that inclusion of all *.h files in table.c actually

[Page 705]

06015 * generates storage for them. 06016 * 06017 * Various variables could not be declared EXTERN, but are
declared PUBLIC 06018 * or PRIVATE. The reason for this is that extern variables cannot have a 06019 * default
initialization. If such variables are shared, they must also be 06020 * declared in one of the *.h files without the
initialization. Examples 06021 * include 'boot_image' (this file) and 'idt' and 'gdt' (protect.c). 06022 * 06023 *
Changes: 06024 * Aug 02, 2005 set privileges and minimal boot image (Jorrit N. Herder) 06025 * Oct 17, 2004
updated above and tasktab comments (Jorrit N. Herder) 06026 * May 01, 2004 changed struct for system image (Jorrit
N. Herder) 06027 */ 06028 #define _TABLE 06029 06030 #include "kernel.h" 06031 #include "proc.h" 06032
#include "ipc.h" 06033 #include <minix/com.h> 06034 #include <ibm/int86.h> 06035 06036 /* Define stack sizes for
the kernel tasks included in the system image. */ 06037 #define NO_STACK 0 06038 #define SMALL_STACK (128
* sizeof(char *)) 06039 #define IDL_S SMALL_STACK /* 3 intr, 3 temps, 4 db for Intel */ 06040 #define HRD_S
NO_STACK /* dummy task, uses kernel stack */ 06041 #define TSK_S SMALL_STACK /* system and clock task */
06042 06043 /* Stack space for all the task stacks. Declared as (char *) to align it. */ 06044 #define
TOT_STACK_SPACE (IDL_S + HRD_S + (2 * TSK_S)) 06045 PUBLIC char *t_stack[TOT_STACK_SPACE /
sizeof(char *)]; 06046 06047 /* Define flags for the various process types. */ 06048 #define IDL_F (SYS_PROC |
PREEMPTIBLE | BILLABLE) /* idle task */ 06049 #define TSK_F (SYS_PROC) /* kernel tasks */ 06050 #define
SRV_F (SYS_PROC | PREEMPTIBLE) /* system services */ 06051 #define USR_F (BILLABLE | PREEMPTIBLE)
/* user processes */ 06052 06053 /* Define system call traps for the various process types. These call masks 06054 *
determine what system call traps a process is allowed to make. 06055 */ 06056 #define TSK_T (1 << RECEIVE) /*
clock and system */ 06057 #define SRV_T (~0) /* system services */ 06058 #define USR_T ((1 << SENDREC) | (1
<< ECHO)) /* user processes */ 06059 06060 /* Send masks determine to whom processes can send messages or
notifications. 06061 * The values here are used for the processes in the boot image. We rely on 06062 * the
initialization code in main() to match the s_nr_to_id() mapping for the 06063 * processes in the boot image, so that the
send mask that is defined here 06064 * can be directly copied onto map[0] of the actual send mask. Privilege 06065 *
structure 0 is shared by user processes. 06066 */ 06067 #define s(n) (1 << s_nr_to_id(n)) 06068 #define SRV_M (~0)

37

37

06069 #define SYS_M (~0) 06070 #define USR_M (s(PM_PROC_NR) | s(FS_PROC_NR) | s(RS_PROC_NR)) 06071
#define DRV_M (USR_M | s(SYSTEM) | s(CLOCK) | s(LOG_PROC_NR) | s(TTY_PROC_NR)) 06072 06073 /*
Define kernel calls that processes are allowed to make. This is not looking 06074 * very nice, but we need to define the
access rights on a per call basis.

[Page 706]

06075 * Note that the reincarnation server has all bits on, because it should 06076 * be allowed to distribute rights to
services that it starts. 06077 */ 06078 #define c(n) (1 << ((n)-KERNEL_CALL)) 06079 #define RS_C ~0 06080
#define PM_C ~(c(SYS_DEVIO) | c(SYS_SDEVIO) | c(SYS_VDEVIO) \ 06081 | c(SYS_IRQCTL) | c(SYS_INT86))
06082 #define FS_C (c(SYS_KILL) | c(SYS_VIRCOPY) | c(SYS_VIRVCOPY) | c(SYS_UMAP) \ 06083 |
c(SYS_GETINFO) | c(SYS_EXIT) | c(SYS_TIMES) | c(SYS_SETALARM)) 06084 #define DRV_C (FS_C |
c(SYS_SEGCTL) | c(SYS_IRQCTL) | c(SYS_INT86) \ 06085 | c(SYS_DEVIO) | c(SYS_VDEVIO) |
c(SYS_SDEVIO)) 06086 #define MEM_C (DRV_C | c(SYS_PHYSCOPY) | c(SYS_PHYSVCOPY)) 06087 06088 /*
The system image table lists all programs that are part of the boot image. 06089 * The order of the entries here MUST
agree with the order of the programs 06090 * in the boot image and all kernel tasks must come first. 06091 * Each
entry provides the process number, flags, quantum size (qs), scheduling 06092 * queue, allowed traps, ipc mask, and a
name for the process table. The 06093 * initial program counter and stack size is also provided for kernel tasks. 06094
/ 06095 PUBLIC struct boot_image image[] = { 06096 / process nr, pc, flags, qs, queue, stack, traps, ipcto, call,
name */ 06097 { IDLE, idle_task, IDL_F, 8, IDLE_Q, IDL_S, 0, 0, 0, "IDLE" }, 06098 { CLOCK,clock_task, TSK_F,
64, TASK_Q, TSK_S, TSK_T, 0, 0, "CLOCK" }, 06099 { SYSTEM, sys_task, TSK_F, 64, TASK_Q, TSK_S,
TSK_T, 0, 0, "SYSTEM"}, 06100 { HARDWARE, 0, TSK_F, 64, TASK_Q, HRD_S, 0, 0, 0, "KERNEL"}, 06101 {
PM_PROC_NR, 0, SRV_F, 32, 3, 0, SRV_T, SRV_M, PM_C, "pm" }, 06102 { FS_PROC_NR, 0, SRV_F, 32, 4, 0,
SRV_T, SRV_M, FS_C, "fs" }, 06103 { RS_PROC_NR, 0, SRV_F, 4, 3, 0, SRV_T, SYS_M, RS_C, "rs" }, 06104 {
TTY_PROC_NR, 0, SRV_F, 4, 1, 0, SRV_T, SYS_M, DRV_C, "tty" }, 06105 { MEM_PROC_NR, 0, SRV_F, 4, 2, 0,
SRV_T, DRV_M, MEM_C, "memory"}, 06106 { LOG_PROC_NR, 0, SRV_F, 4, 2, 0, SRV_T, SYS_M, DRV_C,
"log" }, 06107 { DRVR_PROC_NR, 0, SRV_F, 4, 2, 0, SRV_T, SYS_M, DRV_C, "driver"}, 06108 {
INIT_PROC_NR, 0, USR_F, 8, USER_Q, 0, USR_T, USR_M, 0, "init" }, 06109 }; 06110 06111 /* Verify the size of
the system image table at compile time. Also verify that 06112 * the first chunk of the ipc mask has enough bits to
accommodate the processes 06113 * in the image. 06114 * If a problem is detected, the size of the 'dummy' array will
be negative, 06115 * causing a compile time error. Note that no space is actually allocated 06116 * because 'dummy' is
declared extern. 06117 */ 06118 extern int dummy[(NR_BOOT_PROCS==sizeof(image)/ 06119 sizeof(struct
boot_image))?1:-1]; 06120 extern int dummy[(BITCHUNK_BITS > NR_BOOT_PROCS - 1) ? 1 : -1]; 06121
++
kernel/mpx.s
++
06200 # 06201 ! Chooses between the 8086 and 386 versions of the Minix startup code. 06202 06203 #include
<minix/config.h> 06204 #if _WORD_SIZE == 2

[Page 707]

06205 #include "mpx88.s" 06206 #else 06207 #include "mpx386.s" 06208 #endif
++
kernel/mpx386.s
++
06300 # 06301 ! This file, mpx386.s, is included by mpx.s when Minix is compiled for 06302 ! 32-bit Intel CPUs. The
alternative mpx88.s is compiled for 16-bit CPUs. 06303 06304 ! This file is part of the lowest layer of the MINIX
kernel. (The other part 06305 ! is "proc.c".) The lowest layer does process switching and message handling. 06306 !
Furthermore it contains the assembler startup code for Minix and the 32-bit 06307 ! interrupt handlers. It cooperates
with the code in "start.c" to set up a 06308 ! good environment for main(). 06309 06310 ! Every transition to the kernel
goes through this file. Transitions to the 06311 ! kernel may be nested. The initial entry may be with a system call (i.e.,
06312 ! send or receive a message), an exception or a hardware interrupt; kernel 06313 ! reentries may only be made
by hardware interrupts. The count of reentries 06314 ! is kept in "k_reenter". It is important for deciding whether to
switch to 06315 ! the kernel stack and for protecting the message passing code in "proc.c". 06316 06317 ! For the

38

38

message passing trap, most of the machine state is saved in the 06318 ! proc table. (Some of the registers need not be
saved.) Then the stack is 06319 ! switched to "k_stack", and interrupts are reenabled. Finally, the system 06320 ! call
handler (in C) is called. When it returns, interrupts are disabled 06321 ! again and the code falls into the restart routine,
to finish off held-up 06322 ! interrupts and run the process or task whose pointer is in "proc_ptr". 06323 06324 !
Hardware interrupt handlers do the same, except (1) The entire state must 06325 ! be saved. (2) There are too many
handlers to do this inline, so the save 06326 ! routine is called. A few cycles are saved by pushing the address of the
06327 ! appropiate restart routine for a return later. (3) A stack switch is 06328 ! avoided when the stack is already
switched. (4) The (master) 8259 interrupt 06329 ! controller is reenabled centrally in save(). (5) Each interrupt handler
06330 ! masks its interrupt line using the 8259 before enabling (other unmasked) 06331 ! interrupts, and unmasks it
after servicing the interrupt. This limits the 06332 ! nest level to the number of lines and protects the handler from
itself. 06333 06334 ! For communication with the boot monitor at startup time some constant 06335 ! data are
compiled into the beginning of the text segment. This facilitates 06336 ! reading the data at the start of the boot
process, since only the first 06337 ! sector of the file needs to be read. 06338 06339 ! Some data storage is also
allocated at the end of this file. This data 06340 ! will be at the start of the data segment of the kernel and will be read
06341 ! and modified by the boot monitor before the kernel starts. 06342 06343 ! sections 06344 06345 .sect .text
06346 begtext: 06347 .sect .rom 06348 begrom: 06349 .sect .data

[Page 708]

06350 begdata: 06351 .sect .bss 06352 begbss: 06353 06354 #include <minix/config.h> 06355 #include
<minix/const.h> 06356 #include <minix/com.h> 06357 #include <ibm/interrupt.h> 06358 #include "const.h" 06359
#include "protect.h" 06360 #include "sconst.h" 06361 06362 /* Selected 386 tss offsets. */ 06363 #define
TSS3_S_SP0 4 06364 06365 ! Exported functions 06366 ! Note: in assembly language the .define statement applied to
a function name 06367 ! is loosely equivalent to a prototype in C code -- it makes it possible to 06368 ! link to an
entity declared in the assembly code but does not create 06369 ! the entity. 06370 06371 .define _restart 06372 .define
save 06373 06374 .define _divide_error 06375 .define _single_step_exception 06376 .define _nmi 06377 .define
_breakpoint_exception 06378 .define _overflow 06379 .define _bounds_check 06380 .define _inval_opcode 06381
.define _copr_not_available 06382 .define _double_fault 06383 .define _copr_seg_overrun 06384 .define _inval_tss
06385 .define _segment_not_present 06386 .define _stack_exception 06387 .define _general_protection 06388 .define
_page_fault 06389 .define _copr_error 06390 06391 .define _hwint00 ! handlers for hardware interrupts 06392 .define
_hwint01 06393 .define _hwint02 06394 .define _hwint03 06395 .define _hwint04 06396 .define _hwint05 06397
.define _hwint06 06398 .define _hwint07 06399 .define _hwint08 06400 .define _hwint09 06401 .define _hwint10
06402 .define _hwint11 06403 .define _hwint12 06404 .define _hwint13 06405 .define _hwint14 06406 .define
_hwint15 06407 06408 .define _s_call 06409 .define _p_s_call

[Page 709]

06410 .define _level0_call 06411 06412 ! Exported variables. 06413 .define begbss 06414 .define begdata 06415
06416 .sect .text 06417
!*===* 06418 !*
MINIX * 06419
!*===* 06420
MINIX: ! this is the entry point for the MINIX kernel 06421 jmp over_flags ! skip over the next few bytes 06422
.data2 CLICK_SHIFT ! for the monitor: memory granularity 06423 flags: 06424 .data2 0x01FD ! boot monitor flags:
06425 ! call in 386 mode, make bss, make stack, 06426 ! load high, don't patch, will return, 06427 ! uses generic INT,
memory vector, 06428 ! new boot code return 06429 nop ! extra byte to sync up disassembler 06430 over_flags: 06431
06432 ! Set up a C stack frame on the monitor stack. (The monitor sets cs and ds 06433 ! right. The ss descriptor still
references the monitor data segment.) 06434 movzx esp, sp ! monitor stack is a 16 bit stack 06435 push ebp 06436
mov ebp, esp 06437 push esi 06438 push edi 06439 cmp 4(ebp), 0 ! monitor return vector is 06440 jz noret ! nonzero if
return possible 06441 inc (_mon_return) 06442 noret: mov (_mon_sp), esp ! save stack pointer for later return 06443
06444 ! Copy the monitor global descriptor table to the address space of kernel and 06445 ! switch over to it.
Prot_init() can then update it with immediate effect. 06446 06447 sgdt (_gdt+GDT_SELECTOR) ! get the monitor
gdtr 06448 mov esi, (_gdt+GDT_SELECTOR+2) ! absolute address of GDT 06449 mov ebx, _gdt ! address of kernel
GDT 06450 mov ecx, 8*8 ! copying eight descriptors 06451 copygdt: 06452 eseg movb al, (esi) 06453 movb (ebx), al

39

39

06454 inc esi 06455 inc ebx 06456 loop copygdt 06457 mov eax, (_gdt+DS_SELECTOR+2) ! base of kernel data
06458 and eax, 0x00FFFFFF ! only 24 bits 06459 add eax, _gdt ! eax = vir2phys(gdt) 06460 mov
(_gdt+GDT_SELECTOR+2), eax ! set base of GDT 06461 lgdt (_gdt+GDT_SELECTOR) ! switch over to kernel
GDT 06462 06463 ! Locate boot parameters, set up kernel segment registers and stack. 06464 mov ebx, 8(ebp) ! boot
parameters offset 06465 mov edx, 12(ebp) ! boot parameters length 06466 mov eax, 16(ebp) ! address of a.out headers
06467 mov (_aout), eax 06468 mov ax, ds ! kernel data 06469 mov es, ax

[Page 710]

06470 mov fs, ax 06471 mov gs, ax 06472 mov ss, ax 06473 mov esp, k_stktop ! set sp to point to the top of kernel
stack 06474 06475 ! Call C startup code to set up a proper environment to run main(). 06476 push edx 06477 push ebx
06478 push SS_SELECTOR 06479 push DS_SELECTOR 06480 push CS_SELECTOR 06481 call _cstart ! cstart(cs,
ds, mds, parmoff, parmlen) 06482 add esp, 5*4 06483 06484 ! Reload gdtr, idtr and the segment registers to global
descriptor table set 06485 ! up by prot_init(). 06486 06487 lgdt (_gdt+GDT_SELECTOR) 06488 lidt
(_gdt+IDT_SELECTOR) 06489 06490 jmpf CS_SELECTOR:csinit 06491 csinit: 06492 o16 mov ax,
DS_SELECTOR 06493 mov ds, ax 06494 mov es, ax 06495 mov fs, ax 06496 mov gs, ax 06497 mov ss, ax 06498
o16 mov ax, TSS_SELECTOR ! no other TSS is used 06499 ltr ax 06500 push 0 ! set flags to known good state 06501
popf ! esp, clear nested task and int enable 06502 06503 jmp _main ! main() 06504 06505 06506
!*===* 06507 !*
interrupt handlers * 06508 !* interrupt handlers for 386 32-bit protected mode * 06509
!*===* 06510
06511 !*===*
06512 !* hwint00 - 07 * 06513
!*===* 06514 !
Note this is a macro, it just looks like a subroutine. 06515 #define hwint_master(irq) \ 06516 call save /* save
interrupted process state */;\ 06517 push (_irq_handlers+4*irq) /* irq_handlers[irq] */;\ 06518 call _intr_handle /*
intr_handle(irq_handlers[irq]) */;\ 06519 pop ecx ;\ 06520 cmp (_irq_actids+4*irq), 0 /* interrupt still active? */;\
06521 jz 0f ;\ 06522 inb INT_CTLMASK /* get current mask */ ;\ 06523 orb al, [1<<irq] /* mask irq */ ;\ 06524 outb
INT_CTLMASK /* disable the irq */;\ 06525 0: movb al, END_OF_INT ;\ 06526 outb INT_CTL /* reenable master
8259 */;\ 06527 ret /* restart (another) process */ 06528 06529 ! Each of these entry points is an expansion of the
hwint_master macro

[Page 711]

06530 .align 16 06531 _hwint00: ! Interrupt routine for irq 0 (the clock). 06532 hwint_master(0) 06533 06534 .align
16 06535 _hwint01: ! Interrupt routine for irq 1 (keyboard) 06536 hwint_master(1) 06537 06538 .align 16 06539
_hwint02: ! Interrupt routine for irq 2 (cascade!) 06540 hwint_master(2) 06541 06542 .align 16 06543 _hwint03: !
Interrupt routine for irq 3 (second serial) 06544 hwint_master(3) 06545 06546 .align 16 06547 _hwint04: ! Interrupt
routine for irq 4 (first serial) 06548 hwint_master(4) 06549 06550 .align 16 06551 _hwint05: ! Interrupt routine for irq
5 (XT winchester) 06552 hwint_master(5) 06553 06554 .align 16 06555 _hwint06: ! Interrupt routine for irq 6 (floppy)
06556 hwint_master(6) 06557 06558 .align 16 06559 _hwint07: ! Interrupt routine for irq 7 (printer) 06560
hwint_master(7) 06561 06562
!*===* 06563 !*
hwint08 - 15 * 06564
!*===* 06565 !
Note this is a macro, it just looks like a subroutine. 06566 #define hwint_slave(irq) \ 06567 call save /* save
interrupted process state */;\ 06568 push (_irq_handlers+4*irq) /* irq_handlers[irq] */;\ 06569 call _intr_handle /*
intr_handle(irq_handlers[irq]) */;\ 06570 pop ecx ;\ 06571 cmp (_irq_actids+4*irq), 0 /* interrupt still active? */;\
06572 jz 0f ;\ 06573 inb INT2_CTLMASK ;\ 06574 orb al, [1<<[irq-8]] ;\ 06575 outb INT2_CTLMASK /* disable the
irq */;\ 06576 0: movb al, END_OF_INT ;\ 06577 outb INT_CTL /* reenable master 8259 */;\ 06578 outb INT2_CTL
/* reenable slave 8259 */;\ 06579 ret /* restart (another) process */ 06580 06581 ! Each of these entry points is an
expansion of the hwint_slave macro 06582 .align 16 06583 _hwint08: ! Interrupt routine for irq 8 (realtime clock)
06584 hwint_slave(8) 06585 06586 .align 16 06587 _hwint09: ! Interrupt routine for irq 9 (irq 2 redirected) 06588
hwint_slave(9) 06589

40

40

[Page 712]

06590 .align 16 06591 _hwint10: ! Interrupt routine for irq 10 06592 hwint_slave(10) 06593 06594 .align 16 06595
_hwint11: ! Interrupt routine for irq 11 06596 hwint_slave(11) 06597 06598 .align 16 06599 _hwint12: ! Interrupt
routine for irq 12 06600 hwint_slave(12) 06601 06602 .align 16 06603 _hwint13: ! Interrupt routine for irq 13 (FPU
exception) 06604 hwint_slave(13) 06605 06606 .align 16 06607 _hwint14: ! Interrupt routine for irq 14 (AT
winchester) 06608 hwint_slave(14) 06609 06610 .align 16 06611 _hwint15: ! Interrupt routine for irq 15 06612
hwint_slave(15) 06613 06614
!*===* 06615 !*
save * 06616
!*===* 06617 !
Save for protected mode. 06618 ! This is much simpler than for 8086 mode, because the stack already points 06619 !
into the process table, or has already been switched to the kernel stack. 06620 06621 .align 16 06622 save: 06623 cld !
set direction flag to a known value 06624 pushad ! save "general" registers 06625 o16 push ds ! save ds 06626 o16
push es ! save es 06627 o16 push fs ! save fs 06628 o16 push gs ! save gs 06629 mov dx, ss ! ss is kernel data segment
06630 mov ds, dx ! load rest of kernel segments 06631 mov es, dx ! kernel does not use fs, gs 06632 mov eax, esp !
prepare to return 06633 incb (_k_reenter) ! from -1 if not reentering 06634 jnz set_restart1 ! stack is already kernel
stack 06635 mov esp, k_stktop 06636 push _restart ! build return address for int handler 06637 xor ebp, ebp ! for
stacktrace 06638 jmp RETADR-P_STACKBASE(eax) 06639 06640 .align 4 06641 set_restart1: 06642 push restart1
06643 jmp RETADR-P_STACKBASE(eax) 06644 06645
!*===* 06646 !*
_s_call * 06647
!*===* 06648
.align 16 06649 _s_call:

[Page 713]

06650 _p_s_call: 06651 cld ! set direction flag to a known value 06652 sub esp, 6*4 ! skip RETADR, eax, ecx, edx,
ebx, est 06653 push ebp ! stack already points into proc table 06654 push esi 06655 push edi 06656 o16 push ds 06657
o16 push es 06658 o16 push fs 06659 o16 push gs 06660 mov dx, ss 06661 mov ds, dx 06662 mov es, dx 06663 incb
(_k_reenter) 06664 mov esi, esp ! assumes P_STACKBASE == 0 06665 mov esp, k_stktop 06666 xor ebp, ebp ! for
stacktrace 06667 ! end of inline save 06668 ! now set up parameters for sys_call() 06669 push ebx ! pointer to user
message 06670 push eax ! src/dest 06671 push ecx ! SEND/RECEIVE/BOTH 06672 call _sys_call ! sys_call(function,
src_dest, m_ptr) 06673 ! caller is now explicitly in proc_ptr 06674 mov AXREG(esi), eax ! sys_call MUST
PRESERVE si 06675 06676 ! Fall into code to restart proc/task running. 06677 06678
!*===* 06679 !*
restart * 06680
!*===* 06681
_restart: 06682 06683 ! Restart the current process or the next process if it is set. 06684 06685 cmp (_next_ptr), 0 ! see
if another process is scheduled 06686 jz 0f 06687 mov eax, (_next_ptr) 06688 mov (_proc_ptr), eax ! schedule new
process 06689 mov (_next_ptr), 0 06690 0: mov esp, (_proc_ptr) ! will assume P_STACKBASE == 0 06691 lldt
P_LDT_SEL(esp) ! enable process' segment descriptors 06692 lea eax, P_STACKTOP(esp) ! arrange for next
interrupt 06693 mov (_tss+TSS3_S_SP0), eax ! to save state in process table 06694 restart1: 06695 decb (_k_reenter)
06696 o16 pop gs 06697 o16 pop fs 06698 o16 pop es 06699 o16 pop ds 06700 popad 06701 add esp, 4 ! skip return
adr 06702 iretd ! continue process 06703 06704
!*===* 06705 !*
exception handlers * 06706
!*===* 06707
_divide_error: 06708 push DIVIDE_VECTOR 06709 jmp exception

[Page 714]

41

41

06710 06711 _single_step_exception: 06712 push DEBUG_VECTOR 06713 jmp exception 06714 06715 _nmi: 06716
push NMI_VECTOR 06717 jmp exception 06718 06719 _breakpoint_exception: 06720 push
BREAKPOINT_VECTOR 06721 jmp exception 06722 06723 _overflow: 06724 push OVERFLOW_VECTOR 06725
jmp exception 06726 06727 _bounds_check: 06728 push BOUNDS_VECTOR 06729 jmp exception 06730 06731
_inval_opcode: 06732 push INVAL_OP_VECTOR 06733 jmp exception 06734 06735 _copr_not_available: 06736
push COPROC_NOT_VECTOR 06737 jmp exception 06738 06739 _double_fault: 06740 push
DOUBLE_FAULT_VECTOR 06741 jmp errexception 06742 06743 _copr_seg_overrun: 06744 push
COPROC_SEG_VECTOR 06745 jmp exception 06746 06747 _inval_tss: 06748 push INVAL_TSS_VECTOR 06749
jmp errexception 06750 06751 _segment_not_present: 06752 push SEG_NOT_VECTOR 06753 jmp errexception
06754 06755 _stack_exception: 06756 push STACK_FAULT_VECTOR 06757 jmp errexception 06758 06759
_general_protection: 06760 push PROTECTION_VECTOR 06761 jmp errexception 06762 06763 _page_fault: 06764
push PAGE_FAULT_VECTOR 06765 jmp errexception 06766 06767 _copr_error: 06768 push
COPROC_ERR_VECTOR 06769 jmp exception

[Page 715]

06770 06771
!*===* 06772 !*
exception * 06773
!*===* 06774 !
This is called for all exceptions which do not push an error code. 06775 06776 .align 16 06777 exception: 06778 sseg
mov (trap_errno), 0 ! clear trap_errno 06779 sseg pop (ex_number) 06780 jmp exception1 06781 06782
!*===* 06783 !*
errexception * 06784
!*===* 06785 !
This is called for all exceptions which push an error code. 06786 06787 .align 16 06788 errexception: 06789 sseg pop
(ex_number) 06790 sseg pop (trap_errno) 06791 exception1: ! Common for all exceptions. 06792 push eax ! eax is
scratch register 06793 mov eax, 0+4(esp) ! old eip 06794 sseg mov (old_eip), eax 06795 movzx eax, 4+4(esp) ! old cs
06796 sseg mov (old_cs), eax 06797 mov eax, 8+4(esp) ! old eflags 06798 sseg mov (old_eflags), eax 06799 pop eax
06800 call save 06801 push (old_eflags) 06802 push (old_cs) 06803 push (old_eip) 06804 push (trap_errno) 06805
push (ex_number) 06806 call _exception ! (ex_number, trap_errno, old_eip, 06807 ! old_cs, old_eflags) 06808 add
esp, 5*4 06809 ret 06810 06811
!*===* 06812 !*
level0_call * 06813
!*===* 06814
_level0_call: 06815 call save 06816 jmp (_level0_func) 06817 06818
!*===* 06819 !*
data * 06820
!*===* 06821
06822 .sect .rom ! Before the string table please 06823 .data2 0x526F ! this must be the first data entry (magic #)
06824 06825 .sect .bss 06826 k_stack: 06827 .space K_STACK_BYTES ! kernel stack 06828 k_stktop: ! top of kernel
stack 06829 .comm ex_number, 4

[Page 716]

06830 .comm trap_errno, 4 06831 .comm old_eip, 4 06832 .comm old_cs, 4 06833 .comm old_eflags, 4
++
kernel/start.c
++
06900 /* This file contains the C startup code for Minix on Intel processors. 06901 * It cooperates with mpx.s to set up
a good environment for main(). 06902 * 06903 * This code runs in real mode for a 16 bit kernel and may have to
switch 06904 * to protected mode for a 286. 06905 * For a 32 bit kernel this already runs in protected mode, but the
selectors 06906 * are still those given by the BIOS with interrupts disabled, so the 06907 * descriptors need to be
reloaded and interrupt descriptors made. 06908 */ 06909 06910 #include "kernel.h" 06911 #include "protect.h" 06912

42

42

#include "proc.h" 06913 #include <stdlib.h> 06914 #include <string.h> 06915 06916 FORWARD _PROTOTYPE(
char *get_value, (_CONST char *params, _CONST char *key)); 06917
/*===* 06918 *
cstart * 06919
===/ 06920
PUBLIC void cstart(cs, ds, mds, parmoff, parmsize) 06921 U16_t cs, ds; /* kernel code and data segment */ 06922
U16_t mds; /* monitor data segment */ 06923 U16_t parmoff, parmsize; /* boot parameters offset and length */ 06924
{ 06925 /* Perform system initializations prior to calling main(). Most settings are 06926 * determined with help of the
environment strings passed by MINIX' loader. 06927 */ 06928 char params[128*sizeof(char *)]; /* boot monitor
parameters */ 06929 register char *value; /* value in key=value pair */ 06930 extern int etext, end; 06931 06932 /*
Decide if mode is protected; 386 or higher implies protected mode. 06933 * This must be done first, because it is
needed for, e.g., seg2phys(). 06934 * For 286 machines we cannot decide on protected mode, yet. This is 06935 * done
below. 06936 */ 06937 #if _WORD_SIZE != 2 06938 machine.protected = 1; 06939 #endif 06940 06941 /* Record
where the kernel and the monitor are. */ 06942 kinfo.code_base = seg2phys(cs); 06943 kinfo.code_size = (phys_bytes)
&etext; /* size of code segment */ 06944 kinfo.data_base = seg2phys(ds); 06945 kinfo.data_size = (phys_bytes) &end;
/* size of data segment */ 06946 06947 /* Initialize protected mode descriptors. */ 06948 prot_init(); 06949

[Page 717]

06950 /* Copy the boot parameters to the local buffer. */ 06951 kinfo.params_base = seg2phys(mds) + parmoff; 06952
kinfo.params_size = MIN(parmsize,sizeof(params)-2); 06953 phys_copy(kinfo.params_base, vir2phys(params),
kinfo.params_size); 06954 06955 /* Record miscellaneous information for user-space servers. */ 06956 kinfo.nr_procs
= NR_PROCS; 06957 kinfo.nr_tasks = NR_TASKS; 06958 strncpy(kinfo.release, OS_RELEASE,
sizeof(kinfo.release)); 06959 kinfo.release[sizeof(kinfo.release)-1] = '\0'; 06960 strncpy(kinfo.version, OS_VERSION,
sizeof(kinfo.version)); 06961 kinfo.version[sizeof(kinfo.version)-1] = '\0'; 06962 kinfo.proc_addr = (vir_bytes) proc;
06963 kinfo.kmem_base = vir2phys(0); 06964 kinfo.kmem_size = (phys_bytes) &end; 06965 06966 /* Processor? 86,
186, 286, 386, ... 06967 * Decide if mode is protected for older machines. 06968 */ 06969
machine.processor=atoi(get_value(params, "processor")); 06970 #if _WORD_SIZE == 2 06971 machine.protected =
machine.processor >= 286; 06972 #endif 06973 if (! machine.protected) mon_return = 0; 06974 06975 /* XT, AT or
MCA bus? */ 06976 value = get_value(params, "bus"); 06977 if (value == NIL_PTR || strcmp(value, "at") == 0) {
06978 machine.pc_at = TRUE; /* PC-AT compatible hardware */ 06979 } else if (strcmp(value, "mca") == 0) { 06980
machine.pc_at = machine.ps_mca = TRUE; /* PS/2 with micro channel */ 06981 } 06982 06983 /* Type of VDU: */
06984 value = get_value(params, "video"); /* EGA or VGA video unit */ 06985 if (strcmp(value, "ega") == 0)
machine.vdu_ega = TRUE; 06986 if (strcmp(value, "vga") == 0) machine.vdu_vga = machine.vdu_ega = TRUE;
06987 06988 /* Return to assembler code to switch to protected mode (if 286), 06989 * reload selectors and call
main(). 06990 */ 06991 } 06993
/*===* 06994 *
get_value * 06995
===/ 06996
06997 PRIVATE char *get_value(params, name) 06998 _CONST char *params; /* boot monitor parameters */ 06999
_CONST char *name; /* key to look up */ 07000 { 07001 /* Get environment value - kernel version of getenv to avoid
setting up the 07002 * usual environment array. 07003 */ 07004 register _CONST char *namep; 07005 register char
*envp; 07006 07007 for (envp = (char *) params; *envp != 0;) { 07008 for (namep = name; *namep != 0 && *namep
== *envp; namep++, envp++) 07009 ;

[Page 718]

07010 if (*namep == '\0' && *envp == '=') return(envp + 1); 07011 while (*envp++ != 0) 07012 ; 07013 } 07014
return(NIL_PTR); 07015 }
++
kernel/main.c
++
07100 /* This file contains the main program of MINIX as well as its shutdown code. 07101 * The routine main()
initializes the system and starts the ball rolling by 07102 * setting up the process table, interrupt vectors, and

43

43

scheduling each task 07103 * to run to initialize itself. 07104 * The routine shutdown() does the opposite and brings
down MINIX. 07105 * 07106 * The entries into this file are: 07107 * main: MINIX main program 07108 *
prepare_shutdown: prepare to take MINIX down 07109 * 07110 * Changes: 07111 * Nov 24, 2004 simplified main()
with system image (Jorrit N. Herder) 07112 * Aug 20, 2004 new prepare_shutdown() and shutdown() (Jorrit N.
Herder) 07113 */ 07114 #include "kernel.h" 07115 #include <signal.h> 07116 #include <string.h> 07117 #include
<unistd.h> 07118 #include <a.out.h> 07119 #include <minix/callnr.h> 07120 #include <minix/com.h> 07121 #include
"proc.h" 07122 07123 /* Prototype declarations for PRIVATE functions. */ 07124 FORWARD _PROTOTYPE(void
announce, (void)); 07125 FORWARD _PROTOTYPE(void shutdown, (timer_t *tp)); 07126 07127
/*===* 07128 *
main * 07129
===/ 07130
PUBLIC void main() 07131 { 07132 /* Start the ball rolling. */ 07133 struct boot_image *ip; /* boot image pointer */
07134 register struct proc *rp; /* process pointer */ 07135 register struct priv *sp; /* privilege structure pointer */
07136 register int i, s; 07137 int hdrindex; /* index to array of a.out headers */ 07138 phys_clicks text_base; 07139
vir_clicks text_clicks, data_clicks; 07140 reg_t ktsb; /* kernel task stack base */ 07141 struct exec e_hdr; /* for a copy
of an a.out header */ 07142 07143 /* Initialize the interrupt controller. */ 07144 intr_init(1);

[Page 719]

07145 07146 /* Clear the process table. Anounce each slot as empty and set up mappings 07147 * for proc_addr() and
proc_nr() macros. Do the same for the table with 07148 * privilege structures for the system processes. 07149 */ 07150
for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) { 07151 rp->p_rts_flags =
SLOT_FREE; /* initialize free slot */ 07152 rp->p_nr = i; /* proc number from ptr */ 07153 (pproc_addr +
NR_TASKS)[i] = rp; /* proc ptr from number */ 07154 } 07155 for (sp = BEG_PRIV_ADDR, i = 0; sp <
END_PRIV_ADDR; ++sp, ++i) { 07156 sp->s_proc_nr = NONE; /* initialize as free */ 07157 sp->s_id = i; /* priv
structure index */ 07158 ppriv_addr[i] = sp; /* priv ptr from number */ 07159 } 07160 07161 /* Set up proc table
entries for tasks and servers. The stacks of the 07162 * kernel tasks are initialized to an array in data space. The stacks
07163 * of the servers have been added to the data segment by the monitor, so 07164 * the stack pointer is set to the
end of the data segment. All the 07165 * processes are in low memory on the 8086. On the 386 only the kernel 07166
* is in low memory, the rest is loaded in extended memory. 07167 */ 07168 07169 /* Task stacks. */ 07170 ktsb =
(reg_t) t_stack; 07171 07172 for (i=0; i < NR_BOOT_PROCS; ++i) { 07173 ip = &image[i]; /* process' attributes */
07174 rp = proc_addr(ip->proc_nr); /* get process pointer */ 07175 rp->p_max_priority = ip->priority; /* max
scheduling priority */ 07176 rp->p_priority = ip->priority; /* current priority */ 07177 rp->p_quantum_size =
ip->quantum; /* quantum size in ticks */ 07178 rp->p_ticks_left = ip->quantum; /* current credit */ 07179
strncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set process name */ 07180 (void) get_priv(rp, (ip->flags &
SYS_PROC)); /* assign structure */ 07181 priv(rp)->s_flags = ip->flags; /* process flags */ 07182
priv(rp)->s_trap_mask = ip->trap_mask; /* allowed traps */ 07183 priv(rp)->s_call_mask = ip->call_mask; /* kernel
call mask */ 07184 priv(rp)->s_ipc_to.chunk[0] = ip->ipc_to; /* restrict targets */ 07185 if (iskerneln(proc_nr(rp))) {
/* part of the kernel? */ 07186 if (ip->stksize > 0) { /* HARDWARE stack size is 0 */ 07187
rp->p_priv->s_stack_guard = (reg_t *) ktsb; 07188 *rp->p_priv->s_stack_guard = STACK_GUARD; 07189 } 07190
ktsb += ip->stksize; /* point to high end of stack */ 07191 rp->p_reg.sp = ktsb; /* this task's initial stack ptr */ 07192
text_base = kinfo.code_base >> CLICK_SHIFT; 07193 /* processes that are in the kernel */ 07194 hdrindex = 0; /* all
use the first a.out header */ 07195 } else { 07196 hdrindex = 1 + i-NR_TASKS; /* servers, drivers, INIT */ 07197 }
07198 07199 /* The bootstrap loader created an array of the a.out headers at 07200 * absolute address 'aout'. Get one
element to e_hdr. 07201 */ 07202 phys_copy(aout + hdrindex * A_MINHDR, vir2phys(&e_hdr), 07203 (phys_bytes)
A_MINHDR); 07204 /* Convert addresses to clicks and build process memory map */

[Page 720]

07205 text_base = e_hdr.a_syms >> CLICK_SHIFT; 07206 text_clicks = (e_hdr.a_text + CLICK_SIZE-1) >>
CLICK_SHIFT; 07207 if (!(e_hdr.a_flags & A_SEP)) text_clicks = 0; /* common I&D */ 07208 data_clicks =
(e_hdr.a_total + CLICK_SIZE-1) >> CLICK_SHIFT; 07209 rp->p_memmap[T].mem_phys = text_base; 07210
rp->p_memmap[T].mem_len = text_clicks; 07211 rp->p_memmap[D].mem_phys = text_base + text_clicks; 07212
rp->p_memmap[D].mem_len = data_clicks; 07213 rp->p_memmap[S].mem_phys = text_base + text_clicks +

44

44

data_clicks; 07214 rp->p_memmap[S].mem_vir = data_clicks; /* empty - stack is in data */ 07215 07216 /* Set initial
register values. The processor status word for tasks 07217 * is different from that of other processes because tasks can
07218 * access I/O; this is not allowed to less-privileged processes 07219 */ 07220 rp->p_reg.pc = (reg_t)
ip->initial_pc; 07221 rp->p_reg.psw = (iskernelp(rp)) ? INIT_TASK_PSW : INIT_PSW; 07222 07223 /* Initialize the
server stack pointer. Take it down one word 07224 * to give crtso.s something to use as "argc". 07225 */ 07226 if
(isusern(proc_nr(rp))) { /* user-space process? */ 07227 rp->p_reg.sp = (rp->p_memmap[S].mem_vir + 07228
rp->p_memmap[S].mem_len) << CLICK_SHIFT; 07229 rp->p_reg.sp -= sizeof(reg_t); 07230 } 07231 07232 /* Set
ready. The HARDWARE task is never ready. */ 07233 if (rp->p_nr != HARDWARE) { 07234 rp->p_rts_flags = 0; /*
runnable if no flags */ 07235 lock_enqueue(rp); /* add to scheduling queues */ 07236 } else { 07237 rp->p_rts_flags =
NO_MAP; /* prevent from running */ 07238 } 07239 07240 /* Code and data segments must be allocated in protected
mode. */ 07241 alloc_segments(rp); 07242 } 07243 07244 /* We're definitely not shutting down. */ 07245
shutdown_started = 0; 07246 07247 /* MINIX is now ready. All boot image processes are on the ready queue. 07248 *
Return to the assembly code to start running the current process. 07249 */ 07250 bill_ptr = proc_addr(IDLE); /* it has
to point somewhere */ 07251 announce(); /* print MINIX startup banner */ 07252 restart(); 07253 } 07255
/*===* 07256 *
announce * 07257
===/ 07258
PRIVATE void announce(void) 07259 { 07260 /* Display the MINIX startup banner. */ 07261 kprintf("MINIX
%s.%s." 07262 "Copyright 2006, Vrije Universiteit, Amsterdam, The Netherlands\n", 07263 OS_RELEASE,
OS_VERSION); 07264

[Page 721]

07265 /* Real mode, or 16/32-bit protected mode? */ 07266 kprintf("Executing in %s mode.\n\n", 07267
machine.protected ? "32-bit protected" : "real"); 07268 } 07270
/*===* 07271 *
prepare_shutdown * 07272
===/ 07273
PUBLIC void prepare_shutdown(how) 07274 int how; 07275 { 07276 /* This function prepares to shutdown MINIX.
*/ 07277 static timer_t shutdown_timer; 07278 register struct proc *rp; 07279 message m; 07280 07281 /* Show
debugging dumps on panics. Make sure that the TTY task is still 07282 * available to handle them. This is done with
help of a non-blocking send. 07283 * We rely on TTY to call sys_abort() when it is done with the dumps. 07284 */
07285 if (how == RBT_PANIC) { 07286 m.m_type = PANIC_DUMPS; 07287 if
(nb_send(TTY_PROC_NR,&m)==OK) /* don't block if TTY isn't ready */ 07288 return; /* await sys_abort() from
TTY */ 07289 } 07290 07291 /* Send a signal to all system processes that are still alive to inform 07292 * them that
the MINIX kernel is shutting down. A proper shutdown sequence 07293 * should be implemented by a user-space
server. This mechanism is useful 07294 * as a backup in case of system panics, so that system processes can still
07295 * run their shutdown code, e.g, to synchronize the FS or to let the TTY 07296 * switch to the first console.
07297 */ 07298 kprintf("Sending SIGKSTOP to system processes ...\n"); 07299 for (rp=BEG_PROC_ADDR;
rp<END_PROC_ADDR; rp++) { 07300 if (!isemptyp(rp) && (priv(rp)->s_flags & SYS_PROC) && !iskernelp(rp))
07301 send_sig(proc_nr(rp), SIGKSTOP); 07302 } 07303 07304 /* We're shutting down. Diagnostics may behave
differently now. */ 07305 shutdown_started = 1; 07306 07307 /* Notify system processes of the upcoming shutdown
and allow them to be 07308 * scheduled by setting a watchog timer that calls shutdown(). The timer 07309 * argument
passes the shutdown status. 07310 */ 07311 kprintf("MINIX will now be shut down ...\n"); 07312
tmr_arg(&shutdown_timer)->ta_int = how; 07313 07314 /* Continue after 1 second, to give processes a chance to get
07315 * scheduled to do shutdown work. 07316 */ 07317 set_timer(&shutdown_timer, get_uptime() + HZ, shutdown);
07318 } 07320
/*===* 07321 *
shutdown * 07322
===/ 07323
PRIVATE void shutdown(tp) 07324 timer_t *tp;

[Page 722]

45

45

07325 { 07326 /* This function is called from prepare_shutdown or stop_sequence to bring 07327 * down MINIX.
How to shutdown is in the argument: RBT_HALT (return to the 07328 * monitor), RBT_MONITOR (execute given
code), RBT_RESET (hard reset). 07329 */ 07330 int how = tmr_arg(tp)->ta_int; 07331 u16_t magic; 07332 07333 /*
Now mask all interrupts, including the clock, and stop the clock. */ 07334 outb(INT_CTLMASK, ~0); 07335
clock_stop(); 07336 07337 if (mon_return && how != RBT_RESET) { 07338 /* Reinitialize the interrupt controllers
to the BIOS defaults. */ 07339 intr_init(0); 07340 outb(INT_CTLMASK, 0); 07341 outb(INT2_CTLMASK, 0); 07342
07343 /* Return to the boot monitor. Set the program if not already done. */ 07344 if (how != RBT_MONITOR)
phys_copy(vir2phys(""), kinfo.params_base, 1); 07345 level0(monitor); 07346 } 07347 07348 /* Reset the system by
jumping to the reset address (real mode), or by 07349 * forcing a processor shutdown (protected mode). First stop the
BIOS 07350 * memory test by setting a soft reset flag. 07351 */ 07352 magic = STOP_MEM_CHECK; 07353
phys_copy(vir2phys(&magic), SOFT_RESET_FLAG_ADDR, SOFT_RESET_FLAG_SIZE); 07354 level0(reset);
07355 }
++
kernel/proc.c
++
07400 /* This file contains essentially all of the process and message handling. 07401 * Together with "mpx.s" it
forms the lowest layer of the MINIX kernel. 07402 * There is one entry point from the outside: 07403 * 07404 *
sys_call: a system call, i.e., the kernel is trapped with an INT 07405 * 07406 * As well as several entry points used
from the interrupt and task level: 07407 * 07408 * lock_notify: notify a process of a system event 07409 * lock_send:
send a message to a process 07410 * lock_enqueue: put a process on one of the scheduling queues 07411 *
lock_dequeue: remove a process from the scheduling queues 07412 * 07413 * Changes: 07414 * Aug 19, 2005 rewrote
scheduling code (Jorrit N. Herder) 07415 * Jul 25, 2005 rewrote system call handling (Jorrit N. Herder) 07416 * May
26, 2005 rewrote message passing functions (Jorrit N. Herder) 07417 * May 24, 2005 new notification system call
(Jorrit N. Herder) 07418 * Oct 28, 2004 nonblocking send and receive calls (Jorrit N. Herder) 07419 *

[Page 723]

07420 * The code here is critical to make everything work and is important for the 07421 * overall performance of the
system. A large fraction of the code deals with 07422 * list manipulation. To make this both easy to understand and
fast to execute 07423 * pointer pointers are used throughout the code. Pointer pointers prevent 07424 * exceptions for
the head or tail of a linked list. 07425 * 07426 * node_t *queue, *new_node; // assume these as global variables 07427
* node_t **xpp = &queue; // get pointer pointer to head of queue 07428 * while (*xpp != NULL) // find last pointer of
the linked list 07429 * xpp = &(*xpp)->next; // get pointer to next pointer 07430 * *xpp = new_node; // now replace
the end (the NULL pointer) 07431 * new_node->next = NULL; // and mark the new end of the list 07432 * 07433 *
For example, when adding a new node to the end of the list, one normally 07434 * makes an exception for an empty
list and looks up the end of the list for 07435 * nonempty lists. As shown above, this is not required with pointer
pointers. 07436 */ 07437 07438 #include <minix/com.h> 07439 #include <minix/callnr.h> 07440 #include "kernel.h"
07441 #include "proc.h" 07442 07443 /* Scheduling and message passing functions. The functions are available to
07444 * other parts of the kernel through lock_...(). The lock temporarily disables 07445 * interrupts to prevent race
conditions. 07446 */ 07447 FORWARD _PROTOTYPE(int mini_send, (struct proc *caller_ptr, int dst, 07448
message *m_ptr, unsigned flags)); 07449 FORWARD _PROTOTYPE(int mini_receive, (struct proc *caller_ptr, int
src, 07450 message *m_ptr, unsigned flags)); 07451 FORWARD _PROTOTYPE(int mini_notify, (struct proc
*caller_ptr, int dst)); 07452 07453 FORWARD _PROTOTYPE(void enqueue, (struct proc *rp)); 07454 FORWARD
_PROTOTYPE(void dequeue, (struct proc *rp)); 07455 FORWARD _PROTOTYPE(void sched, (struct proc *rp, int
*queue, int *front)); 07456 FORWARD _PROTOTYPE(void pick_proc, (void)); 07457 07458 #define
BuildMess(m_ptr, src, dst_ptr) \ 07459 (m_ptr)->m_source = (src); \ 07460 (m_ptr)->m_type = NOTIFY_FROM(src);
\ 07461 (m_ptr)->NOTIFY_TIMESTAMP = get_uptime(); \ 07462 switch (src) { \ 07463 case HARDWARE: \ 07464
(m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending; \ 07465 priv(dst_ptr)->s_int_pending = 0; \ 07466 break; \
07467 case SYSTEM: \ 07468 (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_sig_pending; \ 07469
priv(dst_ptr)->s_sig_pending = 0; \ 07470 break; \ 07471 } 07472 07473 #define CopyMess(s,sp,sm,dp,dm) \ 07474
cp_mess(s, (sp)->p_memmap[D].mem_phys, \ 07475 (vir_bytes)sm, (dp)->p_memmap[D].mem_phys, (vir_bytes)dm)
07476

[Page 724]

46

46

07477 /*===*
07478 * sys_call * 07479
===/ 07480
PUBLIC int sys_call(call_nr, src_dst, m_ptr) 07481 int call_nr; /* system call number and flags */ 07482 int src_dst; /*
src to receive from or dst to send to */ 07483 message *m_ptr; /* pointer to message in the caller's space */ 07484 {
07485 /* System calls are done by trapping to the kernel with an INT instruction. 07486 * The trap is caught and
sys_call() is called to send or receive a message 07487 * (or both). The caller is always given by 'proc_ptr'. 07488 */
07489 register struct proc *caller_ptr = proc_ptr; /* get pointer to caller */ 07490 int function = call_nr &
SYSCALL_FUNC; /* get system call function */ 07491 unsigned flags = call_nr & SYSCALL_FLAGS; /* get flags */
07492 int mask_entry; /* bit to check in send mask */ 07493 int result; /* the system call's result */ 07494 vir_clicks
vlo, vhi; /* virtual clicks containing message to send */ 07495 07496 /* Check if the process has privileges for the
requested call. Calls to the 07497 * kernel may only be SENDREC, because tasks always reply and may not block
07498 * if the caller doesn't do receive(). 07499 */ 07500 if (! (priv(caller_ptr)->s_trap_mask & (1 << function)) ||
07501 (iskerneln(src_dst) && function != SENDREC 07502 && function != RECEIVE)) { 07503 kprintf("sys_call:
trap %d not allowed, caller %d, src_dst %d\n", 07504 function, proc_nr(caller_ptr), src_dst); 07505
return(ECALLDENIED); /* trap denied by mask or kernel */ 07506 } 07507 07508 /* Require a valid source and/ or
destination process, unless echoing. */ 07509 if (! (isokprocn(src_dst) || src_dst == ANY || function == ECHO)) {
07510 kprintf("sys_call: invalid src_dst, src_dst %d, caller %d\n", 07511 src_dst, proc_nr(caller_ptr)); 07512
return(EBADSRCDST); /* invalid process number */ 07513 } 07514 07515 /* If the call involves a message buffer,
i.e., for SEND, RECEIVE, SENDREC, 07516 * or ECHO, check the message pointer. This check allows a message to
be 07517 * anywhere in data or stack or gap. It will have to be made more elaborate 07518 * for machines which don't
have the gap mapped. 07519 */ 07520 if (function & CHECK_PTR) { 07521 vlo = (vir_bytes) m_ptr >>
CLICK_SHIFT; 07522 vhi = ((vir_bytes) m_ptr + MESS_SIZE - 1) >> CLICK_SHIFT; 07523 if (vlo <
caller_ptr->p_memmap[D].mem_vir || vlo > vhi || 07524 vhi >= caller_ptr->p_memmap[S].mem_vir + 07525
caller_ptr->p_memmap[S].mem_len) { 07526 kprintf("sys_call: invalid message pointer, trap %d, caller %d\n", 07527
function, proc_nr(caller_ptr)); 07528 return(EFAULT); /* invalid message pointer */ 07529 } 07530 } 07531 07532 /*
If the call is to send to a process, i.e., for SEND, SENDREC or NOTIFY, 07533 * verify that the caller is allowed to
send to the given destination and 07534 * that the destination is still alive. 07535 */ 07536 if (function &
CHECK_DST) {

[Page 725]

07537 if (! get_sys_bit(priv(caller_ptr)->s_ipc_to, nr_to_id(src_dst))) { 07538 kprintf("sys_call: ipc mask denied %d
sending to %d\n", 07539 proc_nr(caller_ptr), src_dst); 07540 return(ECALLDENIED); /* call denied by ipc mask */
07541 } 07542 07543 if (isemptyn(src_dst) && !shutdown_started) { 07544 kprintf("sys_call: dead dest; %d, %d,
%d\n", 07545 function, proc_nr(caller_ptr), src_dst); 07546 return(EDEADDST); /* cannot send to the dead */ 07547
} 07548 } 07549 07550 /* Now check if the call is known and try to perform the request. The only 07551 * system
calls that exist in MINIX are sending and receiving messages. 07552 * - SENDREC: combines SEND and RECEIVE
in a single system call 07553 * - SEND: sender blocks until its message has been delivered 07554 * - RECEIVE:
receiver blocks until an acceptable message has arrived 07555 * - NOTIFY: nonblocking call; deliver notification or
mark pending 07556 * - ECHO: nonblocking call; directly echo back the message 07557 */ 07558 switch(function) {
07559 case SENDREC: 07560 /* A flag is set so that notifications cannot interrupt SENDREC. */ 07561
priv(caller_ptr)->s_flags |= SENDREC_BUSY; 07562 /* fall through */ 07563 case SEND: 07564 result =
mini_send(caller_ptr, src_dst, m_ptr, flags); 07565 if (function == SEND || result != OK) { 07566 break; /* done, or
SEND failed */ 07567 } /* fall through for SENDREC */ 07568 case RECEIVE: 07569 if (function == RECEIVE)
07570 priv(caller_ptr)->s_flags &= ~SENDREC_BUSY; 07571 result = mini_receive(caller_ptr, src_dst, m_ptr,
flags); 07572 break; 07573 case NOTIFY: 07574 result = mini_notify(caller_ptr, src_dst); 07575 break; 07576 case
ECHO: 07577 CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, caller_ptr, m_ptr); 07578 result = OK; 07579 break;
07580 default: 07581 result = EBADCALL; /* illegal system call */ 07582 } 07583 07584 /* Now, return the result of
the system call to the caller. */ 07585 return(result); 07586 } 07588
/*===* 07589 *
mini_send * 07590
===/ 07591
PRIVATE int mini_send(caller_ptr, dst, m_ptr, flags) 07592 register struct proc *caller_ptr; /* who is trying to send a

47

47

message? */ 07593 int dst; /* to whom is message being sent? */ 07594 message *m_ptr; /* pointer to message buffer
/ 07595 unsigned flags; / system call flags */ 07596 {

[Page 726]

07597 /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting 07598 * for this message, copy the
message to it and unblock 'dst'. If 'dst' is 07599 * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
07600 */ 07601 register struct proc *dst_ptr = proc_addr(dst); 07602 register struct proc **xpp; 07603 register struct
proc *xp; 07604 07605 /* Check for deadlock by 'caller_ptr' and 'dst' sending to each other. */ 07606 xp = dst_ptr;
07607 while (xp->p_rts_flags & SENDING) { /* check while sending */ 07608 xp = proc_addr(xp->p_sendto); /* get
xp's destination */ 07609 if (xp == caller_ptr) return(ELOCKED); /* deadlock if cyclic */ 07610 } 07611 07612 /*
Check if 'dst' is blocked waiting for this message. The destination's 07613 * SENDING flag may be set when its
SENDREC call blocked while sending. 07614 */ 07615 if ((dst_ptr->p_rts_flags & (RECEIVING | SENDING)) ==
RECEIVING && 07616 (dst_ptr->p_getfrom == ANY || dst_ptr->p_getfrom == caller_ptr->p_nr)) { 07617 /*
Destination is indeed waiting for this message. */ 07618 CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, dst_ptr, 07619
dst_ptr->p_messbuf); 07620 if ((dst_ptr->p_rts_flags &= ~RECEIVING) == 0) enqueue(dst_ptr); 07621 } else if (!
(flags & NON_BLOCKING)) { 07622 /* Destination is not waiting. Block and dequeue caller. */ 07623
caller_ptr->p_messbuf = m_ptr; 07624 if (caller_ptr->p_rts_flags == 0) dequeue(caller_ptr); 07625
caller_ptr->p_rts_flags |= SENDING; 07626 caller_ptr->p_sendto = dst; 07627 07628 /* Process is now blocked. Put
in on the destination's queue. */ 07629 xpp = &dst_ptr->p_caller_q; /* find end of list */ 07630 while (*xpp !=
NIL_PROC) xpp = &(*xpp)->p_q_link; 07631 *xpp = caller_ptr; /* add caller to end */ 07632 caller_ptr->p_q_link =
NIL_PROC; /* mark new end of list */ 07633 } else { 07634 return(ENOTREADY); 07635 } 07636 return(OK);
07637 } 07639
/*===* 07640 *
mini_receive * 07641
===/ 07642
PRIVATE int mini_receive(caller_ptr, src, m_ptr, flags) 07643 register struct proc *caller_ptr; /* process trying to get
message */ 07644 int src; /* which message source is wanted */ 07645 message *m_ptr; /* pointer to message buffer */
07646 unsigned flags; /* system call flags */ 07647 { 07648 /* A process or task wants to get a message. If a message
is already queued, 07649 * acquire it and deblock the sender. If no message from the desired source 07650 * is
available block the caller, unless the flags don't allow blocking. 07651 */ 07652 register struct proc **xpp; 07653
register struct notification **ntf_q_pp; 07654 message m; 07655 int bit_nr; 07656 sys_map_t *map;

[Page 727]

07657 bitchunk_t *chunk; 07658 int i, src_id, src_proc_nr; 07659 07660 /* Check to see if a message from desired
source is already available. 07661 * The caller's SENDING flag may be set if SENDREC couldn't send. If it is 07662 *
set, the process should be blocked. 07663 */ 07664 if (!(caller_ptr->p_rts_flags & SENDING)) { 07665 07666 /*
Check if there are pending notifications, except for SENDREC. */ 07667 if (! (priv(caller_ptr)->s_flags &
SENDREC_BUSY)) { 07668 07669 map = &priv(caller_ptr)->s_notify_pending; 07670 for (chunk=&map->chunk[0];
chunk<&map->chunk[NR_SYS_CHUNKS]; chunk++) { 07671 07672 /* Find a pending notification from the
requested source. */ 07673 if (! *chunk) continue; /* no bits in chunk */ 07674 for (i=0; ! (*chunk & (1<<i)); ++i) {}
/* look up the bit */ 07675 src_id = (chunk - &map->chunk[0]) * BITCHUNK_BITS + i; 07676 if (src_id >=
NR_SYS_PROCS) break; /* out of range */ 07677 src_proc_nr = id_to_nr(src_id); /* get source proc */ 07678 if
(src!=ANY && src!=src_proc_nr) continue; /* source not ok */ 07679 *chunk &= ~(1 << i); /* no longer pending */
07680 07681 /* Found a suitable source, deliver the notification message. */ 07682 BuildMess(&m, src_proc_nr,
caller_ptr); /* assemble message */ 07683 CopyMess(src_proc_nr, proc_addr(HARDWARE), &m, caller_ptr, m_ptr);
07684 return(OK); /* report success */ 07685 } 07686 } 07687 07688 /* Check caller queue. Use pointer pointers to
keep code simple. */ 07689 xpp = &caller_ptr->p_caller_q; 07690 while (*xpp != NIL_PROC) { 07691 if (src ==
ANY || src == proc_nr(*xpp)) { 07692 /* Found acceptable message. Copy it and update status. */ 07693
CopyMess((*xpp)->p_nr, *xpp, (*xpp)->p_messbuf, caller_ptr, m_ptr); 07694 if (((*xpp)->p_rts_flags &=
~SENDING) == 0) enqueue(*xpp); 07695 *xpp = (*xpp)->p_q_link; /* remove from queue */ 07696 return(OK); /*
report success */ 07697 } 07698 xpp = &(*xpp)->p_q_link; /* proceed to next */ 07699 } 07700 } 07701 07702 /* No
suitable message is available or the caller couldn't send in SENDREC. 07703 * Block the process trying to receive,

48

48

unless the flags tell otherwise. 07704 */ 07705 if (! (flags & NON_BLOCKING)) { 07706 caller_ptr->p_getfrom =
src; 07707 caller_ptr->p_messbuf = m_ptr; 07708 if (caller_ptr->p_rts_flags == 0) dequeue(caller_ptr); 07709
caller_ptr->p_rts_flags |= RECEIVING; 07710 return(OK); 07711 } else { 07712 return(ENOTREADY); 07713 }
07714 }

[Page 728]

07716 /*===*
07717 * mini_notify * 07718
===/ 07719
PRIVATE int mini_notify(caller_ptr, dst) 07720 register struct proc *caller_ptr; /* sender of the notification */ 07721
int dst; /* which process to notify */ 07722 { 07723 register struct proc *dst_ptr = proc_addr(dst); 07724 int src_id; /*
source id for late delivery */ 07725 message m; /* the notification message */ 07726 07727 /* Check to see if target is
blocked waiting for this message. A process 07728 * can be both sending and receiving during a SENDREC system
call. 07729 */ 07730 if ((dst_ptr->p_rts_flags & (RECEIVING|SENDING)) == RECEIVING && 07731 !
(priv(dst_ptr)->s_flags & SENDREC_BUSY) && 07732 (dst_ptr->p_getfrom == ANY || dst_ptr->p_getfrom ==
caller_ptr->p_nr)) { 07733 07734 /* Destination is indeed waiting for a message. Assemble a notification 07735 *
message and deliver it. Copy from pseudo-source HARDWARE, since the 07736 * message is in the kernel's address
space. 07737 */ 07738 BuildMess(&m, proc_nr(caller_ptr), dst_ptr); 07739 CopyMess(proc_nr(caller_ptr),
proc_addr(HARDWARE), &m, 07740 dst_ptr, dst_ptr->p_messbuf); 07741 dst_ptr->p_rts_flags &= ~RECEIVING;
/* deblock destination */ 07742 if (dst_ptr->p_rts_flags == 0) enqueue(dst_ptr); 07743 return(OK); 07744 } 07745
07746 /* Destination is not ready to receive the notification. Add it to the 07747 * bit map with pending notifications.
Note the indirectness: the system id 07748 * instead of the process number is used in the pending bit map. 07749 */
07750 src_id = priv(caller_ptr)->s_id; 07751 set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id); 07752 return(OK);
07753 } 07755
/*===* 07756 *
lock_notify * 07757
===/ 07758
PUBLIC int lock_notify(src, dst) 07759 int src; /* sender of the notification */ 07760 int dst; /* who is to be notified */
07761 { 07762 /* Safe gateway to mini_notify() for tasks and interrupt handlers. The sender 07763 * is explicitly
given to prevent confusion where the call comes from. MINIX 07764 * kernel is not reentrant, which means to
interrupts are disabled after 07765 * the first kernel entry (hardware interrupt, trap, or exception). Locking 07766 * is
done by temporarily disabling interrupts. 07767 */ 07768 int result; 07769 07770 /* Exception or interrupt occurred,
thus already locked. */ 07771 if (k_reenter >= 0) { 07772 result = mini_notify(proc_addr(src), dst); 07773 } 07774
07775 /* Call from task level, locking is required. */

[Page 729]

07776 else { 07777 lock(0, "notify"); 07778 result = mini_notify(proc_addr(src), dst); 07779 unlock(0); 07780 }
07781 return(result); 07782 } 07784
/*===* 07785 *
enqueue * 07786
===/ 07787
PRIVATE void enqueue(rp) 07788 register struct proc *rp; /* this process is now runnable */ 07789 { 07790 /* Add
'rp' to one of the queues of runnable processes. This function is 07791 * responsible for inserting a process into one of
the scheduling queues. 07792 * The mechanism is implemented here. The actual scheduling policy is 07793 * defined
in sched() and pick_proc(). 07794 */ 07795 int q; /* scheduling queue to use */ 07796 int front; /* add to front or back
/ 07797 07798 / Determine where to insert to process. */ 07799 sched(rp, &q, &front); 07800 07801 /* Now add the
process to the queue. */ 07802 if (rdy_head[q] == NIL_PROC) { /* add to empty queue */ 07803 rdy_head[q] =
rdy_tail[q] = rp; /* create a new queue */ 07804 rp->p_nextready = NIL_PROC; /* mark new end */ 07805 } 07806
else if (front) { /* add to head of queue */ 07807 rp->p_nextready = rdy_head[q]; /* chain head of queue */ 07808
rdy_head[q] = rp; /* set new queue head */ 07809 } 07810 else { /* add to tail of queue */ 07811
rdy_tail[q]->p_nextready = rp; /* chain tail of queue */ 07812 rdy_tail[q] = rp; /* set new queue tail */ 07813
rp->p_nextready = NIL_PROC; /* mark new end */ 07814 } 07815 07816 /* Now select the next process to run. */

49

49

07817 pick_proc(); 07818 } 07820
/*===* 07821 *
dequeue * 07822
===/ 07823
PRIVATE void dequeue(rp) 07824 register struct proc *rp; /* this process is no longer runnable */ 07825 { 07826 /* A
process must be removed from the scheduling queues, for example, because 07827 * it has blocked. If the currently
active process is removed, a new process 07828 * is picked to run by calling pick_proc(). 07829 */ 07830 register int q
= rp->p_priority; /* queue to use */ 07831 register struct proc **xpp; /* iterate over queue */ 07832 register struct proc
prev_xp; 07833 07834 / Side-effect for kernel: check if the task's stack still is ok? */ 07835 if (iskernelp(rp)) {

[Page 730]

07836 if (*priv(rp)->s_stack_guard != STACK_GUARD) 07837 panic("stack overrun by task", proc_nr(rp)); 07838 }
07839 07840 /* Now make sure that the process is not in its ready queue. Remove the 07841 * process if it is found. A
process can be made unready even if it is not 07842 * running by being sent a signal that kills it. 07843 */ 07844
prev_xp = NIL_PROC; 07845 for (xpp = &rdy_head[q]; *xpp != NIL_PROC; xpp = &(*xpp)->p_nextready) { 07846
07847 if (*xpp == rp) { /* found process to remove */ 07848 *xpp = (*xpp)->p_nextready; /* replace with next chain
/ 07849 if (rp == rdy_tail[q]) / queue tail removed */ 07850 rdy_tail[q] = prev_xp; /* set new tail */ 07851 if (rp ==
proc_ptr || rp == next_ptr) /* active process removed */ 07852 pick_proc(); /* pick new process to run */ 07853 break;
07854 } 07855 prev_xp = * xpp; /* save previous in chain */ 07856 } 07857 } 07859
/*===* 07860 *
sched * 07861
===/ 07862
PRIVATE void sched(rp, queue, front) 07863 register struct proc *rp; /* process to be scheduled */ 07864 int *queue;
/* return: queue to use */ 07865 int *front; /* return: front or back */ 07866 { 07867 /* This function determines the
scheduling policy. It is called whenever a 07868 * process must be added to one of the scheduling queues to decide
where to 07869 * insert it. As a side-effect the process' priority may be updated. 07870 */ 07871 static struct proc
prev_ptr = NIL_PROC; / previous without time */ 07872 int time_left = (rp->p_ticks_left > 0); /* quantum fully
consumed */ 07873 int penalty = 0; /* change in priority */ 07874 07875 /* Check whether the process has time left.
Otherwise give a new quantum 07876 * and possibly raise the priority. Processes using multiple quantums 07877 * in
a row get a lower priority to catch infinite loops in high priority 07878 * processes (system servers and drivers). 07879
/ 07880 if (! time_left) { / quantum consumed ? */ 07881 rp->p_ticks_left = rp->p_quantum_size; /* give new
quantum */ 07882 if (prev_ptr == rp) penalty ++; /* catch infinite loops */ 07883 else penalty --; /* give slow way
back */ 07884 prev_ptr = rp; /* store ptr for next */ 07885 } 07886 07887 /* Determine the new priority of this
process. The bounds are determined 07888 * by IDLE's queue and the maximum priority of this process. Kernel tasks
07889 * and the idle process are never changed in priority. 07890 */ 07891 if (penalty != 0 && ! iskernelp(rp)) {
07892 rp->p_priority += penalty; /* update with penalty */ 07893 if (rp->p_priority < rp->p_max_priority) /* check
upper bound */ 07894 rp->p_priority=rp->p_max_priority; 07895 else if (rp->p_priority > IDLE_Q-1) /* check lower
bound */

[Page 731]

07896 rp->p_priority = IDLE_Q-1; 07897 } 07898 07899 /* If there is time left, the process is added to the front of its
queue, 07900 * so that it can immediately run. The queue to use simply is always the 07901 * process' current priority.
07902 */ 07903 *queue = rp->p_priority; 07904 *front = time_left; 07905 } 07907
/*===* 07908 *
pick_proc * 07909
===/ 07910
PRIVATE void pick_proc() 07911 { 07912 /* Decide who to run now. A new process is selected by setting 'next_ptr'.
07913 * When a billable process is selected, record it in 'bill_ptr', so that the 07914 * clock task can tell who to bill for
system time. 07915 */ 07916 register struct proc *rp; /* process to run */ 07917 int q; /* iterate over queues */ 07918
07919 /* Check each of the scheduling queues for ready processes. The number of 07920 * queues is defined in proc.h,
and priorities are set in the image table. 07921 * The lowest queue contains IDLE, which is always ready. 07922 */
07923 for (q=0; q < NR_SCHED_QUEUES; q++) { 07924 if ((rp = rdy_head[q]) != NIL_PROC) { 07925 next_ptr =

50

50

rp; /* run process 'rp' next */ 07926 if (priv(rp)->s_flags & BILLABLE) 07927 bill_ptr = rp; /* bill for system time */
07928 return; 07929 } 07930 } 07931 } 07933
/*===* 07934 *
lock_send * 07935
===/ 07936
PUBLIC int lock_send(dst, m_ptr) 07937 int dst; /* to whom is message being sent? */ 07938 message *m_ptr; /*
pointer to message buffer */ 07939 { 07940 /* Safe gateway to mini_send() for tasks. */ 07941 int result; 07942 lock(2,
"send"); 07943 result = mini_send(proc_ptr, dst, m_ptr, NON_BLOCKING); 07944 unlock(2); 07945 return(result);
07946 } 07948
/*===* 07949 *
lock_enqueue * 07950
===/ 07951
PUBLIC void lock_enqueue(rp) 07952 struct proc *rp; /* this process is now runnable */ 07953 { 07954 /* Safe
gateway to enqueue() for tasks. */ 07955 lock(3, "enqueue");

[Page 732]

07956 enqueue(rp); 07957 unlock(3); 07958 } 07960
/*===* 07961 *
lock_dequeue * 07962
===/ 07963
PUBLIC void lock_dequeue(rp) 07964 struct proc *rp; /* this process is no longer runnable */ 07965 { 07966 /* Safe
gateway to dequeue() for tasks. */ 07967 lock(4, "dequeue"); 07968 dequeue(rp); 07969 unlock(4); 07970 }
++
kernel/exception.c
++
08000 /* This file contains a simple exception handler. Exceptions in user 08001 * processes are converted to signals.
Exceptions in a kernel task cause 08002 * a panic. 08003 */ 08004 08005 #include "kernel.h" 08006 #include
<signal.h> 08007 #include "proc.h" 08008 08009
/*===* 08010 *
exception * 08011
===/ 08012
PUBLIC void exception(vec_nr) 08013 unsigned vec_nr; 08014 { 08015 /* An exception or unexpected interrupt has
occurred. */ 08016 08017 struct ex_s { 08018 char *msg; 08019 int signum; 08020 int minprocessor; 08021 }; 08022
static struct ex_s ex_data[] = { 08023 { "Divide error", SIGFPE, 86 }, 08024 { "Debug exception", SIGTRAP, 86 },
08025 { "Nonmaskable interrupt", SIGBUS, 86 }, 08026 { "Breakpoint", SIGEMT, 86 }, 08027 { "Overflow",
SIGFPE, 86 }, 08028 { "Bounds check", SIGFPE, 186 }, 08029 { "Invalid opcode", SIGILL, 186 }, 08030 {
"Coprocessor not available", SIGFPE, 186 }, 08031 { "Double fault", SIGBUS, 286 }, 08032 { "Copressor segment
overrun", SIGSEGV, 286 }, 08033 { "Invalid TSS", SIGSEGV, 286 }, 08034 { "Segment not present", SIGSEGV, 286
},

[Page 733]

08035 { "Stack exception", SIGSEGV, 286 }, /* STACK_FAULT already used */ 08036 { "General protection",
SIGSEGV, 286 }, 08037 { "Page fault", SIGSEGV, 386 }, /* not close */ 08038 { NIL_PTR, SIGILL, 0 }, /* probably
software trap */ 08039 { "Coprocessor error", SIGFPE, 386 }, 08040 }; 08041 register struct ex_s *ep; 08042 struct
proc *saved_proc; 08043 08044 /* Save proc_ptr, because it may be changed by debug statements. */ 08045
saved_proc = proc_ptr; 08046 08047 ep = &ex_data[vec_nr]; 08048 08049 if (vec_nr == 2) { /* spurious NMI on
some machines */ 08050 kprintf("got spurious NMI\n"); 08051 return; 08052 } 08053 08054 /* If an exception occurs
while running a process, the k_reenter variable 08055 * will be zero. Exceptions in interrupt handlers or system traps
will make 08056 * k_reenter larger than zero. 08057 */ 08058 if (k_reenter == 0 && ! iskernelp(saved_proc)) { 08059
cause_sig(proc_nr(saved_proc), ep->signum); 08060 return; 08061 } 08062 08063 /* Exception in system code. This
is not supposed to happen. */ 08064 if (ep->msg == NIL_PTR || machine.processor < ep->minprocessor) 08065
kprintf("\nIntel-reserved exception %d\n", vec_nr); 08066 else 08067 kprintf("\n%s\n", ep->msg); 08068

51

51

kprintf("k_reenter = %d ", k_reenter); 08069 kprintf("process %d (%s), ", proc_nr(saved_proc),
saved_proc->p_name); 08070 kprintf("pc = %u:0x%x", (unsigned) saved_proc->p_reg.cs, 08071 (unsigned)
saved_proc->p_reg.pc); 08072 08073 panic("exception in a kernel task", NO_NUM); 08074 }
++
kernel/i8259.c
++
08100 /* This file contains routines for initializing the 8259 interrupt controller: 08101 * put_irq_handler: register an
interrupt handler 08102 * rm_irq_handler: deregister an interrupt handler 08103 * intr_handle: handle a hardware
interrupt 08104 * intr_init: initialize the interrupt controller(s) 08105 */ 08106 08107 #include "kernel.h" 08108
#include "proc.h" 08109 #include <minix/com.h>

[Page 734]

08110 08111 #define ICW1_AT 0x11 /* edge triggered, cascade, need ICW4 */ 08112 #define ICW1_PC 0x13 /*
edge triggered, no cascade, need ICW4 */ 08113 #define ICW1_PS 0x19 /* level triggered, cascade, need ICW4 */
08114 #define ICW4_AT_SLAVE 0x01 /* not SFNM, not buffered, normal EOI, 8086 */ 08115 #define
ICW4_AT_MASTER 0x05 /* not SFNM, not buffered, normal EOI, 8086 */ 08116 #define ICW4_PC_SLAVE 0x09
/* not SFNM, buffered, normal EOI, 8086 */ 08117 #define ICW4_PC_MASTER 0x0D /* not SFNM, buffered,
normal EOI, 8086 */ 08118 08119 #define set_vec(nr, addr) ((void)0) 08120 08121
/*===* 08122 *
intr_init * 08123
===/ 08124
PUBLIC void intr_init(mine) 08125 int mine; 08126 { 08127 /* Initialize the 8259s, finishing with all interrupts
disabled. This is 08128 * only done in protected mode, in real mode we don't touch the 8259s, but 08129 * use the
BIOS locations instead. The flag "mine" is set if the 8259s are 08130 * to be programmed for MINIX, or to be reset to
what the BIOS expects. 08131 */ 08132 int i; 08133 08134 intr_disable(); 08135 08136 /* The AT and newer PS/2
have two interrupt controllers, one master, 08137 * one slaved at IRQ 2. (We don't have to deal with the PC that 08138
* has just one controller, because it must run in real mode.) 08139 */ 08140 outb(INT_CTL, machine.ps_mca ?
ICW1_PS : ICW1_AT); 08141 outb(INT_CTLMASK, mine ? IRQ0_VECTOR : BIOS_IRQ0_VEC); 08142 /* ICW2
for master */ 08143 outb(INT_CTLMASK, (1 << CASCADE_IRQ)); /* ICW3 tells slaves */ 08144
outb(INT_CTLMASK, ICW4_AT_MASTER); 08145 outb(INT_CTLMASK, ~(1 << CASCADE_IRQ)); /* IRQ 0-7
mask */ 08146 outb(INT2_CTL, machine.ps_mca ? ICW1_PS : ICW1_AT); 08147 outb(INT2_CTLMASK, mine ?
IRQ8_VECTOR : BIOS_IRQ8_VEC); 08148 /* ICW2 for slave */ 08149 outb(INT2_CTLMASK, CASCADE_IRQ);
/* ICW3 is slave nr */ 08150 outb(INT2_CTLMASK, ICW4_AT_SLAVE); 08151 outb(INT2_CTLMASK, ~0); /*
IRQ 8-15 mask */ 08152 08153 /* Copy the BIOS vectors from the BIOS to the Minix location, so we 08154 * can
still make BIOS calls without reprogramming the i8259s. 08155 */ 08156 phys_copy(BIOS_VECTOR(0) * 4L,
VECTOR(0) * 4L, 8 * 4L); 08157 } 08159
/*===* 08160 *
put_irq_handler * 08161
===/ 08162
PUBLIC void put_irq_handler(hook, irq, handler) 08163 irq_hook_t *hook; 08164 int irq; 08165 irq_handler_t
handler; 08166 { 08167 /* Register an interrupt handler. */ 08168 int id; 08169 irq_hook_t **line;

[Page 735]

08170 08171 if (irq < 0 || irq >= NR_IRQ_VECTORS) 08172 panic("invalid call to put_irq_handler", irq); 08173
08174 line = &irq_handlers[irq]; 08175 id = 1; 08176 while (*line != NULL) { 08177 if (hook == *line) return; /*
extra initialization */ 08178 line = &(*line)->next; 08179 id <<= 1; 08180 } 08181 if (id == 0) panic("Too many
handlers for irq", irq); 08182 08183 hook->next = NULL; 08184 hook->handler = handler; 08185 hook->irq = irq;
08186 hook->id = id; 08187 *line = hook; 08188 08189 irq_use |= 1 << irq; 08190 } 08192
/*===* 08193 *
rm_irq_handler * 08194
===/ 08195
PUBLIC void rm_irq_handler(hook) 08196 irq_hook_t *hook; 08197 { 08198 /* Unregister an interrupt handler. */

52

52

08199 int irq = hook->irq; 08200 int id = hook->id; 08201 irq_hook_t **line; 08202 08203 if (irq < 0 || irq >=
NR_IRQ_VECTORS) 08204 panic("invalid call to rm_irq_handler", irq); 08205 08206 line = &irq_handlers[irq];
08207 while (*line != NULL) { 08208 if ((*line)->id == id) { 08209 (*line) = (*line)->next; 08210 if (!
irq_handlers[irq]) irq_use &= ~(1 << irq); 08211 return; 08212 } 08213 line = &(*line)->next; 08214 } 08215 /*
When the handler is not found, normally return here. */ 08216 } 08218
/*===* 08219 *
intr_handle * 08220
===/ 08221
PUBLIC void intr_handle(hook) 08222 irq_hook_t *hook; 08223 { 08224 /* Call the interrupt handlers for an interrupt
with the given hook list. 08225 * The assembly part of the handler has already masked the IRQ, reenabled the 08226 *
controller(s) and enabled interrupts. 08227 */ 08228 08229 /* Call list of handlers for an IRQ. */

[Page 736]

08230 while (hook != NULL) { 08231 /* For each handler in the list, mark it active by setting its ID bit, 08232 * call
the function, and unmark it if the function returns true. 08233 */ 08234 irq_actids[hook->irq] |= hook->id; 08235 if
((*hook->handler)(hook)) irq_actids[hook->irq] &= ~hook->id; 08236 hook = hook->next; 08237 } 08238 08239 /*
The assembly code will now disable interrupts, unmask the IRQ if and only 08240 * if all active ID bits are cleared,
and restart a process. 08241 */ 08242 }
++
kernel/protect.c
++
08300 /* This file contains code for initialization of protected mode, to initialize 08301 * code and data segment
descriptors, and to initialize global descriptors 08302 * for local descriptors in the process table. 08303 */ 08304 08305
#include "kernel.h" 08306 #include "proc.h" 08307 #include "protect.h" 08308 08309 #define INT_GATE_TYPE
(INT_286_GATE | DESC_386_BIT) 08310 #define TSS_TYPE (AVL_286_TSS | DESC_386_BIT) 08311 08312
struct desctableptr_s { 08313 char limit[sizeof(u16_t)]; 08314 char base[sizeof(u32_t)]; /* really u24_t + pad for 286
/ 08315 }; 08316 08317 struct gatedesc_s { 08318 u16_t offset_low; 08319 u16_t selector; 08320 u8_t pad; /
|000|XXXXX| ig & trpg, |XXXXXXXX| task g */ 08321 u8_t p_dpl_type; /* |P|DL|0|TYPE| */ 08322 u16_t
offset_high; 08323 }; 08324 08325 struct tss_s { 08326 reg_t backlink; 08327 reg_t sp0; /* stack pointer to use during
interrupt */ 08328 reg_t ss0; /* " segment " " " " */ 08329 reg_t sp1; 08330 reg_t ss1; 08331 reg_t sp2; 08332 reg_t
ss2; 08333 reg_t cr3; 08334 reg_t ip; 08335 reg_t flags; 08336 reg_t ax; 08337 reg_t cx; 08338 reg_t dx; 08339 reg_t
bx;

[Page 737]

08340 reg_t sp; 08341 reg_t bp; 08342 reg_t si; 08343 reg_t di; 08344 reg_t es; 08345 reg_t cs; 08346 reg_t ss; 08347
reg_t ds; 08348 reg_t fs; 08349 reg_t gs; 08350 reg_t ldt; 08351 u16_t trap; 08352 u16_t iobase; 08353 /* u8_t
iomap[0]; */ 08354 }; 08355 08356 PUBLIC struct segdesc_s gdt[GDT_SIZE]; /* used in klib.s and mpx.s */ 08357
PRIVATE struct gatedesc_s idt[IDT_SIZE]; /* zero-init so none present */ 08358 PUBLIC struct tss_s tss; /* zero init
*/ 08359 08360 FORWARD _PROTOTYPE(void int_gate, (unsigned vec_nr, vir_bytes offset, 08361 unsigned
dpl_type)); 08362 FORWARD _PROTOTYPE(void sdesc, (struct segdesc_s *segdp, phys_bytes base, 08363
vir_bytes size)); 08364 08365
/*===* 08366 *
prot_init * 08367
===/ 08368
PUBLIC void prot_init() 08369 { 08370 /* Set up tables for protected mode. 08371 * All GDT slots are allocated at
compile time. 08372 */ 08373 struct gate_table_s *gtp; 08374 struct desctableptr_s *dtp; 08375 unsigned ldt_index;
08376 register struct proc *rp; 08377 08378 static struct gate_table_s { 08379 _PROTOTYPE(void (*gate), (void));
08380 unsigned char vec_nr; 08381 unsigned char privilege; 08382 } 08383 gate_table[] = { 08384 { divide_error,
DIVIDE_VECTOR, INTR_PRIVILEGE }, 08385 { single_step_exception, DEBUG_VECTOR, INTR_PRIVILEGE
}, 08386 { nmi, NMI_VECTOR, INTR_PRIVILEGE }, 08387 { breakpoint_exception, BREAKPOINT_VECTOR,
USER_PRIVILEGE }, 08388 { overflow, OVERFLOW_VECTOR, USER_PRIVILEGE }, 08389 { bounds_check,
BOUNDS_VECTOR, INTR_PRIVILEGE }, 08390 { inval_opcode, INVAL_OP_VECTOR, INTR_PRIVILEGE },

53

53

08391 { copr_not_available, COPROC_NOT_VECTOR, INTR_PRIVILEGE }, 08392 { double_fault,
DOUBLE_FAULT_VECTOR, INTR_PRIVILEGE }, 08393 { copr_seg_overrun, COPROC_SEG_VECTOR,
INTR_PRIVILEGE }, 08394 { inval_tss, INVAL_TSS_VECTOR, INTR_PRIVILEGE }, 08395 {
segment_not_present, SEG_NOT_VECTOR, INTR_PRIVILEGE }, 08396 { stack_exception,
STACK_FAULT_VECTOR, INTR_PRIVILEGE }, 08397 { general_protection, PROTECTION_VECTOR,
INTR_PRIVILEGE }, 08398 { page_fault, PAGE_FAULT_VECTOR, INTR_PRIVILEGE }, 08399 { copr_error,
COPROC_ERR_VECTOR, INTR_PRIVILEGE },

[Page 738]

08400 { hwint00, VECTOR(0), INTR_PRIVILEGE }, 08401 { hwint01, VECTOR(1), INTR_PRIVILEGE }, 08402
{ hwint02, VECTOR(2), INTR_PRIVILEGE }, 08403 { hwint03, VECTOR(3), INTR_PRIVILEGE }, 08404 {
hwint04, VECTOR(4), INTR_PRIVILEGE }, 08405 { hwint05, VECTOR(5), INTR_PRIVILEGE }, 08406 {
hwint06, VECTOR(6), INTR_PRIVILEGE }, 08407 { hwint07, VECTOR(7), INTR_PRIVILEGE }, 08408 {
hwint08, VECTOR(8), INTR_PRIVILEGE }, 08409 { hwint09, VECTOR(9), INTR_PRIVILEGE }, 08410 {
hwint10, VECTOR(10), INTR_PRIVILEGE }, 08411 { hwint11, VECTOR(11), INTR_PRIVILEGE }, 08412 {
hwint12, VECTOR(12), INTR_PRIVILEGE }, 08413 { hwint13, VECTOR(13), INTR_PRIVILEGE }, 08414 {
hwint14, VECTOR(14), INTR_PRIVILEGE }, 08415 { hwint15, VECTOR(15), INTR_PRIVILEGE }, 08416 {
s_call, SYS386_VECTOR, USER_PRIVILEGE }, /* 386 system call */ 08417 { level0_call, LEVEL0_VECTOR,
TASK_PRIVILEGE }, 08418 }; 08419 08420 /* Build gdt and idt pointers in GDT where the BIOS expects them. */
08421 dtp= (struct desctableptr_s *) &gdt[GDT_INDEX]; 08422 * (u16_t *) dtp->limit = (sizeof gdt) - 1; 08423 *
(u32_t *) dtp->base = vir2phys(gdt); 08424 08425 dtp= (struct desctableptr_s *) &gdt[IDT_INDEX]; 08426 * (u16_t
*) dtp->limit = (sizeof idt) - 1; 08427 * (u32_t *) dtp->base = vir2phys(idt); 08428 08429 /* Build segment descriptors
for tasks and interrupt handlers. */ 08430 init_codeseg(&gdt[CS_INDEX], 08431 kinfo.code_base, kinfo.code_size,
INTR_PRIVILEGE); 08432 init_dataseg(&gdt[DS_INDEX], 08433 kinfo.data_base, kinfo.data_size,
INTR_PRIVILEGE); 08434 init_dataseg(&gdt[ES_INDEX], 0L, 0, TASK_PRIVILEGE); 08435 08436 /* Build
scratch descriptors for functions in klib88. */ 08437 init_dataseg(&gdt[DS_286_INDEX], 0L, 0, TASK_PRIVILEGE);
08438 init_dataseg(&gdt[ES_286_INDEX], 0L, 0, TASK_PRIVILEGE); 08439 08440 /* Build local descriptors in
GDT for LDT's in process table. 08441 * The LDT's are allocated at compile time in the process table, and 08442 *
initialized whenever a process' map is initialized or changed. 08443 */ 08444 for (rp = BEG_PROC_ADDR, ldt_index
= FIRST_LDT_INDEX; 08445 rp < END_PROC_ADDR; ++rp, ldt_index++) { 08446 init_dataseg(&gdt[ldt_index],
vir2phys(rp->p_ldt), 08447 sizeof(rp->p_ldt), INTR_PRIVILEGE); 08448 gdt[ldt_index].access = PRESENT | LDT;
08449 rp->p_ldt_sel = ldt_index * DESC_SIZE; 08450 } 08451 08452 /* Build main TSS. 08453 * This is used only
to record the stack pointer to be used after an 08454 * interrupt. 08455 * The pointer is set up so that an interrupt
automatically saves the 08456 * current process's registers ip:cs:f:sp:ss in the correct slots in the 08457 * process table.
08458 */ 08459 tss.ss0 = DS_SELECTOR;

[Page 739]

08460 init_dataseg(&gdt[TSS_INDEX], vir2phys(&tss), sizeof(tss), INTR_PRIVILEGE); 08461
gdt[TSS_INDEX].access = PRESENT | (INTR_PRIVILEGE << DPL_SHIFT) | TSS_TYPE; 08462 08463 /* Build
descriptors for interrupt gates in IDT. */ 08464 for (gtp = &gate_table[0]; 08465 gtp < &gate_table[sizeof gate_table /
sizeof gate_table[0]]; ++gtp) { 08466 int_gate(gtp->vec_nr, (vir_bytes) gtp->gate, 08467 PRESENT |
INT_GATE_TYPE | (gtp->privilege << DPL_SHIFT)); 08468 } 08469 08470 /* Complete building of main TSS. */
08471 tss.iobase = sizeof tss; /* empty i/o permissions map */ 08472 } 08474
/*===* 08475 *
init_codeseg * 08476
===/ 08477
PUBLIC void init_codeseg(segdp, base, size, privilege) 08478 register struct segdesc_s *segdp; 08479 phys_bytes
base; 08480 vir_bytes size; 08481 int privilege; 08482 { 08483 /* Build descriptor for a code segment. */ 08484
sdesc(segdp, base, size); 08485 segdp->access = (privilege << DPL_SHIFT) 08486 | (PRESENT | SEGMENT |
EXECUTABLE | READABLE); 08487 /* CONFORMING = 0, ACCESSED = 0 */ 08488 } 08490
/*===* 08491 *
init_dataseg * 08492

54

54

===/ 08493
PUBLIC void init_dataseg(segdp, base, size, privilege) 08494 register struct segdesc_s *segdp; 08495 phys_bytes
base; 08496 vir_bytes size; 08497 int privilege; 08498 { 08499 /* Build descriptor for a data segment. */ 08500
sdesc(segdp, base, size); 08501 segdp->access = (privilege << DPL_SHIFT) | (PRESENT | SEGMENT |
WRITEABLE); 08502 /* EXECUTABLE = 0, EXPAND_DOWN = 0, ACCESSED = 0 */ 08503 } 08505
/*===* 08506 *
sdesc * 08507
===/ 08508
PRIVATE void sdesc(segdp, base, size) 08509 register struct segdesc_s *segdp; 08510 phys_bytes base; 08511
vir_bytes size; 08512 { 08513 /* Fill in the size fields (base, limit and granularity) of a descriptor. */ 08514
segdp->base_low = base; 08515 segdp->base_middle = base >> BASE_MIDDLE_SHIFT; 08516 segdp->base_high =
base >> BASE_HIGH_SHIFT; 08517 08518 --size; /* convert to a limit, 0 size means 4G */ 08519 if (size >
BYTE_GRAN_MAX) {

[Page 740]

08520 segdp->limit_low = size >> PAGE_GRAN_SHIFT; 08521 segdp->granularity = GRANULAR | (size >> 08522
(PAGE_GRAN_SHIFT + GRANULARITY_SHIFT)); 08523 } else { 08524 segdp->limit_low = size; 08525
segdp->granularity = size >> GRANULARITY_SHIFT; 08526 } 08527 segdp->granularity |= DEFAULT; /* means
BIG for data seg */ 08528 } 08530
/*===* 08531 *
seg2phys * 08532
===/ 08533
PUBLIC phys_bytes seg2phys(seg) 08534 U16_t seg; 08535 { 08536 /* Return the base address of a segment, with
seg being either a 8086 segment 08537 * register, or a 286/386 segment selector. 08538 */ 08539 phys_bytes base;
08540 struct segdesc_s *segdp; 08541 08542 if (! machine.protected) { 08543 base = hclick_to_physb(seg); 08544 }
else { 08545 segdp = &gdt[seg >> 3]; 08546 base = ((u32_t) segdp->base_low << 0) 08547 | ((u32_t)
segdp->base_middle << 16) 08548 | ((u32_t) segdp->base_high << 24); 08549 } 08550 return base; 08551 } 08553
/*===* 08554 *
phys2seg * 08555
===/ 08556
PUBLIC void phys2seg(seg, off, phys) 08557 u16_t *seg; 08558 vir_bytes *off; 08559 phys_bytes phys; 08560 {
08561 /* Return a segment selector and offset that can be used to reach a physical 08562 * address, for use by a driver
doing memory I/O in the A0000 - DFFFF range. 08563 */ 08564 *seg = FLAT_DS_SELECTOR; 08565 *off = phys;
08566 } 08568
/*===* 08569 *
int_gate * 08570
===/ 08571
PRIVATE void int_gate(vec_nr, offset, dpl_type) 08572 unsigned vec_nr; 08573 vir_bytes offset; 08574 unsigned
dpl_type; 08575 { 08576 /* Build descriptor for an interrupt gate. */ 08577 register struct gatedesc_s *idp; 08578
08579 idp = &idt[vec_nr];

[Page 741]

08580 idp->offset_low = offset; 08581 idp->selector = CS_SELECTOR; 08582 idp->p_dpl_type = dpl_type; 08583
idp->offset_high = offset >> OFFSET_HIGH_SHIFT; 08584 } 08586
/*===* 08587 *
enable_iop * 08588
===/ 08589
PUBLIC void enable_iop(pp) 08590 struct proc *pp; 08591 { 08592 /* Allow a user process to use I/O instructions.
Change the I/O Permission 08593 * Level bits in the psw. These specify least-privileged Current Permission 08594 *
Level allowed to execute I/O instructions. Users and servers have CPL 3. 08595 * You can't have less privilege than
that. Kernel has CPL 0, tasks CPL 1. 08596 */ 08597 pp->p_reg.psw |= 0x3000; 08598 } 08600
/*===* 08601 *

55

55

alloc_segments * 08602
===/ 08603
PUBLIC void alloc_segments(rp) 08604 register struct proc *rp; 08605 { 08606 /* This is called at system
initialization from main() and by do_newmap(). 08607 * The code has a separate function because of all
hardware-dependencies. 08608 * Note that IDLE is part of the kernel and gets TASK_PRIVILEGE here. 08609 */
08610 phys_bytes code_bytes; 08611 phys_bytes data_bytes; 08612 int privilege; 08613 08614 if (machine.protected)
{ 08615 data_bytes = (phys_bytes) (rp->p_memmap[S].mem_vir + 08616 rp->p_memmap[S].mem_len) <<
CLICK_SHIFT; 08617 if (rp->p_memmap[T].mem_len == 0) 08618 code_bytes = data_bytes; /* common I&D, poor
protect */ 08619 else 08620 code_bytes = (phys_bytes) rp->p_memmap[T].mem_len << CLICK_SHIFT; 08621
privilege = (iskernelp(rp)) ? TASK_PRIVILEGE : USER_PRIVILEGE; 08622
init_codeseg(&rp->p_ldt[CS_LDT_INDEX], 08623 (phys_bytes) rp->p_memmap[T].mem_phys << CLICK_SHIFT,
08624 code_bytes, privilege); 08625 init_dataseg(&rp->p_ldt[DS_LDT_INDEX], 08626 (phys_bytes)
rp->p_memmap[D].mem_phys << CLICK_SHIFT, 08627 data_bytes, privilege); 08628 rp->p_reg.cs =
(CS_LDT_INDEX * DESC_SIZE) | TI | privilege; 08629 rp->p_reg.gs = 08630 rp->p_reg.fs = 08631 rp->p_reg.ss =
08632 rp->p_reg.es = 08633 rp->p_reg.ds = (DS_LDT_INDEX*DESC_SIZE) | TI | privilege; 08634 } else { 08635
rp->p_reg.cs = click_to_hclick(rp->p_memmap[T].mem_phys); 08636 rp->p_reg.ss = 08637 rp->p_reg.es = 08638
rp->p_reg.ds = click_to_hclick(rp->p_memmap[D].mem_phys); 08639 }

[Page 742]

08640 }
++
kernel/klib.s
++
08700 # 08701 ! Chooses between the 8086 and 386 versions of the low level kernel code. 08702 08703 #include
<minix/config.h> 08704 #if _WORD_SIZE == 2 08705 #include "klib88.s" 08706 #else 08707 #include "klib386.s"
08708 #endif
++
kernel/klib386.s
++
08800 # 08801 ! sections 08802 08803 .sect .text; .sect .rom; .sect .data; .sect .bss 08804 08805 #include
<minix/config.h> 08806 #include <minix/const.h> 08807 #include "const.h" 08808 #include "sconst.h" 08809
#include "protect.h" 08810 08811 ! This file contains a number of assembly code utility routines needed by the 08812 !
kernel. They are: 08813 08814 .define _monitor ! exit Minix and return to the monitor 08815 .define _int86 ! let the
monitor make an 8086 interrupt call 08816 .define _cp_mess ! copies messages from source to destination 08817
.define _exit ! dummy for library routines 08818 .define __exit ! dummy for library routines 08819 .define ___exit !
dummy for library routines 08820 .define ___main ! dummy for GCC 08821 .define _phys_insw ! transfer data from
(disk controller) port to memory 08822 .define _phys_insb ! likewise byte by byte 08823 .define _phys_outsw !
transfer data from memory to (disk controller) port 08824 .define _phys_outsb ! likewise byte by byte 08825 .define
_enable_irq ! enable an irq at the 8259 controller 08826 .define _disable_irq ! disable an irq 08827 .define _phys_copy
! copy data from anywhere to anywhere in memory 08828 .define _phys_memset ! write pattern anywhere in memory
08829 .define _mem_rdw ! copy one word from [segment:offset] 08830 .define _reset ! reset the system 08831 .define
_idle_task ! task executed when there is no work 08832 .define _level0 ! call a function at level 0 08833 .define
_read_tsc ! read the cycle counter (Pentium and up) 08834 .define _read_cpu_flags ! read the cpu flags

[Page 743]

08835 08836 ! The routines only guarantee to preserve the registers the C compiler 08837 ! expects to be preserved
(ebx, esi, edi, ebp, esp, segment registers, and 08838 ! direction bit in the flags). 08839 08840 .sect .text 08841
!*===* 08842 !*
monitor * 08843
!*===* 08844 !
PUBLIC void monitor(); 08845 ! Return to the monitor. 08846 08847 _monitor: 08848 mov esp, (_mon_sp) ! restore
monitor stack pointer 08849 o16 mov dx, SS_SELECTOR ! monitor data segment 08850 mov ds, dx 08851 mov es, dx

56

56

08852 mov fs, dx 08853 mov gs, dx 08854 mov ss, dx 08855 pop edi 08856 pop esi 08857 pop ebp 08858 o16 retf !
return to the monitor 08859 08860 08861
!*===* 08862 !*
int86 * 08863
!*===* 08864 !
PUBLIC void int86(); 08865 _int86: 08866 cmpb (_mon_return), 0 ! is the monitor there? 08867 jnz 0f 08868 movb
ah, 0x01 ! an int 13 error seems appropriate 08869 movb (_reg86+ 0), ah ! reg86.w.f = 1 (set carry flag) 08870 movb
(_reg86+13), ah ! reg86.b.ah = 0x01 = "invalid command" 08871 ret 08872 0: push ebp ! save C registers 08873 push
esi 08874 push edi 08875 push ebx 08876 pushf ! save flags 08877 cli ! no interruptions 08878 08879 inb
INT2_CTLMASK 08880 movb ah, al 08881 inb INT_CTLMASK 08882 push eax ! save interrupt masks 08883 mov
eax, (_irq_use) ! map of in-use IRQ's 08884 and eax, ~[1<<CLOCK_IRQ] ! keep the clock ticking 08885 outb
INT_CTLMASK ! enable all unused IRQ's and vv. 08886 movb al, ah 08887 outb INT2_CTLMASK 08888 08889
mov eax, SS_SELECTOR ! monitor data segment 08890 mov ss, ax 08891 xchg esp, (_mon_sp) ! switch stacks 08892
push (_reg86+36) ! parameters used in INT call 08893 push (_reg86+32) 08894 push (_reg86+28)

[Page 744]

08895 push (_reg86+24) 08896 push (_reg86+20) 08897 push (_reg86+16) 08898 push (_reg86+12) 08899 push
(_reg86+ 8) 08900 push (_reg86+ 4) 08901 push (_reg86+ 0) 08902 mov ds, ax ! remaining data selectors 08903 mov
es, ax 08904 mov fs, ax 08905 mov gs, ax 08906 push cs 08907 push return ! kernel return address and selector 08908
o16 jmpf 20+2*4+10*4+2*4(esp) ! make the call 08909 return: 08910 pop (_reg86+ 0) 08911 pop (_reg86+ 4) 08912
pop (_reg86+ 8) 08913 pop (_reg86+12) 08914 pop (_reg86+16) 08915 pop (_reg86+20) 08916 pop (_reg86+24)
08917 pop (_reg86+28) 08918 pop (_reg86+32) 08919 pop (_reg86+36) 08920 lgdt (_gdt+GDT_SELECTOR) ! reload
global descriptor table 08921 jmpf CS_SELECTOR:csinit ! restore everything 08922 csinit: mov eax,
DS_SELECTOR 08923 mov ds, ax 08924 mov es, ax 08925 mov fs, ax 08926 mov gs, ax 08927 mov ss, ax 08928
xchg esp, (_mon_sp) ! unswitch stacks 08929 lidt (_gdt+IDT_SELECTOR) ! reload interrupt descriptor table 08930
andb (_gdt+TSS_SELECTOR+DESC_ACCESS), ~0x02 ! clear TSS busy bit 08931 mov eax, TSS_SELECTOR
08932 ltr ax ! set TSS register 08933 08934 pop eax 08935 outb INT_CTLMASK ! restore interrupt masks 08936
movb al, ah 08937 outb INT2_CTLMASK 08938 08939 add (_lost_ticks), ecx ! record lost clock ticks 08940 08941
popf ! restore flags 08942 pop ebx ! restore C registers 08943 pop edi 08944 pop esi 08945 pop ebp 08946 ret 08947
08948 08949
!*===* 08950 !*
cp_mess * 08951
!*===* 08952 !
PUBLIC void cp_mess(int src, phys_clicks src_clicks, vir_bytes src_offset, 08953 ! phys_clicks dst_clicks, vir_bytes
dst_offset); 08954 ! This routine makes a fast copy of a message from anywhere in the address

[Page 745]

08955 ! space to anywhere else. It also copies the source address provided as a 08956 ! parameter to the call into the
first word of the destination message. 08957 ! 08958 ! Note that the message size, "Msize" is in DWORDS (not bytes)
and must be set 08959 ! correctly. Changing the definition of message in the type file and not 08960 ! changing it here
will lead to total disaster. 08961 08962 CM_ARGS = 4 + 4 + 4 + 4 + 4 ! 4 + 4 + 4 + 4 + 4 08963 ! es ds edi esi eip
proc scl sof dcl dof 08964 08965 .align 16 08966 _cp_mess: 08967 cld 08968 push esi 08969 push edi 08970 push ds
08971 push es 08972 08973 mov eax, FLAT_DS_SELECTOR 08974 mov ds, ax 08975 mov es, ax 08976 08977 mov
esi, CM_ARGS+4(esp) ! src clicks 08978 shl esi, CLICK_SHIFT 08979 add esi, CM_ARGS+4+4(esp) ! src offset
08980 mov edi, CM_ARGS+4+4+4(esp) ! dst clicks 08981 shl edi, CLICK_SHIFT 08982 add edi,
CM_ARGS+4+4+4+4(esp) ! dst offset 08983 08984 mov eax, CM_ARGS(esp) ! process number of sender 08985 stos
! copy number of sender to dest message 08986 add esi, 4 ! do not copy first word 08987 mov ecx, Msize - 1 !
remember, first word does not count 08988 rep 08989 movs ! copy the message 08990 08991 pop es 08992 pop ds
08993 pop edi 08994 pop esi 08995 ret ! that is all folks! 08996 08997 08998
!*===* 08999 !*
exit * 09000
!*===* 09001 !

57

57

PUBLIC void exit(); 09002 ! Some library routines use exit, so provide a dummy version. 09003 ! Actual calls to exit
cannot occur in the kernel. 09004 ! GNU CC likes to call ___main from main() for nonobvious reasons. 09005 09006
_exit: 09007 __exit: 09008 ___ exit: 09009 sti 09010 jmp ___exit 09011 09012 ___main: 09013 ret 09014

[Page 746]

09015 09016
!*===* 09017 !*
phys_insw * 09018
!*===* 09019 !
PUBLIC void phys_insw(Port_t port, phys_bytes buf, size_t count); 09020 ! Input an array from an I/O port. Absolute
address version of insw(). 09021 09022 _phys_insw: 09023 push ebp 09024 mov ebp, esp 09025 cld 09026 push edi
09027 push es 09028 mov ecx, FLAT_DS_SELECTOR 09029 mov es, cx 09030 mov edx, 8(ebp) ! port to read from
09031 mov edi, 12(ebp) ! destination addr 09032 mov ecx, 16(ebp) ! byte count 09033 shr ecx, 1 ! word count 09034
rep o16 ins ! input many words 09035 pop es 09036 pop edi 09037 pop ebp 09038 ret 09039 09040 09041
!*===* 09042 !*
phys_insb * 09043
!*===* 09044 !
PUBLIC void phys_insb(Port_t port, phys_bytes buf, size_t count); 09045 ! Input an array from an I/O port. Absolute
address version of insb(). 09046 09047 _phys_insb: 09048 push ebp 09049 mov ebp, esp 09050 cld 09051 push edi
09052 push es 09053 mov ecx, FLAT_DS_SELECTOR 09054 mov es, cx 09055 mov edx, 8(ebp) ! port to read from
09056 mov edi, 12(ebp) ! destination addr 09057 mov ecx, 16(ebp) ! byte count 09058 ! shr ecx, 1 ! word count 09059
rep insb ! input many bytes 09060 pop es 09061 pop edi 09062 pop ebp 09063 ret 09064 09065 09066
!*===* 09067 !*
phys_outsw * 09068
!*===* 09069 !
PUBLIC void phys_outsw(Port_t port, phys_bytes buf, size_t count); 09070 ! Output an array to an I/O port. Absolute
address version of outsw(). 09071 09072 .align 16 09073 _phys_outsw: 09074 push ebp

[Page 747]

09075 mov ebp, esp 09076 cld 09077 push esi 09078 push ds 09079 mov ecx, FLAT_DS_SELECTOR 09080 mov ds,
cx 09081 mov edx, 8(ebp) ! port to write to 09082 mov esi, 12(ebp) ! source addr 09083 mov ecx, 16(ebp) ! byte count
09084 shr ecx, 1 ! word count 09085 rep o16 outs ! output many words 09086 pop ds 09087 pop esi 09088 pop ebp
09089 ret 09090 09091 09092
!*===* 09093 !*
phys_outsb * 09094
!*===* 09095 !
PUBLIC void phys_outsb(Port_t port, phys_bytes buf, size_t count); 09096 ! Output an array to an I/O port. Absolute
address version of outsb(). 09097 09098 .align 16 09099 _phys_outsb: 09100 push ebp 09101 mov ebp, esp 09102 cld
09103 push esi 09104 push ds 09105 mov ecx, FLAT_DS_SELECTOR 09106 mov ds, cx 09107 mov edx, 8(ebp) !
port to write to 09108 mov esi, 12(ebp) ! source addr 09109 mov ecx, 16(ebp) ! byte count 09110 rep outsb ! output
many bytes 09111 pop ds 09112 pop esi 09113 pop ebp 09114 ret 09115 09116 09117
!*==* 09118 !*
enable_irq * 09119
!*==*/ 09120 !
PUBLIC void enable_irq(irq_hook_t *hook) 09121 ! Enable an interrupt request line by clearing an 8259 bit. 09122 !
Equivalent C code for hook->irq < 8: 09123 ! if ((irq_actids[hook->irq] &= ~hook->id) == 0) 09124 !
outb(INT_CTLMASK, inb(INT_CTLMASK) & ~(1 << irq)); 09125 09126 .align 16 09127 _enable_irq: 09128 push
ebp 09129 mov ebp, esp 09130 pushf 09131 cli 09132 mov eax, 8(ebp) ! hook 09133 mov ecx, 8(eax) ! irq 09134 mov
eax, 12(eax) ! id bit

[Page 748]

58

58

09135 not eax 09136 and _irq_actids(ecx*4), eax ! clear this id bit 09137 jnz en_done ! still masked by other handlers?
09138 movb ah, ~1 09139 rolb ah, cl ! ah = ~(1 << (irq % 8)) 09140 mov edx, INT_CTLMASK ! enable irq < 8 at the
master 8259 09141 cmpb cl, 8 09142 jb 0f 09143 mov edx, INT2_CTLMASK ! enable irq >= 8 at the slave 8259
09144 0: inb dx 09145 andb al, ah 09146 outb dx ! clear bit at the 8259 09147 en_done:popf 09148 leave 09149 ret
09150 09151 09152
!*==* 09153 !*
disable_irq * 09154
!*==*/ 09155 !
PUBLIC int disable_irq(irq_hook_t *hook) 09156 ! Disable an interrupt request line by setting an 8259 bit. 09157 !
Equivalent C code for irq < 8: 09158 ! irq_actids[hook->irq] |= hook->id; 09159 ! outb(INT_CTLMASK,
inb(INT_CTLMASK) | (1 << irq)); 09160 ! Returns true iff the interrupt was not already disabled. 09161 09162 .align
16 09163 _disable_irq: 09164 push ebp 09165 mov ebp, esp 09166 pushf 09167 cli 09168 mov eax, 8(ebp) ! hook
09169 mov ecx, 8(eax) ! irq 09170 mov eax, 12(eax) ! id bit 09171 or _irq_actids(ecx*4), eax ! set this id bit 09172
movb ah, 1 09173 rolb ah, cl ! ah = (1 << (irq % 8)) 09174 mov edx, INT_CTLMASK ! disable irq < 8 at the master
8259 09175 cmpb cl, 8 09176 jb 0f 09177 mov edx, INT2_CTLMASK ! disable irq >= 8 at the slave 8259 09178 0:
inb dx 09179 testb al, ah 09180 jnz dis_already ! already disabled? 09181 orb al, ah 09182 outb dx ! set bit at the 8259
09183 mov eax, 1 ! disabled by this function 09184 popf 09185 leave 09186 ret 09187 dis_already: 09188 xor eax, eax
! already disabled 09189 popf 09190 leave 09191 ret 09192 09193

[Page 749]

09194 !*===*
09195 !* phys_copy * 09196
!*===* 09197 !
PUBLIC void phys_copy(phys_bytes source, phys_bytes destination, 09198 ! phys_bytes bytecount); 09199 ! Copy a
block of physical memory. 09200 09201 PC_ARGS = 4 + 4 + 4 + 4 ! 4 + 4 + 4 09202 ! es edi esi eip src dst len 09203
09204 .align 16 09205 _phys_copy: 09206 cld 09207 push esi 09208 push edi 09209 push es 09210 09211 mov eax,
FLAT_DS_SELECTOR 09212 mov es, ax 09213 09214 mov esi, PC_ARGS(esp) 09215 mov edi, PC_ARGS+4(esp)
09216 mov eax, PC_ARGS+4+4(esp) 09217 09218 cmp eax, 10 ! avoid align overhead for small counts 09219 jb
pc_small 09220 mov ecx, esi ! align source, hope target is too 09221 neg ecx 09222 and ecx, 3 ! count for alignment
09223 sub eax, ecx 09224 rep 09225 eseg movsb 09226 mov ecx, eax 09227 shr ecx, 2 ! count of dwords 09228 rep
09229 eseg movs 09230 and eax, 3 09231 pc_small: 09232 xchg ecx, eax ! remainder 09233 rep 09234 eseg movsb
09235 09236 pop es 09237 pop edi 09238 pop esi 09239 ret 09240 09241
!*===* 09242 !*
phys_memset * 09243
!*===* 09244 !
PUBLIC void phys_memset(phys_bytes source, unsigned long pattern, 09245 ! phys_bytes bytecount); 09246 ! Fill a
block of physical memory with pattern. 09247 09248 .align 16 09249 _phys_memset: 09250 push ebp 09251 mov ebp,
esp 09252 push esi 09253 push ebx

[Page 750]

09254 push ds 09255 mov esi, 8(ebp) 09256 mov eax, 16(ebp) 09257 mov ebx, FLAT_DS_SELECTOR 09258 mov
ds, bx 09259 mov ebx, 12(ebp) 09260 shr eax, 2 09261 fill_start: 09262 mov (esi), ebx 09263 add esi, 4 09264 dec eax
09265 jnz fill_start 09266 ! Any remaining bytes? 09267 mov eax, 16(ebp) 09268 and eax, 3 09269 remain_fill: 09270
cmp eax, 0 09271 jz fill_done 09272 movb bl, 12(ebp) 09273 movb (esi), bl 09274 add esi, 1 09275 inc ebp 09276 dec
eax 09277 jmp remain_fill 09278 fill_done: 09279 pop ds 09280 pop ebx 09281 pop esi 09282 pop ebp 09283 ret
09284 09285
!*===* 09286 !*
mem_rdw * 09287
!*===* 09288 !
PUBLIC u16_t mem_rdw(U16_t segment, u16_t *offset); 09289 ! Load and return word at far pointer segment:offset.
09290 09291 .align 16 09292 _mem_rdw: 09293 mov cx, ds 09294 mov ds, 4(esp) ! segment 09295 mov eax, 4+4(esp)
! offset 09296 movzx eax, (eax) ! word to return 09297 mov ds, cx 09298 ret 09299 09300 09301

59

59

!*===* 09302 !*
reset * 09303
!*===* 09304 !
PUBLIC void reset(); 09305 ! Reset the system by loading IDT with offset 0 and interrupting. 09306 09307 _reset:
09308 lidt (idt_zero) 09309 int 3 ! anything goes, the 386 will not like it 09310 .sect .data 09311 idt_zero: .data4 0, 0
09312 .sect .text 09313

[Page 751]

09314 09315
!*===* 09316 !*
idle_task * 09317
!*===* 09318
_idle_task: 09319 ! This task is called when the system has nothing else to do. The HLT 09320 ! instruction puts the
processor in a state where it draws minimum power. 09321 push halt 09322 call _level0 ! level0(halt) 09323 pop eax
09324 jmp _idle_task 09325 halt: 09326 sti 09327 hlt 09328 cli 09329 ret 09330 09331
!*===* 09332 !*
level0 * 09333
!*===* 09334 !
PUBLIC void level0(void (*func)(void)) 09335 ! Call a function at permission level 0. This allows kernel tasks to do
09336 ! things that are only possible at the most privileged CPU level. 09337 ! 09338 _level0: 09339 mov eax, 4(esp)
09340 mov (_level0_func), eax 09341 int LEVEL0_VECTOR 09342 ret 09343 09344 09345
!*===* 09346 !*
read_tsc * 09347
!*===* 09348 !
PUBLIC void read_tsc(unsigned long *high, unsigned long *low); 09349 ! Read the cycle counter of the CPU.
Pentium and up. 09350 .align 16 09351 _read_tsc: 09352 .data1 0x0f ! this is the RDTSC instruction 09353 .data1
0x31 ! it places the TSC in EDX:EAX 09354 push ebp 09355 mov ebp, 8(esp) 09356 mov (ebp), edx 09357 mov ebp,
12(esp) 09358 mov (ebp), eax 09359 pop ebp 09360 ret 09361 09362
!*===* 09363 !*
read_flags * 09364
!*===* 09365 !
PUBLIC unsigned long read_cpu_flags(void); 09366 ! Read CPU status flags from C. 09367 .align 16 09368
_read_cpu_flags: 09369 pushf 09370 mov eax, (esp) 09371 popf 09372 ret 09373

[Page 752]

++
kernel/utility.c
++
09400 /* This file contains a collection of miscellaneous procedures: 09401 * panic: abort MINIX due to a fatal error
09402 * kprintf: diagnostic output for the kernel 09403 * 09404 * Changes: 09405 * Dec 10, 2004 kernel printing to
circular buffer (Jorrit N. Herder) 09406 * 09407 * This file contains the routines that take care of kernel messages, i.e.,
09408 * diagnostic output within the kernel. Kernel messages are not directly 09409 * displayed on the console,
because this must be done by the output driver. 09410 * Instead, the kernel accumulates characters in a buffer and
notifies the 09411 * output driver when a new message is ready. 09412 */ 09413 09414 #include <minix/com.h>
09415 #include "kernel.h" 09416 #include <stdarg.h> 09417 #include <unistd.h> 09418 #include <stddef.h> 09419
#include <stdlib.h> 09420 #include <signal.h> 09421 #include "proc.h" 09422 09423 #define END_OF_KMESS -1
09424 FORWARD _PROTOTYPE(void kputc, (int c)); 09425 09426
/*===* 09427 *
panic * 09428
===/ 09429
PUBLIC void panic(mess,nr) 09430 _CONST char *mess; 09431 int nr; 09432 { 09433 /* The system has run aground
of a fatal kernel error. Terminate execution. */ 09434 static int panicking = 0; 09435 if (panicking ++) return; /*

60

60

prevent recursive panics */ 09436 09437 if (mess != NULL) { 09438 kprintf("\nKernel panic: %s", mess); 09439 if (nr
!= NO_NUM) kprintf(" %d", nr); 09440 kprintf("\n",NO_NUM); 09441 } 09442 09443 /* Abort MINIX. */ 09444
prepare_shutdown(RBT_PANIC); 09445 } 09447
/*===* 09448 *
kprintf * 09449
===/ 09450
PUBLIC void kprintf(const char *fmt, ...) /* format to be printed */ 09451 { 09452 int c; /* next character in fmt */
09453 int d; 09454 unsigned long u; /* hold number argument */

[Page 753]

09455 int base; /* base of number arg */ 09456 int negative = 0; /* print minus sign */ 09457 static char x2c[] =
"0123456789ABCDEF"; /* nr conversion table */ 09458 char ascii[8 * sizeof(long) / 3 + 2]; /* string for ascii number
*/ 09459 char *s = NULL; /* string to be printed */ 09460 va_list argp; /* optional arguments */ 09461 09462
va_start(argp, fmt); /* init variable arguments */ 09463 09464 while((c=*fmt++) != 0) { 09465 09466 if (c == '%') { /*
expect format '%key' */ 09467 switch(c = *fmt++) { /* determine what to do */ 09468 09469 /* Known keys are %d,
%u, %x, %s, and %%. This is easily extended 09470 * with number types like %b and %o by providing a different
base. 09471 * Number type keys don't set a string to 's', but use the general 09472 * conversion after the switch
statement. 09473 */ 09474 case 'd': /* output decimal */ 09475 d = va_arg(argp, signed int); 09476 if (d < 0) { negative
= 1; u = -d; } else { u = d; } 09477 base = 10; 09478 break; 09479 case 'u': /* output unsigned long */ 09480 u =
va_arg(argp, unsigned long); 09481 base = 10; 09482 break; 09483 case 'x': /* output hexadecimal */ 09484 u =
va_arg(argp, unsigned long); 09485 base = 0x10; 09486 break; 09487 case 's': /* output string */ 09488 s =
va_arg(argp, char *); 09489 if (s == NULL) s = "(null)"; 09490 break; 09491 case '%': /* output percent */ 09492 s =
"%"; 09493 break; 09494 09495 /* Unrecognized key. */ 09496 default: /* echo back %key */ 09497 s = "%?"; 09498
s[1] = c; /* set unknown key */ 09499 } 09500 09501 /* Assume a number if no string is set. Convert to ascii. */ 09502
if (s == NULL) { 09503 s = ascii + sizeof(ascii)-1; 09504 *s = 0; 09505 do { *--s = x2c[(u % base)]; } /* work
backwards */ 09506 while ((u /= base) > 0); 09507 } 09508 09509 /* This is where the actual output for format
"%key" is done. */ 09510 if (negative) kputc('-'); /* print sign if negative */ 09511 while(*s != 0) { kputc(*s++); } /*
print string/ number */ 09512 s = NULL; /* reset for next round */ 09513 } 09514 else {

[Page 754]

09515 kputc(c); /* print and continue */ 09516 } 09517 } 09518 kputc(END_OF_KMESS); /* terminate output */
09519 va_end(argp); /* end variable arguments */ 09520 } 09522
/*===* 09523 *
kputc * 09524
===/ 09525
PRIVATE void kputc(c) 09526 int c; /* character to append */ 09527 { 09528 /* Accumulate a single character for a
kernel message. Send a notification 09529 * to the output driver if an END_OF_KMESS is encountered. 09530 */
09531 if (c != END_OF_KMESS) { 09532 kmess.km_buf[kmess.km_next] = c; /* put normal char in buffer */ 09533
if (kmess.km_size < KMESS_BUF_SIZE) 09534 kmess.km_size += 1; 09535 kmess.km_next = (kmess.km_next + 1)
% KMESS_BUF_SIZE; 09536 } else { 09537 send_sig(OUTPUT_PROC_NR, SIGKMESS); 09538 } 09539 }
++
kernel/system.h
++
09600 /* Function prototypes for the system library. 09601 * The implementation is contained in src/kernel/system/.
09602 * 09603 * The system library allows access to system services by doing a kernel call. 09604 * Kernel calls are
transformed into request messages to the SYS task that is 09605 * responsible for handling the call. By convention,
sys_call() is transformed 09606 * into a message with type SYS_CALL that is handled in a function do_call(). 09607
/ 09608 09609 #ifndef SYSTEM_H 09610 #define SYSTEM_H 09611 09612 / Common includes for the system
library. */ 09613 #include "kernel.h" 09614 #include "proto.h" 09615 #include "proc.h" 09616 09617 /* Default
handler for unused kernel calls. */ 09618 _PROTOTYPE(int do_unused, (message *m_ptr)); 09619 _PROTOTYPE(
int do_exec, (message *m_ptr)); 09620 _PROTOTYPE(int do_fork, (message *m_ptr)); 09621 _PROTOTYPE(int
do_newmap, (message *m_ptr)); 09622 _PROTOTYPE(int do_exit, (message *m_ptr)); 09623 _PROTOTYPE(int

61

61

do_trace, (message *m_ptr)); 09624 _PROTOTYPE(int do_nice, (message *m_ptr));

[Page 755]

09625 _PROTOTYPE(int do_copy, (message *m_ptr)); 09626 #define do_vircopy do_copy 09627 #define
do_physcopy do_copy 09628 _PROTOTYPE(int do_vcopy, (message *m_ptr)); 09629 #define do_virvcopy
do_vcopy 09630 #define do_physvcopy do_vcopy 09631 _PROTOTYPE(int do_umap, (message *m_ptr)); 09632
_PROTOTYPE(int do_memset, (message *m_ptr)); 09633 _PROTOTYPE(int do_abort, (message *m_ptr)); 09634
_PROTOTYPE(int do_getinfo, (message *m_ptr)); 09635 _PROTOTYPE(int do_privctl, (message *m_ptr)); 09636
_PROTOTYPE(int do_segctl, (message *m_ptr)); 09637 _PROTOTYPE(int do_irqctl, (message *m_ptr)); 09638
_PROTOTYPE(int do_devio, (message *m_ptr)); 09639 _PROTOTYPE(int do_vdevio, (message *m_ptr)); 09640
_PROTOTYPE(int do_int86, (message *m_ptr)); 09641 _PROTOTYPE(int do_sdevio, (message *m_ptr)); 09642
_PROTOTYPE(int do_kill, (message *m_ptr)); 09643 _PROTOTYPE(int do_getksig, (message *m_ptr)); 09644
_PROTOTYPE(int do_endksig, (message *m_ptr)); 09645 _PROTOTYPE(int do_sigsend, (message *m_ptr));
09646 _PROTOTYPE(int do_sigreturn, (message *m_ptr)); 09647 _PROTOTYPE(int do_times, (message *m_ptr)
); 09648 _PROTOTYPE(int do_setalarm, (message *m_ptr)); 09649 09650 #endif /* SYSTEM_H */ 09651 09652
09653
++
kernel/system.c
++
09700 /* This task provides an interface between the kernel and user-space system 09701 * processes. System services
can be accessed by doing a kernel call. Kernel 09702 * calls are transformed into request messages, which are handled
by this 09703 * task. By convention, a sys_call() is transformed in a SYS_CALL request 09704 * message that is
handled in a function named do_call(). 09705 * 09706 * A private call vector is used to map all kernel calls to the
functions that 09707 * handle them. The actual handler functions are contained in separate files 09708 * to keep this
file clean. The call vector is used in the system task's main 09709 * loop to handle all incoming requests. 09710 *
09711 * In addition to the main sys_task() entry point, which starts the main loop, 09712 * there are several other
minor entry points: 09713 * get_priv: assign privilege structure to user or system process 09714 * send_sig: send a
signal directly to a system process 09715 * cause_sig: take action to cause a signal to occur via PM 09716 *
umap_local: map virtual address in LOCAL_SEG to physical 09717 * umap_remote: map virtual address in
REMOTE_SEG to physical 09718 * umap_bios: map virtual address in BIOS_SEG to physical 09719 * virtual_copy:
copy bytes from one virtual address to another 09720 * get_randomness: accumulate randomness in a buffer 09721 *
09722 * Changes: 09723 * Aug 04, 2005 check if kernel call is allowed (Jorrit N. Herder) 09724 * Jul 20, 2005 send
signal to services with message (Jorrit N. Herder)

[Page 756]

09725 * Jan 15, 2005 new, generalized virtual copy function (Jorrit N. Herder) 09726 * Oct 10, 2004 dispatch system
calls from call vector (Jorrit N. Herder) 09727 * Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
09728 */ 09729 09730 #include "kernel.h" 09731 #include "system.h" 09732 #include <stdlib.h> 09733 #include
<signal.h> 09734 #include <unistd.h> 09735 #include <sys/sigcontext.h> 09736 #include <ibm/memory.h> 09737
#include "protect.h" 09738 09739 /* Declaration of the call vector that defines the mapping of kernel calls 09740 * to
handler functions. The vector is initialized in sys_init() with map(), 09741 * which makes sure the kernel call numbers
are ok. No space is allocated, 09742 * because the dummy is declared extern. If an illegal call is given, the 09743 *
array size will be negative and this won't compile. 09744 */ 09745 PUBLIC int
(*call_vec[NR_SYS_CALLS])(message *m_ptr); 09746 09747 #define map(call_nr, handler) \ 09748 {extern int
dummy[NR_SYS_CALLS>(unsigned)(call_nr-KERNEL_CALL) ? 1:-1];} \ 09749
call_vec[(call_nr-KERNEL_CALL)] = (handler) 09750 09751 FORWARD _PROTOTYPE(void initialize, (void));
09752 09753
/*===* 09754 *
sys_task * 09755
===/ 09756
PUBLIC void sys_task() 09757 { 09758 /* Main entry point of sys_task. Get the message and dispatch on type. */
09759 static message m; 09760 register int result; 09761 register struct proc *caller_ptr; 09762 unsigned int call_nr;

62

62

09763 int s; 09764 09765 /* Initialize the system task. */ 09766 initialize(); 09767 09768 while (TRUE) { 09769 /*
Get work. Block and wait until a request message arrives. */ 09770 receive(ANY, &m); 09771 call_nr = (unsigned)
m.m_type - KERNEL_CALL; 09772 caller_ptr = proc_addr(m.m_source); 09773 09774 /* See if the caller made a
valid request and try to handle it. */ 09775 if (! (priv(caller_ptr)->s_call_mask & (1<<call_nr))) { 09776
kprintf("SYSTEM: request %d from %d denied.\n", call_nr,m.m_source); 09777 result = ECALLDENIED; /* illegal
message type */ 09778 } else if (call_nr >= NR_SYS_CALLS) { /* check call number */ 09779 kprintf("SYSTEM:
illegal request %d from %d.\n", call_nr,m.m_source); 09780 result = EBADREQUEST; /* illegal message type */
09781 } 09782 else { 09783 result = (*call_vec[call_nr])(&m); /* handle the kernel call */ 09784 }

[Page 757]

09785 09786 /* Send a reply, unless inhibited by a handler function. Use the kernel 09787 * function lock_send() to
prevent a system call trap. The destination 09788 * is known to be blocked waiting for a message. 09789 */ 09790 if
(result != EDONTREPLY) { 09791 m.m_type = result; /* report status of call */ 09792 if (OK !=
(s=lock_send(m.m_source, &m))) { 09793 kprintf("SYSTEM, reply to %d failed: %d\n", m.m_source, s); 09794 }
09795 } 09796 } 09797 } 09799
/*===* 09800 *
initialize * 09801
===/ 09802
PRIVATE void initialize(void) 09803 { 09804 register struct priv *sp; 09805 int i; 09806 09807 /* Initialize IRQ
handler hooks. Mark all hooks available. */ 09808 for (i=0; i<NR_IRQ_HOOKS; i++) { 09809 irq_hooks[i].proc_nr =
NONE; 09810 } 09811 09812 /* Initialize all alarm timers for all processes. */ 09813 for (sp=BEG_PRIV_ADDR; sp
< END_PRIV_ADDR; sp++) { 09814 tmr_inittimer(&(sp->s_alarm_timer)); 09815 } 09816 09817 /* Initialize the
call vector to a safe default handler. Some kernel calls 09818 * may be disabled or nonexistant. Then explicitly map
known calls to their 09819 * handler functions. This is done with a macro that gives a compile error 09820 * if an
illegal call number is used. The ordering is not important here. 09821 */ 09822 for (i=0; i<NR_SYS_CALLS; i++) {
09823 call_vec[i] = do_unused; 09824 } 09825 09826 /* Process management. */ 09827 map(SYS_FORK, do_fork);
/* a process forked a new process */ 09828 map(SYS_EXEC, do_exec); /* update process after execute */ 09829
map(SYS_EXIT, do_exit); /* clean up after process exit */ 09830 map(SYS_NICE, do_nice); /* set scheduling priority
/ 09831 map(SYS_PRIVCTL, do_privctl); / system privileges control */ 09832 map(SYS_TRACE, do_trace); /*
request a trace operation */ 09833 09834 /* Signal handling. */ 09835 map(SYS_KILL, do_kill); /* cause a process to
be signaled */ 09836 map(SYS_GETKSIG, do_getksig); /* PM checks for pending signals */ 09837
map(SYS_ENDKSIG, do_endksig); /* PM finished processing signal */ 09838 map(SYS_SIGSEND, do_sigsend); /*
start POSIX-style signal */ 09839 map(SYS_SIGRETURN, do_sigreturn); /* return from POSIX-style signal */ 09840
09841 /* Device I/O. */ 09842 map(SYS_IRQCTL, do_irqctl); /* interrupt control operations */ 09843
map(SYS_DEVIO, do_devio); /* inb, inw, inl, outb, outw, outl */ 09844 map(SYS_SDEVIO, do_sdevio); /*
phys_insb, _insw, _outsb, _outsw */

[Page 758]

09845 map(SYS_VDEVIO, do_vdevio); /* vector with devio requests */ 09846 map(SYS_INT86, do_int86); /*
real-mode BIOS calls */ 09847 09848 /* Memory management. */ 09849 map(SYS_NEWMAP, do_newmap); /* set
up a process memory map */ 09850 map(SYS_SEGCTL, do_segctl); /* add segment and get selector */ 09851
map(SYS_MEMSET, do_memset); /* write char to memory area */ 09852 09853 /* Copying. */ 09854
map(SYS_UMAP, do_umap); /* map virtual to physical address */ 09855 map(SYS_VIRCOPY, do_vircopy); /* use
pure virtual addressing */ 09856 map(SYS_PHYSCOPY, do_physcopy); /* use physical addressing */ 09857
map(SYS_VIRVCOPY, do_virvcopy); /* vector with copy requests */ 09858 map(SYS_PHYSVCOPY,
do_physvcopy); /* vector with copy requests */ 09859 09860 /* Clock functionality. */ 09861 map(SYS_TIMES,
do_times); /* get uptime and process times */ 09862 map(SYS_SETALARM, do_setalarm); /* schedule a synchronous
alarm */ 09863 09864 /* System control. */ 09865 map(SYS_ABORT, do_abort); /* abort MINIX */ 09866
map(SYS_GETINFO, do_getinfo); /* request system information */ 09867 } 09869
/*===* 09870 *
get_priv * 09871
===/ 09872

63

63

PUBLIC int get_priv(rc, proc_type) 09873 register struct proc *rc; /* new (child) process pointer */ 09874 int
proc_type; /* system or user process flag */ 09875 { 09876 /* Get a privilege structure. All user processes share the
same privilege 09877 * structure. System processes get their own privilege structure. 09878 */ 09879 register struct
priv *sp; /* privilege structure */ 09880 09881 if (proc_type == SYS_PROC) { /* find a new slot */ 09882 for (sp =
BEG_PRIV_ADDR; sp < END_PRIV_ADDR; ++sp) 09883 if (sp->s_proc_nr == NONE && sp->s_id !=
USER_PRIV_ID) break; 09884 if (sp->s_proc_nr != NONE) return(ENOSPC); 09885 rc->p_priv = sp; /* assign new
slot */ 09886 rc->p_priv->s_proc_nr = proc_nr(rc); /* set association */ 09887 rc->p_priv->s_flags = SYS_PROC; /*
mark as privileged */ 09888 } else { 09889 rc->p_priv = &priv[USER_PRIV_ID]; /* use shared slot */ 09890
rc->p_priv->s_proc_nr = INIT_PROC_NR; /* set association */ 09891 rc->p_priv->s_flags = 0; /* no initial flags */
09892 } 09893 return(OK); 09894 } 09896
/*===* 09897 *
get_randomness * 09898
===/ 09899
PUBLIC void get_randomness(source) 09900 int source; 09901 { 09902 /* On machines with the RDTSC (cycle
counter read instruction - pentium 09903 * and up), use that for high-resolution raw entropy gathering. Otherwise,
09904 * use the realtime clock (tick resolution).

[Page 759]

09905 * 09906 * Unfortunately this test is run-time - we don't want to bother with 09907 * compiling different kernels
for different machines. 09908 * 09909 * On machines without RDTSC, we use read_clock(). 09910 */ 09911 int
r_next; 09912 unsigned long tsc_high, tsc_low; 09913 09914 source %= RANDOM_SOURCES; 09915 r_next=
krandom.bin[source].r_next; 09916 if (machine.processor > 486) { 09917 read_tsc(&tsc_high, &tsc_low); 09918
krandom.bin[source].r_buf[r_next] = tsc_low; 09919 } else { 09920 krandom.bin[source].r_buf[r_next] =
read_clock(); 09921 } 09922 if (krandom.bin[source].r_size < RANDOM_ELEMENTS) { 09923
krandom.bin[source].r_size ++; 09924 } 09925 krandom.bin[source].r_next = (r_next + 1) %
RANDOM_ELEMENTS; 09926 } 09928
/*===* 09929 *
send_sig * 09930
===/ 09931
PUBLIC void send_sig(proc_nr, sig_nr) 09932 int proc_nr; /* system process to be signalled */ 09933 int sig_nr; /*
signal to be sent, 1 to _NSIG */ 09934 { 09935 /* Notify a system process about a signal. This is straightforward.
Simply 09936 * set the signal that is to be delivered in the pending signals map and 09937 * send a notification with
source SYSTEM. 09938 */ 09939 register struct proc *rp; 09940 09941 rp = proc_addr(proc_nr); 09942
sigaddset(&priv(rp)->s_sig_pending, sig_nr); 09943 lock_notify(SYSTEM, proc_nr); 09944 } 09946
/*===* 09947 *
cause_sig * 09948
===/ 09949
PUBLIC void cause_sig(proc_nr, sig_nr) 09950 int proc_nr; /* process to be signalled */ 09951 int sig_nr; /* signal to
be sent, 1 to _NSIG */ 09952 { 09953 /* A system process wants to send a signal to a process. Examples are: 09954 * -
HARDWARE wanting to cause a SIGSEGV after a CPU exception 09955 * - TTY wanting to cause SIGINT upon
getting a DEL 09956 * - FS wanting to cause SIGPIPE for a broken pipe 09957 * Signals are handled by sending a
message to PM. This function handles the 09958 * signals and makes sure the PM gets them by sending a notification.
The 09959 * process being signaled is blocked while PM has not finished all signals 09960 * for it. 09961 * Race
conditions between calls to this function and the system calls that 09962 * process pending kernel signals cannot exist.
Signal related functions are 09963 * only called when a user process causes a CPU exception and from the kernel
09964 * process level, which runs to completion.

[Page 760]

09965 */ 09966 register struct proc *rp; 09967 09968 /* Check if the signal is already pending. Process it otherwise. */
09969 rp = proc_addr(proc_nr); 09970 if (! sigismember(&rp->p_pending, sig_nr)) { 09971
sigaddset(&rp->p_pending, sig_nr); 09972 if (! (rp->p_rts_flags & SIGNALED)) { /* other pending */ 09973 if
(rp->p_rts_flags == 0) lock_dequeue(rp); /* make not ready */ 09974 rp->p_rts_flags |= SIGNALED |

64

64

SIG_PENDING; /* update flags */ 09975 send_sig(PM_PROC_NR, SIGKSIG); 09976 } 09977 } 09978 } 09980
/*===* 09981 *
umap_local * 09982
===/ 09983
PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes) 09984 register struct proc *rp; /* pointer to proc table entry
for process */ 09985 int seg; /* T, D, or S segment */ 09986 vir_bytes vir_addr; /* virtual address in bytes within the
seg */ 09987 vir_bytes bytes; /* # of bytes to be copied */ 09988 { 09989 /* Calculate the physical memory address for
a given virtual address. */ 09990 vir_clicks vc; /* the virtual address in clicks */ 09991 phys_bytes pa; /* intermediate
variables as phys_bytes */ 09992 phys_bytes seg_base; 09993 09994 /* If 'seg' is D it could really be S and vice versa.
T really means T. 09995 * If the virtual address falls in the gap, it causes a problem. On the 09996 * 8088 it is
probably a legal stack reference, since "stackfaults" are 09997 * not detected by the hardware. On 8088s, the gap is
called S and 09998 * accepted, but on other machines it is called D and rejected. 09999 * The Atari ST behaves like
the 8088 in this respect. 10000 */ 10001 10002 if (bytes <= 0) return((phys_bytes) 0); 10003 if (vir_addr + bytes <=
vir_addr) return 0; /* overflow */ 10004 vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */ 10005
10006 if (seg != T) 10007 seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S); 10008
10009 if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir + 10010 rp->p_memmap[seg].mem_len)
return((phys_bytes) 0); 10011 10012 if (vc >= rp->p_memmap[seg].mem_vir + 10013
rp->p_memmap[seg].mem_len) return((phys_bytes) 0); 10014 10015 seg_base = (phys_bytes)
rp->p_memmap[seg].mem_phys; 10016 seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */ 10017
pa = (phys_bytes) vir_addr; 10018 pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT; 10019 return(seg_base +
pa); 10020 }

[Page 761]

10022 /*===*
10023 * umap_remote * 10024
===/ 10025
PUBLIC phys_bytes umap_remote(rp, seg, vir_addr, bytes) 10026 register struct proc *rp; /* pointer to proc table
entry for process */ 10027 int seg; /* index of remote segment */ 10028 vir_bytes vir_addr; /* virtual address in bytes
within the seg */ 10029 vir_bytes bytes; /* # of bytes to be copied */ 10030 { 10031 /* Calculate the physical memory
address for a given virtual address. */ 10032 struct far_mem *fm; 10033 10034 if (bytes <= 0) return((phys_bytes) 0);
10035 if (seg < 0 || seg >= NR_REMOTE_SEGS) return((phys_bytes) 0); 10036 10037 fm =
&rp->p_priv->s_farmem[seg]; 10038 if (! fm->in_use) return((phys_bytes) 0); 10039 if (vir_addr + bytes >
fm->mem_len) return((phys_bytes) 0); 10040 10041 return(fm->mem_phys + (phys_bytes) vir_addr); 10042 } 10044
/*===* 10045 *
umap_bios * 10046
===/ 10047
PUBLIC phys_bytes umap_bios(rp, vir_addr, bytes) 10048 register struct proc *rp; /* pointer to proc table entry for
process */ 10049 vir_bytes vir_addr; /* virtual address in BIOS segment */ 10050 vir_bytes bytes; /* # of bytes to be
copied */ 10051 { 10052 /* Calculate the physical memory address at the BIOS. Note: currently, BIOS 10053 *
address zero (the first BIOS interrupt vector) is not considered as an 10054 * error here, but since the physical address
will be zero as well, the 10055 * calling function will think an error occurred. This is not a problem, 10056 * since no
one uses the first BIOS interrupt vector. 10057 */ 10058 10059 /* Check all acceptable ranges. */ 10060 if (vir_addr
>= BIOS_MEM_BEGIN && vir_addr + bytes <= BIOS_MEM_END) 10061 return (phys_bytes) vir_addr; 10062 else
if (vir_addr >= BASE_MEM_TOP && vir_addr + bytes <= UPPER_MEM_END) 10063 return (phys_bytes)
vir_addr; 10064 kprintf("Warning, error in umap_bios, virtual address 0x%x\n", vir_addr); 10065 return 0; 10066 }
10068 /*===*
10069 * virtual_copy * 10070
===/ 10071
PUBLIC int virtual_copy(src_addr, dst_addr, bytes) 10072 struct vir_addr *src_addr; /* source virtual address */
10073 struct vir_addr *dst_addr; /* destination virtual address */ 10074 vir_bytes bytes; /* # of bytes to copy */ 10075
{ 10076 /* Copy bytes from virtual address src_addr to virtual address dst_addr. 10077 * Virtual addresses can be in
ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG. 10078 */ 10079 struct vir_addr *vir_addr[2]; /* virtual source
and destination address */ 10080 phys_bytes phys_addr[2]; /* absolute source and destination */ 10081 int seg_index;

65

65

[Page 762]

10082 int i; 10083 10084 /* Check copy count. */ 10085 if (bytes <= 0) return(EDOM); 10086 10087 /* Do some
more checks and map virtual addresses to physical addresses. */ 10088 vir_addr[_SRC_] = src_addr; 10089
vir_addr[_DST_] = dst_addr; 10090 for (i=_SRC_; i<=_DST_; i++) { 10091 10092 /* Get physical address. */ 10093
switch((vir_addr[i]->segment & SEGMENT_TYPE)) { 10094 case LOCAL_SEG: 10095 seg_index =
vir_addr[i]->segment & SEGMENT_INDEX; 10096 phys_addr[i] = umap_local(proc_addr(vir_addr[i]->proc_nr),
10097 seg_index, vir_addr[i]->offset, bytes); 10098 break; 10099 case REMOTE_SEG: 10100 seg_index =
vir_addr[i]->segment & SEGMENT_INDEX; 10101 phys_addr[i] = umap_remote(proc_addr(vir_addr[i]->proc_nr),
10102 seg_index, vir_addr[i]->offset, bytes); 10103 break; 10104 case BIOS_SEG: 10105 phys_addr[i] = umap_bios(
proc_addr(vir_addr[i]->proc_nr), 10106 vir_addr[i]->offset, bytes); 10107 break; 10108 case PHYS_SEG: 10109
phys_addr[i] = vir_addr[i]->offset; 10110 break; 10111 default: 10112 return(EINVAL); 10113 } 10114 10115 /*
Check if mapping succeeded. */ 10116 if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG) 10117
return(EFAULT); 10118 } 10119 10120 /* Now copy bytes between physical addresseses. */ 10121
phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes); 10122 return(OK); 10123 }
++
kernel/system/do_setalarm.c
++
10200 /* The kernel call implemented in this file: 10201 * m_type: SYS_SETALARM 10202 * 10203 * The
parameters for this kernel call are: 10204 * m2_l1: ALRM_EXP_TIME (alarm's expiration time) 10205 * m2_i2:
ALRM_ABS_TIME (expiration time is absolute?) 10206 * m2_l1: ALRM_TIME_LEFT (return seconds left of
previous) 10207 */ 10208 10209 #include "../system.h"

[Page 763]

10210 10211 #if USE_SETALARM 10212 10213 FORWARD _PROTOTYPE(void cause_alarm, (timer_t *tp));
10214 10215
/*===* 10216 *
do_setalarm * 10217
===/ 10218
PUBLIC int do_setalarm(m_ptr) 10219 message *m_ptr; /* pointer to request message */ 10220 { 10221 /* A process
requests a synchronous alarm, or wants to cancel its alarm. */ 10222 register struct proc *rp; /* pointer to requesting
process */ 10223 int proc_nr; /* which process wants the alarm */ 10224 long exp_time; /* expiration time for this
alarm */ 10225 int use_abs_time; /* use absolute or relative time */ 10226 timer_t *tp; /* the process' timer structure */
10227 clock_t uptime; /* placeholder for current uptime */ 10228 10229 /* Extract shared parameters from the request
message. */ 10230 exp_time = m_ptr->ALRM_EXP_TIME; /* alarm's expiration time */ 10231 use_abs_time =
m_ptr->ALRM_ABS_TIME; /* flag for absolute time */ 10232 proc_nr = m_ptr->m_source; /* process to interrupt
later */ 10233 rp = proc_addr(proc_nr); 10234 if (! (priv(rp)->s_flags & SYS_PROC)) return(EPERM); 10235 10236
/* Get the timer structure and set the parameters for this alarm. */ 10237 tp = &(priv(rp)->s_alarm_timer); 10238
tmr_arg(tp)->ta_int = proc_nr; 10239 tp->tmr_func = cause_alarm; 10240 10241 /* Return the ticks left on the
previous alarm. */ 10242 uptime = get_uptime(); 10243 if ((tp->tmr_exp_time != TMR_NEVER) && (uptime <
tp->tmr_exp_time)) { 10244 m_ptr->ALRM_TIME_LEFT = (tp->tmr_exp_time - uptime); 10245 } else { 10246
m_ptr->ALRM_TIME_LEFT = 0; 10247 } 10248 10249 /* Finally, (re)set the timer depending on the expiration time.
*/ 10250 if (exp_time == 0) { 10251 reset_timer(tp); 10252 } else { 10253 tp->tmr_exp_time = (use_abs_time) ?
exp_time : exp_time + get_uptime(); 10254 set_timer(tp, tp->tmr_exp_time, tp->tmr_func); 10255 } 10256
return(OK); 10257 } 10259
/*===* 10260 *
cause_alarm * 10261
===/ 10262
PRIVATE void cause_alarm(tp) 10263 timer_t *tp; 10264 { 10265 /* Routine called if a timer goes off and the process
requested a synchronous 10266 * alarm. The process number is stored in timer argument 'ta_int'. Notify that 10267 *
process with a notification message from CLOCK. 10268 */ 10269 int proc_nr = tmr_arg(tp)->ta_int; /* get process
number */

66

66

[Page 764]

10270 lock_notify(CLOCK, proc_nr); /* notify process */ 10271 } 10273 #endif /* USE_SETALARM */
++
kernel/system/do_exec.c
++
10300 /* The kernel call implemented in this file: 10301 * m_type: SYS_EXEC 10302 * 10303 * The parameters for
this kernel call are: 10304 * m1_i1: PR_PROC_NR (process that did exec call) 10305 * m1_p1: PR_STACK_PTR
(new stack pointer) 10306 * m1_p2: PR_NAME_PTR (pointer to program name) 10307 * m1_p3: PR_IP_PTR (new
instruction pointer) 10308 */ 10309 #include "../system.h" 10310 #include <string.h> 10311 #include <signal.h>
10312 10313 #if USE_EXEC 10314 10315
/*===* 10316 *
do_exec * 10317
===/ 10318
PUBLIC int do_exec(m_ptr) 10319 register message *m_ptr; /* pointer to request message */ 10320 { 10321 /*
Handle sys_exec(). A process has done a successful EXEC. Patch it up. */ 10322 register struct proc *rp; 10323 reg_t
sp; /* new sp */ 10324 phys_bytes phys_name; 10325 char *np; 10326 10327 rp = proc_addr(m_ptr->PR_PROC_NR);
10328 sp = (reg_t) m_ptr->PR_STACK_PTR; 10329 rp->p_reg.sp = sp; /* set the stack pointer */ 10330
phys_memset(vir2phys(&rp->p_ldt[EXTRA_LDT_INDEX]), 0, 10331 (LDT_SIZE - EXTRA_LDT_INDEX) *
sizeof(rp->p_ldt[0])); 10332 rp->p_reg.pc = (reg_t) m_ptr->PR_IP_PTR; /* set pc */ 10333 rp->p_rts_flags &=
~RECEIVING; /* PM does not reply to EXEC call */ 10334 if (rp->p_rts_flags == 0) lock_enqueue(rp); 10335 10336
/* Save command name for debugging, ps(1) output, etc. */ 10337 phys_name = numap_local(m_ptr->m_source,
(vir_bytes) m_ptr->PR_NAME_PTR, 10338 (vir_bytes) P_NAME_LEN - 1); 10339 if (phys_name != 0) { 10340
phys_copy(phys_name, vir2phys(rp->p_name), (phys_bytes) P_NAME_LEN - 1); 10341 for (np = rp->p_name; (*np
& BYTE) >= ' '; np++) {} 10342 *np = 0; /* mark end */ 10343 } else { 10344 strncpy(rp->p_name, "<unset>",
P_NAME_LEN); 10345 } 10346 return(OK); 10347 } 10348 #endif /* USE_EXEC */

[Page 765]

++
kernel/clock.c
++
10400 /* This file contains the clock task, which handles time related functions. 10401 * Important events that are
handled by the CLOCK include setting and 10402 * monitoring alarm timers and deciding when to (re)schedule
processes. 10403 * The CLOCK offers a direct interface to kernel processes. System services 10404 * can access its
services through system calls, such as sys_setalarm(). The 10405 * CLOCK task thus is hidden from the outside world.
10406 * 10407 * Changes: 10408 * Oct 08, 2005 reordering and comment editing (A. S. Woodhull) 10409 * Mar 18,
2004 clock interface moved to SYSTEM task (Jorrit N. Herder) 10410 * Sep 30, 2004 source code documentation
updated (Jorrit N. Herder) 10411 * Sep 24, 2004 redesigned alarm timers (Jorrit N. Herder) 10412 * 10413 * The
function do_clocktick() is triggered by the clock's interrupt 10414 * handler when a watchdog timer has expired or a
process must be scheduled. 10415 * 10416 * In addition to the main clock_task() entry point, which starts the main
10417 * loop, there are several other minor entry points: 10418 * clock_stop: called just before MINIX shutdown
10419 * get_uptime: get realtime since boot in clock ticks 10420 * set_timer: set a watchdog timer (+) 10421 *
reset_timer: reset a watchdog timer (+) 10422 * read_clock: read the counter of channel 0 of the 8253A timer 10423 *
10424 * (+) The CLOCK task keeps tracks of watchdog timers for the entire kernel. 10425 * The watchdog functions
of expired timers are executed in do_clocktick(). 10426 * It is crucial that watchdog functions not block, or the
CLOCK task may 10427 * be blocked. Do not send() a message when the receiver is not expecting it. 10428 * Instead,
notify(), which always returns, should be used. 10429 */ 10430 10431 #include "kernel.h" 10432 #include "proc.h"
10433 #include <signal.h> 10434 #include <minix/com.h> 10435 10436 /* Function prototype for PRIVATE
functions. */ 10437 FORWARD _PROTOTYPE(void init_clock, (void)); 10438 FORWARD _PROTOTYPE(int
clock_handler, (irq_hook_t *hook)); 10439 FORWARD _PROTOTYPE(int do_clocktick, (message *m_ptr)); 10440
10441 /* Clock parameters. */ 10442 #define COUNTER_FREQ (2*TIMER_FREQ) /* counter frequency using
square wave */ 10443 #define LATCH_COUNT 0x00 /* cc00xxxx, c = channel, x = any */ 10444 #define

67

67

SQUARE_WAVE 0x36 /* ccaammmb, a = access, m = mode, b = BCD */ 10445 /* 11x11, 11 = LSB then MSB, x11
= sq wave */ 10446 #define TIMER_COUNT ((unsigned) (TIMER_FREQ/HZ)) /* initial value for counter*/ 10447
#define TIMER_FREQ 1193182L /* clock frequency for timer in PC and AT */ 10448 10449 #define
CLOCK_ACK_BIT 0x80 /* PS/2 clock interrupt acknowledge bit */ 10450 10451 /* The CLOCK's timers queue. The
functions in <timers.h> operate on this. 10452 * Each system process possesses a single synchronous alarm timer. If
other 10453 * kernel parts want to use additional timers, they must declare their own 10454 * persistent (static) timer
structure, which can be passed to the clock

[Page 766]

10455 * via (re)set_timer(). 10456 * When a timer expires its watchdog function is run by the CLOCK task. 10457 */
10458 PRIVATE timer_t *clock_timers; /* queue of CLOCK timers */ 10459 PRIVATE clock_t next_timeout; /*
realtime that next timer expires */ 10460 10461 /* The time is incremented by the interrupt handler on each clock tick.
/ 10462 PRIVATE clock_t realtime; / real time clock */ 10463 PRIVATE irq_hook_t clock_hook; /* interrupt
handler hook */ 10464 10465
/*===* 10466 *
clock_task * 10467
===/ 10468
PUBLIC void clock_task() 10469 { 10470 /* Main program of clock task. If the call is not HARD_INT it is an error.
10471 */ 10472 message m; /* message buffer for both input and output */ 10473 int result; /* result returned by the
handler */ 10474 10475 init_clock(); /* initialize clock task */ 10476 10477 /* Main loop of the clock task. Get work,
process it. Never reply. */ 10478 while (TRUE) { 10479 10480 /* Go get a message. */ 10481 receive(ANY, &m);
10482 10483 /* Handle the request. Only clock ticks are expected. */ 10484 switch (m.m_type) { 10485 case
HARD_INT: 10486 result = do_clocktick(&m); /* handle clock tick */ 10487 break; 10488 default: /* illegal request
type */ 10489 kprintf("CLOCK: illegal request %d from %d.\n", m.m_type,m.m_source); 10490 } 10491 } 10492 }
10494 /*===*
10495 * do_clocktick * 10496
===/ 10497
PRIVATE int do_clocktick(m_ptr) 10498 message *m_ptr; /* pointer to request message */ 10499 { 10500 /* Despite
its name, this routine is not called on every clock tick. It 10501 * is called on those clock ticks when a lot of work
needs to be done. 10502 */ 10503 10504 /* A process used up a full quantum. The interrupt handler stored this 10505 *
process in 'prev_ptr'. First make sure that the process is not on the 10506 * scheduling queues. Then announce the
process ready again. Since it has 10507 * no more time left, it gets a new quantum and is inserted at the right 10508 *
place in the queues. As a side-effect a new process will be scheduled. 10509 */ 10510 if (prev_ptr->p_ticks_left <= 0
&& priv(prev_ptr)->s_flags & PREEMPTIBLE) { 10511 lock_dequeue(prev_ptr); /* take it off the queues */ 10512
lock_enqueue(prev_ptr); /* and reinsert it again */ 10513 } 10514

[Page 767]

10515 /* Check if a clock timer expired and run its watchdog function. */ 10516 if (next_timeout <= realtime) { 10517
tmrs_exptimers(&clock_timers, realtime, NULL); 10518 next_timeout = clock_timers == NULL ? 10519
TMR_NEVER : clock_timers->tmr_exp_time; 10520 } 10521 10522 /* Inhibit sending a reply. */ 10523
return(EDONTREPLY); 10524 } 10526
/*===* 10527 *
init_clock * 10528
===/ 10529
PRIVATE void init_clock() 10530 { 10531 /* Initialize the CLOCK's interrupt hook. */ 10532 clock_hook.proc_nr =
CLOCK; 10533 10534 /* Initialize channel 0 of the 8253A timer to, e.g., 60 Hz. */ 10535 outb(TIMER_MODE,
SQUARE_WAVE); /* set timer to run continuously */ 10536 outb(TIMER0, TIMER_COUNT); /* load timer low
byte */ 10537 outb(TIMER0, TIMER_COUNT >> 8); /* load timer high byte */ 10538 put_irq_handler(&clock_hook,
CLOCK_IRQ, clock_handler);/* register handler */ 10539 enable_irq(&clock_hook); /* ready for clock interrupts */
10540 } 10542
/*===* 10543 *
clock_stop * 10544

68

68

===/ 10545
PUBLIC void clock_stop() 10546 { 10547 /* Reset the clock to the BIOS rate. (For rebooting) */ 10548
outb(TIMER_MODE, 0x36); 10549 outb(TIMER0, 0); 10550 outb(TIMER0, 0); 10551 } 10553
/*===* 10554 *
clock_handler * 10555
===/ 10556
PRIVATE int clock_handler(hook) 10557 irq_hook_t *hook; 10558 { 10559 /* This executes on each clock tick (i.e.,
every time the timer chip generates 10560 * an interrupt). It does a little bit of work so the clock task does not have
10561 * to be called on every tick. The clock task is called when: 10562 * 10563 * (1) the scheduling quantum of the
running process has expired, or 10564 * (2) a timer has expired and the watchdog function should be run. 10565 *
10566 * Many global global and static variables are accessed here. The safety of 10567 * this must be justified. All
scheduling and message passing code acquires a 10568 * lock by temporarily disabling interrupts, so no conflicts with
calls from 10569 * the task level can occur. Furthermore, interrupts are not reentrant, the 10570 * interrupt handler
cannot be bothered by other interrupts. 10571 * 10572 * Variables that are updated in the clock's interrupt handler:
10573 * lost_ticks: 10574 * Clock ticks counted outside the clock task. This for example

[Page 768]

10575 * is used when the boot monitor processes a real mode interrupt. 10576 * realtime: 10577 * The current uptime
is incremented with all outstanding ticks. 10578 * proc_ptr, bill_ptr: 10579 * These are used for accounting. It does not
matter if proc.c 10580 * is changing them, provided they are always valid pointers, 10581 * since at worst the previous
process would be billed. 10582 */ 10583 register unsigned ticks; 10584 10585 /* Acknowledge the PS/2 clock
interrupt. */ 10586 if (machine.ps_mca) outb(PORT_B, inb(PORT_B) | CLOCK_ACK_BIT); 10587 10588 /* Get
number of ticks and update realtime. */ 10589 ticks = lost_ticks + 1; 10590 lost_ticks = 0; 10591 realtime += ticks;
10592 10593 /* Update user and system accounting times. Charge the current process for 10594 * user time. If the
current process is not billable, that is, if a non-user 10595 * process is running, charge the billable process for system
time as well. 10596 * Thus the unbillable process' user time is the billable user's system time. 10597 */ 10598
proc_ptr->p_user_time += ticks; 10599 if (priv(proc_ptr)->s_flags & PREEMPTIBLE) { 10600 proc_ptr->p_ticks_left
-= ticks; 10601 } 10602 if (! (priv(proc_ptr)->s_flags & BILLABLE)) { 10603 bill_ptr->p_sys_time += ticks; 10604
bill_ptr->p_ticks_left -= ticks; 10605 } 10606 10607 /* Check if do_clocktick() must be called. Done for alarms and
scheduling. 10608 * Some processes, such as the kernel tasks, cannot be preempted. 10609 */ 10610 if ((next_timeout
<= realtime) || (proc_ptr->p_ticks_left <= 0)) { 10611 prev_ptr = proc_ptr; /* store running process */ 10612
lock_notify(HARDWARE, CLOCK); /* send notification */ 10613 } 10614 return(1); /* reenable interrupts */ 10615 }
10617 /*===*
10618 * get_uptime * 10619
===/ 10620
PUBLIC clock_t get_uptime() 10621 { 10622 /* Get and return the current clock uptime in ticks. */ 10623
return(realtime); 10624 } 10626
/*===* 10627 *
set_timer * 10628
===/ 10629
PUBLIC void set_timer(tp, exp_time, watchdog) 10630 struct timer *tp; /* pointer to timer structure */ 10631 clock_t
exp_time; /* expiration realtime */ 10632 tmr_func_t watchdog; /* watchdog to be called */ 10633 { 10634 /* Insert
the new timer in the active timers list. Always update the

[Page 769]

10635 * next timeout time by setting it to the front of the active list. 10636 */ 10637 tmrs_settimer(&clock_timers, tp,
exp_time, watchdog, NULL); 10638 next_timeout = clock_timers->tmr_exp_time; 10639 } 10641
/*===* 10642 *
reset_timer * 10643
===/ 10644
PUBLIC void reset_timer(tp) 10645 struct timer *tp; /* pointer to timer structure */ 10646 { 10647 /* The timer
pointed to by 'tp' is no longer needed. Remove it from both the 10648 * active and expired lists. Always update the

69

69

next timeout time by setting 10649 * it to the front of the active list. 10650 */ 10651 tmrs_clrtimer(&clock_timers, tp,
NULL); 10652 next_timeout = (clock_timers == NULL) ? 10653 TMR_NEVER : clock_timers->tmr_exp_time;
10654 } 10656
/*===* 10657 *
read_clock * 10658
===/ 10659
PUBLIC unsigned long read_clock() 10660 { 10661 /* Read the counter of channel 0 of the 8253A timer. This counter
counts 10662 * down at a rate of TIMER_FREQ and restarts at TIMER_COUNT-1 when it 10663 * reaches zero. A
hardware interrupt (clock tick) occurs when the counter 10664 * gets to zero and restarts its cycle. 10665 */ 10666
unsigned count; 10667 10668 outb(TIMER_MODE, LATCH_COUNT); 10669 count = inb(TIMER0); 10670 count |=
(inb(TIMER0) << 8); 10671 10672 return count; 10673 }
++
drivers/drivers.h
++
10700 /* This is the master header for all device drivers. It includes some other 10701 * files and defines the principal
constants. 10702 */ 10703 #define _POSIX_SOURCE 1 /* tell headers to include POSIX stuff */ 10704 #define
_MINIX 1 /* tell headers to include MINIX stuff */ 10705 #define _SYSTEM 1 /* get negative error number in
<errno.h> */ 10706 10707 /* The following are so basic, all the *.c files get them automatically. */ 10708 #include
<minix/config.h> /* MUST be first */ 10709 #include <ansi.h> /* MUST be second */ 10710 #include <minix/type.h>
10711 #include <minix/com.h> 10712 #include <minix/dmap.h> 10713 #include <minix/callnr.h> 10714 #include
<sys/types.h>

[Page 770]

10715 #include <minix/const.h> 10716 #include <minix/devio.h> 10717 #include <minix/syslib.h> 10718 #include
<minix/sysutil.h> 10719 #include <minix/bitmap.h> 10720 10721 #include <ibm/interrupt.h> /* IRQ vectors and
miscellaneous ports */ 10722 #include <ibm/bios.h> /* BIOS index numbers */ 10723 #include <ibm/ports.h> /*
Well-known ports */ 10724 10725 #include <string.h> 10726 #include <signal.h> 10727 #include <stdlib.h> 10728
#include <limits.h> 10729 #include <stddef.h> 10730 #include <errno.h> 10731 #include <unistd.h> 10732
++
drivers/libdriver/driver.h
++
10800 /* Types and constants shared between the generic and device dependent 10801 * device driver code. 10802 */
10803 10804 #define _POSIX_SOURCE 1 /* tell headers to include POSIX stuff */ 10805 #define _MINIX 1 /* tell
headers to include MINIX stuff */ 10806 #define _SYSTEM 1 /* get negative error number in <errno.h> */ 10807
10808 /* The following are so basic, all the *.c files get them automatically. */ 10809 #include <minix/config.h> /*
MUST be first */ 10810 #include <ansi.h> /* MUST be second */ 10811 #include <minix/type.h> 10812 #include
<minix/ipc.h> 10813 #include <minix/com.h> 10814 #include <minix/callnr.h> 10815 #include <sys/types.h> 10816
#include <minix/const.h> 10817 #include <minix/syslib.h> 10818 #include <minix/sysutil.h> 10819 10820 #include
<string.h> 10821 #include <limits.h> 10822 #include <stddef.h> 10823 #include <errno.h> 10824 10825 #include
<minix/partition.h> 10826 #include <minix/u64.h> 10827 10828 /* Info about and entry points into the device
dependent code. */ 10829 struct driver { 10830 _PROTOTYPE(char *(*dr_name), (void)); 10831 _PROTOTYPE(
int (*dr_open), (struct driver *dp, message *m_ptr)); 10832 _PROTOTYPE(int (*dr_close), (struct driver *dp,
message *m_ptr)); 10833 _PROTOTYPE(int (*dr_ioctl), (struct driver *dp, message *m_ptr)); 10834
_PROTOTYPE(struct device *(*dr_prepare), (int device));

[Page 771]

10835 _PROTOTYPE(int (*dr_transfer), (int proc_nr, int opcode, off_t position, 10836 iovec_t *iov, unsigned
nr_req)); 10837 _PROTOTYPE(void (*dr_cleanup), (void)); 10838 _PROTOTYPE(void (*dr_geometry), (struct
partition *entry)); 10839 _PROTOTYPE(void (*dr_signal), (struct driver *dp, message *m_ptr)); 10840
_PROTOTYPE(void (*dr_alarm), (struct driver *dp, message *m_ptr)); 10841 _PROTOTYPE(int (*dr_cancel),
(struct driver *dp, message *m_ptr)); 10842 _PROTOTYPE(int (*dr_select), (struct driver *dp, message *m_ptr));
10843 _PROTOTYPE(int (*dr_other), (struct driver *dp, message *m_ptr)); 10844 _PROTOTYPE(int

70

70

(*dr_hw_int), (struct driver *dp, message *m_ptr)); 10845 }; 10846 10847 #if (CHIP == INTEL) 10848 10849 /*
Number of bytes you can DMA before hitting a 64K boundary: */ 10850 #define dma_bytes_left(phys) \ 10851
((unsigned) (sizeof(int) == 2 ? 0 : 0x10000) - (unsigned) ((phys) & 0xFFFF)) 10852 10853 #endif /* CHIP == INTEL
/ 10854 10855 / Base and size of a partition in bytes. */ 10856 struct device { 10857 u64_t dv_base; 10858 u64_t
dv_size; 10859 }; 10860 10861 #define NIL_DEV ((struct device *) 0) 10862 10863 /* Functions defined by driver.c:
*/ 10864 _PROTOTYPE(void driver_task, (struct driver *dr)); 10865 _PROTOTYPE(char *no_name, (void));
10866 _PROTOTYPE(int do_nop, (struct driver *dp, message *m_ptr)); 10867 _PROTOTYPE(struct device
*nop_prepare, (int device)); 10868 _PROTOTYPE(void nop_cleanup, (void)); 10869 _PROTOTYPE(void
nop_task, (void)); 10870 _PROTOTYPE(void nop_signal, (struct driver *dp, message *m_ptr)); 10871
_PROTOTYPE(void nop_alarm, (struct driver *dp, message *m_ptr)); 10872 _PROTOTYPE(int nop_cancel, (struct
driver *dp, message *m_ptr)); 10873 _PROTOTYPE(int nop_select, (struct driver *dp, message *m_ptr)); 10874
_PROTOTYPE(int do_diocntl, (struct driver *dp, message *m_ptr)); 10875 10876 /* Parameters for the disk drive. */
10877 #define SECTOR_SIZE 512 /* physical sector size in bytes */ 10878 #define SECTOR_SHIFT 9 /* for division
/ 10879 #define SECTOR_MASK 511 / and remainder */ 10880 10881 /* Size of the DMA buffer buffer in bytes. */
10882 #define USE_EXTRA_DMA_BUF 0 /* usually not needed */ 10883 #define DMA_BUF_SIZE
(DMA_SECTORS * SECTOR_SIZE) 10884 10885 #if (CHIP == INTEL) 10886 extern u8_t *tmp_buf; /* the DMA
buffer */ 10887 #else 10888 extern u8_t tmp_buf[]; /* the DMA buffer */ 10889 #endif 10890 extern phys_bytes
tmp_phys; /* phys address of DMA buffer */

[Page 772]

++
drivers/libdriver/drvlib.h
++
10900 /* IBM device driver definitions Author: Kees J. Bot 10901 * 7 Dec 1995 10902 */ 10903 10904 #include
<ibm/partition.h> 10905 10906 _PROTOTYPE(void partition, (struct driver *dr, int device, int style, int atapi));
10907 10908 /* BIOS parameter table layout. */ 10909 #define bp_cylinders(t) (* (u16_t *) (&(t)[0])) 10910 #define
bp_heads(t) (* (u8_t *) (&(t)[2])) 10911 #define bp_reduced_wr(t) (* (u16_t *) (&(t)[3])) 10912 #define
bp_precomp(t) (* (u16_t *) (&(t)[5])) 10913 #define bp_max_ecc(t) (* (u8_t *) (&(t)[7])) 10914 #define bp_ctlbyte(t)
(* (u8_t *) (&(t)[8])) 10915 #define bp_landingzone(t) (* (u16_t *) (&(t)[12])) 10916 #define bp_sectors(t) (* (u8_t *)
(&(t)[14])) 10917 10918 /* Miscellaneous. */ 10919 #define DEV_PER_DRIVE (1 + NR_PARTITIONS) 10920
#define MINOR_t0 64 10921 #define MINOR_r0 120 10922 #define MINOR_d0p0s0 128 10923 #define
MINOR_fd0p0 (28<<2) 10924 #define P_FLOPPY 0 10925 #define P_PRIMARY 1 10926 #define P_SUB 2
++
drivers/libdriver/driver.c
++
11000 /* This file contains device independent device driver interface. 11001 * 11002 * Changes: 11003 * Jul 25,
2005 added SYS_SIG type for signals (Jorrit N. Herder) 11004 * Sep 15, 2004 added SYN_ALARM type for timeouts
(Jorrit N. Herder) 11005 * Jul 23, 2004 removed kernel dependencies (Jorrit N. Herder) 11006 * Apr 02, 1992
constructed from AT wini and floppy driver (Kees J. Bot) 11007 * 11008 * 11009 * The drivers support the following
operations (using message format m2): 11010 * 11011 * m_type DEVICE PROC_NR COUNT POSITION ADRRESS
11012 * -- 11013 * | DEV_OPEN | device | proc nr | | | | 11014 *
|------------+---------+---------+---------+---------+---------| 11015 * | DEV_CLOSE | device | proc nr | | | | 11016 *
|------------+---------+---------+---------+---------+---------| 11017 * | DEV_READ | device | proc nr | bytes | offset | buf ptr
| 11018 * |------------+---------+---------+---------+---------+---------| 11019 * | DEV_WRITE | device | proc nr | bytes |
offset | buf ptr |

[Page 773]

11020 * |------------+---------+---------+---------+---------+---------| 11021 * | DEV_GATHER | device | proc nr | iov len |
offset | iov ptr | 11022 * |------------+---------+---------+---------+---------+---------| 11023 * | DEV_SCATTER| device |
proc nr | iov len | offset | iov ptr | 11024 * |------------+---------+---------+---------+---------+---------| 11025 * |
DEV_IOCTL | device | proc nr |func code| | buf ptr | 11026 * |------------+---------+---------+---------+---------+---------|
11027 * | CANCEL | device | proc nr | r/w | | | 11028 * |------------+---------+---------+---------+---------+---------| 11029 *

71

71

| HARD_STOP | | | | | | 11030 * -- 11031 * 11032 * The file
contains one entry point: 11033 * 11034 * driver_task: called by the device dependent task entry 11035 */ 11036
11037 #include "../drivers.h" 11038 #include <sys/ioc_disk.h> 11039 #include "driver.h" 11040 11041 #define
BUF_EXTRA 0 11042 11043 /* Claim space for variables. */ 11044 PRIVATE u8_t buffer[(unsigned) 2 *
DMA_BUF_SIZE + BUF_EXTRA]; 11045 u8_t *tmp_buf; /* the DMA buffer eventually */ 11046 phys_bytes
tmp_phys; /* phys address of DMA buffer */ 11047 11048 FORWARD _PROTOTYPE(void init_buffer, (void));
11049 FORWARD _PROTOTYPE(int do_rdwt, (struct driver *dr, message *mp)); 11050 FORWARD
_PROTOTYPE(int do_vrdwt, (struct driver *dr, message *mp)); 11051 11052 int device_caller; 11053 11054
/*===* 11055 *
driver_task * 11056
===/ 11057
PUBLIC void driver_task(dp) 11058 struct driver *dp; /* Device dependent entry points. */ 11059 { 11060 /* Main
program of any device driver task. */ 11061 11062 int r, proc_nr; 11063 message mess; 11064 11065 /* Get a DMA
buffer. */ 11066 init_buffer(); 11067 11068 /* Here is the main loop of the disk task. It waits for a message, carries
11069 * it out, and sends a reply. 11070 */ 11071 while (TRUE) { 11072 11073 /* Wait for a request to read or write a
disk block. */ 11074 if(receive(ANY, &mess) != OK) continue; 11075 11076 device_caller = mess.m_source; 11077
proc_nr = mess.PROC_NR; 11078 11079 /* Now carry out the work. */

[Page 774]

11080 switch(mess.m_type) { 11081 case DEV_OPEN: r = (*dp->dr_open)(dp, &mess); break; 11082 case
DEV_CLOSE: r = (*dp->dr_close)(dp, &mess); break; 11083 case DEV_IOCTL: r = (*dp->dr_ioctl)(dp, &mess);
break; 11084 case CANCEL: r = (*dp->dr_cancel)(dp, &mess);break; 11085 case DEV_SELECT: r =
(*dp->dr_select)(dp, &mess);break; 11086 11087 case DEV_READ: 11088 case DEV_WRITE: r = do_rdwt(dp,
&mess); break; 11089 case DEV_GATHER: 11090 case DEV_SCATTER: r = do_vrdwt(dp, &mess); break; 11091
11092 case HARD_INT: /* leftover interrupt or expired timer. */ 11093 if(dp->dr_hw_int) { 11094
(*dp->dr_hw_int)(dp, &mess); 11095 } 11096 continue; 11097 case SYS_SIG: (*dp->dr_signal)(dp, &mess); 11098
continue; /* don't reply */ 11099 case SYN_ALARM: (*dp->dr_alarm)(dp, &mess); 11100 continue; /* don't reply */
11101 default: 11102 if(dp->dr_other) 11103 r = (*dp->dr_other)(dp, &mess); 11104 else 11105 r = EINVAL; 11106
break; 11107 } 11108 11109 /* Clean up leftover state. */ 11110 (*dp->dr_cleanup)(); 11111 11112 /* Finally, prepare
and send the reply message. */ 11113 if (r != EDONTREPLY) { 11114 mess.m_type = TASK_REPLY; 11115
mess.REP_PROC_NR = proc_nr; 11116 /* Status is # of bytes transferred or error code. */ 11117 mess.REP_STATUS
= r; 11118 send(device_caller, &mess); 11119 } 11120 } 11121 } 11123
/*===* 11124 *
init_buffer * 11125
===/ 11126
PRIVATE void init_buffer() 11127 { 11128 /* Select a buffer that can safely be used for DMA transfers. It may also
11129 * be used to read partition tables and such. Its absolute address is 11130 * 'tmp_phys', the normal address is
'tmp_buf'. 11131 */ 11132 11133 unsigned left; 11134 11135 tmp_buf = buffer; 11136 sys_umap(SELF, D,
(vir_bytes)buffer, (phys_bytes)sizeof(buffer), &tmp_phys); 11137 11138 if ((left = dma_bytes_left(tmp_phys)) <
DMA_BUF_SIZE) { 11139 /* First half of buffer crosses a 64K boundary, can't DMA into that */

[Page 775]

11140 tmp_buf += left; 11141 tmp_phys += left; 11142 } 11143 } 11145
/*===* 11146 *
do_rdwt * 11147
===/ 11148
PRIVATE int do_rdwt(dp, mp) 11149 struct driver *dp; /* device dependent entry points */ 11150 message *mp; /*
pointer to read or write message */ 11151 { 11152 /* Carry out a single read or write request. */ 11153 iovec_t iovec1;
11154 int r, opcode; 11155 phys_bytes phys_addr; 11156 11157 /* Disk address? Address and length of the user
buffer? */ 11158 if (mp->COUNT < 0) return(EINVAL); 11159 11160 /* Check the user buffer. */ 11161
sys_umap(mp->PROC_NR, D, (vir_bytes) mp->ADDRESS, mp->COUNT, &phys_addr); 11162 if (phys_addr == 0)
return(EFAULT); 11163 11164 /* Prepare for I/O. */ 11165 if ((*dp->dr_prepare)(mp->DEVICE) == NIL_DEV)

72

72

return(ENXIO); 11166 11167 /* Create a one element scatter/gather vector for the buffer. */ 11168 opcode =
mp->m_type == DEV_READ ? DEV_GATHER : DEV_SCATTER; 11169 iovec1.iov_addr = (vir_bytes)
mp->ADDRESS; 11170 iovec1.iov_size = mp->COUNT; 11171 11172 /* Transfer bytes from/to the device. */ 11173
r = (*dp->dr_transfer)(mp->PROC_NR, opcode, mp->POSITION, &iovec1, 1); 11174 11175 /* Return the number of
bytes transferred or an error code. */ 11176 return(r == OK ? (mp->COUNT - iovec1.iov_size) : r); 11177 } 11179
/*==* 11180 *
do_vrdwt * 11181
==/ 11182
PRIVATE int do_vrdwt(dp, mp) 11183 struct driver *dp; /* device dependent entry points */ 11184 message *mp; /*
pointer to read or write message */ 11185 { 11186 /* Carry out an device read or write to/from a vector of user
addresses. 11187 * The "user addresses" are assumed to be safe, i.e. FS transferring to/from 11188 * its own buffers,
so they are not checked. 11189 */ 11190 static iovec_t iovec[NR_IOREQS]; 11191 iovec_t *iov; 11192 phys_bytes
iovec_size; 11193 unsigned nr_req; 11194 int r; 11195 11196 nr_req = mp->COUNT; /* Length of I/O vector */ 11197
11198 if (mp->m_source < 0) { 11199 /* Called by a task, no need to copy vector. */

[Page 776]

11200 iov = (iovec_t *) mp->ADDRESS; 11201 } else { 11202 /* Copy the vector from the caller to kernel space. */
11203 if (nr_req > NR_IOREQS) nr_req = NR_IOREQS; 11204 iovec_size = (phys_bytes) (nr_req * sizeof(iovec[0]));
11205 11206 if (OK != sys_datacopy(mp->m_source, (vir_bytes) mp->ADDRESS, 11207 SELF, (vir_bytes) iovec,
iovec_size)) 11208 panic((*dp->dr_name)(),"bad I/O vector by", mp->m_source); 11209 iov = iovec; 11210 } 11211
11212 /* Prepare for I/O. */ 11213 if ((*dp->dr_prepare)(mp->DEVICE) == NIL_DEV) return(ENXIO); 11214 11215
/* Transfer bytes from/to the device. */ 11216 r = (*dp->dr_transfer)(mp->PROC_NR, mp->m_type, mp->POSITION,
iov, nr_req); 11217 11218 /* Copy the I/O vector back to the caller. */ 11219 if (mp->m_source >= 0) { 11220
sys_datacopy(SELF, (vir_bytes) iovec, 11221 mp->m_source, (vir_bytes) mp->ADDRESS, iovec_size); 11222 }
11223 return(r); 11224 } 11226
/*===* 11227 *
no_name * 11228
===/ 11229
PUBLIC char *no_name() 11230 { 11231 /* Use this default name if there is no specific name for the device. This was
11232 * originally done by fetching the name from the task table for this process: 11233 *
"return(tasktab[proc_number(proc_ptr) + NR_TASKS].name);", but currently a 11234 * real "noname" is returned.
Perhaps, some system information service can be 11235 * queried for a name at a later time. 11236 */ 11237 static char
name[] = "noname"; 11238 return name; 11239 } 11241
/*==* 11242 *
do_nop * 11243
==/ 11244
PUBLIC int do_nop(dp, mp) 11245 struct driver *dp; 11246 message *mp; 11247 { 11248 /* Nothing there, or
nothing to do. */ 11249 11250 switch (mp->m_type) { 11251 case DEV_OPEN: return(ENODEV); 11252 case
DEV_CLOSE: return(OK); 11253 case DEV_IOCTL: return(ENOTTY); 11254 default: return(EIO); 11255 } 11256 }

[Page 777]

11258 /*==*
11259 * nop_signal * 11260
==/ 11261
PUBLIC void nop_signal(dp, mp) 11262 struct driver *dp; 11263 message *mp; 11264 { 11265 /* Default action for
signal is to ignore. */ 11266 } 11268
/*==* 11269 *
nop_alarm * 11270
==/ 11271
PUBLIC void nop_alarm(dp, mp) 11272 struct driver *dp; 11273 message *mp; 11274 { 11275 /* Ignore the leftover
alarm. */ 11276 } 11278

73

73

/*===* 11279 *
nop_prepare * 11280
===/ 11281
PUBLIC struct device *nop_prepare(device) 11282 { 11283 /* Nothing to prepare for. */ 11284 return(NIL_DEV);
11285 } 11287
/*===* 11288 *
nop_cleanup * 11289
===/ 11290
PUBLIC void nop_cleanup() 11291 { 11292 /* Nothing to clean up. */ 11293 } 11295
/*===* 11296 *
nop_cancel * 11297
===/ 11298
PUBLIC int nop_cancel(struct driver *dr, message *m) 11299 { 11300 /* Nothing to do for cancel. */ 11301
return(OK); 11302 } 11304
/*===* 11305 *
nop_select * 11306
===/ 11307
PUBLIC int nop_select(struct driver *dr, message *m) 11308 { 11309 /* Nothing to do for select. */ 11310
return(OK); 11311 } 11313
/*==* 11314 *
do_diocntl * 11315
==/ 11316
PUBLIC int do_diocntl(dp, mp) 11317 struct driver *dp;

[Page 778]

11318 message *mp; /* pointer to ioctl request */ 11319 { 11320 /* Carry out a partition setting/getting request. */
11321 struct device *dv; 11322 struct partition entry; 11323 int s; 11324 11325 if (mp->REQUEST != DIOCSETP
&& mp->REQUEST != DIOCGETP) { 11326 if(dp->dr_other) { 11327 return dp->dr_other(dp, mp); 11328 } else
return(ENOTTY); 11329 } 11330 11331 /* Decode the message parameters. */ 11332 if ((dv =
(*dp->dr_prepare)(mp->DEVICE)) == NIL_DEV) return(ENXIO); 11333 11334 if (mp->REQUEST == DIOCSETP)
{ 11335 /* Copy just this one partition table entry. */ 11336 if (OK != (s=sys_datacopy(mp->PROC_NR, (vir_bytes)
mp->ADDRESS, 11337 SELF, (vir_bytes) &entry, sizeof(entry)))) 11338 return s; 11339 dv->dv_base = entry.base;
11340 dv->dv_size = entry.size; 11341 } else { 11342 /* Return a partition table entry and the geometry of the drive.
*/ 11343 entry.base = dv->dv_base; 11344 entry.size = dv->dv_size; 11345 (*dp->dr_geometry)(&entry); 11346 if
(OK != (s=sys_datacopy(SELF, (vir_bytes) &entry, 11347 mp->PROC_NR, (vir_bytes) mp->ADDRESS,
sizeof(entry)))) 11348 return s; 11349 } 11350 return(OK); 11351 }
++
drivers/libdriver/drvlib.c
++
11400 /* IBM device driver utility functions. Author: Kees J. Bot 11401 * 7 Dec 1995 11402 * Entry point: 11403 *
partition: partition a disk to the partition table(s) on it. 11404 */ 11405 11406 #include "driver.h" 11407 #include
"drvlib.h" 11408 #include <unistd.h> 11409 11410 /* Extended partition? */ 11411 #define ext_part(s) ((s) == 0x05 ||
(s) == 0x0F) 11412 11413 FORWARD _PROTOTYPE(void extpartition, (struct driver *dp, int extdev, 11414
unsigned long extbase)); 11415 FORWARD _PROTOTYPE(int get_part_table, (struct driver *dp, int device, 11416
unsigned long offset, struct part_entry *table)); 11417 FORWARD _PROTOTYPE(void sort, (struct part_entry
*table)); 11418 11419 #ifndef CD_SECTOR_SIZE

[Page 779]

11420 #define CD_SECTOR_SIZE 2048 11421 #endif 11422 11423
/*==* 11424 *
partition * 11425
==/ 11426

74

74

PUBLIC void partition(dp, device, style, atapi) 11427 struct driver *dp; /* device dependent entry points */ 11428 int
device; /* device to partition */ 11429 int style; /* partitioning style: floppy, primary, sub. */ 11430 int atapi; /* atapi
device */ 11431 { 11432 /* This routine is called on first open to initialize the partition tables 11433 * of a device. It
makes sure that each partition falls safely within the 11434 * device's limits. Depending on the partition style we are
either making 11435 * floppy partitions, primary partitions or subpartitions. Only primary 11436 * partitions are
sorted, because they are shared with other operating 11437 * systems that expect this. 11438 */ 11439 struct part_entry
table[NR_PARTITIONS], *pe; 11440 int disk, par; 11441 struct device *dv; 11442 unsigned long base, limit,
part_limit; 11443 11444 /* Get the geometry of the device to partition */ 11445 if ((dv = (*dp->dr_prepare)(device))
== NIL_DEV 11446 || cmp64u(dv->dv_size, 0) == 0) return; 11447 base = div64u(dv->dv_base, SECTOR_SIZE);
11448 limit = base + div64u(dv->dv_size, SECTOR_SIZE); 11449 11450 /* Read the partition table for the device. */
11451 if(!get_part_table(dp, device, 0L, table)) { 11452 return; 11453 } 11454 11455 /* Compute the device number
of the first partition. */ 11456 switch (style) { 11457 case P_FLOPPY: 11458 device += MINOR_fd0p0; 11459 break;
11460 case P_PRIMARY: 11461 sort(table); /* sort a primary partition table */ 11462 device += 1; 11463 break;
11464 case P_SUB: 11465 disk = device / DEV_PER_DRIVE; 11466 par = device % DEV_PER_DRIVE - 1; 11467
device = MINOR_d0p0s0 + (disk * NR_PARTITIONS + par) * NR_PARTITIONS; 11468 } 11469 11470 /* Find an
array of devices. */ 11471 if ((dv = (*dp->dr_prepare)(device)) == NIL_DEV) return; 11472 11473 /* Set the
geometry of the partitions from the partition table. */ 11474 for (par = 0; par < NR_PARTITIONS; par++, dv++) {
11475 /* Shrink the partition to fit within the device. */ 11476 pe = &table[par]; 11477 part_limit = pe->lowsec +
pe->size; 11478 if (part_limit < pe->lowsec) part_limit = limit; 11479 if (part_limit > limit) part_limit = limit;

[Page 780]

11480 if (pe->lowsec < base) pe->lowsec = base; 11481 if (part_limit < pe->lowsec) part_limit = pe->lowsec; 11482
11483 dv->dv_base = mul64u(pe->lowsec, SECTOR_SIZE); 11484 dv->dv_size = mul64u(part_limit - pe->lowsec,
SECTOR_SIZE); 11485 11486 if (style == P_PRIMARY) { 11487 /* Each Minix primary partition can be
subpartitioned. */ 11488 if (pe->sysind == MINIX_PART) 11489 partition(dp, device + par, P_SUB, atapi); 11490
11491 /* An extended partition has logical partitions. */ 11492 if (ext_part(pe->sysind)) 11493 extpartition(dp, device
+ par, pe->lowsec); 11494 } 11495 } 11496 } 11498
/*==* 11499 *
extpartition * 11500
==/ 11501
PRIVATE void extpartition(dp, extdev, extbase) 11502 struct driver *dp; /* device dependent entry points */ 11503 int
extdev; /* extended partition to scan */ 11504 unsigned long extbase; /* sector offset of the base extended partition */
11505 { 11506 /* Extended partitions cannot be ignored alas, because people like to move 11507 * files to and from
DOS partitions. Avoid reading this code, it's no fun. 11508 */ 11509 struct part_entry table[NR_PARTITIONS], *pe;
11510 int subdev, disk, par; 11511 struct device *dv; 11512 unsigned long offset, nextoffset; 11513 11514 disk =
extdev / DEV_PER_DRIVE; 11515 par = extdev % DEV_PER_DRIVE - 1; 11516 subdev = MINOR_d0p0s0 + (disk
* NR_PARTITIONS + par) * NR_PARTITIONS; 11517 11518 offset = 0; 11519 do { 11520 if (!get_part_table(dp,
extdev, offset, table)) return; 11521 sort(table); 11522 11523 /* The table should contain one logical partition and
optionally 11524 * another extended partition. (It's a linked list.) 11525 */ 11526 nextoffset = 0; 11527 for (par = 0;
par < NR_PARTITIONS; par++) { 11528 pe = &table[par]; 11529 if (ext_part(pe->sysind)) { 11530 nextoffset =
pe->lowsec; 11531 } else 11532 if (pe->sysind != NO_PART) { 11533 if ((dv = (*dp->dr_prepare)(subdev)) ==
NIL_DEV) return; 11534 11535 dv->dv_base = mul64u(extbase + offset + pe->lowsec, 11536 SECTOR_SIZE);
11537 dv->dv_size = mul64u(pe->size, SECTOR_SIZE); 11538 11539 /* Out of devices? */

[Page 781]

11540 if (++subdev % NR_PARTITIONS == 0) return; 11541 } 11542 } 11543 } while ((offset = nextoffset) != 0);
11544 } 11546
/*==* 11547 *
get_part_table * 11548
==/ 11549
PRIVATE int get_part_table(dp, device, offset, table) 11550 struct driver *dp; 11551 int device; 11552 unsigned long
offset; /* sector offset to the table */ 11553 struct part_entry *table; /* four entries */ 11554 { 11555 /* Read the

75

75

partition table for the device, return true iff there were no 11556 * errors. 11557 */ 11558 iovec_t iovec1; 11559 off_t
position; 11560 static unsigned char partbuf[CD_SECTOR_SIZE]; 11561 11562 position = offset <<
SECTOR_SHIFT; 11563 iovec1.iov_addr = (vir_bytes) partbuf; 11564 iovec1.iov_size = CD_SECTOR_SIZE; 11565
if ((*dp->dr_prepare)(device) != NIL_DEV) { 11566 (void) (*dp->dr_transfer)(SELF, DEV_GATHER, position,
&iovec1, 1); 11567 } 11568 if (iovec1.iov_size != 0) { 11569 return 0; 11570 } 11571 if (partbuf[510] != 0x55 ||
partbuf[511] != 0xAA) { 11572 /* Invalid partition table. */ 11573 return 0; 11574 } 11575 memcpy(table, (partbuf +
PART_TABLE_OFF), NR_PARTITIONS * sizeof(table[0])); 11576 return 1; 11577 } 11579
/*===* 11580 *
sort * 11581
===/ 11582
PRIVATE void sort(table) 11583 struct part_entry *table; 11584 { 11585 /* Sort a partition table. */ 11586 struct
part_entry *pe, tmp; 11587 int n = NR_PARTITIONS; 11588 11589 do { 11590 for (pe = table; pe < table +
NR_PARTITIONS-1; pe++) { 11591 if (pe[0].sysind == NO_PART 11592 || (pe[0].lowsec > pe[1].lowsec 11593 &&
pe[1].sysind != NO_PART)) { 11594 tmp = pe[0]; pe[0] = pe[1]; pe[1] = tmp; 11595 } 11596 } 11597 } while (--n >
0); 11598 }

[Page 782]

++
drivers/memory/memory.c
++
11600 /* This file contains the device dependent part of the drivers for the 11601 * following special files: 11602 *
/dev/ram - RAM disk 11603 * /dev/mem - absolute memory 11604 * /dev/kmem - kernel virtual memory 11605 *
/dev/null - null device (data sink) 11606 * /dev/boot - boot device loaded from boot image 11607 * /dev/zero - null
byte stream generator 11608 * 11609 * Changes: 11610 * Apr 29, 2005 added null byte generator (Jorrit N. Herder)
11611 * Apr 09, 2005 added support for boot device (Jorrit N. Herder) 11612 * Jul 26, 2004 moved RAM driver to
user-space (Jorrit N. Herder) 11613 * Apr 20, 1992 device dependent/independent split (Kees J. Bot) 11614 */ 11615
11616 #include "../drivers.h" 11617 #include "../libdriver/driver.h" 11618 #include <sys/ioc_memory.h> 11619
#include "../../kernel/const.h" 11620 #include "../../kernel/config.h" 11621 #include "../../kernel/type.h" 11622 11623
#include "assert.h" 11624 11625 #define NR_DEVS 6 /* number of minor devices */ 11626 11627 PRIVATE struct
device m_geom[NR_DEVS]; /* base and size of each device */ 11628 PRIVATE int m_seg[NR_DEVS]; /* segment
index of each device */ 11629 PRIVATE int m_device; /* current device */ 11630 PRIVATE struct kinfo kinfo; /*
kernel information */ 11631 PRIVATE struct machine machine; /* machine information */ 11632 11633 extern int
errno; /* error number for PM calls */ 11634 11635 FORWARD _PROTOTYPE(char *m_name, (void)); 11636
FORWARD _PROTOTYPE(struct device *m_prepare, (int device)); 11637 FORWARD _PROTOTYPE(int
m_transfer, (int proc_nr, int opcode, off_t position, 11638 iovec_t *iov, unsigned nr_req)); 11639 FORWARD
_PROTOTYPE(int m_do_open, (struct driver *dp, message *m_ptr)); 11640 FORWARD _PROTOTYPE(void
m_init, (void)); 11641 FORWARD _PROTOTYPE(int m_ioctl, (struct driver *dp, message *m_ptr)); 11642
FORWARD _PROTOTYPE(void m_geometry, (struct partition *entry)); 11643 11644 /* Entry points to this driver.
/ 11645 PRIVATE struct driver m_dtab = { 11646 m_name, / current device's name */ 11647 m_do_open, /* open
or mount */ 11648 do_nop, /* nothing on a close */ 11649 m_ioctl, /* specify ram disk geometry */ 11650 m_prepare,
/* prepare for I/O on a given minor device */ 11651 m_transfer, /* do the I/O */ 11652 nop_cleanup, /* no need to
clean up */ 11653 m_geometry, /* memory device "geometry" */ 11654 nop_signal, /* system signals */

[Page 783]

11655 nop_alarm, 11656 nop_cancel, 11657 nop_select, 11658 NULL, 11659 NULL 11660 }; 11661 11662 /* Buffer
for the /dev/zero null byte feed. */ 11663 #define ZERO_BUF_SIZE 1024 11664 PRIVATE char
dev_zero[ZERO_BUF_SIZE]; 11665 11666 #define click_to_round_k(n) \ 11667 ((unsigned) ((((unsigned long) (n)
<< CLICK_SHIFT) + 512) / 1024)) 11668 11669
/*===* 11670 *
main * 11671
===/ 11672
PUBLIC int main(void) 11673 { 11674 /* Main program. Initialize the memory driver and start the main loop. */

76

76

11675 m_init(); 11676 driver_task(&m_dtab); 11677 return(OK); 11678 } 11680
/*===* 11681 *
m_name * 11682
===/ 11683
PRIVATE char *m_name() 11684 { 11685 /* Return a name for the current device. */ 11686 static char name[] =
"memory"; 11687 return name; 11688 } 11690
/*===* 11691 *
m_prepare * 11692
===/ 11693
PRIVATE struct device *m_prepare(device) 11694 int device; 11695 { 11696 /* Prepare for I/O on a device: check if
the minor device number is ok. */ 11697 if (device < 0 || device >= NR_DEVS) return(NIL_DEV); 11698 m_device =
device; 11699 11700 return(&m_geom[device]); 11701 } 11703
/*===* 11704 *
m_transfer * 11705
===/ 11706
PRIVATE int m_transfer(proc_nr, opcode, position, iov, nr_req) 11707 int proc_nr; /* process doing the request */
11708 int opcode; /* DEV_GATHER or DEV_SCATTER */ 11709 off_t position; /* offset on device to read or write
*/ 11710 iovec_t *iov; /* pointer to read or write request vector */ 11711 unsigned nr_req; /* length of request vector
/ 11712 { 11713 / Read or write one the driver's minor devices. */ 11714 phys_bytes mem_phys;

[Page 784]

11715 int seg; 11716 unsigned count, left, chunk; 11717 vir_bytes user_vir; 11718 struct device *dv; 11719 unsigned
long dv_size; 11720 int s; 11721 11722 /* Get minor device number and check for /dev/null. */ 11723 dv =
&m_geom[m_device]; 11724 dv_size = cv64ul(dv->dv_size); 11725 11726 while (nr_req > 0) { 11727 11728 /* How
much to transfer and where to / from. */ 11729 count = iov->iov_size; 11730 user_vir = iov->iov_addr; 11731 11732
switch (m_device) { 11733 11734 /* No copying; ignore request. */ 11735 case NULL_DEV: 11736 if (opcode ==
DEV_GATHER) return(OK); /* always at EOF */ 11737 break; 11738 11739 /* Virtual copying. For RAM disk,
kernel memory and boot device. */ 11740 case RAM_DEV: 11741 case KMEM_DEV: 11742 case BOOT_DEV:
11743 if (position >= dv_size) return(OK); /* check for EOF */ 11744 if (position + count > dv_size) count = dv_size -
position; 11745 seg = m_seg[m_device]; 11746 11747 if (opcode == DEV_GATHER) { /* copy actual data */ 11748
sys_vircopy(SELF,seg,position, proc_nr,D,user_vir, count); 11749 } else { 11750 sys_vircopy(proc_nr,D,user_vir,
SELF,seg,position, count); 11751 } 11752 break; 11753 11754 /* Physical copying. Only used to access entire
memory. */ 11755 case MEM_DEV: 11756 if (position >= dv_size) return(OK); /* check for EOF */ 11757 if
(position + count > dv_size) count = dv_size - position; 11758 mem_phys = cv64ul(dv->dv_base) + position; 11759
11760 if (opcode == DEV_GATHER) { /* copy data */ 11761 sys_physcopy(NONE, PHYS_SEG, mem_phys, 11762
proc_nr, D, user_vir, count); 11763 } else { 11764 sys_physcopy(proc_nr, D, user_vir, 11765 NONE, PHYS_SEG,
mem_phys, count); 11766 } 11767 break; 11768 11769 /* Null byte stream generator. */ 11770 case ZERO_DEV:
11771 if (opcode == DEV_GATHER) { 11772 left = count; 11773 while (left > 0) { 11774 chunk = (left >
ZERO_BUF_SIZE) ? ZERO_BUF_SIZE : left;

[Page 785]

11775 if (OK != (s=sys_vircopy(SELF, D, (vir_bytes) dev_zero, 11776 proc_nr, D, user_vir, chunk))) 11777
report("MEM","sys_vircopy failed", s); 11778 left -= chunk; 11779 user_vir += chunk; 11780 } 11781 } 11782 break;
11783 11784 /* Unknown (illegal) minor device. */ 11785 default: 11786 return(EINVAL); 11787 } 11788 11789 /*
Book the number of bytes transferred. */ 11790 position += count; 11791 iov->iov_addr += count; 11792 if
((iov->iov_size -= count) == 0) { iov++; nr_req--; } 11793 11794 } 11795 return(OK); 11796 } 11798
/*===* 11799 *
m_do_open * 11800
===/ 11801
PRIVATE int m_do_open(dp, m_ptr) 11802 struct driver *dp; 11803 message *m_ptr; 11804 { 11805 /* Check device
number on open. (This used to give I/O privileges to a 11806 * process opening /dev/mem or /dev/kmem. This may be
needed in case of 11807 * memory mapped I/O. With system calls to do I/O this is no longer needed.) 11808 */ 11809

77

77

if (m_prepare(m_ptr->DEVICE) == NIL_DEV) return(ENXIO); 11810 11811 return(OK); 11812 } 11814
/*===* 11815 *
m_init * 11816
===/ 11817
PRIVATE void m_init() 11818 { 11819 /* Initialize this task. All minor devices are initialized one by one. */ 11820 int
i, s; 11821 11822 if (OK != (s=sys_getkinfo(&kinfo))) { 11823 panic("MEM","Couldn't get kernel information.",s);
11824 } 11825 11826 /* Install remote segment for /dev/kmem memory. */ 11827 m_geom[KMEM_DEV].dv_base =
cvul64(kinfo.kmem_base); 11828 m_geom[KMEM_DEV].dv_size = cvul64(kinfo.kmem_size); 11829 if (OK !=
(s=sys_segctl(&m_seg[KMEM_DEV], (u16_t *) &s, (vir_bytes *) &s, 11830 kinfo.kmem_base, kinfo.kmem_size))) {
11831 panic("MEM","Couldn't install remote segment.",s); 11832 } 11833 11834 /* Install remote segment for
/dev/boot memory, if enabled. */

[Page 786]

11835 m_geom[BOOT_DEV].dv_base = cvul64(kinfo.bootdev_base); 11836 m_geom[BOOT_DEV].dv_size =
cvul64(kinfo.bootdev_size); 11837 if (kinfo.bootdev_base > 0) { 11838 if (OK !=
(s=sys_segctl(&m_seg[BOOT_DEV], (u16_t *) &s, (vir_bytes *) &s, 11839 kinfo.bootdev_base,
kinfo.bootdev_size))) { 11840 panic("MEM","Couldn't install remote segment.",s); 11841 } 11842 } 11843 11844 /*
Initialize /dev/zero. Simply write zeros into the buffer. */ 11845 for (i=0; i<ZERO_BUF_SIZE; i++) { 11846
dev_zero[i] = '\0'; 11847 } 11848 11849 /* Set up memory ranges for /dev/mem. */ 11850 if (OK !=
(s=sys_getmachine(&machine))) { 11851 panic("MEM","Couldn't get machine information.",s); 11852 } 11853 if (!
machine.protected) { 11854 m_geom[MEM_DEV].dv_size = cvul64(0x100000); /* 1M for 8086 systems */ 11855 }
else { 11856 m_geom[MEM_DEV].dv_size = cvul64(0xFFFFFFFF); /* 4G-1 for 386 systems */ 11857 } 11858 }
11860 /*===*
11861 * m_ioctl * 11862
===/ 11863
PRIVATE int m_ioctl(dp, m_ptr) 11864 struct driver *dp; /* pointer to driver structure */ 11865 message *m_ptr; /*
pointer to control message */ 11866 { 11867 /* I/O controls for the memory driver. Currently there is one I/O control:
11868 * - MIOCRAMSIZE: to set the size of the RAM disk. 11869 */ 11870 struct device *dv; 11871 if ((dv =
m_prepare(m_ptr->DEVICE)) == NIL_DEV) return(ENXIO); 11872 11873 switch (m_ptr->REQUEST) { 11874 case
MIOCRAMSIZE: { 11875 /* FS wants to create a new RAM disk with the given size. */ 11876 phys_bytes
ramdev_size; 11877 phys_bytes ramdev_base; 11878 int s; 11879 11880 if (m_ptr->PROC_NR != FS_PROC_NR) {
11881 report("MEM", "warning, MIOCRAMSIZE called by", m_ptr->PROC_NR); 11882 return(EPERM); 11883 }
11884 11885 /* Try to allocate a piece of memory for the RAM disk. */ 11886 ramdev_size = m_ptr->POSITION;
11887 if (allocmem(ramdev_size, &ramdev_base) < 0) { 11888 report("MEM", "warning, allocmem failed", errno);
11889 return(ENOMEM); 11890 } 11891 dv->dv_base = cvul64(ramdev_base); 11892 dv->dv_size =
cvul64(ramdev_size); 11893 11894 if (OK != (s=sys_segctl(&m_seg[RAM_DEV], (u16_t *) &s, (vir_bytes *) &s,

[Page 787]

11895 ramdev_base, ramdev_size))) { 11896 panic("MEM","Couldn't install remote segment.",s); 11897 } 11898
break; 11899 } 11900 11901 default: 11902 return(do_diocntl(&m_dtab, m_ptr)); 11903 } 11904 return(OK); 11905 }
11907 /*===*
11908 * m_geometry * 11909
===/ 11910
PRIVATE void m_geometry(entry) 11911 struct partition *entry; 11912 { 11913 /* Memory devices don't have a
geometry, but the outside world insists. */ 11914 entry->cylinders = div64u(m_geom[m_device].dv_size,
SECTOR_SIZE) / (64 * 32); 11915 entry->heads = 64; 11916 entry->sectors = 32; 11917 }
++
drivers/at_wini/at_wini.h
++
12000 #include "../drivers.h" 12001 #include "../libdriver/driver.h" 12002 #include "../libdriver/drvlib.h" 12003 12004
_PROTOTYPE(int main, (void)); 12005 12006 #define VERBOSE 0 /* display identify messages during boot */
12007 #define ENABLE_ATAPI 0 /* add ATAPI cd-rom support to driver */

78

78

++
drivers/at_wini/at_wini.c
++
12100 /* This file contains the device dependent part of a driver for the IBM-AT 12101 * winchester controller.
Written by Adri Koppes. 12102 * 12103 * The file contains one entry point: 12104 * 12105 * at_winchester_task:
main entry when system is brought up 12106 * 12107 * Changes: 12108 * Aug 19, 2005 ata pci support, supports
SATA (Ben Gras) 12109 * Nov 18, 2004 moved AT disk driver to user-space (Jorrit N. Herder) 12110 * Aug 20, 2004
watchdogs replaced by sync alarms (Jorrit N. Herder) 12111 * Mar 23, 2000 added ATAPI CDROM support (Michael
Temari) 12112 * May 14, 2000 d-d/i rewrite (Kees J. Bot) 12113 * Apr 13, 1992 device dependent/independent split
(Kees J. Bot) 12114 */

[Page 788]

12115 12116 #include "at_wini.h" 12117 #include "../libpci/pci.h" 12118 12119 #include <minix/sysutil.h> 12120
#include <minix/keymap.h> 12121 #include <sys/ioc_disk.h> 12122 12123 #define ATAPI_DEBUG 0 /* To debug
ATAPI code. */ 12124 12125 /* I/O Ports used by winchester disk controllers. */ 12126 12127 /* Read and write
registers */ 12128 #define REG_CMD_BASE0 0x1F0 /* command base register of controller 0 */ 12129 #define
REG_CMD_BASE1 0x170 /* command base register of controller 1 */ 12130 #define REG_CTL_BASE0 0x3F6 /*
control base register of controller 0 */ 12131 #define REG_CTL_BASE1 0x376 /* control base register of controller 1
/ 12132 12133 #define REG_DATA 0 / data register (offset from the base reg.) */ 12134 #define REG_PRECOMP
1 /* start of write precompensation */ 12135 #define REG_COUNT 2 /* sectors to transfer */ 12136 #define
REG_SECTOR 3 /* sector number */ 12137 #define REG_CYL_LO 4 /* low byte of cylinder number */ 12138
#define REG_CYL_HI 5 /* high byte of cylinder number */ 12139 #define REG_LDH 6 /* lba, drive and head */
12140 #define LDH_DEFAULT 0xA0 /* ECC enable, 512 bytes per sector */ 12141 #define LDH_LBA 0x40 /* Use
LBA addressing */ 12142 #define ldh_init(drive) (LDH_DEFAULT | ((drive) << 4)) 12143 12144 /* Read only
registers */ 12145 #define REG_STATUS 7 /* status */ 12146 #define STATUS_BSY 0x80 /* controller busy */
12147 #define STATUS_RDY 0x40 /* drive ready */ 12148 #define STATUS_WF 0x20 /* write fault */ 12149
#define STATUS_SC 0x10 /* seek complete (obsolete) */ 12150 #define STATUS_DRQ 0x08 /* data transfer request
/ 12151 #define STATUS_CRD 0x04 / corrected data */ 12152 #define STATUS_IDX 0x02 /* index pulse */ 12153
#define STATUS_ERR 0x01 /* error */ 12154 #define STATUS_ADMBSY 0x100 /* administratively busy
(software) */ 12155 #define REG_ERROR 1 /* error code */ 12156 #define ERROR_BB 0x80 /* bad block */ 12157
#define ERROR_ECC 0x40 /* bad ecc bytes */ 12158 #define ERROR_ID 0x10 /* id not found */ 12159 #define
ERROR_AC 0x04 /* aborted command */ 12160 #define ERROR_TK 0x02 /* track zero error */ 12161 #define
ERROR_DM 0x01 /* no data address mark */ 12162 12163 /* Write only registers */ 12164 #define
REG_COMMAND 7 /* command */ 12165 #define CMD_IDLE 0x00 /* for w_command: drive idle */ 12166 #define
CMD_RECALIBRATE 0x10 /* recalibrate drive */ 12167 #define CMD_READ 0x20 /* read data */ 12168 #define
CMD_READ_EXT 0x24 /* read data (LBA48 addressed) */ 12169 #define CMD_WRITE 0x30 /* write data */ 12170
#define CMD_WRITE_EXT 0x34 /* write data (LBA48 addressed) */ 12171 #define CMD_READVERIFY 0x40 /*
read verify */ 12172 #define CMD_FORMAT 0x50 /* format track */ 12173 #define CMD_SEEK 0x70 /* seek
cylinder */ 12174 #define CMD_DIAG 0x90 /* execute device diagnostics */

[Page 789]

12175 #define CMD_SPECIFY 0x91 /* specify parameters */ 12176 #define ATA_IDENTIFY 0xEC /* identify drive
/ 12177 / #define REG_CTL 0x206 */ /* control register */ 12178 #define REG_CTL 0 /* control register */ 12179
#define CTL_NORETRY 0x80 /* disable access retry */ 12180 #define CTL_NOECC 0x40 /* disable ecc retry */
12181 #define CTL_EIGHTHEADS 0x08 /* more than eight heads */ 12182 #define CTL_RESET 0x04 /* reset
controller */ 12183 #define CTL_INTDISABLE 0x02 /* disable interrupts */ 12184 12185 #define REG_STATUS 7
/* status */ 12186 #define STATUS_BSY 0x80 /* controller busy */ 12187 #define STATUS_DRDY 0x40 /* drive
ready */ 12188 #define STATUS_DMADF 0x20 /* dma ready/drive fault */ 12189 #define STATUS_SRVCDSC
0x10 /* service or dsc */ 12190 #define STATUS_DRQ 0x08 /* data transfer request */ 12191 #define
STATUS_CORR 0x04 /* correctable error occurred */ 12192 #define STATUS_CHECK 0x01 /* check error */ 12193
12194 /* Interrupt request lines. */ 12195 #define NO_IRQ 0 /* no IRQ set yet */ 12196 12197 #define
ATAPI_PACKETSIZE 12 12198 #define SENSE_PACKETSIZE 18 12199 12200 /* Common command block */

79

79

12201 struct command { 12202 u8_t precomp; /* REG_PRECOMP, etc. */ 12203 u8_t count; 12204 u8_t sector;
12205 u8_t cyl_lo; 12206 u8_t cyl_hi; 12207 u8_t ldh; 12208 u8_t command; 12209 }; 12210 12211 /* Error codes */
12212 #define ERR (-1) /* general error */ 12213 #define ERR_BAD_SECTOR (-2) /* block marked bad detected */
12214 12215 /* Some controllers don't interrupt, the clock will wake us up. */ 12216 #define WAKEUP (32*HZ) /*
drive may be out for 31 seconds max */ 12217 12218 /* Miscellaneous. */ 12219 #define MAX_DRIVES 8 12220
#define COMPAT_DRIVES 4 12221 #define MAX_SECS 256 /* controller can transfer this many sectors */ 12222
#define MAX_ERRORS 4 /* how often to try rd/wt before quitting */ 12223 #define NR_MINORS (MAX_DRIVES *
DEV_PER_DRIVE) 12224 #define SUB_PER_DRIVE (NR_PARTITIONS * NR_PARTITIONS) 12225 #define
NR_SUBDEVS (MAX_DRIVES * SUB_PER_DRIVE) 12226 #define DELAY_USECS 1000 /* controller timeout in
microseconds */ 12227 #define DELAY_TICKS 1 /* controller timeout in ticks */ 12228 #define
DEF_TIMEOUT_TICKS 300 /* controller timeout in ticks */ 12229 #define RECOVERY_USECS 500000 /*
controller recovery time in microseconds */ 12230 #define RECOVERY_TICKS 30 /* controller recovery time in
ticks */ 12231 #define INITIALIZED 0x01 /* drive is initialized */ 12232 #define DEAF 0x02 /* controller must be
reset */ 12233 #define SMART 0x04 /* drive supports ATA commands */ 12234 #define ATAPI 0 /* don't bother with
ATAPI; optimise out */

[Page 790]

12235 #define IDENTIFIED 0x10 /* w_identify done successfully */ 12236 #define IGNORING 0x20 /* w_identify
failed once */ 12237 12238 /* Timeouts and max retries. */ 12239 int timeout_ticks = DEF_TIMEOUT_TICKS,
max_errors = MAX_ERRORS; 12240 int wakeup_ticks = WAKEUP; 12241 long w_standard_timeouts = 0,
w_pci_debug = 0, w_instance = 0, 12242 w_lba48 = 0, atapi_debug = 0; 12243 12244 int w_testing = 0, w_silent = 0;
12245 12246 int w_next_drive = 0; 12247 12248 /* Variables. */ 12249 12250 /* wini is indexed by controller first,
then drive (0-3). 12251 * controller 0 is always the 'compatability' ide controller, at 12252 * the fixed locations,
whether present or not. 12253 */ 12254 PRIVATE struct wini { /* main drive struct, one entry per drive */ 12255
unsigned state; /* drive state: deaf, initialized, dead */ 12256 unsigned w_status; /* device status register */ 12257
unsigned base_cmd; /* command base register */ 12258 unsigned base_ctl; /* control base register */ 12259 unsigned
irq; /* interrupt request line */ 12260 unsigned irq_mask; /* 1 << irq */ 12261 unsigned irq_need_ack; /* irq needs to
be acknowledged */ 12262 int irq_hook_id; /* id of irq hook at the kernel */ 12263 int lba48; /* supports lba48 */
12264 unsigned lcylinders; /* logical number of cylinders (BIOS) */ 12265 unsigned lheads; /* logical number of
heads */ 12266 unsigned lsectors; /* logical number of sectors per track */ 12267 unsigned pcylinders; /* physical
number of cylinders (translated) */ 12268 unsigned pheads; /* physical number of heads */ 12269 unsigned psectors;
/* physical number of sectors per track */ 12270 unsigned ldhpref; /* top four bytes of the LDH (head) register */
12271 unsigned precomp; /* write precompensation cylinder / 4 */ 12272 unsigned max_count; /* max request for this
drive */ 12273 unsigned open_ct; /* in-use count */ 12274 struct device part[DEV_PER_DRIVE]; /* disks and
partitions */ 12275 struct device subpart[SUB_PER_DRIVE]; /* subpartitions */ 12276 } wini[MAX_DRIVES],
*w_wn; 12277 12278 PRIVATE int w_device = -1; 12279 PRIVATE int w_controller = -1; 12280 PRIVATE int
w_major = -1; 12281 PRIVATE char w_id_string[40]; 12282 12283 PRIVATE int win_tasknr; /* my task number */
12284 PRIVATE int w_command; /* current command in execution */ 12285 PRIVATE u8_t w_byteval; /* used for
SYS_IRQCTL */ 12286 PRIVATE int w_drive; /* selected drive */ 12287 PRIVATE int w_controller; /* selected
controller */ 12288 PRIVATE struct device *w_dv; /* device's base and size */ 12289 12290 FORWARD
_PROTOTYPE(void init_params, (void)); 12291 FORWARD _PROTOTYPE(void init_drive, (struct wini *, int, int,
int, int, int, int)); 12292 FORWARD _PROTOTYPE(void init_params_pci, (int)); 12293 FORWARD
_PROTOTYPE(int w_do_open, (struct driver *dp, message *m_ptr)); 12294 FORWARD _PROTOTYPE(struct
device *w_prepare, (int dev));

[Page 791]

12295 FORWARD _PROTOTYPE(int w_identify, (void)); 12296 FORWARD _PROTOTYPE(char *w_name,
(void)); 12297 FORWARD _PROTOTYPE(int w_specify, (void)); 12298 FORWARD _PROTOTYPE(int
w_io_test, (void)); 12299 FORWARD _PROTOTYPE(int w_transfer, (int proc_nr, int opcode, off_t position, 12300
iovec_t *iov, unsigned nr_req)); 12301 FORWARD _PROTOTYPE(int com_out, (struct command *cmd)); 12302
FORWARD _PROTOTYPE(void w_need_reset, (void)); 12303 FORWARD _PROTOTYPE(void ack_irqs,
(unsigned int)); 12304 FORWARD _PROTOTYPE(int w_do_close, (struct driver *dp, message *m_ptr)); 12305

80

80

FORWARD _PROTOTYPE(int w_other, (struct driver *dp, message *m_ptr)); 12306 FORWARD _PROTOTYPE(
int w_hw_int, (struct driver *dp, message *m_ptr)); 12307 FORWARD _PROTOTYPE(int com_simple, (struct
command *cmd)); 12308 FORWARD _PROTOTYPE(void w_timeout, (void)); 12309 FORWARD _PROTOTYPE(
int w_reset, (void)); 12310 FORWARD _PROTOTYPE(void w_intr_wait, (void)); 12311 FORWARD
_PROTOTYPE(int at_intr_wait, (void)); 12312 FORWARD _PROTOTYPE(int w_waitfor, (int mask, int value));
12313 FORWARD _PROTOTYPE(void w_geometry, (struct partition *entry)); 12314 12315 /* Entry points to this
driver. */ 12316 PRIVATE struct driver w_dtab = { 12317 w_name, /* current device's name */ 12318 w_do_open, /*
open or mount request, initialize device */ 12319 w_do_close, /* release device */ 12320 do_diocntl, /* get or set a
partition's geometry */ 12321 w_prepare, /* prepare for I/O on a given minor device */ 12322 w_transfer, /* do the I/O
/ 12323 nop_cleanup, / nothing to clean up */ 12324 w_geometry, /* tell the geometry of the disk */ 12325
nop_signal, /* no cleanup needed on shutdown */ 12326 nop_alarm, /* ignore leftover alarms */ 12327 nop_cancel, /*
ignore CANCELs */ 12328 nop_select, /* ignore selects */ 12329 w_other, /* catch-all for unrecognized commands
and ioctls */ 12330 w_hw_int /* leftover hardware interrupts */ 12331 }; 12332 12333
/*===* 12334 *
at_winchester_task * 12335
===/ 12336
PUBLIC int main() 12337 { 12338 /* Set special disk parameters then call the generic main loop. */ 12339
init_params(); 12340 driver_task(&w_dtab); 12341 return(OK); 12342 } 12344
/*===* 12345 *
init_params * 12346
===/ 12347
PRIVATE void init_params() 12348 { 12349 /* This routine is called at startup to initialize the drive parameters. */
12350 12351 u16_t parv[2]; 12352 unsigned int vector, size; 12353 int drive, nr_drives; 12354 struct wini *wn;

[Page 792]

12355 u8_t params[16]; 12356 int s; 12357 12358 /* Boot variables. */ 12359 env_parse("ata_std_timeout", "d", 0,
&w_standard_timeouts, 0, 1); 12360 env_parse("ata_pci_debug", "d", 0, &w_pci_debug, 0, 1); 12361
env_parse("ata_instance", "d", 0, &w_instance, 0, 8); 12362 env_parse("ata_lba48", "d", 0, &w_lba48, 0, 1); 12363
env_parse("atapi_debug", "d", 0, &atapi_debug, 0, 1); 12364 12365 if (w_instance == 0) { 12366 /* Get the number of
drives from the BIOS data area */ 12367 if ((s=sys_vircopy(SELF, BIOS_SEG, NR_HD_DRIVES_ADDR, 12368
SELF, D, (vir_bytes) params, NR_HD_DRIVES_SIZE)) != OK) 12369 panic(w_name(), "Couldn't read BIOS", s);
12370 if ((nr_drives = params[0]) > 2) nr_drives = 2; 12371 12372 for (drive = 0, wn = wini; drive <
COMPAT_DRIVES; drive++, wn++) { 12373 if (drive < nr_drives) { 12374 /* Copy the BIOS parameter vector */
12375 vector = (drive == 0) ? BIOS_HD0_PARAMS_ADDR :BIOS_HD1_PARAMS_ADDR; 12376 size = (drive ==
0) ? BIOS_HD0_PARAMS_SIZE:BIOS_HD1_PARAMS_SIZE; 12377 if ((s=sys_vircopy(SELF, BIOS_SEG, vector,
12378 SELF, D, (vir_bytes) parv, size)) != OK) 12379 panic(w_name(), "Couldn't read BIOS", s); 12380 12381 /*
Calculate the address of the parameters and copy them */ 12382 if ((s=sys_vircopy(12383 SELF, BIOS_SEG,
hclick_to_physb(parv[1]) + parv[0], 12384 SELF, D, (phys_bytes) params, 16L))!=OK) 12385
panic(w_name(),"Couldn't copy parameters", s); 12386 12387 /* Copy the parameters to the structures of the drive */
12388 wn->lcylinders = bp_cylinders(params); 12389 wn->lheads = bp_heads(params); 12390 wn->lsectors =
bp_sectors(params); 12391 wn->precomp = bp_precomp(params) >> 2; 12392 } 12393 12394 /* Fill in non-BIOS
parameters. */ 12395 init_drive(wn, 12396 drive < 2 ? REG_CMD_BASE0 : REG_CMD_BASE1, 12397 drive < 2 ?
REG_CTL_BASE0 : REG_CTL_BASE1, 12398 NO_IRQ, 0, 0, drive); 12399 w_next_drive++; 12400 } 12401 }
12402 12403 /* Look for controllers on the pci bus. Skip none the first instance, 12404 * skip one and then 2 for every
instance, for every next instance. 12405 */ 12406 if (w_instance == 0) 12407 init_params_pci(0); 12408 else 12409
init_params_pci(w_instance*2-1); 12410 12411 } 12413 #define ATA_IF_NOTCOMPAT1 (1L << 0) 12414 #define
ATA_IF_NOTCOMPAT2 (1L << 2)

[Page 793]

12415 12416
/*===* 12417 *
init_drive * 12418

81

81

===/ 12419
PRIVATE void init_drive(struct wini *w int base_cmd int base_ctl int irq int ack ... 12420 { 12421 w->state = 0;
12422 w->w_status = 0; 12423 w->base_cmd = base_cmd; 12424 w->base_ctl = base_ctl; 12425 w->irq = irq; 12426
w->irq_mask = 1 << irq; 12427 w->irq_need_ack = ack; 12428 w->irq_hook_id = hook; 12429 w->ldhpref =
ldh_init(drive); 12430 w->max_count = MAX_SECS << SECTOR_SHIFT; 12431 w->lba48 = 0; 12432 } 12434
/*===* 12435 *
init_params_pci * 12436
===/ 12437
PRIVATE void init_params_pci(int skip) 12438 { 12439 int r, devind, drive; 12440 u16_t vid, did; 12441 pci_init();
12442 for(drive = w_next_drive; drive < MAX_DRIVES; drive++) 12443 wini[drive].state = IGNORING; 12444 for(r
= pci_first_dev(&devind, &vid, &did); 12445 r!=0&&w_next_drive<MAX_DRIVES; r=pci_next_dev(&devind,&vid,
&did)) { 12446 int interface, irq, irq_hook; 12447 /* Base class must be 01h (mass storage), subclass must 12448 * be
01h (ATA). 12449 */ 12450 if (pci_attr_r8(devind, PCI_BCR) != 0x01 || 12451 pci_attr_r8(devind, PCI_SCR) !=
0x01) { 12452 continue; 12453 } 12454 /* Found a controller. 12455 * Programming interface register tells us more.
12456 */ 12457 interface = pci_attr_r8(devind, PCI_PIFR); 12458 irq = pci_attr_r8(devind, PCI_ILR); 12459 12460 /*
Any non-compat drives? */ 12461 if (interface & (ATA_IF_NOTCOMPAT1 | ATA_IF_NOTCOMPAT2)) { 12462 int
s; 12463 irq_hook = irq; 12464 if (skip > 0) { 12465 if(w_pci_debug)printf("atapci skipping contr. (remain
%d)\n",skip); 12466 skip--; 12467 continue; 12468 } 12469 if ((s=sys_irqsetpolicy(irq, 0, &irq_hook)) != OK) {
12470 printf("atapci: couldn't set IRQ policy %d\n", irq); 12471 continue; 12472 } 12473 if
((s=sys_irqenable(&irq_hook)) != OK) { 12474 printf("atapci: couldn't enable IRQ line %d\n", irq);

[Page 794]

12475 continue; 12476 } 12477 } else { 12478 /* If not.. this is not the ata-pci controller we're 12479 * looking for.
12480 */ 12481 if (w_pci_debug) printf("atapci skipping compatability controller\n"); 12482 continue; 12483 } 12484
12485 /* Primary channel not in compatability mode? */ 12486 if (interface & ATA_IF_NOTCOMPAT1) { 12487
u32_t base_cmd, base_ctl; 12488 base_cmd = pci_attr_r32(devind, PCI_BAR) & 0xffffffe0; 12489 base_ctl =
pci_attr_r32(devind, PCI_BAR_2) & 0xffffffe0; 12490 if (base_cmd != REG_CMD_BASE0 && base_cmd !=
REG_CMD_BASE1) { 12491 init_drive(&wini[w_next_drive], 12492 base_cmd, base_ctl, irq, 1, irq_hook, 0); 12493
init_drive(&wini[w_next_drive+1], 12494 base_cmd, base_ctl, irq, 1, irq_hook, 1); 12495 if (w_pci_debug) 12496
printf("atapci %d: 0x%x 0x%x irq %d\n",devind,base_cmd,base_ctl,irq) 12497 } else printf("atapci: ignored drives on
pri, base: %x\n",base_cmd); 12498 } 12499 12500 /* Secondary channel not in compatability mode? */ 12501 if
(interface & ATA_IF_NOTCOMPAT2) { 12502 u32_t base_cmd, base_ctl; 12503 base_cmd = pci_attr_r32(devind,
PCI_BAR_3) & 0xffffffe0; 12504 base_ctl = pci_attr_r32(devind, PCI_BAR_4) & 0xffffffe0; 12505 if (base_cmd !=
REG_CMD_BASE0 && base_cmd != REG_CMD_BASE1) { 12506 init_drive(&wini[w_next_drive+2], 12507
base_cmd, base_ctl, irq, 1, irq_hook, 2); 12508 init_drive(&wini[w_next_drive+3], 12509 base_cmd, base_ctl, irq, 1,
irq_hook, 3); 12510 if (w_pci_debug) 12511 printf("atapci %d: 0x%x 0x%x irq %d\n",devind,base_cmd,base_ctl,irq);
12512 } else printf("atapci: ignored drives on secondary %x\n", base_cmd); 12513 } 12514 w_next_drive += 4; 12515
} 12516 } 12518
/*===* 12519 *
w_do_open * 12520
===/ 12521
PRIVATE int w_do_open(dp, m_ptr) 12522 struct driver *dp; 12523 message *m_ptr; 12524 { 12525 /* Device open:
Initialize the controller and read the partition table. */ 12526 12527 struct wini *wn; 12528 12529 if
(w_prepare(m_ptr->DEVICE) == NIL_DEV) return(ENXIO); 12530 12531 wn = w_wn; 12532 12533 /* If we've
probed it before and it failed, don't probe it again. */ 12534 if (wn->state & IGNORING) return ENXIO;

[Page 795]

12535 12536 /* If we haven't identified it yet, or it's gone deaf, 12537 * (re-)identify it. 12538 */ 12539 if (!(wn->state
& IDENTIFIED) || (wn->state & DEAF)) { 12540 /* Try to identify the device. */ 12541 if (w_identify() != OK) {
12542 if (wn->state & DEAF) w_reset(); 12543 wn->state = IGNORING; 12544 return(ENXIO); 12545 } 12546 /*
Do a test transaction unless it's a CD drive (then 12547 * we can believe the controller, and a test may fail 12548 * due
to no CD being in the drive). If it fails, ignore 12549 * the device forever. 12550 */ 12551 if (!(wn->state & ATAPI)

82

82

&& w_io_test() != OK) { 12552 wn->state |= IGNORING; 12553 return(ENXIO); 12554 } 12555 } 12556 12557 /* If
it's not an ATAPI device, then don't open with RO_BIT. */ 12558 if (!(wn->state & ATAPI) && (m_ptr->COUNT &
RO_BIT)) return EACCES; 12559 12560 /* Partition the drive if it's being opened for the first time, 12561 * or being
opened after being closed. 12562 */ 12563 if (wn->open_ct == 0) { 12564 12565 /* Partition the disk. */ 12566
memset(wn->part, sizeof(wn->part), 0); 12567 memset(wn->subpart, sizeof(wn->subpart), 0); 12568
partition(&w_dtab, w_drive * DEV_PER_DRIVE, P_PRIMARY, wn->state & ATAPI); 12569 } 12570
wn->open_ct++; 12571 return(OK); 12572 } 12574
/*===* 12575 *
w_prepare * 12576
===/ 12577
PRIVATE struct device *w_prepare(int device) 12578 { 12579 /* Prepare for I/O on a device. */ 12580 struct wini
prev_wn; 12581 prev_wn = w_wn; 12582 w_device = device; 12583 12584 if (device < NR_MINORS) { / d0,
d0p[0-3], d1, ... */ 12585 w_drive = device / DEV_PER_DRIVE; /* save drive number */ 12586 w_wn =
&wini[w_drive]; 12587 w_dv = &w_wn->part[device % DEV_PER_DRIVE]; 12588 } else 12589 if ((unsigned)
(device -= MINOR_d0p0s0) < NR_SUBDEVS) {/*d[0-7]p[0-3]s[0-3]*/ 12590 w_drive = device / SUB_PER_DRIVE;
12591 w_wn = &wini[w_drive]; 12592 w_dv = &w_wn->subpart[device % SUB_PER_DRIVE]; 12593 } else {
12594 w_device = -1;

[Page 796]

12595 return(NIL_DEV); 12596 } 12597 return(w_dv); 12598 } 12600
/*===* 12601 *
w_identify * 12602
===/ 12603
PRIVATE int w_identify() 12604 { 12605 /* Find out if a device exists, if it is an old AT disk, or a newer ATA 12606
* drive, a removable media device, etc. 12607 */ 12608 12609 struct wini *wn = w_wn; 12610 struct command cmd;
12611 int i, s; 12612 unsigned long size; 12613 #define id_byte(n) (&tmp_buf[2 * (n)]) 12614 #define id_word(n)
(((u16_t) id_byte(n)[0] << 0) \ 12615 |((u16_t) id_byte(n)[1] << 8)) 12616 #define id_longword(n) (((u32_t)
id_byte(n)[0] << 0) \ 12617 |((u32_t) id_byte(n)[1] << 8) \ 12618 |((u32_t) id_byte(n)[2] << 16) \ 12619 |((u32_t)
id_byte(n)[3] << 24)) 12620 12621 /* Try to identify the device. */ 12622 cmd.ldh = wn->ldhpref; 12623
cmd.command = ATA_IDENTIFY; 12624 if (com_simple(&cmd) == OK) { 12625 /* This is an ATA device. */
12626 wn->state |= SMART; 12627 12628 /* Device information. */ 12629 if ((s=sys_insw(wn->base_cmd +
REG_DATA, SELF, tmp_buf, SECTOR_SIZE)) != OK) 12630 panic(w_name(),"Call to sys_insw() failed", s); 12631
12632 /* Why are the strings byte swapped??? */ 12633 for (i = 0; i < 40; i++) w_id_string[i] = id_byte(27)[i^1];
12634 12635 /* Preferred CHS translation mode. */ 12636 wn->pcylinders = id_word(1); 12637 wn->pheads =
id_word(3); 12638 wn->psectors = id_word(6); 12639 size = (u32_t) wn->pcylinders * wn->pheads * wn->psectors;
12640 12641 if ((id_byte(49)[1] & 0x02) && size > 512L*1024*2) { 12642 /* Drive is LBA capable and is big
enough to trust it to 12643 * not make a mess of it. 12644 */ 12645 wn->ldhpref |= LDH_LBA; 12646 size =
id_longword(60); 12647 12648 if (w_lba48 && ((id_word(83)) & (1L << 10))) { 12649 /* Drive is LBA48 capable
(and LBA48 is turned on). */ 12650 if (id_word(102) || id_word(103)) { 12651 /* If no. of sectors doesn't fit in 32 bits,
12652 * trunacte to this. So it's LBA32 for now. 12653 * This can still address devices up to 2TB 12654 * though.

[Page 797]

12655 */ 12656 size = ULONG_MAX; 12657 } else { 12658 /* Actual number of sectors fits in 32 bits. */ 12659 size
= id_longword(100); 12660 } 12661 12662 wn->lba48 = 1; 12663 } 12664 } 12665 12666 if (wn->lcylinders == 0) {
12667 /* No BIOS parameters? Then make some up. */ 12668 wn->lcylinders = wn->pcylinders; 12669 wn->lheads =
wn->pheads; 12670 wn->lsectors = wn->psectors; 12671 while (wn->lcylinders > 1024) { 12672 wn->lheads *= 2;
12673 wn->lcylinders /= 2; 12674 } 12675 } 12676 } else { 12677 /* Not an ATA device; no translations, no special
features. Don't 12678 * touch it unless the BIOS knows about it. 12679 */ 12680 if (wn->lcylinders == 0) {
return(ERR); } /* no BIOS parameters */ 12681 wn->pcylinders = wn->lcylinders; 12682 wn->pheads = wn->lheads;
12683 wn->psectors = wn->lsectors; 12684 size = (u32_t) wn->pcylinders * wn->pheads * wn->psectors; 12685 }
12686 12687 /* Size of the whole drive */ 12688 wn->part[0].dv_size = mul64u(size, SECTOR_SIZE); 12689 12690
/* Reset/calibrate (where necessary) */ 12691 if (w_specify() != OK && w_specify() != OK) { 12692 return(ERR);

83

83

12693 } 12694 12695 if (wn->irq == NO_IRQ) { 12696 /* Everything looks OK; register IRQ so we can stop polling.
/ 12697 wn->irq = w_drive < 2 ? AT_WINI_0_IRQ : AT_WINI_1_IRQ; 12698 wn->irq_hook_id = wn->irq; / id to
be returned if interrupt occurs */ 12699 if ((s=sys_irqsetpolicy(wn->irq, IRQ_REENABLE, &wn->irq_hook_id)) !=
OK) 12700 panic(w_name(), "couldn't set IRQ policy", s); 12701 if ((s=sys_irqenable(&wn->irq_hook_id)) != OK)
12702 panic(w_name(), "couldn't enable IRQ line", s); 12703 } 12704 wn->state |= IDENTIFIED; 12705 return(OK);
12706 } 12708
/*===* 12709 *
w_name * 12710
===/ 12711
PRIVATE char *w_name() 12712 { 12713 /* Return a name for the current device. */ 12714 static char name[] =
"AT-D0";

[Page 798]

12715 12716 name[4] = '0' + w_drive; 12717 return name; 12718 } 12720
/*===* 12721 *
w_io_test * 12722
===/ 12723
PRIVATE int w_io_test(void) 12724 { 12725 int r, save_dev; 12726 int save_timeout, save_errors, save_wakeup;
12727 iovec_t iov; 12728 static char buf[SECTOR_SIZE]; 12729 iov.iov_addr = (vir_bytes) buf; 12730 iov.iov_size =
sizeof(buf); 12731 save_dev = w_device; 12732 12733 /* Reduce timeout values for this test transaction. */ 12734
save_timeout = timeout_ticks; 12735 save_errors = max_errors; 12736 save_wakeup = wakeup_ticks; 12737 12738 if
(!w_standard_timeouts) { 12739 timeout_ticks = HZ * 4; 12740 wakeup_ticks = HZ * 6; 12741 max_errors = 3; 12742
} 12743 12744 w_testing = 1; 12745 12746 /* Try I/O on the actual drive (not any (sub)partition). */ 12747 if
(w_prepare(w_drive * DEV_PER_DRIVE) == NIL_DEV) 12748 panic(w_name(), "Couldn't switch devices",
NO_NUM); 12749 12750 r = w_transfer(SELF, DEV_GATHER, 0, &iov, 1); 12751 12752 /* Switch back. */ 12753
if (w_prepare(save_dev) == NIL_DEV) 12754 panic(w_name(), "Couldn't switch back devices", NO_NUM); 12755
12756 /* Restore parameters. */ 12757 timeout_ticks = save_timeout; 12758 max_errors = save_errors; 12759
wakeup_ticks = save_wakeup; 12760 w_testing = 0; 12761 12762 /* Test if everything worked. */ 12763 if (r != OK ||
iov.iov_size != 0) { 12764 return ERR; 12765 } 12766 12767 /* Everything worked. */ 12768 12769 return OK; 12770
}

[Page 799]

12772 /*===*
12773 * w_specify * 12774
===/ 12775
PRIVATE int w_specify() 12776 { 12777 /* Routine to initialize the drive after boot or when a reset is needed. */
12778 12779 struct wini *wn = w_wn; 12780 struct command cmd; 12781 12782 if ((wn->state & DEAF) &&
w_reset() != OK) { 12783 return(ERR); 12784 } 12785 12786 if (!(wn->state & ATAPI)) { 12787 /* Specify
parameters: precompensation, number of heads and sectors. */ 12788 cmd.precomp = wn->precomp; 12789 cmd.count
= wn->psectors; 12790 cmd.ldh = w_wn->ldhpref | (wn->pheads - 1); 12791 cmd.command = CMD_SPECIFY; /*
Specify some parameters */ 12792 12793 /* Output command block and see if controller accepts the parameters. */
12794 if (com_simple(&cmd) != OK) return(ERR); 12795 12796 if (!(wn->state & SMART)) { 12797 /* Calibrate an
old disk. */ 12798 cmd.sector = 0; 12799 cmd.cyl_lo = 0; 12800 cmd.cyl_hi = 0; 12801 cmd.ldh = w_wn->ldhpref;
12802 cmd.command = CMD_RECALIBRATE; 12803 12804 if (com_simple(&cmd) != OK) return(ERR); 12805 }
12806 } 12807 wn->state |= INITIALIZED; 12808 return(OK); 12809 } 12811
/*===* 12812 *
do_transfer * 12813
===/ 12814
PRIVATE int do_transfer(struct wini *wn, unsigned int precomp, unsigned int count, 12815 unsigned int sector,
unsigned int opcode) 12816 { 12817 struct command cmd; 12818 unsigned secspcyl = wn->pheads * wn->psectors;
12819 12820 cmd.precomp = precomp; 12821 cmd.count = count; 12822 cmd.command = opcode ==
DEV_SCATTER ? CMD_WRITE : CMD_READ; 12823 /* 12824 if (w_lba48 && wn->lba48) { 12825 } else */

84

84

12826 if (wn->ldhpref & LDH_LBA) { 12827 cmd.sector = (sector >> 0) & 0xFF; 12828 cmd.cyl_lo = (sector >> 8)
& 0xFF; 12829 cmd.cyl_hi = (sector >> 16) & 0xFF; 12830 cmd.ldh = wn->ldhpref | ((sector >> 24) & 0xF); 12831 }
else {

[Page 800]

12832 int cylinder, head, sec; 12833 cylinder = sector / secspcyl; 12834 head = (sector % secspcyl) / wn->psectors;
12835 sec = sector % wn->psectors; 12836 cmd.sector = sec + 1; 12837 cmd.cyl_lo = cylinder & BYTE; 12838
cmd.cyl_hi = (cylinder >> 8) & BYTE; 12839 cmd.ldh = wn->ldhpref | head; 12840 } 12841 12842 return
com_out(&cmd); 12843 } 12845
/*===* 12846 *
w_transfer * 12847
===/ 12848
PRIVATE int w_transfer(proc_nr, opcode, position, iov, nr_req) 12849 int proc_nr; /* process doing the request */
12850 int opcode; /* DEV_GATHER or DEV_SCATTER */ 12851 off_t position; /* offset on device to read or write
*/ 12852 iovec_t *iov; /* pointer to read or write request vector */ 12853 unsigned nr_req; /* length of request vector
*/ 12854 { 12855 struct wini *wn = w_wn; 12856 iovec_t *iop, *iov_end = iov + nr_req; 12857 int r, s, errors; 12858
unsigned long block; 12859 unsigned long dv_size = cv64ul(w_dv->dv_size); 12860 unsigned cylinder, head, sector,
nbytes; 12861 12862 /* Check disk address. */ 12863 if ((position & SECTOR_MASK) != 0) return(EINVAL); 12864
12865 errors = 0; 12866 12867 while (nr_req > 0) { 12868 /* How many bytes to transfer? */ 12869 nbytes = 0; 12870
for (iop = iov; iop < iov_end; iop++) nbytes += iop->iov_size; 12871 if ((nbytes & SECTOR_MASK) != 0)
return(EINVAL); 12872 12873 /* Which block on disk and how close to EOF? */ 12874 if (position >= dv_size)
return(OK); /* At EOF */ 12875 if (position + nbytes > dv_size) nbytes = dv_size - position; 12876 block =
div64u(add64ul(w_dv->dv_base, position), SECTOR_SIZE); 12877 12878 if (nbytes >= wn->max_count) { 12879 /*
The drive can't do more then max_count at once. */ 12880 nbytes = wn->max_count; 12881 } 12882 12883 /* First
check to see if a reinitialization is needed. */ 12884 if (!(wn->state & INITIALIZED) && w_specify() != OK)
return(EIO); 12885 12886 /* Tell the controller to transfer nbytes bytes. */ 12887 r = do_transfer(wn, wn->precomp,
((nbytes >> SECTOR_SHIFT) & BYTE), 12888 block, opcode); 12889 12890 while (r == OK && nbytes > 0) {
12891 /* For each sector, wait for an interrupt and fetch the data

[Page 801]

12892 * (read), or supply data to the controller and wait for an 12893 * interrupt (write). 12894 */ 12895 12896 if
(opcode == DEV_GATHER) { 12897 /* First an interrupt, then data. */ 12898 if ((r = at_intr_wait()) != OK) { 12899
/* An error, send data to the bit bucket. */ 12900 if (w_wn->w_status & STATUS_DRQ) { 12901 if
((s=sys_insw(wn->base_cmd + REG_DATA, SELF, tmp_buf, SECTOR_SIZE)) != OK) 12902 panic(w_name(),"Call
to sys_insw() failed", s); 12903 } 12904 break; 12905 } 12906 } 12907 12908 /* Wait for data transfer requested. */
12909 if (!w_waitfor(STATUS_DRQ, STATUS_DRQ)) { r = ERR; break; } 12910 12911 /* Copy bytes to or from
the device's buffer. */ 12912 if (opcode == DEV_GATHER) { if((s=sys_insw(wn->base_cmd+REG_DATA, 12913
proc_nr,(void*)iov->iov_addr,SECTOR_SIZE))!=OK) 12914 panic(w_name(),"Call to sys_insw() failed", s); 12915 }
else { if((s=sys_outsw(wn->base_cmd+REG_DATA,proc_nr, 12916 (void *) iov->iov_addr,SECTOR_SIZE))!=OK)
12917 panic(w_name(),"Call to sys_insw() failed", s); 12918 12919 /* Data sent, wait for an interrupt. */ 12920 if ((r =
at_intr_wait()) != OK) break; 12921 } 12922 12923 /* Book the bytes successfully transferred. */ 12924 nbytes -=
SECTOR_SIZE; 12925 position += SECTOR_SIZE; 12926 iov->iov_addr += SECTOR_SIZE; 12927 if
((iov->iov_size -= SECTOR_SIZE) == 0) { iov++; nr_req--; } 12928 } 12929 12930 /* Any errors? */ 12931 if (r !=
OK) { 12932 /* Don't retry if sector marked bad or too many errors. */ 12933 if (r == ERR_BAD_SECTOR || ++errors
== max_errors) { 12934 w_command = CMD_IDLE; 12935 return(EIO); 12936 } 12937 } 12938 } 12939 12940
w_command = CMD_IDLE; 12941 return(OK); 12942 } 12944
/*===* 12945 *
com_out * 12946
===/ 12947
PRIVATE int com_out(cmd) 12948 struct command *cmd; /* Command block */ 12949 { 12950 /* Output the
command block to the winchester controller and return status */ 12951

85

85

[Page 802]

12952 struct wini *wn = w_wn; 12953 unsigned base_cmd = wn->base_cmd; 12954 unsigned base_ctl =
wn->base_ctl; 12955 pvb_pair_t outbyte[7]; /* vector for sys_voutb() */ 12956 int s; /* status for sys_(v)outb() */
12957 12958 if (w_wn->state & IGNORING) return ERR; 12959 12960 if (!w_waitfor(STATUS_BSY, 0)) { 12961
printf("%s: controller not ready\n", w_name()); 12962 return(ERR); 12963 } 12964 12965 /* Select drive. */ 12966 if
((s=sys_outb(base_cmd + REG_LDH, cmd->ldh)) != OK) 12967 panic(w_name(),"Couldn't write register to select
drive",s); 12968 12969 if (!w_waitfor(STATUS_BSY, 0)) { 12970 printf("%s: com_out: drive not ready\n",
w_name()); 12971 return(ERR); 12972 } 12973 12974 /* Schedule a wakeup call, some controllers are flaky. This is
done with 12975 * a synchronous alarm. If a timeout occurs a SYN_ALARM message is sent 12976 * from
HARDWARE, so that w_intr_wait() can call w_timeout() in case the 12977 * controller was not able to execute the
command. Leftover timeouts are 12978 * simply ignored by the main loop. 12979 */ 12980
sys_setalarm(wakeup_ticks, 0); 12981 12982 wn->w_status = STATUS_ADMBSY; 12983 w_command =
cmd->command; 12984 pv_set(outbyte[0], base_ctl + REG_CTL, wn->pheads >= 8 ? CTL_EIGHTHEADS : 0);
12985 pv_set(outbyte[1], base_cmd + REG_PRECOMP, cmd->precomp); 12986 pv_set(outbyte[2], base_cmd +
REG_COUNT, cmd->count); 12987 pv_set(outbyte[3], base_cmd + REG_SECTOR, cmd->sector); 12988
pv_set(outbyte[4], base_cmd + REG_CYL_LO, cmd->cyl_lo); 12989 pv_set(outbyte[5], base_cmd + REG_CYL_HI,
cmd->cyl_hi); 12990 pv_set(outbyte[6], base_cmd + REG_COMMAND, cmd->command); 12991 if
((s=sys_voutb(outbyte,7)) != OK) 12992 panic(w_name(),"Couldn't write registers with sys_voutb()",s); 12993
return(OK); 12994 } 12996
/*===* 12997 *
w_need_reset * 12998
===/ 12999
PRIVATE void w_need_reset() 13000 { 13001 /* The controller needs to be reset. */ 13002 struct wini *wn; 13003 int
dr = 0; 13004 13005 for (wn = wini; wn < &wini[MAX_DRIVES]; wn++, dr++) { 13006 if (wn->base_cmd ==
w_wn->base_cmd) { 13007 wn->state |= DEAF; 13008 wn->state &= ~INITIALIZED; 13009 } 13010 } 13011 }

[Page 803]

13013 /*===*
13014 * w_do_close * 13015
===/ 13016
PRIVATE int w_do_close(dp, m_ptr) 13017 struct driver *dp; 13018 message *m_ptr; 13019 { 13020 /* Device close:
Release a device. */ 13021 if (w_prepare(m_ptr->DEVICE) == NIL_DEV) 13022 return(ENXIO); 13023
w_wn->open_ct--; 13024 return(OK); 13025 } 13027
/*===* 13028 *
com_simple * 13029
===/ 13030
PRIVATE int com_simple(cmd) 13031 struct command *cmd; /* Command block */ 13032 { 13033 /* A simple
controller command, only one interrupt and no data-out phase. */ 13034 int r; 13035 13036 if (w_wn->state &
IGNORING) return ERR; 13037 13038 if ((r = com_out(cmd)) == OK) r = at_intr_wait(); 13039 w_command =
CMD_IDLE; 13040 return(r); 13041 } 13043
/*===* 13044 *
w_timeout * 13045
===/ 13046
PRIVATE void w_timeout(void) 13047 { 13048 struct wini *wn = w_wn; 13049 13050 switch (w_command) { 13051
case CMD_IDLE: 13052 break; /* fine */ 13053 case CMD_READ: 13054 case CMD_WRITE: 13055 /* Impossible,
but not on PC's: The controller does not respond. */ 13056 13057 /* Limiting multisector I/O seems to help. */ 13058
if (wn->max_count > 8 * SECTOR_SIZE) { 13059 wn->max_count = 8 * SECTOR_SIZE; 13060 } else { 13061
wn->max_count = SECTOR_SIZE; 13062 } 13063 /*FALL THROUGH*/ 13064 default: 13065 /* Some other
command. */ 13066 if (w_testing) wn->state |= IGNORING; /* Kick out this drive. */ 13067 else if (!w_silent)
printf("%s: timeout on command %02x\n", w_name(), w_command); 13068 w_need_reset(); 13069 wn->w_status =
0; 13070 } 13071 }

86

86

[Page 804]

13073 /*===*
13074 * w_reset * 13075
===/ 13076
PRIVATE int w_reset() 13077 { 13078 /* Issue a reset to the controller. This is done after any catastrophe, 13079 *
like the controller refusing to respond. 13080 */ 13081 int s; 13082 struct wini *wn = w_wn; 13083 13084 /* Don't
bother if this drive is forgotten. */ 13085 if (w_wn->state & IGNORING) return ERR; 13086 13087 /* Wait for any
internal drive recovery. */ 13088 tickdelay(RECOVERY_TICKS); 13089 13090 /* Strobe reset bit */ 13091 if
((s=sys_outb(wn->base_ctl + REG_CTL, CTL_RESET)) != OK) 13092 panic(w_name(),"Couldn't strobe reset bit",s);
13093 tickdelay(DELAY_TICKS); 13094 if ((s=sys_outb(wn->base_ctl + REG_CTL, 0)) != OK) 13095
panic(w_name(),"Couldn't strobe reset bit",s); 13096 tickdelay(DELAY_TICKS); 13097 13098 /* Wait for controller
ready */ 13099 if (!w_waitfor(STATUS_BSY, 0)) { 13100 printf("%s: reset failed, drive busy\n", w_name()); 13101
return(ERR); 13102 } 13103 13104 /* The error register should be checked now, but some drives mess it up. */ 13105
13106 for (wn = wini; wn < &wini[MAX_DRIVES]; wn++) { 13107 if (wn->base_cmd == w_wn->base_cmd) {
13108 wn->state &= ~DEAF; 13109 if (w_wn->irq_need_ack) { 13110 /* Make sure irq is actually enabled.. */ 13111
sys_irqenable(&w_wn->irq_hook_id); 13112 } 13113 } 13114 } 13115 13116 13117 return(OK); 13118 } 13120
/*===* 13121 *
w_intr_wait * 13122
===/ 13123
PRIVATE void w_intr_wait() 13124 { 13125 /* Wait for a task completion interrupt. */ 13126 13127 message m;
13128 13129 if (w_wn->irq != NO_IRQ) { 13130 /* Wait for an interrupt that sets w_status to "not busy". */ 13131
while (w_wn->w_status & (STATUS_ADMBSY|STATUS_BSY)) {

[Page 805]

13132 receive(ANY, &m); /* expect HARD_INT message */ 13133 if (m.m_type == SYN_ALARM) { /* but check
for timeout */ 13134 w_timeout(); /* a.o. set w_status */ 13135 } else if (m.m_type == HARD_INT) { 13136
sys_inb(w_wn->base_cmd + REG_STATUS, &w_wn->w_status); 13137 ack_irqs(m.NOTIFY_ARG); 13138 } else {
13139 printf("AT_WINI got unexpected message %d from %d\n", 13140 m.m_type, m.m_source); 13141 } 13142 }
13143 } else { 13144 /* Interrupt not yet allocated; use polling. */ 13145 (void) w_waitfor(STATUS_BSY, 0); 13146
} 13147 } 13149
/*===* 13150 *
at_intr_wait * 13151
===/ 13152
PRIVATE int at_intr_wait() 13153 { 13154 /* Wait for an interrupt, study the status bits and return error/success. */
13155 int r; 13156 int s,inbval; /* read value with sys_inb */ 13157 13158 w_intr_wait(); 13159 if ((w_wn->w_status
& (STATUS_BSY | STATUS_WF | STATUS_ERR)) == 0) { 13160 r = OK; 13161 } else { 13162 if
((s=sys_inb(w_wn->base_cmd + REG_ERROR, &inbval)) != OK) 13163 panic(w_name(),"Couldn't read register",s);
13164 if ((w_wn->w_status & STATUS_ERR) && (inbval & ERROR_BB)) { 13165 r = ERR_BAD_SECTOR; /*
sector marked bad, retries won't help */ 13166 } else { 13167 r = ERR; /* any other error */ 13168 } 13169 } 13170
w_wn->w_status |= STATUS_ADMBSY; /* assume still busy with I/O */ 13171 return(r); 13172 } 13174
/*===* 13175 *
w_waitfor * 13176
===/ 13177
PRIVATE int w_waitfor(mask, value) 13178 int mask; /* status mask */ 13179 int value; /* required status */ 13180 {
13181 /* Wait until controller is in the required state. Return zero on timeout. 13182 * An alarm that set a timeout flag
is used. TIMEOUT is in micros, we need 13183 * ticks. Disabling the alarm is not needed, because a static flag is used
13184 * and a leftover timeout cannot do any harm. 13185 */ 13186 clock_t t0, t1; 13187 int s; 13188 getuptime(&t0);
13189 do { 13190 if ((s=sys_inb(w_wn->base_cmd + REG_STATUS, &w_wn->w_status)) != OK) 13191
panic(w_name(),"Couldn't read register",s);

[Page 806]

87

87

13192 if ((w_wn->w_status & mask) == value) { 13193 return 1; 13194 } 13195 } while ((s=getuptime(&t1)) == OK
&& (t1-t0) < timeout_ticks); 13196 if (OK != s) printf("AT_WINI: warning, get_uptime failed: %d\n",s); 13197
13198 w_need_reset(); /* controller gone deaf */ 13199 return(0); 13200 } 13202
/*===* 13203 *
w_geometry * 13204
===/ 13205
PRIVATE void w_geometry(entry) 13206 struct partition *entry; 13207 { 13208 struct wini *wn = w_wn; 13209
13210 if (wn->state & ATAPI) { /* Make up some numbers. */ 13211 entry->cylinders = div64u(wn->part[0].dv_size,
SECTOR_SIZE) / (64*32); 13212 entry->heads = 64; 13213 entry->sectors = 32; 13214 } else { /* Return logical
geometry. */ 13215 entry->cylinders = wn->lcylinders; 13216 entry->heads = wn->lheads; 13217 entry->sectors =
wn->lsectors; 13218 } 13219 } 13221
/*===* 13222 *
w_other * 13223
===/ 13224
PRIVATE int w_other(dr, m) 13225 struct driver *dr; 13226 message *m; 13227 { 13228 int r, timeout, prev; 13229
13230 if (m->m_type != DEV_IOCTL) { 13231 return EINVAL; 13232 } 13233 13234 if (m->REQUEST ==
DIOCTIMEOUT) { 13235 if ((r=sys_datacopy(m->PROC_NR, (vir_bytes)m->ADDRESS, 13236 SELF,
(vir_bytes)&timeout, sizeof(timeout))) != OK) 13237 return r; 13238 13239 if (timeout == 0) { 13240 /* Restore
defaults. */ 13241 timeout_ticks = DEF_TIMEOUT_TICKS; 13242 max_errors = MAX_ERRORS; 13243
wakeup_ticks = WAKEUP; 13244 w_silent = 0; 13245 } else if (timeout < 0) { 13246 return EINVAL; 13247 } else {
13248 prev = wakeup_ticks; 13249 13250 if (!w_standard_timeouts) { 13251 /* Set (lower) timeout, lower error

[Page 807]

13252 * tolerance and set silent mode. 13253 */ 13254 wakeup_ticks = timeout; 13255 max_errors = 3; 13256
w_silent = 1; 13257 13258 if (timeout_ticks > timeout) 13259 timeout_ticks = timeout; 13260 } 13261 13262 if
((r=sys_datacopy(SELF, (vir_bytes)&prev, 13263 m->PROC_NR,(vir_bytes)m->ADDRESS,sizeof(prev)))!=OK)
13264 return r; 13265 } 13266 13267 return OK; 13268 } else if (m->REQUEST == DIOCOPENCT) { 13269 int
count; 13270 if (w_prepare(m->DEVICE) == NIL_DEV) return ENXIO; 13271 count = w_wn->open_ct; 13272 if
((r=sys_datacopy(SELF, (vir_bytes)&count, 13273 m->PROC_NR, (vir_bytes)m->ADDRESS, sizeof(count))) != OK)
13274 return r; 13275 return OK; 13276 } 13277 return EINVAL; 13278 } 13280
/*===* 13281 *
w_hw_int * 13282
===/ 13283
PRIVATE int w_hw_int(dr, m) 13284 struct driver *dr; 13285 message *m; 13286 { 13287 /* Leftover interrupt(s)
received; ack it/them. */ 13288 ack_irqs(m->NOTIFY_ARG); 13289 13290 return OK; 13291 } 13294
/*===* 13295 *
ack_irqs * 13296
===/ 13297
PRIVATE void ack_irqs(unsigned int irqs) 13298 { 13299 unsigned int drive; 13300 for (drive = 0; drive <
MAX_DRIVES && irqs; drive++) { 13301 if (!(wini[drive].state & IGNORING) && wini[drive].irq_need_ack &&
13302 (wini[drive].irq_mask & irqs)) { 13303 if
(sys_inb((wini[drive].base_cmd+REG_STATUS),&wini[drive].w_status)!=OK) 13304 printf("couldn't ack irq on
drive %d\n", drive); 13305 if (sys_irqenable(&wini[drive].irq_hook_id) != OK) 13306 printf("couldn't re-enable drive
%d\n", drive); 13307 irqs &= ~wini[drive].irq_mask; 13308 } 13309 } 13310 }

[Page 808]

13313 #define STSTR(a) if (status & STATUS_ ## a) { strcat(str, #a); strcat(str, " "); } 13314 #define ERRSTR(a) if
(e & ERROR_ ## a) { strcat(str, #a); strcat(str, " "); } 13315 char *strstatus(int status) 13316 { 13317 static char
str[200]; 13318 str[0] = '\0'; 13319 13320 STSTR(BSY); 13321 STSTR(DRDY); 13322 STSTR(DMADF); 13323
STSTR(SRVCDSC); 13324 STSTR(DRQ); 13325 STSTR(CORR); 13326 STSTR(CHECK); 13327 return str; 13328
} 13330 char *strerr(int e) 13331 { 13332 static char str[200]; 13333 str[0] = '\0'; 13334 13335 ERRSTR(BB); 13336
ERRSTR(ECC); 13337 ERRSTR(ID); 13338 ERRSTR(AC); 13339 ERRSTR(TK); 13340 ERRSTR(DM); 13341

88

88

13342 return str; 13343 }
++
drivers/tty/tty.h
++
13400 /* tty.h - Terminals */ 13401 13402 #include <timers.h> 13403 13404 /* First minor numbers for the various
classes of TTY devices. */ 13405 #define CONS_MINOR 0 13406 #define LOG_MINOR 15 13407 #define
RS232_MINOR 16 13408 #define TTYPX_MINOR 128 13409 #define PTYPX_MINOR 192 13410 13411 #define
LINEWRAP 1 /* console.c - wrap lines at column 80 */ 13412 13413 #define TTY_IN_BYTES 256 /* tty input queue
size */ 13414 #define TAB_SIZE 8 /* distance between tab stops */ 13415 #define TAB_MASK 7 /* mask to compute
a tab stop position */ 13416 13417 #define ESC '\33' /* escape */ 13418 13419 #define O_NOCTTY 00400 /* from
<fcntl.h>, or cc will choke */

[Page 809]

13420 #define O_NONBLOCK 04000 13421 13422 struct tty; 13423 typedef _PROTOTYPE(int (*devfun_t), (struct
tty *tp, int try_only)); 13424 typedef _PROTOTYPE(void (*devfunarg_t), (struct tty *tp, int c)); 13425 13426
typedef struct tty { 13427 int tty_events; /* set when TTY should inspect this line */ 13428 int tty_index; /* index into
TTY table */ 13429 int tty_minor; /* device minor number */ 13430 13431 /* Input queue. Typed characters are stored
here until read by a program. */ 13432 u16_t *tty_inhead; /* pointer to place where next char goes */ 13433 u16_t
tty_intail; / pointer to next char to be given to prog */ 13434 int tty_incount; /* # chars in the input queue */ 13435
int tty_eotct; /* number of "line breaks" in input queue */ 13436 devfun_t tty_devread; /* routine to read from low
level buffers */ 13437 devfun_t tty_icancel; /* cancel any device input */ 13438 int tty_min; /* minimum requested
#chars in input queue */ 13439 timer_t tty_tmr; /* the timer for this tty */ 13440 13441 /* Output section. */ 13442
devfun_t tty_devwrite; /* routine to start actual device output */ 13443 devfunarg_t tty_echo; /* routine to echo
characters input */ 13444 devfun_t tty_ocancel; /* cancel any ongoing device output */ 13445 devfun_t tty_break; /*
let the device send a break */ 13446 13447 /* Terminal parameters and status. */ 13448 int tty_position; /* current
position on the screen for echoing */ 13449 char tty_reprint; /* 1 when echoed input messed up, else 0 */ 13450 char
tty_escaped; /* 1 when LNEXT (^V) just seen, else 0 */ 13451 char tty_inhibited; /* 1 when STOP (^S) just seen
(stops output) */ 13452 char tty_pgrp; /* slot number of controlling process */ 13453 char tty_openct; /* count of
number of opens of this tty */ 13454 13455 /* Information about incomplete I/O requests is stored here. */ 13456 char
tty_inrepcode; /* reply code, TASK_REPLY or REVIVE */ 13457 char tty_inrevived; /* set to 1 if revive callback is
pending */ 13458 char tty_incaller; /* process that made the call (usually FS) */ 13459 char tty_inproc; /* process that
wants to read from tty */ 13460 vir_bytes tty_in_vir; /* virtual address where data is to go */ 13461 int tty_inleft; /*
how many chars are still needed */ 13462 int tty_incum; /* # chars input so far */ 13463 char tty_outrepcode; /* reply
code, TASK_REPLY or REVIVE */ 13464 char tty_outrevived; /* set to 1 if revive callback is pending */ 13465 char
tty_outcaller; /* process that made the call (usually FS) */ 13466 char tty_outproc; /* process that wants to write to tty
/ 13467 vir_bytes tty_out_vir; / virtual address where data comes from */ 13468 int tty_outleft; /* # chars yet to be
output */ 13469 int tty_outcum; /* # chars output so far */ 13470 char tty_iocaller; /* process that made the call
(usually FS) */ 13471 char tty_ioproc; /* process that wants to do an ioctl */ 13472 int tty_ioreq; /* ioctl request code
/ 13473 vir_bytes tty_iovir; / virtual address of ioctl buffer */ 13474 13475 /* select() data */ 13476 int
tty_select_ops; /* which operations are interesting */ 13477 int tty_select_proc; /* which process wants notification */
13478 13479 /* Miscellaneous. */

[Page 810]

13480 devfun_t tty_ioctl; /* set line speed, etc. at the device level */ 13481 devfun_t tty_close; /* tell the device that
the tty is closed */ 13482 void *tty_priv; /* pointer to per device private data */ 13483 struct termios tty_termios; /*
terminal attributes */ 13484 struct winsize tty_winsize; /* window size (#lines and #columns) */ 13485 13486 u16_t
tty_inbuf[TTY_IN_BYTES];/* tty input buffer */ 13487 13488 } tty_t; 13489 13490 /* Memory allocated in tty.c, so
extern here. */ 13491 extern tty_t tty_table[NR_CONS+NR_RS_LINES+NR_PTYS]; 13492 extern int ccurrent; /*
currently visible console */ 13493 extern int irq_hook_id; /* hook id for keyboard irq */ 13494 13495 extern unsigned
long kbd_irq_set; 13496 extern unsigned long rs_irq_set; 13497 13498 /* Values for the fields. */ 13499 #define
NOT_ESCAPED 0 /* previous character is not LNEXT (^V) */ 13500 #define ESCAPED 1 /* previous character was
LNEXT (^V) */ 13501 #define RUNNING 0 /* no STOP (^S) has been typed to stop output */ 13502 #define

89

89

STOPPED 1 /* STOP (^S) has been typed to stop output */ 13503 13504 /* Fields and flags on characters in the input
queue. */ 13505 #define IN_CHAR 0x00FF /* low 8 bits are the character itself */ 13506 #define IN_LEN 0x0F00 /*
length of char if it has been echoed */ 13507 #define IN_LSHIFT 8 /* length = (c & IN_LEN) >> IN_LSHIFT */
13508 #define IN_EOT 0x1000 /* char is a line break (^D, LF) */ 13509 #define IN_EOF 0x2000 /* char is EOF (^D),
do not return to user */ 13510 #define IN_ESC 0x4000 /* escaped by LNEXT (^V), no interpretation */ 13511 13512
/* Times and timeouts. */ 13513 #define force_timeout() ((void) (0)) 13514 13515 /* Memory allocated in tty.c, so
extern here. */ 13516 extern timer_t *tty_timers; /* queue of TTY timers */ 13517 extern clock_t tty_next_timeout; /*
next TTY timeout */ 13518 13519 /* Number of elements and limit of a buffer. */ 13520 #define buflen(buf)
(sizeof(buf) / sizeof((buf)[0])) 13521 #define bufend(buf) ((buf) + buflen(buf)) 13522 13523 /* Memory allocated in
tty.c, so extern here. */ 13524 extern struct machine machine; /* machine information (a.o.: pc_at, ega) */ 13525 13526
/* Function prototypes for TTY driver. */ 13527 /* tty.c */ 13528 _PROTOTYPE(void handle_events, (struct tty *tp)
); 13529 _PROTOTYPE(void sigchar, (struct tty *tp, int sig)); 13530 _PROTOTYPE(void tty_task, (void)); 13531
_PROTOTYPE(int in_process, (struct tty *tp, char *buf, int count)); 13532 _PROTOTYPE(void out_process, (struct
tty *tp, char *bstart, char *bpos, 13533 char *bend, int *icount, int *ocount)); 13534 _PROTOTYPE(void
tty_wakeup, (clock_t now)); 13535 _PROTOTYPE(void tty_reply, (int code, int replyee, int proc_nr, 13536 int
status)); 13537 _PROTOTYPE(int tty_devnop, (struct tty *tp, int try)); 13538 _PROTOTYPE(int select_try, (struct
tty *tp, int ops)); 13539 _PROTOTYPE(int select_retry, (struct tty *tp));

[Page 811]

13540 13541 /* console.c */ 13542 _PROTOTYPE(void kputc, (int c)); 13543 _PROTOTYPE(void cons_stop,
(void)); 13544 _PROTOTYPE(void do_new_kmess, (message *m)); 13545 _PROTOTYPE(void do_diagnostics,
(message *m)); 13546 _PROTOTYPE(void scr_init, (struct tty *tp)); 13547 _PROTOTYPE(void toggle_scroll,
(void)); 13548 _PROTOTYPE(int con_loadfont, (message *m)); 13549 _PROTOTYPE(void select_console, (int
cons_line)); 13550 13551 /* keyboard.c */ 13552 _PROTOTYPE(void kb_init, (struct tty *tp)); 13553
_PROTOTYPE(void kb_init_once, (void)); 13554 _PROTOTYPE(int kbd_loadmap, (message *m)); 13555
_PROTOTYPE(void do_panic_dumps, (message *m)); 13556 _PROTOTYPE(void do_fkey_ctl, (message *m));
13557 _PROTOTYPE(void kbd_interrupt, (message *m)); 13558 13559 /* vidcopy.s */ 13560 _PROTOTYPE(void
vid_vid_copy, (unsigned src, unsigned dst, unsigned count)); 13561 _PROTOTYPE(void mem_vid_copy, (u16_t
*src, unsigned dst, unsigned count));
++
drivers/tty/tty.c
++
13600 /* This file contains the terminal driver, both for the IBM console and regular 13601 * ASCII terminals. It
handles only the device-independent part of a TTY, the 13602 * device dependent parts are in console.c, rs232.c, etc.
This file contains 13603 * two main entry points, tty_task() and tty_wakeup(), and several minor entry 13604 * points
for use by the device-dependent code. 13605 * 13606 * The device-independent part accepts "keyboard" input from
the device- 13607 * dependent part, performs input processing (special key interpretation), 13608 * and sends the input
to a process reading from the TTY. Output to a TTY 13609 * is sent to the device-dependent code for output
processing and "screen" 13610 * display. Input processing is done by the device by calling 'in_process' 13611 * on the
input characters, output processing may be done by the device itself 13612 * or by calling 'out_process'. The TTY
takes care of input queuing, the 13613 * device does the output queuing. If a device receives an external signal, 13614
* like an interrupt, then it causes tty_wakeup() to be run by the CLOCK task 13615 * to, you guessed it, wake up the
TTY to check if input or output can 13616 * continue. 13617 * 13618 * The valid messages and their parameters are:
13619 * 13620 * HARD_INT: output has been completed or input has arrived 13621 * SYS_SIG: e.g., MINIX wants
to shutdown; run code to cleanly stop 13622 * DEV_READ: a process wants to read from a terminal 13623 *
DEV_WRITE: a process wants to write on a terminal 13624 * DEV_IOCTL: a process wants to change a terminal's
parameters 13625 * DEV_OPEN: a tty line has been opened 13626 * DEV_CLOSE: a tty line has been closed 13627 *
DEV_SELECT: start select notification request 13628 * DEV_STATUS: FS wants to know status for SELECT or
REVIVE 13629 * CANCEL: terminate a previous incomplete system call immediately

[Page 812]

90

90

13630 * 13631 * m_type TTY_LINE PROC_NR COUNT TTY_SPEK TTY_FLAGS ADDRESS 13632 *
--- 13633 * | HARD_INT | | | | | | | 13634 *
|-------------+---------+---------+---------+---------+---------+---------| 13635 * | SYS_SIG | sig set | | | | | | 13636 *
|-------------+---------+---------+---------+---------+---------+---------| 13637 * | DEV_READ |minor dev| proc nr | count |
O_NONBLOCK| buf ptr | 13638 * |-------------+---------+---------+---------+---------+---------+---------| 13639 * |
DEV_WRITE |minor dev| proc nr | count | | | buf ptr | 13640 *
|-------------+---------+---------+---------+---------+---------+---------| 13641 * | DEV_IOCTL |minor dev| proc nr |func
code|erase etc| flags | | 13642 * |-------------+---------+---------+---------+---------+---------+---------| 13643 * |
DEV_OPEN |minor dev| proc nr | O_NOCTTY| | | | 13644 *
|-------------+---------+---------+---------+---------+---------+---------| 13645 * | DEV_CLOSE |minor dev| proc nr | | | | |
13646 * |-------------+---------+---------+---------+---------+---------+---------| 13647 * | DEV_STATUS | | | | | | | 13648 *
|-------------+---------+---------+---------+---------+---------+---------| 13649 * | CANCEL |minor dev| proc nr | | | | | 13650
* --- 13651 * 13652 * Changes: 13653 * Jan 20, 2004
moved TTY driver to user-space (Jorrit N. Herder) 13654 * Sep 20, 2004 local timer management/ sync alarms (Jorrit
N. Herder) 13655 * Jul 13, 2004 support for function key observers (Jorrit N. Herder) 13656 */ 13657 13658 #include
"../drivers.h" 13659 #include "../drivers.h" 13660 #include <termios.h> 13661 #include <sys/ioc_tty.h> 13662
#include <signal.h> 13663 #include <minix/callnr.h> 13664 #include <minix/keymap.h> 13665 #include "tty.h"
13666 13667 #include <sys/time.h> 13668 #include <sys/select.h> 13669 13670 extern int irq_hook_id; 13671 13672
unsigned long kbd_irq_set = 0; 13673 unsigned long rs_irq_set = 0; 13674 13675 /* Address of a tty structure. */
13676 #define tty_addr(line) (&tty_table[line]) 13677 13678 /* Macros for magic tty types. */ 13679 #define
isconsole(tp) ((tp) < tty_addr(NR_CONS)) 13680 #define ispty(tp) ((tp) >= tty_addr(NR_CONS+NR_RS_LINES))
13681 13682 /* Macros for magic tty structure pointers. */ 13683 #define FIRST_TTY tty_addr(0) 13684 #define
END_TTY tty_addr(sizeof(tty_table) / sizeof(tty_table[0])) 13685 13686 /* A device exists if at least its 'devread'
function is defined. */ 13687 #define tty_active(tp) ((tp)->tty_devread != NULL) 13688 13689 /* RS232 lines or
pseudo terminals can be completely configured out. */

[Page 813]

13690 #if NR_RS_LINES == 0 13691 #define rs_init(tp) ((void) 0) 13692 #endif 13693 #if NR_PTYS == 0 13694
#define pty_init(tp) ((void) 0) 13695 #define do_pty(tp, mp) ((void) 0) 13696 #endif 13697 13698 FORWARD
_PROTOTYPE(void tty_timed_out, (timer_t *tp)); 13699 FORWARD _PROTOTYPE(void expire_timers, (void));
13700 FORWARD _PROTOTYPE(void settimer, (tty_t *tty_ptr, int enable)); 13701 FORWARD _PROTOTYPE(
void do_cancel, (tty_t *tp, message *m_ptr)); 13702 FORWARD _PROTOTYPE(void do_ioctl, (tty_t *tp, message
*m_ptr)); 13703 FORWARD _PROTOTYPE(void do_open, (tty_t *tp, message *m_ptr)); 13704 FORWARD
_PROTOTYPE(void do_close, (tty_t *tp, message *m_ptr)); 13705 FORWARD _PROTOTYPE(void do_read,
(tty_t *tp, message *m_ptr)); 13706 FORWARD _PROTOTYPE(void do_write, (tty_t *tp, message *m_ptr)); 13707
FORWARD _PROTOTYPE(void do_select, (tty_t *tp, message *m_ptr)); 13708 FORWARD _PROTOTYPE(void
do_status, (message *m_ptr)); 13709 FORWARD _PROTOTYPE(void in_transfer, (tty_t *tp)); 13710 FORWARD
_PROTOTYPE(int tty_echo, (tty_t *tp, int ch)); 13711 FORWARD _PROTOTYPE(void rawecho, (tty_t *tp, int ch)
); 13712 FORWARD _PROTOTYPE(int back_over, (tty_t *tp)); 13713 FORWARD _PROTOTYPE(void reprint,
(tty_t *tp)); 13714 FORWARD _PROTOTYPE(void dev_ioctl, (tty_t *tp)); 13715 FORWARD _PROTOTYPE(
void setattr, (tty_t *tp)); 13716 FORWARD _PROTOTYPE(void tty_icancel, (tty_t *tp)); 13717 FORWARD
_PROTOTYPE(void tty_init, (void)); 13718 13719 /* Default attributes. */ 13720 PRIVATE struct termios
termios_defaults = { 13721 TINPUT_DEF, TOUTPUT_DEF, TCTRL_DEF, TLOCAL_DEF, TSPEED_DEF,
TSPEED_DEF, 13722 { 13723 TEOF_DEF, TEOL_DEF, TERASE_DEF, TINTR_DEF, TKILL_DEF, TMIN_DEF,
13724 TQUIT_DEF, TTIME_DEF, TSUSP_DEF, TSTART_DEF, TSTOP_DEF, 13725 TREPRINT_DEF,
TLNEXT_DEF, TDISCARD_DEF, 13726 }, 13727 }; 13728 PRIVATE struct winsize winsize_defaults; /* = all
zeroes */ 13729 13730 /* Global variables for the TTY task (declared extern in tty.h). */ 13731 PUBLIC tty_t
tty_table[NR_CONS+NR_RS_LINES+NR_PTYS]; 13732 PUBLIC int ccurrent; /* currently active console */ 13733
PUBLIC timer_t *tty_timers; /* queue of TTY timers */ 13734 PUBLIC clock_t tty_next_timeout; /* time that the
next alarm is due */ 13735 PUBLIC struct machine machine; /* kernel environment variables */ 13736 13737
/*===* 13738 *
tty_task * 13739
===/ 13740

91

91

PUBLIC void main(void) 13741 { 13742 /* Main routine of the terminal task. */ 13743 13744 message tty_mess; /*
buffer for all incoming messages */ 13745 unsigned line; 13746 int s; 13747 char *types[] = {"task","driver","server",
"user"}; 13748 register struct proc *rp; 13749 register tty_t *tp;

[Page 814]

13750 13751 /* Initialize the TTY driver. */ 13752 tty_init(); 13753 13754 /* Get kernel environment
(protected_mode, pc_at and ega are needed). */ 13755 if (OK != (s=sys_getmachine(&machine))) { 13756
panic("TTY","Couldn't obtain kernel environment.", s); 13757 } 13758 13759 /* Final one-time keyboard
initialization. */ 13760 kb_init_once(); 13761 13762 printf("\n"); 13763 13764 while (TRUE) { 13765 13766 /* Check
for and handle any events on any of the ttys. */ 13767 for (tp = FIRST_TTY; tp < END_TTY; tp++) { 13768 if
(tp->tty_events) handle_events(tp); 13769 } 13770 13771 /* Get a request message. */ 13772 receive(ANY,
&tty_mess); 13773 13774 /* First handle all kernel notification types that the TTY supports. 13775 * - An alarm went
off, expire all timers and handle the events. 13776 * - A hardware interrupt also is an invitation to check for events.
13777 * - A new kernel message is available for printing. 13778 * - Reset the console on system shutdown. 13779 *
Then see if this message is different from a normal device driver 13780 * request and should be handled separately.
These extra functions 13781 * do not operate on a device, in constrast to the driver requests. 13782 */ 13783 switch
(tty_mess.m_type) { 13784 case SYN_ALARM: /* fall through */ 13785 expire_timers(); /* run watchdogs of expired
timers */ 13786 continue; /* contine to check for events */ 13787 case HARD_INT: { /* hardware interrupt
notification */ 13788 if (tty_mess.NOTIFY_ARG & kbd_irq_set) 13789 kbd_interrupt(&tty_mess);/* fetch chars from
keyboard */ 13790 #if NR_RS_LINES > 0 13791 if (tty_mess.NOTIFY_ARG & rs_irq_set) 13792
rs_interrupt(&tty_mess);/* serial I/O */ 13793 #endif 13794 expire_timers(); /* run watchdogs of expired timers */
13795 continue; /* contine to check for events */ 13796 } 13797 case SYS_SIG: { /* system signal */ 13798 sigset_t
sigset = (sigset_t) tty_mess.NOTIFY_ARG; 13799 13800 if (sigismember(&sigset, SIGKSTOP)) { 13801 cons_stop();
/* switch to primary console */ 13802 if (irq_hook_id != -1) { 13803 sys_irqdisable(&irq_hook_id); 13804
sys_irqrmpolicy(KEYBOARD_IRQ, &irq_hook_id); 13805 } 13806 } 13807 if (sigismember(&sigset, SIGTERM))
cons_stop(); 13808 if (sigismember(&sigset, SIGKMESS)) do_new_kmess(&tty_mess); 13809 continue;

[Page 815]

13810 } 13811 case PANIC_DUMPS: /* allow panic dumps */ 13812 cons_stop(); /* switch to primary console */
13813 do_panic_dumps(&tty_mess); 13814 continue; 13815 case DIAGNOSTICS: /* a server wants to print some */
13816 do_diagnostics(&tty_mess); 13817 continue; 13818 case FKEY_CONTROL: /* (un)register a fkey observer */
13819 do_fkey_ctl(&tty_mess); 13820 continue; 13821 default: /* should be a driver request */ 13822 ; /* do nothing;
end switch */ 13823 } 13824 13825 /* Only device requests should get to this point. All requests, 13826 * except
DEV_STATUS, have a minor device number. Check this 13827 * exception and get the minor device number
otherwise. 13828 */ 13829 if (tty_mess.m_type == DEV_STATUS) { 13830 do_status(&tty_mess); 13831 continue;
13832 } 13833 line = tty_mess.TTY_LINE; 13834 if ((line - CONS_MINOR) < NR_CONS) { 13835 tp =
tty_addr(line - CONS_MINOR); 13836 } else if (line == LOG_MINOR) { 13837 tp = tty_addr(0); 13838 } else if
((line - RS232_MINOR) < NR_RS_LINES) { 13839 tp = tty_addr(line - RS232_MINOR + NR_CONS); 13840 } else
if ((line - TTYPX_MINOR) < NR_PTYS) { 13841 tp = tty_addr(line - TTYPX_MINOR + NR_CONS +
NR_RS_LINES); 13842 } else if ((line - PTYPX_MINOR) < NR_PTYS) { 13843 tp = tty_addr(line -
PTYPX_MINOR + NR_CONS + NR_RS_LINES); 13844 if (tty_mess.m_type != DEV_IOCTL) { 13845 do_pty(tp,
&tty_mess); 13846 continue; 13847 } 13848 } else { 13849 tp = NULL; 13850 } 13851 13852 /* If the device doesn't
exist or is not configured return ENXIO. */ 13853 if (tp == NULL || ! tty_active(tp)) { 13854 printf("Warning, TTY
got illegal request %d from %d\n", 13855 tty_mess.m_type, tty_mess.m_source); 13856 tty_reply(TASK_REPLY,
tty_mess.m_source, 13857 tty_mess.PROC_NR, ENXIO); 13858 continue; 13859 } 13860 13861 /* Execute the
requested device driver function. */ 13862 switch (tty_mess.m_type) { 13863 case DEV_READ: do_read(tp,
&tty_mess); break; 13864 case DEV_WRITE: do_write(tp, &tty_mess); break; 13865 case DEV_IOCTL: do_ioctl(tp,
&tty_mess); break; 13866 case DEV_OPEN: do_open(tp, &tty_mess); break; 13867 case DEV_CLOSE: do_close(tp,
&tty_mess); break; 13868 case DEV_SELECT: do_select(tp, &tty_mess); break; 13869 case CANCEL: do_cancel(tp,
&tty_mess); break;

[Page 816]

92

92

13870 default: 13871 printf("Warning, TTY got unexpected request %d from %d\n", 13872 tty_mess.m_type,
tty_mess.m_source); 13873 tty_reply(TASK_REPLY, tty_mess.m_source, 13874 tty_mess.PROC_NR, EINVAL);
13875 } 13876 } 13877 } 13879
/*===* 13880 *
do_status * 13881
===/ 13882
PRIVATE void do_status(m_ptr) 13883 message *m_ptr; 13884 { 13885 register struct tty *tp; 13886 int event_found;
13887 int status; 13888 int ops; 13889 13890 /* Check for select or revive events on any of the ttys. If we found an,
13891 * event return a single status message for it. The FS will make another 13892 * call to see if there is more.
13893 */ 13894 event_found = 0; 13895 for (tp = FIRST_TTY; tp < END_TTY; tp++) { 13896 if ((ops = select_try(tp,
tp->tty_select_ops)) && 13897 tp->tty_select_proc == m_ptr->m_source) { 13898 13899 /* I/O for a selected minor
device is ready. */ 13900 m_ptr->m_type = DEV_IO_READY; 13901 m_ptr->DEV_MINOR = tp->tty_index; 13902
m_ptr->DEV_SEL_OPS = ops; 13903 13904 tp->tty_select_ops &= ~ops; /* unmark select event */ 13905
event_found = 1; 13906 break; 13907 } 13908 else if (tp->tty_inrevived && tp->tty_incaller == m_ptr->m_source) {
13909 13910 /* Suspended request finished. Send a REVIVE. */ 13911 m_ptr->m_type = DEV_REVIVE; 13912
m_ptr->REP_PROC_NR = tp->tty_inproc; 13913 m_ptr->REP_STATUS = tp->tty_incum; 13914 13915
tp->tty_inleft = tp->tty_incum = 0; 13916 tp->tty_inrevived = 0; /* unmark revive event */ 13917 event_found = 1;
13918 break; 13919 } 13920 else if (tp->tty_outrevived && tp->tty_outcaller == m_ptr->m_source) { 13921 13922 /*
Suspended request finished. Send a REVIVE. */ 13923 m_ptr->m_type = DEV_REVIVE; 13924
m_ptr->REP_PROC_NR = tp->tty_outproc; 13925 m_ptr->REP_STATUS = tp->tty_outcum; 13926 13927
tp->tty_outcum = 0; 13928 tp->tty_outrevived = 0; /* unmark revive event */ 13929 event_found = 1;

[Page 817]

13930 break; 13931 } 13932 } 13933 13934 #if NR_PTYS > 0 13935 if (!event_found) 13936 event_found =
pty_status(m_ptr); 13937 #endif 13938 13939 if (! event_found) { 13940 /* No events of interest were found. Return
an empty message. */ 13941 m_ptr->m_type = DEV_NO_STATUS; 13942 } 13943 13944 /* Almost done. Send back
the reply message to the caller. */ 13945 if ((status = send(m_ptr->m_source, m_ptr)) != OK) { 13946
panic("TTY","send in do_status failed, status\n", status); 13947 } 13948 } 13950
/*===* 13951 *
do_read * 13952
===/ 13953
PRIVATE void do_read(tp, m_ptr) 13954 register tty_t *tp; /* pointer to tty struct */ 13955 register message *m_ptr;
/* pointer to message sent to the task */ 13956 { 13957 /* A process wants to read from a terminal. */ 13958 int r,
status; 13959 phys_bytes phys_addr; 13960 13961 /* Check if there is already a process hanging in a read, check if the
13962 * parameters are correct, do I/O. 13963 */ 13964 if (tp->tty_inleft > 0) { 13965 r = EIO; 13966 } else 13967 if
(m_ptr->COUNT <= 0) { 13968 r = EINVAL; 13969 } else 13970 if (sys_umap(m_ptr->PROC_NR, D, (vir_bytes)
m_ptr->ADDRESS, m_ptr->COUNT, 13971 &phys_addr) != OK) { 13972 r = EFAULT; 13973 } else { 13974 /*
Copy information from the message to the tty struct. */ 13975 tp->tty_inrepcode = TASK_REPLY; 13976
tp->tty_incaller = m_ptr->m_source; 13977 tp->tty_inproc = m_ptr->PROC_NR; 13978 tp->tty_in_vir = (vir_bytes)
m_ptr->ADDRESS; 13979 tp->tty_inleft = m_ptr->COUNT; 13980 13981 if (!(tp->tty_termios.c_lflag & ICANON)
13982 && tp->tty_termios.c_cc[VTIME] > 0) { 13983 if (tp->tty_termios.c_cc[VMIN] == 0) { 13984 /* MIN &
TIME specify a read timer that finishes the 13985 * read in TIME/10 seconds if no bytes are available. 13986 */ 13987
settimer(tp, TRUE); 13988 tp->tty_min = 1; 13989 } else {

[Page 818]

13990 /* MIN & TIME specify an inter-byte timer that may 13991 * have to be cancelled if there are no bytes yet.
13992 */ 13993 if (tp->tty_eotct == 0) { 13994 settimer(tp, FALSE); 13995 tp->tty_min =
tp->tty_termios.c_cc[VMIN]; 13996 } 13997 } 13998 } 13999 14000 /* Anything waiting in the input buffer? Clear it
out... */ 14001 in_transfer(tp); 14002 /* ...then go back for more. */ 14003 handle_events(tp); 14004 if (tp->tty_inleft
== 0) { 14005 if (tp->tty_select_ops) 14006 select_retry(tp); 14007 return; /* already done */ 14008 } 14009 14010 /*
There were no bytes in the input queue available, so either suspend 14011 * the caller or break off the read if
nonblocking. 14012 */ 14013 if (m_ptr->TTY_FLAGS & O_NONBLOCK) { 14014 r = EAGAIN; /* cancel the read

93

93

/ 14015 tp->tty_inleft = tp->tty_incum = 0; 14016 } else { 14017 r = SUSPEND; / suspend the caller */ 14018
tp->tty_inrepcode = REVIVE; 14019 } 14020 } 14021 tty_reply(TASK_REPLY, m_ptr->m_source,
m_ptr->PROC_NR, r); 14022 if (tp->tty_select_ops) 14023 select_retry(tp); 14024 } 14026
/*===* 14027 *
do_write * 14028
===/ 14029
PRIVATE void do_write(tp, m_ptr) 14030 register tty_t *tp; 14031 register message *m_ptr; /* pointer to message
sent to the task */ 14032 { 14033 /* A process wants to write on a terminal. */ 14034 int r; 14035 phys_bytes
phys_addr; 14036 14037 /* Check if there is already a process hanging in a write, check if the 14038 * parameters are
correct, do I/O. 14039 */ 14040 if (tp->tty_outleft > 0) { 14041 r = EIO; 14042 } else 14043 if (m_ptr->COUNT <= 0)
{ 14044 r = EINVAL; 14045 } else 14046 if (sys_umap(m_ptr->PROC_NR, D, (vir_bytes) m_ptr->ADDRESS,
m_ptr->COUNT, 14047 &phys_addr) != OK) { 14048 r = EFAULT; 14049 } else {

[Page 819]

14050 /* Copy message parameters to the tty structure. */ 14051 tp->tty_outrepcode = TASK_REPLY; 14052
tp->tty_outcaller = m_ptr->m_source; 14053 tp->tty_outproc = m_ptr->PROC_NR; 14054 tp->tty_out_vir =
(vir_bytes) m_ptr->ADDRESS; 14055 tp->tty_outleft = m_ptr->COUNT; 14056 14057 /* Try to write. */ 14058
handle_events(tp); 14059 if (tp->tty_outleft == 0) 14060 return; /* already done */ 14061 14062 /* None or not all the
bytes could be written, so either suspend the 14063 * caller or break off the write if nonblocking. 14064 */ 14065 if
(m_ptr->TTY_FLAGS & O_NONBLOCK) { /* cancel the write */ 14066 r = tp->tty_outcum > 0 ? tp->tty_outcum :
EAGAIN; 14067 tp->tty_outleft = tp->tty_outcum = 0; 14068 } else { 14069 r = SUSPEND; /* suspend the caller */
14070 tp->tty_outrepcode = REVIVE; 14071 } 14072 } 14073 tty_reply(TASK_REPLY, m_ptr->m_source,
m_ptr->PROC_NR, r); 14074 } 14076
/*===* 14077 *
do_ioctl * 14078
===/ 14079
PRIVATE void do_ioctl(tp, m_ptr) 14080 register tty_t *tp; 14081 message *m_ptr; /* pointer to message sent to task
/ 14082 { 14083 / Perform an IOCTL on this terminal. Posix termios calls are handled 14084 * by the IOCTL
system call 14085 */ 14086 14087 int r; 14088 union { 14089 int i; 14090 } param; 14091 size_t size; 14092 14093 /*
Size of the ioctl parameter. */ 14094 switch (m_ptr->TTY_REQUEST) { 14095 case TCGETS: /* Posix tcgetattr
function */ 14096 case TCSETS: /* Posix tcsetattr function, TCSANOW option */ 14097 case TCSETSW: /* Posix
tcsetattr function, TCSADRAIN option */ 14098 case TCSETSF: /* Posix tcsetattr function, TCSAFLUSH option */
14099 size = sizeof(struct termios); 14100 break; 14101 14102 case TCSBRK: /* Posix tcsendbreak function */ 14103
case TCFLOW: /* Posix tcflow function */ 14104 case TCFLSH: /* Posix tcflush function */ 14105 case
TIOCGPGRP: /* Posix tcgetpgrp function */ 14106 case TIOCSPGRP: /* Posix tcsetpgrp function */ 14107 size =
sizeof(int); 14108 break; 14109

[Page 820]

14110 case TIOCGWINSZ: /* get window size (not Posix) */ 14111 case TIOCSWINSZ: /* set window size (not
Posix) */ 14112 size = sizeof(struct winsize); 14113 break; 14114 14115 case KIOCSMAP: /* load keymap (Minix
extension) */ 14116 size = sizeof(keymap_t); 14117 break; 14118 14119 case TIOCSFON: /* load font (Minix
extension) */ 14120 size = sizeof(u8_t [8192]); 14121 break; 14122 14123 case TCDRAIN: /* Posix tcdrain function
-- no parameter */ 14124 default: size = 0; 14125 } 14126 14127 r = OK; 14128 switch (m_ptr->TTY_REQUEST) {
14129 case TCGETS: 14130 /* Get the termios attributes. */ 14131 r = sys_vircopy(SELF, D, (vir_bytes)
&tp->tty_termios, 14132 m_ptr->PROC_NR, D, (vir_bytes) m_ptr->ADDRESS, 14133 (vir_bytes) size); 14134
break; 14135 14136 case TCSETSW: 14137 case TCSETSF: 14138 case TCDRAIN: 14139 if (tp->tty_outleft > 0) {
14140 /* Wait for all ongoing output processing to finish. */ 14141 tp->tty_iocaller = m_ptr->m_source; 14142
tp->tty_ioproc = m_ptr->PROC_NR; 14143 tp->tty_ioreq = m_ptr->REQUEST; 14144 tp->tty_iovir = (vir_bytes)
m_ptr->ADDRESS; 14145 r = SUSPEND; 14146 break; 14147 } 14148 if (m_ptr->TTY_REQUEST == TCDRAIN)
break; 14149 if (m_ptr->TTY_REQUEST == TCSETSF) tty_icancel(tp); 14150 /*FALL THROUGH*/ 14151 case
TCSETS: 14152 /* Set the termios attributes. */ 14153 r = sys_vircopy(m_ptr->PROC_NR, D, (vir_bytes)
m_ptr->ADDRESS, 14154 SELF, D, (vir_bytes) &tp->tty_termios, (vir_bytes) size); 14155 if (r != OK) break; 14156

94

94

setattr(tp); 14157 break; 14158 14159 case TCFLSH: 14160 r = sys_vircopy(m_ptr->PROC_NR, D, (vir_bytes)
m_ptr->ADDRESS, 14161 SELF, D, (vir_bytes) ¶m.i, (vir_bytes) size); 14162 if (r != OK) break; 14163 switch
(param.i) { 14164 case TCIFLUSH: tty_icancel(tp); break; 14165 case TCOFLUSH: (*tp->tty_ocancel)(tp, 0); break;
14166 case TCIOFLUSH: tty_icancel(tp); (*tp->tty_ocancel)(tp, 0); break; 14167 default: r = EINVAL; 14168 }
14169 break;

[Page 821]

14170 14171 case TCFLOW: 14172 r = sys_vircopy(m_ptr->PROC_NR, D, (vir_bytes) m_ptr->ADDRESS, 14173
SELF, D, (vir_bytes) ¶m.i, (vir_bytes) size); 14174 if (r != OK) break; 14175 switch (param.i) { 14176 case
TCOOFF: 14177 case TCOON: 14178 tp->tty_inhibited = (param.i == TCOOFF); 14179 tp->tty_events = 1; 14180
break; 14181 case TCIOFF: 14182 (*tp->tty_echo)(tp, tp->tty_termios.c_cc[VSTOP]); 14183 break; 14184 case
TCION: 14185 (*tp->tty_echo)(tp, tp->tty_termios.c_cc[VSTART]); 14186 break; 14187 default: 14188 r = EINVAL;
14189 } 14190 break; 14191 14192 case TCSBRK: 14193 if (tp->tty_break != NULL) (*tp->tty_break)(tp,0); 14194
break; 14195 14196 case TIOCGWINSZ: 14197 r = sys_vircopy(SELF, D, (vir_bytes) &tp->tty_winsize, 14198
m_ptr->PROC_NR, D, (vir_bytes) m_ptr->ADDRESS, 14199 (vir_bytes) size); 14200 break; 14201 14202 case
TIOCSWINSZ: 14203 r = sys_vircopy(m_ptr->PROC_NR, D, (vir_bytes) m_ptr->ADDRESS, 14204 SELF, D,
(vir_bytes) &tp->tty_winsize, (vir_bytes) size); 14205 /* SIGWINCH... */ 14206 break; 14207 14208 case
KIOCSMAP: 14209 /* Load a new keymap (only /dev/console). */ 14210 if (isconsole(tp)) r = kbd_loadmap(m_ptr);
14211 break; 14212 14213 case TIOCSFON: 14214 /* Load a font into an EGA or VGA card (hs@hck.hr) */ 14215 if
(isconsole(tp)) r = con_loadfont(m_ptr); 14216 break; 14217 14218 /* These Posix functions are allowed to fail if
_POSIX_JOB_CONTROL is 14219 * not defined. 14220 */ 14221 case TIOCGPGRP: 14222 case TIOCSPGRP:
14223 default: 14224 r = ENOTTY; 14225 } 14226 14227 /* Send the reply. */ 14228 tty_reply(TASK_REPLY,
m_ptr->m_source, m_ptr->PROC_NR, r); 14229 }

[Page 822]

14231 /*===*
14232 * do_open * 14233
===/ 14234
PRIVATE void do_open(tp, m_ptr) 14235 register tty_t *tp; 14236 message *m_ptr; /* pointer to message sent to task
/ 14237 { 14238 / A tty line has been opened. Make it the callers controlling tty if 14239 * O_NOCTTY is *not* set
and it is not the log device. 1 is returned if 14240 * the tty is made the controlling tty, otherwise OK or an error code.
14241 */ 14242 int r = OK; 14243 14244 if (m_ptr->TTY_LINE == LOG_MINOR) { 14245 /* The log device is a
write-only diagnostics device. */ 14246 if (m_ptr->COUNT & R_BIT) r = EACCES; 14247 } else { 14248 if
(!(m_ptr->COUNT & O_NOCTTY)) { 14249 tp->tty_pgrp = m_ptr->PROC_NR; 14250 r = 1; 14251 } 14252
tp->tty_openct++; 14253 } 14254 tty_reply(TASK_REPLY, m_ptr->m_source, m_ptr->PROC_NR, r); 14255 } 14257
/*===* 14258 *
do_close * 14259
===/ 14260
PRIVATE void do_close(tp, m_ptr) 14261 register tty_t *tp; 14262 message *m_ptr; /* pointer to message sent to task
/ 14263 { 14264 / A tty line has been closed. Clean up the line if it is the last close. */ 14265 14266 if
(m_ptr->TTY_LINE != LOG_MINOR && --tp->tty_openct == 0) { 14267 tp->tty_pgrp = 0; 14268 tty_icancel(tp);
14269 (*tp->tty_ocancel)(tp, 0); 14270 (*tp->tty_close)(tp, 0); 14271 tp->tty_termios = termios_defaults; 14272
tp->tty_winsize = winsize_defaults; 14273 setattr(tp); 14274 } 14275 tty_reply(TASK_REPLY, m_ptr->m_source,
m_ptr->PROC_NR, OK); 14276 } 14278
/*===* 14279 *
do_cancel * 14280
===/ 14281
PRIVATE void do_cancel(tp, m_ptr) 14282 register tty_t *tp; 14283 message *m_ptr; /* pointer to message sent to
task */ 14284 { 14285 /* A signal has been sent to a process that is hanging trying to read or write. 14286 * The
pending read or write must be finished off immediately. 14287 */ 14288 14289 int proc_nr;

[Page 823]

95

95

14290 int mode; 14291 14292 /* Check the parameters carefully, to avoid cancelling twice. */ 14293 proc_nr =
m_ptr->PROC_NR; 14294 mode = m_ptr->COUNT; 14295 if ((mode & R_BIT) && tp->tty_inleft != 0 && proc_nr
== tp->tty_inproc) { 14296 /* Process was reading when killed. Clean up input. */ 14297 tty_icancel(tp); 14298
tp->tty_inleft = tp->tty_incum = 0; 14299 } 14300 if ((mode & W_BIT) && tp->tty_outleft != 0 && proc_nr ==
tp->tty_outproc) { 14301 /* Process was writing when killed. Clean up output. */ 14302 (*tp->tty_ocancel)(tp, 0);
14303 tp->tty_outleft = tp->tty_outcum = 0; 14304 } 14305 if (tp->tty_ioreq != 0 && proc_nr == tp->tty_ioproc) {
14306 /* Process was waiting for output to drain. */ 14307 tp->tty_ioreq = 0; 14308 } 14309 tp->tty_events = 1; 14310
tty_reply(TASK_REPLY, m_ptr->m_source, proc_nr, EINTR); 14311 } 14313 PUBLIC int select_try(struct tty *tp,
int ops) 14314 { 14315 int ready_ops = 0; 14316 14317 /* Special case. If line is hung up, no operations will block.
14318 * (and it can be seen as an exceptional condition.) 14319 */ 14320 if (tp->tty_termios.c_ospeed == B0) { 14321
ready_ops |= ops; 14322 } 14323 14324 if (ops & SEL_RD) { 14325 /* will i/o not block on read? */ 14326 if
(tp->tty_inleft > 0) { 14327 ready_ops |= SEL_RD; /* EIO - no blocking */ 14328 } else if (tp->tty_incount > 0) {
14329 /* Is a regular read possible? tty_incount 14330 * says there is data. But a read will only succeed 14331 * in
canonical mode if a newline has been seen. 14332 */ 14333 if (!(tp->tty_termios.c_lflag & ICANON) || 14334
tp->tty_eotct > 0) { 14335 ready_ops |= SEL_RD; 14336 } 14337 } 14338 } 14339 14340 if (ops & SEL_WR) {
14341 if (tp->tty_outleft > 0) ready_ops |= SEL_WR; 14342 else if ((*tp->tty_devwrite)(tp, 1)) ready_ops |=
SEL_WR; 14343 } 14344 14345 return ready_ops; 14346 } 14348 PUBLIC int select_retry(struct tty *tp) 14349 {

[Page 824]

14350 if (select_try(tp, tp->tty_select_ops)) 14351 notify(tp->tty_select_proc); 14352 return OK; 14353 } 14355
/*===* 14356 *
handle_events * 14357
===/ 14358
PUBLIC void handle_events(tp) 14359 tty_t *tp; /* TTY to check for events. */ 14360 { 14361 /* Handle any events
pending on a TTY. These events are usually device 14362 * interrupts. 14363 * 14364 * Two kinds of events are
prominent: 14365 * - a character has been received from the console or an RS232 line. 14366 * - an RS232 line has
completed a write request (on behalf of a user). 14367 * The interrupt handler may delay the interrupt message at its
discretion 14368 * to avoid swamping the TTY task. Messages may be overwritten when the 14369 * lines are fast or
when there are races between different lines, input 14370 * and output, because MINIX only provides single buffering
for interrupt 14371 * messages (in proc.c). This is handled by explicitly checking each line 14372 * for fresh input and
completed output on each interrupt. 14373 */ 14374 char *buf; 14375 unsigned count; 14376 int status; 14377 14378
do { 14379 tp->tty_events = 0; 14380 14381 /* Read input and perform input processing. */ 14382
(*tp->tty_devread)(tp, 0); 14383 14384 /* Perform output processing and write output. */ 14385
(*tp->tty_devwrite)(tp, 0); 14386 14387 /* Ioctl waiting for some event? */ 14388 if (tp->tty_ioreq != 0) dev_ioctl(tp);
14389 } while (tp->tty_events); 14390 14391 /* Transfer characters from the input queue to a waiting process. */
14392 in_transfer(tp); 14393 14394 /* Reply if enough bytes are available. */ 14395 if (tp->tty_incum >= tp->tty_min
&& tp->tty_inleft > 0) { 14396 if (tp->tty_inrepcode == REVIVE) { 14397 notify(tp->tty_incaller); 14398
tp->tty_inrevived = 1; 14399 } else { 14400 tty_reply(tp->tty_inrepcode, tp->tty_incaller, 14401 tp->tty_inproc,
tp->tty_incum); 14402 tp->tty_inleft = tp->tty_incum = 0; 14403 } 14404 } 14405 if (tp->tty_select_ops) 14406
select_retry(tp); 14407 #if NR_PTYS > 0 14408 if (ispty(tp)) 14409 select_retry_pty(tp);

[Page 825]

14410 #endif 14411 } 14413
/*===* 14414 *
in_transfer * 14415
===/ 14416
PRIVATE void in_transfer(tp) 14417 register tty_t *tp; /* pointer to terminal to read from */ 14418 { 14419 /*
Transfer bytes from the input queue to a process reading from a terminal. */ 14420 14421 int ch; 14422 int count;
14423 char buf[64], *bp; 14424 14425 /* Force read to succeed if the line is hung up, looks like EOF to reader. */
14426 if (tp->tty_termios.c_ospeed == B0) tp->tty_min = 0; 14427 14428 /* Anything to do? */ 14429 if
(tp->tty_inleft == 0 || tp->tty_eotct < tp->tty_min) return; 14430 14431 bp = buf; 14432 while (tp->tty_inleft > 0 &&
tp->tty_eotct > 0) { 14433 ch = *tp->tty_intail; 14434 14435 if (!(ch & IN_EOF)) { 14436 /* One character to be

96

96

delivered to the user. */ 14437 *bp = ch & IN_CHAR; 14438 tp->tty_inleft--; 14439 if (++bp == bufend(buf)) { 14440
/* Temp buffer full, copy to user space. */ 14441 sys_vircopy(SELF, D, (vir_bytes) buf, 14442 tp->tty_inproc, D,
tp->tty_in_vir, 14443 (vir_bytes) buflen(buf)); 14444 tp->tty_in_vir += buflen(buf); 14445 tp->tty_incum +=
buflen(buf); 14446 bp = buf; 14447 } 14448 } 14449 14450 /* Remove the character from the input queue. */ 14451 if
(++tp->tty_intail == bufend(tp->tty_inbuf)) 14452 tp->tty_intail = tp->tty_inbuf; 14453 tp->tty_incount--; 14454 if (ch
& IN_EOT) { 14455 tp->tty_eotct--; 14456 /* Don't read past a line break in canonical mode. */ 14457 if
(tp->tty_termios.c_lflag & ICANON) tp->tty_inleft = 0; 14458 } 14459 } 14460 14461 if (bp > buf) { 14462 /*
Leftover characters in the buffer. */ 14463 count = bp - buf; 14464 sys_vircopy(SELF, D, (vir_bytes) buf, 14465
tp->tty_inproc, D, tp->tty_in_vir, (vir_bytes) count); 14466 tp->tty_in_vir += count; 14467 tp->tty_incum += count;
14468 } 14469

[Page 826]

14470 /* Usually reply to the reader, possibly even if incum == 0 (EOF). */ 14471 if (tp->tty_inleft == 0) { 14472 if
(tp->tty_inrepcode == REVIVE) { 14473 notify(tp->tty_incaller); 14474 tp->tty_inrevived = 1; 14475 } else { 14476
tty_reply(tp->tty_inrepcode, tp->tty_incaller, 14477 tp->tty_inproc, tp->tty_incum); 14478 tp->tty_inleft =
tp->tty_incum = 0; 14479 } 14480 } 14481 } 14483
/*===* 14484 *
in_process * 14485
===/ 14486
PUBLIC int in_process(tp, buf, count) 14487 register tty_t *tp; /* terminal on which character has arrived */ 14488
char *buf; /* buffer with input characters */ 14489 int count; /* number of input characters */ 14490 { 14491 /*
Characters have just been typed in. Process, save, and echo them. Return 14492 * the number of characters processed.
14493 */ 14494 14495 int ch, sig, ct; 14496 int timeset = FALSE; 14497 static unsigned char csize_mask[] = { 0x1F,
0x3F, 0x7F, 0xFF }; 14498 14499 for (ct = 0; ct < count; ct++) { 14500 /* Take one character. */ 14501 ch = *buf++
& BYTE; 14502 14503 /* Strip to seven bits? */ 14504 if (tp->tty_termios.c_iflag & ISTRIP) ch &= 0x7F; 14505
14506 /* Input extensions? */ 14507 if (tp->tty_termios.c_lflag & IEXTEN) { 14508 14509 /* Previous character was
a character escape? */ 14510 if (tp->tty_escaped) { 14511 tp->tty_escaped = NOT_ESCAPED; 14512 ch |= IN_ESC;
/* protect character */ 14513 } 14514 14515 /* LNEXT (^V) to escape the next character? */ 14516 if (ch ==
tp->tty_termios.c_cc[VLNEXT]) { 14517 tp->tty_escaped = ESCAPED; 14518 rawecho(tp, '^'); 14519 rawecho(tp,
'\b'); 14520 continue; /* do not store the escape */ 14521 } 14522 14523 /* REPRINT (^R) to reprint echoed
characters? */ 14524 if (ch == tp->tty_termios.c_cc[VREPRINT]) { 14525 reprint(tp); 14526 continue; 14527 } 14528
} 14529

[Page 827]

14530 /* _POSIX_VDISABLE is a normal character value, so better escape it. */ 14531 if (ch ==
_POSIX_VDISABLE) ch |= IN_ESC; 14532 14533 /* Map CR to LF, ignore CR, or map LF to CR. */ 14534 if (ch ==
'\r') { 14535 if (tp->tty_termios.c_iflag & IGNCR) continue; 14536 if (tp->tty_termios.c_iflag & ICRNL) ch = '\n';
14537 } else 14538 if (ch == '\n') { 14539 if (tp->tty_termios.c_iflag & INLCR) ch = '\r'; 14540 } 14541 14542 /*
Canonical mode? */ 14543 if (tp->tty_termios.c_lflag & ICANON) { 14544 14545 /* Erase processing (rub out of last
character). */ 14546 if (ch == tp->tty_termios.c_cc[VERASE]) { 14547 (void) back_over(tp); 14548 if
(!(tp->tty_termios.c_lflag & ECHOE)) { 14549 (void) tty_echo(tp, ch); 14550 } 14551 continue; 14552 } 14553 14554
/* Kill processing (remove current line). */ 14555 if (ch == tp->tty_termios.c_cc[VKILL]) { 14556 while
(back_over(tp)) {} 14557 if (!(tp->tty_termios.c_lflag & ECHOE)) { 14558 (void) tty_echo(tp, ch); 14559 if
(tp->tty_termios.c_lflag & ECHOK) 14560 rawecho(tp, '\n'); 14561 } 14562 continue; 14563 } 14564 14565 /* EOF
(^D) means end-of-file, an invisible "line break". */ 14566 if (ch == tp->tty_termios.c_cc[VEOF]) ch |= IN_EOT |
IN_EOF; 14567 14568 /* The line may be returned to the user after an LF. */ 14569 if (ch == '\n') ch |= IN_EOT;
14570 14571 /* Same thing with EOL, whatever it may be. */ 14572 if (ch == tp->tty_termios.c_cc[VEOL]) ch |=
IN_EOT; 14573 } 14574 14575 /* Start/stop input control? */ 14576 if (tp->tty_termios.c_iflag & IXON) { 14577
14578 /* Output stops on STOP (^S). */ 14579 if (ch == tp->tty_termios.c_cc[VSTOP]) { 14580 tp->tty_inhibited =
STOPPED; 14581 tp->tty_events = 1; 14582 continue; 14583 } 14584 14585 /* Output restarts on START (^Q) or any
character if IXANY. */ 14586 if (tp->tty_inhibited) { 14587 if (ch == tp->tty_termios.c_cc[VSTART] 14588 ||
(tp->tty_termios.c_iflag & IXANY)) { 14589 tp->tty_inhibited = RUNNING;

97

97

[Page 828]

14590 tp->tty_events = 1; 14591 if (ch == tp->tty_termios.c_cc[VSTART]) 14592 continue; 14593 } 14594 } 14595 }
14596 14597 if (tp->tty_termios.c_lflag & ISIG) { 14598 /* Check for INTR (^?) and QUIT (^\) characters. */ 14599
if (ch == tp->tty_termios.c_cc[VINTR] 14600 || ch == tp->tty_termios.c_cc[VQUIT]) { 14601 sig = SIGINT; 14602 if
(ch == tp->tty_termios.c_cc[VQUIT]) sig = SIGQUIT; 14603 sigchar(tp, sig); 14604 (void) tty_echo(tp, ch); 14605
continue; 14606 } 14607 } 14608 14609 /* Is there space in the input buffer? */ 14610 if (tp->tty_incount ==
buflen(tp->tty_inbuf)) { 14611 /* No space; discard in canonical mode, keep in raw mode. */ 14612 if
(tp->tty_termios.c_lflag & ICANON) continue; 14613 break; 14614 } 14615 14616 if (!(tp->tty_termios.c_lflag &
ICANON)) { 14617 /* In raw mode all characters are "line breaks". */ 14618 ch |= IN_EOT; 14619 14620 /* Start an
inter-byte timer? */ 14621 if (!timeset && tp->tty_termios.c_cc[VMIN] > 0 14622 && tp->tty_termios.c_cc[VTIME]
> 0) { 14623 settimer(tp, TRUE); 14624 timeset = TRUE; 14625 } 14626 } 14627 14628 /* Perform the intricate
function of echoing. */ 14629 if (tp->tty_termios.c_lflag & (ECHO|ECHONL)) ch = tty_echo(tp, ch); 14630 14631 /*
Save the character in the input queue. */ 14632 *tp->tty_inhead++ = ch; 14633 if (tp->tty_inhead ==
bufend(tp->tty_inbuf)) 14634 tp->tty_inhead = tp->tty_inbuf; 14635 tp->tty_incount++; 14636 if (ch & IN_EOT)
tp->tty_eotct++; 14637 14638 /* Try to finish input if the queue threatens to overflow. */ 14639 if (tp->tty_incount ==
buflen(tp->tty_inbuf)) in_transfer(tp); 14640 } 14641 return ct; 14642 } 14644
/*===* 14645 *
echo * 14646
===/ 14647
PRIVATE int tty_echo(tp, ch) 14648 register tty_t *tp; /* terminal on which to echo */ 14649 register int ch; /* pointer
to character to echo */

[Page 829]

14650 { 14651 /* Echo the character if echoing is on. Some control characters are echoed 14652 * with their normal
effect, other control characters are echoed as "^X", 14653 * normal characters are echoed normally. EOF (^D) is
echoed, but immediately 14654 * backspaced over. Return the character with the echoed length added to its 14655 *
attributes. 14656 */ 14657 int len, rp; 14658 14659 ch &= ~IN_LEN; 14660 if (!(tp->tty_termios.c_lflag & ECHO)) {
14661 if (ch == ('\n' | IN_EOT) && (tp->tty_termios.c_lflag 14662 & (ICANON|ECHONL)) ==
(ICANON|ECHONL)) 14663 (*tp->tty_echo)(tp, '\n'); 14664 return(ch); 14665 } 14666 14667 /* "Reprint" tells if the
echo output has been messed up by other output. */ 14668 rp = tp->tty_incount == 0 ? FALSE : tp->tty_reprint; 14669
14670 if ((ch & IN_CHAR) < ' ') { 14671 switch (ch & (IN_ESC|IN_EOF|IN_EOT|IN_CHAR)) { 14672 case '\t':
14673 len = 0; 14674 do { 14675 (*tp->tty_echo)(tp, ' '); 14676 len++; 14677 } while (len < TAB_SIZE &&
(tp->tty_position & TAB_MASK) != 0); 14678 break; 14679 case '\r' | IN_EOT: 14680 case '\n' | IN_EOT: 14681
(*tp->tty_echo)(tp, ch & IN_CHAR); 14682 len = 0; 14683 break; 14684 default: 14685 (*tp->tty_echo)(tp, '^'); 14686
(*tp->tty_echo)(tp, '@' + (ch & IN_CHAR)); 14687 len = 2; 14688 } 14689 } else 14690 if ((ch & IN_CHAR) ==
'\177') { 14691 /* A DEL prints as "^?". */ 14692 (*tp->tty_echo)(tp, '^'); 14693 (*tp->tty_echo)(tp, '?'); 14694 len = 2;
14695 } else { 14696 (*tp->tty_echo)(tp, ch & IN_CHAR); 14697 len = 1; 14698 } 14699 if (ch & IN_EOF) while
(len > 0) { (*tp->tty_echo)(tp, '\b'); len--; } 14700 14701 tp->tty_reprint = rp; 14702 return(ch | (len << IN_LSHIFT));
14703 } 14705
/*===* 14706 *
rawecho * 14707
===/ 14708
PRIVATE void rawecho(tp, ch) 14709 register tty_t *tp;

[Page 830]

14710 int ch; 14711 { 14712 /* Echo without interpretation if ECHO is set. */ 14713 int rp = tp->tty_reprint; 14714 if
(tp->tty_termios.c_lflag & ECHO) (*tp->tty_echo)(tp, ch); 14715 tp->tty_reprint = rp; 14716 } 14718
/*===* 14719 *
back_over * 14720
===/ 14721

98

98

PRIVATE int back_over(tp) 14722 register tty_t *tp; 14723 { 14724 /* Backspace to previous character on screen and
erase it. */ 14725 u16_t *head; 14726 int len; 14727 14728 if (tp->tty_incount == 0) return(0); /* queue empty */
14729 head = tp->tty_inhead; 14730 if (head == tp->tty_inbuf) head = bufend(tp->tty_inbuf); 14731 if (*--head &
IN_EOT) return(0); /* can't erase "line breaks" */ 14732 if (tp->tty_reprint) reprint(tp); /* reprint if messed up */
14733 tp->tty_inhead = head; 14734 tp->tty_incount--; 14735 if (tp->tty_termios.c_lflag & ECHOE) { 14736 len =
(*head & IN_LEN) >> IN_LSHIFT; 14737 while (len > 0) { 14738 rawecho(tp, '\b'); 14739 rawecho(tp, ' '); 14740
rawecho(tp, '\b'); 14741 len--; 14742 } 14743 } 14744 return(1); /* one character erased */ 14745 } 14747
/*===* 14748 *
reprint * 14749
===/ 14750
PRIVATE void reprint(tp) 14751 register tty_t *tp; /* pointer to tty struct */ 14752 { 14753 /* Restore what has been
echoed to screen before if the user input has been 14754 * messed up by output, or if REPRINT (^R) is typed. 14755
*/ 14756 int count; 14757 u16_t *head; 14758 14759 tp->tty_reprint = FALSE; 14760 14761 /* Find the last line break
in the input. */ 14762 head = tp->tty_inhead; 14763 count = tp->tty_incount; 14764 while (count > 0) { 14765 if (head
== tp->tty_inbuf) head = bufend(tp->tty_inbuf); 14766 if (head[-1] & IN_EOT) break; 14767 head--; 14768 count--;
14769 }

[Page 831]

14770 if (count == tp->tty_incount) return; /* no reason to reprint */ 14771 14772 /* Show REPRINT (^R) and move
to a new line. */ 14773 (void) tty_echo(tp, tp->tty_termios.c_cc[VREPRINT] | IN_ESC); 14774 rawecho(tp, '\r');
14775 rawecho(tp, '\n'); 14776 14777 /* Reprint from the last break onwards. */ 14778 do { 14779 if (head ==
bufend(tp->tty_inbuf)) head = tp->tty_inbuf; 14780 *head = tty_echo(tp, *head); 14781 head++; 14782 count++;
14783 } while (count < tp->tty_incount); 14784 } 14786
/*===* 14787 *
out_process * 14788
===/ 14789
PUBLIC void out_process(tp, bstart, bpos, bend, icount, ocount) 14790 tty_t *tp; 14791 char *bstart, *bpos, *bend; /*
start/pos/end of circular buffer */ 14792 int *icount; /* # input chars / input chars used */ 14793 int *ocount; /* max
output chars / output chars used */ 14794 { 14795 /* Perform output processing on a circular buffer. *icount is the
number of 14796 * bytes to process, and the number of bytes actually processed on return. 14797 * *ocount is the
space available on input and the space used on output. 14798 * (Naturally *icount < *ocount.) The column position is
updated modulo 14799 * the TAB size, because we really only need it for tabs. 14800 */ 14801 14802 int tablen;
14803 int ict = *icount; 14804 int oct = *ocount; 14805 int pos = tp->tty_position; 14806 14807 while (ict > 0) {
14808 switch (*bpos) { 14809 case '\7': 14810 break; 14811 case '\b': 14812 pos--; 14813 break; 14814 case '\r': 14815
pos = 0; 14816 break; 14817 case '\n': 14818 if ((tp->tty_termios.c_oflag & (OPOST|ONLCR)) 14819 ==
(OPOST|ONLCR)) { 14820 /* Map LF to CR+LF if there is space. Note that the 14821 * next character in the buffer is
overwritten, so 14822 * we stop at this point. 14823 */ 14824 if (oct >= 2) { 14825 *bpos = '\r'; 14826 if (++bpos ==
bend) bpos = bstart; 14827 *bpos = '\n'; 14828 pos = 0; 14829 ict--;

[Page 832]

14830 oct -= 2; 14831 } 14832 goto out_done; /* no space or buffer got changed */ 14833 } 14834 break; 14835 case
'\t': 14836 /* Best guess for the tab length. */ 14837 tablen = TAB_SIZE - (pos & TAB_MASK); 14838 14839 if
((tp->tty_termios.c_oflag & (OPOST|XTABS)) 14840 == (OPOST|XTABS)) { 14841 /* Tabs must be expanded. */
14842 if (oct >= tablen) { 14843 pos += tablen; 14844 ict--; 14845 oct -= tablen; 14846 do { 14847 *bpos = ' '; 14848
if (++bpos == bend) bpos = bstart; 14849 } while (--tablen != 0); 14850 } 14851 goto out_done; 14852 } 14853 /*
Tabs are output directly. */ 14854 pos += tablen; 14855 break; 14856 default: 14857 /* Assume any other character
prints as one character. */ 14858 pos++; 14859 } 14860 if (++bpos == bend) bpos = bstart; 14861 ict--; 14862 oct--;
14863 } 14864 out_done: 14865 tp->tty_position = pos & TAB_MASK; 14866 14867 *icount -= ict; /* [io]ct are the
number of chars not used */ 14868 *ocount -= oct; /* *[io]count are the number of chars that are used */ 14869 }
14871 /*===*
14872 * dev_ioctl * 14873
===/ 14874

99

99

PRIVATE void dev_ioctl(tp) 14875 tty_t *tp; 14876 { 14877 /* The ioctl's TCSETSW, TCSETSF and TCDRAIN
wait for output to finish to make 14878 * sure that an attribute change doesn't affect the processing of current 14879 *
output. Once output finishes the ioctl is executed as in do_ioctl(). 14880 */ 14881 int result; 14882 14883 if
(tp->tty_outleft > 0) return; /* output not finished */ 14884 14885 if (tp->tty_ioreq != TCDRAIN) { 14886 if
(tp->tty_ioreq == TCSETSF) tty_icancel(tp); 14887 result = sys_vircopy(tp->tty_ioproc, D, tp->tty_iovir, 14888
SELF, D, (vir_bytes) &tp->tty_termios, 14889 (vir_bytes) sizeof(tp->tty_termios));

[Page 833]

14890 setattr(tp); 14891 } 14892 tp->tty_ioreq = 0; 14893 tty_reply(REVIVE, tp->tty_iocaller, tp->tty_ioproc, result);
14894 } 14896
/*===* 14897 *
setattr * 14898
===/ 14899
PRIVATE void setattr(tp) 14900 tty_t *tp; 14901 { 14902 /* Apply the new line attributes (raw/canonical, line speed,
etc.) */ 14903 u16_t *inp; 14904 int count; 14905 14906 if (!(tp->tty_termios.c_lflag & ICANON)) { 14907 /* Raw
mode; put a "line break" on all characters in the input queue. 14908 * It is undefined what happens to the input queue
when ICANON is 14909 * switched off, a process should use TCSAFLUSH to flush the queue. 14910 * Keeping the
queue to preserve typeahead is the Right Thing, however 14911 * when a process does use TCSANOW to switch to
raw mode. 14912 */ 14913 count = tp->tty_eotct = tp->tty_incount; 14914 inp = tp->tty_intail; 14915 while (count >
0) { 14916 *inp |= IN_EOT; 14917 if (++inp == bufend(tp->tty_inbuf)) inp = tp->tty_inbuf; 14918 --count; 14919 }
14920 } 14921 14922 /* Inspect MIN and TIME. */ 14923 settimer(tp, FALSE); 14924 if (tp->tty_termios.c_lflag &
ICANON) { 14925 /* No MIN & TIME in canonical mode. */ 14926 tp->tty_min = 1; 14927 } else { 14928 /* In raw
mode MIN is the number of chars wanted, and TIME how long 14929 * to wait for them. With interesting exceptions
if either is zero. 14930 */ 14931 tp->tty_min = tp->tty_termios.c_cc[VMIN]; 14932 if (tp->tty_min == 0 &&
tp->tty_termios.c_cc[VTIME] > 0) 14933 tp->tty_min = 1; 14934 } 14935 14936 if (!(tp->tty_termios.c_iflag &
IXON)) { 14937 /* No start/stop output control, so don't leave output inhibited. */ 14938 tp->tty_inhibited =
RUNNING; 14939 tp->tty_events = 1; 14940 } 14941 14942 /* Setting the output speed to zero hangs up the phone. */
14943 if (tp->tty_termios.c_ospeed == B0) sigchar(tp, SIGHUP); 14944 14945 /* Set new line speed, character size,
etc at the device level. */ 14946 (*tp->tty_ioctl)(tp, 0); 14947 }

[Page 834]

14949 /*===*
14950 * tty_reply * 14951
===/ 14952
PUBLIC void tty_reply(code, replyee, proc_nr, status) 14953 int code; /* TASK_REPLY or REVIVE */ 14954 int
replyee; /* destination address for the reply */ 14955 int proc_nr; /* to whom should the reply go? */ 14956 int status;
/* reply code */ 14957 { 14958 /* Send a reply to a process that wanted to read or write data. */ 14959 message
tty_mess; 14960 14961 tty_mess.m_type = code; 14962 tty_mess.REP_PROC_NR = proc_nr; 14963
tty_mess.REP_STATUS = status; 14964 14965 if ((status = send(replyee, &tty_mess)) != OK) { 14966
panic("TTY","tty_reply failed, status\n", status); 14967 } 14968 } 14970
/*===* 14971 *
sigchar * 14972
===/ 14973
PUBLIC void sigchar(tp, sig) 14974 register tty_t *tp; 14975 int sig; /* SIGINT, SIGQUIT, SIGKILL or SIGHUP */
14976 { 14977 /* Process a SIGINT, SIGQUIT or SIGKILL char from the keyboard or SIGHUP from 14978 * a tty
close, "stty 0", or a real RS-232 hangup. MM will send the signal to 14979 * the process group (INT, QUIT), all
processes (KILL), or the session leader 14980 * (HUP). 14981 */ 14982 int status; 14983 14984 if (tp->tty_pgrp != 0)
14985 if (OK != (status = sys_kill(tp->tty_pgrp, sig))) 14986 panic("TTY","Error, call to sys_kill failed", status);
14987 14988 if (!(tp->tty_termios.c_lflag & NOFLSH)) { 14989 tp->tty_incount = tp->tty_eotct = 0; /* kill earlier
input */ 14990 tp->tty_intail = tp->tty_inhead; 14991 (*tp->tty_ocancel)(tp, 0); /* kill all output */ 14992
tp->tty_inhibited = RUNNING; 14993 tp->tty_events = 1; 14994 } 14995 } 14997
/*===* 14998 *

100

100

tty_icancel * 14999
===/ 15000
PRIVATE void tty_icancel(tp) 15001 register tty_t *tp; 15002 { 15003 /* Discard all pending input, tty buffer or
device. */ 15004 15005 tp->tty_incount = tp->tty_eotct = 0; 15006 tp->tty_intail = tp->tty_inhead; 15007
(*tp->tty_icancel)(tp, 0); 15008 }

[Page 835]

15010 /*===*
15011 * tty_init * 15012
===/ 15013
PRIVATE void tty_init() 15014 { 15015 /* Initialize tty structure and call device initialization routines. */ 15016
15017 register tty_t *tp; 15018 int s; 15019 struct sigaction sigact; 15020 15021 /* Initialize the terminal lines. */
15022 for (tp = FIRST_TTY,s=0; tp < END_TTY; tp++,s++) { 15023 15024 tp->tty_index = s; 15025 15026
tmr_inittimer(&tp->tty_tmr); 15027 15028 tp->tty_intail = tp->tty_inhead = tp->tty_inbuf; 15029 tp->tty_min = 1;
15030 tp->tty_termios = termios_defaults; 15031 tp->tty_icancel = tp->tty_ocancel = tp->tty_ioctl = tp->tty_close =
15032 tty_devnop; 15033 if (tp < tty_addr(NR_CONS)) { 15034 scr_init(tp); 15035 tp->tty_minor = CONS_MINOR
+ s; 15036 } else 15037 if (tp < tty_addr(NR_CONS+NR_RS_LINES)) { 15038 rs_init(tp); 15039 tp->tty_minor =
RS232_MINOR + s-NR_CONS; 15040 } else { 15041 pty_init(tp); 15042 tp->tty_minor = s -
(NR_CONS+NR_RS_LINES) + TTYPX_MINOR; 15043 } 15044 } 15045 } 15047
/*===* 15048 *
tty_timed_out * 15049
===/ 15050
PRIVATE void tty_timed_out(timer_t *tp) 15051 { 15052 /* This timer has expired. Set the events flag, to force
processing. */ 15053 tty_t *tty_ptr; 15054 tty_ptr = &tty_table[tmr_arg(tp)->ta_int]; 15055 tty_ptr->tty_min = 0; /*
force read to succeed */ 15056 tty_ptr->tty_events = 1; 15057 } 15059
/*===* 15060 *
expire_timers * 15061
===/ 15062
PRIVATE void expire_timers(void) 15063 { 15064 /* A synchronous alarm message was received. Check if there are
any expired 15065 * timers. Possibly set the event flag and reschedule another alarm. 15066 */ 15067 clock_t now; /*
current time */ 15068 int s;

[Page 836]

15069 15070 /* Get the current time to compare the timers against. */ 15071 if ((s=getuptime(&now)) != OK) 15072
panic("TTY","Couldn't get uptime from clock.", s); 15073 15074 /* Scan the queue of timers for expired timers. This
dispatch the watchdog 15075 * functions of expired timers. Possibly a new alarm call must be scheduled. 15076 */
15077 tmrs_exptimers(&tty_timers, now, NULL); 15078 if (tty_timers == NULL) tty_next_timeout = TMR_NEVER;
15079 else { /* set new sync alarm */ 15080 tty_next_timeout = tty_timers->tmr_exp_time; 15081 if
((s=sys_setalarm(tty_next_timeout, 1)) != OK) 15082 panic("TTY","Couldn't set synchronous alarm.", s); 15083 }
15084 } 15086
/*===* 15087 *
settimer * 15088
===/ 15089
PRIVATE void settimer(tty_ptr, enable) 15090 tty_t *tty_ptr; /* line to set or unset a timer on */ 15091 int enable; /*
set timer if true, otherwise unset */ 15092 { 15093 clock_t now; /* current time */ 15094 clock_t exp_time; 15095 int
s; 15096 15097 /* Get the current time to calculate the timeout time. */ 15098 if ((s=getuptime(&now)) != OK) 15099
panic("TTY","Couldn't get uptime from clock.", s); 15100 if (enable) { 15101 exp_time = now +
tty_ptr->tty_termios.c_cc[VTIME] * (HZ/10); 15102 /* Set a new timer for enabling the TTY events flags. */ 15103
tmrs_settimer(&tty_timers, &tty_ptr->tty_tmr, 15104 exp_time, tty_timed_out, NULL); 15105 } else { 15106 /*
Remove the timer from the active and expired lists. */ 15107 tmrs_clrtimer(&tty_timers, &tty_ptr->tty_tmr, NULL);
15108 } 15109 15110 /* Now check if a new alarm must be scheduled. This happens when the front 15111 * of the
timers queue was disabled or reinserted at another position, or 15112 * when a new timer was added to the front.

101

101

15113 */ 15114 if (tty_timers == NULL) tty_next_timeout = TMR_NEVER; 15115 else if (tty_timers->tmr_exp_time
!= tty_next_timeout) { 15116 tty_next_timeout = tty_timers->tmr_exp_time; 15117 if
((s=sys_setalarm(tty_next_timeout, 1)) != OK) 15118 panic("TTY","Couldn't set synchronous alarm.", s); 15119 }
15120 } 15122
/*===* 15123 *
tty_devnop * 15124
===/ 15125
PUBLIC int tty_devnop(tp, try) 15126 tty_t *tp; 15127 int try; 15128 {

[Page 837]

15129 /* Some functions need not be implemented at the device level. */ 15130 } 15132
/*===* 15133 *
do_select * 15134
===/ 15135
PRIVATE void do_select(tp, m_ptr) 15136 register tty_t *tp; /* pointer to tty struct */ 15137 register message *m_ptr;
/* pointer to message sent to the task */ 15138 { 15139 int ops, ready_ops = 0, watch; 15140 15141 ops =
m_ptr->PROC_NR & (SEL_RD|SEL_WR|SEL_ERR); 15142 watch = (m_ptr->PROC_NR & SEL_NOTIFY) ? 1 : 0;
15143 15144 ready_ops = select_try(tp, ops); 15145 15146 if (!ready_ops && ops && watch) { 15147
tp->tty_select_ops |= ops; 15148 tp->tty_select_proc = m_ptr->m_source; 15149 } 15150 15151
tty_reply(TASK_REPLY, m_ptr->m_source, m_ptr->PROC_NR, ready_ops); 15152 15153 return; 15154 }
++
drivers/tty/keyboard.c
++
15200 /* Keyboard driver for PC's and AT's. 15201 * 15202 * Changes: 15203 * Jul 13, 2004 processes can observe
function keys (Jorrit N. Herder) 15204 * Jun 15, 2004 removed wreboot(), except panic dumps (Jorrit N. Herder)
15205 * Feb 04, 1994 loadable keymaps (Marcus Hampel) 15206 */ 15207 15208 #include "../drivers.h" 15209
#include <sys/time.h> 15210 #include <sys/select.h> 15211 #include <termios.h> 15212 #include <signal.h> 15213
#include <unistd.h> 15214 #include <minix/callnr.h> 15215 #include <minix/com.h> 15216 #include
<minix/keymap.h> 15217 #include "tty.h" 15218 #include "keymaps/us-std.src" 15219 #include "../../kernel/const.h"
15220 #include "../../kernel/config.h" 15221 #include "../../kernel/type.h" 15222 #include "../../kernel/proc.h" 15223
15224 int irq_hook_id = -1;

[Page 838]

15225 15226 /* Standard and AT keyboard. (PS/2 MCA implies AT throughout.) */ 15227 #define KEYBD 0x60 /*
I/O port for keyboard data */ 15228 15229 /* AT keyboard. */ 15230 #define KB_COMMAND 0x64 /* I/O port for
commands on AT */ 15231 #define KB_STATUS 0x64 /* I/O port for status on AT */ 15232 #define KB_ACK 0xFA
/* keyboard ack response */ 15233 #define KB_OUT_FULL 0x01 /* status bit set when keypress char pending */
15234 #define KB_IN_FULL 0x02 /* status bit set when not ready to receive */ 15235 #define LED_CODE 0xED /*
command to keyboard to set LEDs */ 15236 #define MAX_KB_ACK_RETRIES 0x1000 /* max #times to wait for kb
ack */ 15237 #define MAX_KB_BUSY_RETRIES 0x1000 /* max #times to loop while kb busy */ 15238 #define
KBIT 0x80 /* bit used to ack characters to keyboard */ 15239 15240 /* Miscellaneous. */ 15241 #define ESC_SCAN
0x01 /* reboot key when panicking */ 15242 #define SLASH_SCAN 0x35 /* to recognize numeric slash */ 15243
#define RSHIFT_SCAN 0x36 /* to distinguish left and right shift */ 15244 #define HOME_SCAN 0x47 /* first key on
the numeric keypad */ 15245 #define INS_SCAN 0x52 /* INS for use in CTRL-ALT-INS reboot */ 15246 #define
DEL_SCAN 0x53 /* DEL for use in CTRL-ALT-DEL reboot */ 15247 15248 #define CONSOLE 0 /* line number for
console */ 15249 #define KB_IN_BYTES 32 /* size of keyboard input buffer */ 15250 PRIVATE char
ibuf[KB_IN_BYTES]; /* input buffer */ 15251 PRIVATE char *ihead = ibuf; /* next free spot in input buffer */
15252 PRIVATE char *itail = ibuf; /* scan code to return to TTY */ 15253 PRIVATE int icount; /* # codes in buffer
/ 15254 15255 PRIVATE int esc; / escape scan code detected? */ 15256 PRIVATE int alt_l; /* left alt key state */
15257 PRIVATE int alt_r; /* right alt key state */ 15258 PRIVATE int alt; /* either alt key */ 15259 PRIVATE int
ctrl_l; /* left control key state */ 15260 PRIVATE int ctrl_r; /* right control key state */ 15261 PRIVATE int ctrl; /*
either control key */ 15262 PRIVATE int shift_l; /* left shift key state */ 15263 PRIVATE int shift_r; /* right shift key

102

102

state */ 15264 PRIVATE int shift; /* either shift key */ 15265 PRIVATE int num_down; /* num lock key depressed */
15266 PRIVATE int caps_down; /* caps lock key depressed */ 15267 PRIVATE int scroll_down; /* scroll lock key
depressed */ 15268 PRIVATE int locks[NR_CONS]; /* per console lock keys state */ 15269 15270 /* Lock key active
bits. Chosen to be equal to the keyboard LED bits. */ 15271 #define SCROLL_LOCK 0x01 15272 #define
NUM_LOCK 0x02 15273 #define CAPS_LOCK 0x04 15274 15275 PRIVATE char numpad_map[] = 15276 {'H', 'Y',
'A', 'B', 'D', 'C', 'V', 'U', 'G', 'S', 'T', '@'}; 15277 15278 /* Variables and definition for observed function keys. */ 15279
typedef struct observer { int proc_nr; int events; } obs_t; 15280 PRIVATE obs_t fkey_obs[12]; /* observers for
F1-F12 */ 15281 PRIVATE obs_t sfkey_obs[12]; /* observers for SHIFT F1-F12 */ 15282 15283 FORWARD
_PROTOTYPE(int kb_ack, (void)); 15284 FORWARD _PROTOTYPE(int kb_wait, (void));

[Page 839]

15285 FORWARD _PROTOTYPE(int func_key, (int scode)); 15286 FORWARD _PROTOTYPE(int
scan_keyboard, (void)); 15287 FORWARD _PROTOTYPE(unsigned make_break, (int scode)); 15288 FORWARD
_PROTOTYPE(void set_leds, (void)); 15289 FORWARD _PROTOTYPE(void show_key_mappings, (void));
15290 FORWARD _PROTOTYPE(int kb_read, (struct tty *tp, int try)); 15291 FORWARD _PROTOTYPE(
unsigned map_key, (int scode)); 15292 15293
/*===* 15294 *
map_key0 * 15295
===/ 15296 /*
Map a scan code to an ASCII code ignoring modifiers. */ 15297 #define map_key0(scode) \ 15298 ((unsigned)
keymap[(scode) * MAP_COLS]) 15299 15300
/*===* 15301 *
map_key * 15302
===/ 15303
PRIVATE unsigned map_key(scode) 15304 int scode; 15305 { 15306 /* Map a scan code to an ASCII code. */ 15307
15308 int caps, column, lk; 15309 u16_t *keyrow; 15310 15311 if (scode == SLASH_SCAN && esc) return '/'; /*
don't map numeric slash */ 15312 15313 keyrow = &keymap[scode * MAP_COLS]; 15314 15315 caps = shift; 15316
lk = locks[ccurrent]; 15317 if ((lk & NUM_LOCK) && HOME_SCAN <= scode && scode <= DEL_SCAN) caps =
!caps; 15318 if ((lk & CAPS_LOCK) && (keyrow[0] & HASCAPS)) caps = !caps; 15319 15320 if (alt) { 15321
column = 2; 15322 if (ctrl || alt_r) column = 3; /* Ctrl + Alt == AltGr */ 15323 if (caps) column = 4; 15324 } else {
15325 column = 0; 15326 if (caps) column = 1; 15327 if (ctrl) column = 5; 15328 } 15329 return keyrow[column] &
~HASCAPS; 15330 } 15332
/*===* 15333 *
kbd_interrupt * 15334
===/ 15335
PUBLIC void kbd_interrupt(m_ptr) 15336 message *m_ptr; 15337 { 15338 /* A keyboard interrupt has occurred.
Process it. */ 15339 int scode; 15340 static timer_t timer; /* timer must be static! */ 15341 15342 /* Fetch the character
from the keyboard hardware and acknowledge it. */ 15343 scode = scan_keyboard(); 15344

[Page 840]

15345 /* Store the scancode in memory so the task can get at it later. */ 15346 if (icount < KB_IN_BYTES) { 15347
*ihead++ = scode; 15348 if (ihead == ibuf + KB_IN_BYTES) ihead = ibuf; 15349 icount++; 15350
tty_table[ccurrent].tty_events = 1; 15351 if (tty_table[ccurrent].tty_select_ops & SEL_RD) { 15352
select_retry(&tty_table[ccurrent]); 15353 } 15354 } 15355 } 15357
/*===* 15358 *
kb_read * 15359
===/ 15360
PRIVATE int kb_read(tp, try) 15361 tty_t *tp; 15362 int try; 15363 { 15364 /* Process characters from the circular
keyboard buffer. */ 15365 char buf[3]; 15366 int scode; 15367 unsigned ch; 15368 15369 tp = &tty_table[ccurrent]; /*
always use the current console */ 15370 15371 if (try) { 15372 if (icount > 0) return 1; 15373 return 0; 15374 } 15375
15376 while (icount > 0) { 15377 scode = *itail++; /* take one key scan code */ 15378 if (itail == ibuf +
KB_IN_BYTES) itail = ibuf; 15379 icount--; 15380 15381 /* Function keys are being used for debug dumps. */ 15382

103

103

if (func_key(scode)) continue; 15383 15384 /* Perform make/break processing. */ 15385 ch = make_break(scode);
15386 15387 if (ch <= 0xFF) { 15388 /* A normal character. */ 15389 buf[0] = ch; 15390 (void) in_process(tp, buf, 1);
15391 } else 15392 if (HOME <= ch && ch <= INSRT) { 15393 /* An ASCII escape sequence generated by the
numeric pad. */ 15394 buf[0] = ESC; 15395 buf[1] = '['; 15396 buf[2] = numpad_map[ch - HOME]; 15397 (void)
in_process(tp, buf, 3); 15398 } else 15399 if (ch == ALEFT) { 15400 /* Choose lower numbered console as current
console. */ 15401 select_console(ccurrent - 1); 15402 set_leds(); 15403 } else 15404 if (ch == ARIGHT) {

[Page 841]

15405 /* Choose higher numbered console as current console. */ 15406 select_console(ccurrent + 1); 15407 set_leds();
15408 } else 15409 if (AF1 <= ch && ch <= AF12) { 15410 /* Alt-F1 is console, Alt-F2 is ttyc1, etc. */ 15411
select_console(ch - AF1); 15412 set_leds(); 15413 } else 15414 if (CF1 <= ch && ch <= CF12) { 15415 switch(ch) {
15416 case CF1: show_key_mappings(); break; 15417 case CF3: toggle_scroll(); break; /* hardware <-> software */
15418 case CF7: sigchar(&tty_table[CONSOLE], SIGQUIT); break; 15419 case CF8:
sigchar(&tty_table[CONSOLE], SIGINT); break; 15420 case CF9: sigchar(&tty_table[CONSOLE], SIGKILL); break;
15421 } 15422 } 15423 } 15424 15425 return 1; 15426 } 15428
/*===* 15429 *
make_break * 15430
===/ 15431
PRIVATE unsigned make_break(scode) 15432 int scode; /* scan code of key just struck or released */ 15433 { 15434
/* This routine can handle keyboards that interrupt only on key depression, 15435 * as well as keyboards that interrupt
on key depression and key release. 15436 * For efficiency, the interrupt routine filters out most key releases. 15437 */
15438 int ch, make, escape; 15439 static int CAD_count = 0; 15440 15441 /* Check for CTRL-ALT-DEL, and if
found, halt the computer. This would 15442 * be better done in keyboard() in case TTY is hung, except control and
15443 * alt are set in the high level code. 15444 */ 15445 if (ctrl && alt && (scode == DEL_SCAN || scode ==
INS_SCAN)) 15446 { 15447 if (++CAD_count == 3) sys_abort(RBT_HALT); 15448 sys_kill(INIT_PROC_NR,
SIGABRT); 15449 return -1; 15450 } 15451 15452 /* High-order bit set on key release. */ 15453 make = (scode &
KEY_RELEASE) == 0; /* true if pressed */ 15454 15455 ch = map_key(scode &= ASCII_MASK); /* map to ASCII
/ 15456 15457 escape = esc; / Key is escaped? (true if added since the XT) */ 15458 esc = 0; 15459 15460 switch
(ch) { 15461 case CTRL: /* Left or right control key */ 15462 *(escape ? &ctrl_r : &ctrl_l) = make; 15463 ctrl = ctrl_l
| ctrl_r; 15464 break;

[Page 842]

15465 case SHIFT: /* Left or right shift key */ 15466 *(scode == RSHIFT_SCAN ? &shift_r : &shift_l) = make;
15467 shift = shift_l | shift_r; 15468 break; 15469 case ALT: /* Left or right alt key */ 15470 *(escape ? &alt_r :
&alt_l) = make; 15471 alt = alt_l | alt_r; 15472 break; 15473 case CALOCK: /* Caps lock - toggle on 0 -> 1 transition
*/ 15474 if (caps_down < make) { 15475 locks[ccurrent] ^= CAPS_LOCK; 15476 set_leds(); 15477 } 15478
caps_down = make; 15479 break; 15480 case NLOCK: /* Num lock */ 15481 if (num_down < make) { 15482
locks[ccurrent] ^= NUM_LOCK; 15483 set_leds(); 15484 } 15485 num_down = make; 15486 break; 15487 case
SLOCK: /* Scroll lock */ 15488 if (scroll_down < make) { 15489 locks[ccurrent] ^= SCROLL_LOCK; 15490
set_leds(); 15491 } 15492 scroll_down = make; 15493 break; 15494 case EXTKEY: /* Escape keycode */ 15495 esc =
1; /* Next key is escaped */ 15496 return(-1); 15497 default: /* A normal key */ 15498 if (make) return(ch); 15499 }
15500 15501 /* Key release, or a shift type key. */ 15502 return(-1); 15503 } 15505
/*===* 15506 *
set_leds * 15507
===/ 15508
PRIVATE void set_leds() 15509 { 15510 /* Set the LEDs on the caps, num, and scroll lock keys */ 15511 int s; 15512
if (! machine.pc_at) return; /* PC/XT doesn't have LEDs */ 15513 15514 kb_wait(); /* wait for buffer empty */ 15515
if ((s=sys_outb(KEYBD, LED_CODE)) != OK) 15516 printf("Warning, sys_outb couldn't prepare for LED values:
%d\n", s); 15517 /* prepare keyboard to accept LED values */ 15518 kb_ack(); /* wait for ack response */ 15519
15520 kb_wait(); /* wait for buffer empty */ 15521 if ((s=sys_outb(KEYBD, locks[ccurrent])) != OK) 15522
printf("Warning, sys_outb couldn't give LED values: %d\n", s); 15523 /* give keyboard LED values */ 15524
kb_ack(); /* wait for ack response */

104

104

[Page 843]

15525 } 15527
/*===* 15528 *
kb_wait * 15529
===/ 15530
PRIVATE int kb_wait() 15531 { 15532 /* Wait until the controller is ready; return zero if this times out. */ 15533
15534 int retries, status, temp; 15535 int s; 15536 15537 retries = MAX_KB_BUSY_RETRIES + 1; /* wait until not
busy */ 15538 do { 15539 s = sys_inb(KB_STATUS, &status); 15540 if (status & KB_OUT_FULL) { 15541 s =
sys_inb(KEYBD, &temp); /* discard value */ 15542 } 15543 if (! (status & (KB_IN_FULL|KB_OUT_FULL)))
15544 break; /* wait until ready */ 15545 } while (--retries != 0); /* continue unless timeout */ 15546 return(retries); /*
zero on timeout, positive if ready */ 15547 } 15549
/*===* 15550 *
kb_ack * 15551
===/ 15552
PRIVATE int kb_ack() 15553 { 15554 /* Wait until kbd acknowledges last command; return zero if this times out. */
15555 15556 int retries, s; 15557 u8_t u8val; 15558 15559 retries = MAX_KB_ACK_RETRIES + 1; 15560 do {
15561 s = sys_inb(KEYBD, &u8val); 15562 if (u8val == KB_ACK) 15563 break; /* wait for ack */ 15564 }
while(--retries != 0); /* continue unless timeout */ 15565 15566 return(retries); /* nonzero if ack received */ 15567 }
15569 /*===*
15570 * kb_init * 15571
===/ 15572
PUBLIC void kb_init(tp) 15573 tty_t *tp; 15574 { 15575 /* Initialize the keyboard driver. */ 15576 15577
tp->tty_devread = kb_read; /* input function */ 15578 } 15580
/*===* 15581 *
kb_init_once * 15582
===/ 15583
PUBLIC void kb_init_once(void) 15584 {

[Page 844]

15585 int i; 15586 15587 set_leds(); /* turn off numlock led */ 15588 scan_keyboard(); /* discard leftover keystroke */
15589 15590 /* Clear the function key observers array. Also see func_key(). */ 15591 for (i=0; i<12; i++) { 15592
fkey_obs[i].proc_nr = NONE; /* F1-F12 observers */ 15593 fkey_obs[i].events = 0; /* F1-F12 observers */ 15594
sfkey_obs[i].proc_nr = NONE; /* Shift F1-F12 observers */ 15595 sfkey_obs[i].events = 0; /* Shift F1-F12 observers
/ 15596 } 15597 15598 / Set interrupt handler and enable keyboard IRQ. */ 15599 irq_hook_id =
KEYBOARD_IRQ; /* id to be returned on interrupt */ 15600 if ((i=sys_irqsetpolicy(KEYBOARD_IRQ,
IRQ_REENABLE, &irq_hook_id)) != OK) 15601 panic("TTY", "Couldn't set keyboard IRQ policy", i); 15602 if
((i=sys_irqenable(&irq_hook_id)) != OK) 15603 panic("TTY", "Couldn't enable keyboard IRQs", i); 15604
kbd_irq_set |= (1 << KEYBOARD_IRQ); 15605 } 15607
/*===* 15608 *
kbd_loadmap * 15609
===/ 15610
PUBLIC int kbd_loadmap(m) 15611 message *m; 15612 { 15613 /* Load a new keymap. */ 15614 int result; 15615
result = sys_vircopy(m->PROC_NR, D, (vir_bytes) m->ADDRESS, 15616 SELF, D, (vir_bytes) keymap, 15617
(vir_bytes) sizeof(keymap)); 15618 return(result); 15619 } 15621
/*===* 15622 *
do_fkey_ctl * 15623
===/ 15624
PUBLIC void do_fkey_ctl(m_ptr) 15625 message *m_ptr; /* pointer to the request message */ 15626 { 15627 /* This
procedure allows processes to register a function key to receive 15628 * notifications if it is pressed. At most one
binding per key can exist. 15629 */ 15630 int i; 15631 int result; 15632 15633 switch (m_ptr->FKEY_REQUEST) { /*
see what we must do */ 15634 case FKEY_MAP: /* request for new mapping */ 15635 result = OK; /* assume

105

105

everything will be ok*/ 15636 for (i=0; i < 12; i++) { /* check F1-F12 keys */ 15637 if
(bit_isset(m_ptr->FKEY_FKEYS, i+1)) { 15638 if (fkey_obs[i].proc_nr == NONE) { 15639 fkey_obs[i].proc_nr =
m_ptr->m_source; 15640 fkey_obs[i].events = 0; 15641 bit_unset(m_ptr->FKEY_FKEYS, i+1); 15642 } else { 15643
printf("WARNING, fkey_map failed F%d\n", i+1); 15644 result = EBUSY; /* report failure, but try rest */

[Page 845]

15645 } 15646 } 15647 } 15648 for (i=0; i < 12; i++) { /* check Shift+F1-F12 keys */ 15649 if
(bit_isset(m_ptr->FKEY_SFKEYS, i+1)) { 15650 if (sfkey_obs[i].proc_nr == NONE) { 15651 sfkey_obs[i].proc_nr
= m_ptr->m_source; 15652 sfkey_obs[i].events = 0; 15653 bit_unset(m_ptr->FKEY_SFKEYS, i+1); 15654 } else {
15655 printf("WARNING, fkey_map failed Shift F%d\n", i+1); 15656 result = EBUSY; /* report failure but try rest */
15657 } 15658 } 15659 } 15660 break; 15661 case FKEY_UNMAP: 15662 result = OK; /* assume everything will be
ok*/ 15663 for (i=0; i < 12; i++) { /* check F1-F12 keys */ 15664 if (bit_isset(m_ptr->FKEY_FKEYS, i+1)) { 15665
if (fkey_obs[i].proc_nr == m_ptr->m_source) { 15666 fkey_obs[i].proc_nr = NONE; 15667 fkey_obs[i].events = 0;
15668 bit_unset(m_ptr->FKEY_FKEYS, i+1); 15669 } else { 15670 result = EPERM; /* report failure, but try rest */
15671 } 15672 } 15673 } 15674 for (i=0; i < 12; i++) { /* check Shift+F1-F12 keys */ 15675 if
(bit_isset(m_ptr->FKEY_SFKEYS, i+1)) { 15676 if (sfkey_obs[i].proc_nr == m_ptr->m_source) { 15677
sfkey_obs[i].proc_nr = NONE; 15678 sfkey_obs[i].events = 0; 15679 bit_unset(m_ptr->FKEY_SFKEYS, i+1); 15680
} else { 15681 result = EPERM; /* report failure, but try rest */ 15682 } 15683 } 15684 } 15685 break; 15686 case
FKEY_EVENTS: 15687 m_ptr->FKEY_FKEYS = m_ptr->FKEY_SFKEYS = 0; 15688 for (i=0; i < 12; i++) { /*
check (Shift+) F1-F12 keys */ 15689 if (fkey_obs[i].proc_nr == m_ptr->m_source) { 15690 if (fkey_obs[i].events) {
15691 bit_set(m_ptr->FKEY_FKEYS, i+1); 15692 fkey_obs[i].events = 0; 15693 } 15694 } 15695 if
(sfkey_obs[i].proc_nr == m_ptr->m_source) { 15696 if (sfkey_obs[i].events) { 15697
bit_set(m_ptr->FKEY_SFKEYS, i+1); 15698 sfkey_obs[i].events = 0; 15699 } 15700 } 15701 } 15702 break; 15703
default: 15704 result = EINVAL; /* key cannot be observed */

[Page 846]

15705 } 15706 15707 /* Almost done, return result to caller. */ 15708 m_ptr->m_type = result; 15709
send(m_ptr->m_source, m_ptr); 15710 } 15712
/*===* 15713 *
func_key * 15714
===/ 15715
PRIVATE int func_key(scode) 15716 int scode; /* scan code for a function key */ 15717 { 15718 /* This procedure
traps function keys for debugging purposes. Observers of 15719 * function keys are kept in a global array. If a subject
(a key) is pressed 15720 * the observer is notified of the event. Initialization of the arrays is done 15721 * in kb_init,
where NONE is set to indicate there is no interest in the key. 15722 * Returns FALSE on a key release or if the key is
not observable. 15723 */ 15724 message m; 15725 int key; 15726 int proc_nr; 15727 int i,s; 15728 15729 /* Ignore
key releases. If this is a key press, get full key code. */ 15730 if (scode & KEY_RELEASE) return(FALSE); /* key
release */ 15731 key = map_key(scode); /* include modifiers */ 15732 15733 /* Key pressed, now see if there is an
observer for the pressed key. 15734 * F1-F12 observers are in fkey_obs array. 15735 * SHIFT F1-F12 observers are in
sfkey_req array. 15736 * CTRL F1-F12 reserved (see kb_read) 15737 * ALT F1-F12 reserved (see kb_read) 15738 *
Other combinations are not in use. Note that Alt+Shift+F1-F12 is yet 15739 * defined in <minix/keymap.h>, and thus
is easy for future extensions. 15740 */ 15741 if (F1 <= key && key <= F12) { /* F1-F12 */ 15742 proc_nr =
fkey_obs[key - F1].proc_nr; 15743 fkey_obs[key - F1].events ++ ; 15744 } else if (SF1 <= key && key <= SF12) { /*
Shift F2-F12 */ 15745 proc_nr = sfkey_obs[key - SF1].proc_nr; 15746 sfkey_obs[key - SF1].events ++; 15747 }
15748 else { 15749 return(FALSE); /* not observable */ 15750 } 15751 15752 /* See if an observer is registered and
send it a message. */ 15753 if (proc_nr != NONE) { 15754 m.NOTIFY_TYPE = FKEY_PRESSED; 15755
notify(proc_nr); 15756 } 15757 return(TRUE); 15758 } 15760
/*===* 15761 *
show_key_mappings * 15762
===/ 15763
PRIVATE void show_key_mappings() 15764 {

106

106

[Page 847]

15765 int i,s; 15766 struct proc proc; 15767 15768 printf("\n"); 15769 printf("System information. Known
function key mappings to request debug dumps:\n"); 15770 printf
("---\n"); 15771 for (i=0; i<12; i++) { 15772 15773 printf("
%sF%d: ", i+1<10? " ":"", i+1); 15774 if (fkey_obs[i].proc_nr != NONE) { 15775 if ((s=sys_getproc(&proc,
fkey_obs[i].proc_nr))!=OK) 15776 printf("sys_getproc: %d\n", s); 15777 printf("%-14.14s", proc.p_name); 15778 }
else { 15779 printf("%-14.14s", "<none>"); 15780 } 15781 15782 printf(" %sShift-F%d: ", i+1<10? " ":"", i+1); 15783
if (sfkey_obs[i].proc_nr != NONE) { 15784 if ((s=sys_getproc(&proc, sfkey_obs[i].proc_nr))!=OK) 15785
printf("sys_getproc: %d\n", s); 15786 printf("%-14.14s", proc.p_name); 15787 } else { 15788 printf("%-14.14s",
"<none>"); 15789 } 15790 printf("\n"); 15791 } 15792 printf("\n"); 15793 printf("Press one of the registered function
keys to trigger a debug dump.\n"); 15794 printf("\n"); 15795 } 15797
/*===* 15798 *
scan_keyboard * 15799
===/ 15800
PRIVATE int scan_keyboard() 15801 { 15802 /* Fetch the character from the keyboard hardware and acknowledge it.
/ 15803 pvb_pair_t byte_in[2], byte_out[2]; 15804 15805 byte_in[0].port = KEYBD; / get the scan code for the key
struck */ 15806 byte_in[1].port = PORT_B; /* strobe the keyboard to ack the char */ 15807 sys_vinb(byte_in, 2); /*
request actual input */ 15808 15809 pv_set(byte_out[0], PORT_B, byte_in[1].value | KBIT); /* strobe bit high */
15810 pv_set(byte_out[1], PORT_B, byte_in[1].value); /* then strobe low */ 15811 sys_voutb(byte_out, 2); /* request
actual output */ 15812 15813 return(byte_in[0].value); /* return scan code */ 15814 } 15816
/*===* 15817 *
do_panic_dumps * 15818
===/ 15819
PUBLIC void do_panic_dumps(m) 15820 message *m; /* request message to TTY */ 15821 { 15822 /* Wait for
keystrokes for printing debugging info and reboot. */ 15823 int quiet, code; 15824

[Page 848]

15825 /* A panic! Allow debug dumps until user wants to shutdown. */ 15826 printf("\nHit ESC to reboot, DEL to
shutdown, F-keys for debug dumps\n"); 15827 15828 (void) scan_keyboard(); /* ack any old input */ 15829 quiet =
scan_keyboard();/* quiescent value (0 on PC, last code on AT)*/ 15830 for (;;) { 15831 tickdelay(10); 15832 /* See if
there are pending request for output, but don't block. 15833 * Diagnostics can span multiple printf()s, so do it in a loop.
15834 */ 15835 while (nb_receive(ANY, m) == OK) { 15836 switch(m->m_type) { 15837 case FKEY_CONTROL:
do_fkey_ctl(m); break; 15838 case SYS_SIG: do_new_kmess(m); break; 15839 case DIAGNOSTICS:
do_diagnostics(m); break; 15840 default: ; /* do nothing */ 15841 } 15842 tickdelay(1); /* allow more */ 15843 }
15844 code = scan_keyboard(); 15845 if (code != quiet) { 15846 /* A key has been pressed. */ 15847 switch (code) {
/* possibly abort MINIX */ 15848 case ESC_SCAN: sys_abort(RBT_REBOOT); return; 15849 case DEL_SCAN:
sys_abort(RBT_HALT); return; 15850 } 15851 (void) func_key(code); /* check for function key */ 15852 quiet =
scan_keyboard(); 15853 } 15854 } 15855 }
++
drivers/tty/console.c
++
15900 /* Code and data for the IBM console driver. 15901 * 15902 * The 6845 video controller used by the IBM PC
shares its video memory with 15903 * the CPU somewhere in the 0xB0000 memory bank. To the 6845 this memory
15904 * consists of 16-bit words. Each word has a character code in the low byte 15905 * and a so-called attribute byte
in the high byte. The CPU directly modifies 15906 * video memory to display characters, and sets two registers on the
6845 that 15907 * specify the video origin and the cursor position. The video origin is the 15908 * place in video
memory where the first character (upper left corner) can 15909 * be found. Moving the origin is a fast way to scroll the
screen. Some 15910 * video adapters wrap around the top of video memory, so the origin can 15911 * move without
bounds. For other adapters screen memory must sometimes be 15912 * moved to reset the origin. All computations on
video memory use character 15913 * (word) addresses for simplicity and assume there is no wrapping. The 15914 *
assembly support functions translate the word addresses to byte addresses 15915 * and the scrolling function worries
about wrapping. 15916 */ 15917 15918 #include "../drivers.h" 15919 #include <termios.h>

107

107

[Page 849]

15920 #include <minix/callnr.h> 15921 #include <minix/com.h> 15922 #include "tty.h" 15923 15924 #include
"../../kernel/const.h" 15925 #include "../../kernel/config.h" 15926 #include "../../kernel/type.h" 15927 15928 /*
Definitions used by the console driver. */ 15929 #define MONO_BASE 0xB0000L /* base of mono video memory */
15930 #define COLOR_BASE 0xB8000L /* base of color video memory */ 15931 #define MONO_SIZE 0x1000 /*
4K mono video memory */ 15932 #define COLOR_SIZE 0x4000 /* 16K color video memory */ 15933 #define
EGA_SIZE 0x8000 /* EGA & VGA have at least 32K */ 15934 #define BLANK_COLOR 0x0700 /* determines
cursor color on blank screen */ 15935 #define SCROLL_UP 0 /* scroll forward */ 15936 #define SCROLL_DOWN 1
/* scroll backward */ 15937 #define BLANK_MEM ((u16_t *) 0) /* tells mem_vid_copy() to blank the screen */
15938 #define CONS_RAM_WORDS 80 /* video ram buffer size */ 15939 #define MAX_ESC_PARMS 4 /* number
of escape sequence params allowed */ 15940 15941 /* Constants relating to the controller chips. */ 15942 #define
M_6845 0x3B4 /* port for 6845 mono */ 15943 #define C_6845 0x3D4 /* port for 6845 color */ 15944 #define
INDEX 0 /* 6845's index register */ 15945 #define DATA 1 /* 6845's data register */ 15946 #define STATUS 6 /*
6845's status register */ 15947 #define VID_ORG 12 /* 6845's origin register */ 15948 #define CURSOR 14 /* 6845's
cursor register */ 15949 15950 /* Beeper. */ 15951 #define BEEP_FREQ 0x0533 /* value to put into timer to set beep
freq */ 15952 #define B_TIME 3 /* length of CTRL-G beep is ticks */ 15953 15954 /* definitions used for font
management */ 15955 #define GA_SEQUENCER_INDEX 0x3C4 15956 #define GA_SEQUENCER_DATA 0x3C5
15957 #define GA_GRAPHICS_INDEX 0x3CE 15958 #define GA_GRAPHICS_DATA 0x3CF 15959 #define
GA_VIDEO_ADDRESS 0xA0000L 15960 #define GA_FONT_SIZE 8192 15961 15962 /* Global variables used by
the console driver and assembly support. */ 15963 PUBLIC int vid_index; /* index of video segment in remote mem
map */ 15964 PUBLIC u16_t vid_seg; 15965 PUBLIC vir_bytes vid_off; /* video ram is found at vid_seg:vid_off */
15966 PUBLIC unsigned vid_size; /* 0x2000 for color or 0x0800 for mono */ 15967 PUBLIC unsigned vid_mask; /*
0x1FFF for color or 0x07FF for mono */ 15968 PUBLIC unsigned blank_color = BLANK_COLOR; /* display code
for blank */ 15969 15970 /* Private variables used by the console driver. */ 15971 PRIVATE int vid_port; /* I/O port
for accessing 6845 */ 15972 PRIVATE int wrap; /* hardware can wrap? */ 15973 PRIVATE int softscroll; /* 1 =
software scrolling, 0 = hardware */ 15974 PRIVATE int beeping; /* speaker is beeping? */ 15975 PRIVATE unsigned
font_lines; /* font lines per character */ 15976 PRIVATE unsigned scr_width; /* # characters on a line */ 15977
PRIVATE unsigned scr_lines; /* # lines on the screen */ 15978 PRIVATE unsigned scr_size; /* # characters on the
screen */ 15979

[Page 850]

15980 /* Per console data. */ 15981 typedef struct console { 15982 tty_t *c_tty; /* associated TTY struct */ 15983 int
c_column; /* current column number (0-origin) */ 15984 int c_row; /* current row (0 at top of screen) */ 15985 int
c_rwords; /* number of WORDS (not bytes) in outqueue */ 15986 unsigned c_start; /* start of video memory of this
console */ 15987 unsigned c_limit; /* limit of this console's video memory */ 15988 unsigned c_org; /* location in
RAM where 6845 base points */ 15989 unsigned c_cur; /* current position of cursor in video RAM */ 15990 unsigned
c_attr; /* character attribute */ 15991 unsigned c_blank; /* blank attribute */ 15992 char c_reverse; /* reverse video */
15993 char c_esc_state; /* 0=normal, 1=ESC, 2=ESC[*/ 15994 char c_esc_intro; /* Distinguishing character
following ESC */ 15995 int *c_esc_parmp; /* pointer to current escape parameter */ 15996 int
c_esc_parmv[MAX_ESC_PARMS]; /* list of escape parameters */ 15997 u16_t
c_ramqueue[CONS_RAM_WORDS]; /* buffer for video RAM */ 15998 } console_t; 15999 16000 PRIVATE int
nr_cons= 1; /* actual number of consoles */ 16001 PRIVATE console_t cons_table[NR_CONS]; 16002 PRIVATE
console_t *curcons; /* currently visible */ 16003 16004 /* Color if using a color controller. */ 16005 #define color
(vid_port == C_6845) 16006 16007 /* Map from ANSI colors to the attributes used by the PC */ 16008 PRIVATE int
ansi_colors[8] = {0, 4, 2, 6, 1, 5, 3, 7}; 16009 16010 /* Structure used for font management */ 16011 struct sequence {
16012 unsigned short index; 16013 unsigned char port; 16014 unsigned char value; 16015 }; 16016 16017
FORWARD _PROTOTYPE(int cons_write, (struct tty *tp, int try)); 16018 FORWARD _PROTOTYPE(void
cons_echo, (tty_t *tp, int c)); 16019 FORWARD _PROTOTYPE(void out_char, (console_t *cons, int c)); 16020
FORWARD _PROTOTYPE(void putk, (int c)); 16021 FORWARD _PROTOTYPE(void beep, (void)); 16022
FORWARD _PROTOTYPE(void do_escape, (console_t *cons, int c)); 16023 FORWARD _PROTOTYPE(void
flush, (console_t *cons)); 16024 FORWARD _PROTOTYPE(void parse_escape, (console_t *cons, int c)); 16025

108

108

FORWARD _PROTOTYPE(void scroll_screen, (console_t *cons, int dir)); 16026 FORWARD _PROTOTYPE(void
set_6845, (int reg, unsigned val)); 16027 FORWARD _PROTOTYPE(void get_6845, (int reg, unsigned *val));
16028 FORWARD _PROTOTYPE(void stop_beep, (timer_t *tmrp)); 16029 FORWARD _PROTOTYPE(void
cons_org0, (void)); 16030 FORWARD _PROTOTYPE(int ga_program, (struct sequence *seq)); 16031 FORWARD
_PROTOTYPE(int cons_ioctl, (tty_t *tp, int)); 16032 16033
/*===* 16034 *
cons_write * 16035
===/ 16036
PRIVATE int cons_write(tp, try) 16037 register struct tty *tp; /* tells which terminal is to be used */ 16038 int try;
16039 {

[Page 851]

16040 /* Copy as much data as possible to the output queue, then start I/O. On 16041 * memory-mapped terminals,
such as the IBM console, the I/O will also be 16042 * finished, and the counts updated. Keep repeating until all I/O
done. 16043 */ 16044 16045 int count; 16046 int result; 16047 register char *tbuf; 16048 char buf[64]; 16049
console_t *cons = tp->tty_priv; 16050 16051 if (try) return 1; /* we can always write to console */ 16052 16053 /*
Check quickly for nothing to do, so this can be called often without 16054 * unmodular tests elsewhere. 16055 */
16056 if ((count = tp->tty_outleft) == 0 || tp->tty_inhibited) return; 16057 16058 /* Copy the user bytes to buf[] for
decent addressing. Loop over the 16059 * copies, since the user buffer may be much larger than buf[]. 16060 */ 16061
do { 16062 if (count > sizeof(buf)) count = sizeof(buf); 16063 if ((result = sys_vircopy(tp->tty_outproc, D,
tp->tty_out_vir, 16064 SELF, D, (vir_bytes) buf, (vir_bytes) count)) != OK) 16065 break; 16066 tbuf = buf; 16067
16068 /* Update terminal data structure. */ 16069 tp->tty_out_vir += count; 16070 tp->tty_outcum += count; 16071
tp->tty_outleft -= count; 16072 16073 /* Output each byte of the copy to the screen. Avoid calling 16074 * out_char()
for the "easy" characters, put them into the buffer 16075 * directly. 16076 */ 16077 do { 16078 if ((unsigned) *tbuf < '
' || cons->c_esc_state > 0 16079 || cons->c_column >= scr_width 16080 || cons->c_rwords >=
buflen(cons->c_ramqueue)) 16081 { 16082 out_char(cons, *tbuf++); 16083 } else { 16084
cons->c_ramqueue[cons->c_rwords++] = 16085 cons->c_attr | (*tbuf++ & BYTE); 16086 cons->c_column++; 16087
} 16088 } while (--count != 0); 16089 } while ((count = tp->tty_outleft) != 0 && !tp->tty_inhibited); 16090 16091
flush(cons); /* transfer anything buffered to the screen */ 16092 16093 /* Reply to the writer if all output is finished or
if an error occured. */ 16094 if (tp->tty_outleft == 0 || result != OK) { 16095 /* REVIVE is not possible. I/O on
memory mapped consoles finishes. */ 16096 tty_reply(tp->tty_outrepcode, tp->tty_outcaller, tp->tty_outproc, 16097
tp->tty_outcum); 16098 tp->tty_outcum = 0; 16099 }

[Page 852]

16100 } 16102
/*===* 16103 *
cons_echo * 16104
===/ 16105
PRIVATE void cons_echo(tp, c) 16106 register tty_t *tp; /* pointer to tty struct */ 16107 int c; /* character to be
echoed */ 16108 { 16109 /* Echo keyboard input (print & flush). */ 16110 console_t *cons = tp->tty_priv; 16111
16112 out_char(cons, c); 16113 flush(cons); 16114 } 16116
/*===* 16117 *
out_char * 16118
===/ 16119
PRIVATE void out_char(cons, c) 16120 register console_t *cons; /* pointer to console struct */ 16121 int c; /*
character to be output */ 16122 { 16123 /* Output a character on the console. Check for escape sequences first. */
16124 if (cons->c_esc_state > 0) { 16125 parse_escape(cons, c); 16126 return; 16127 } 16128 16129 switch(c) {
16130 case 000: /* null is typically used for padding */ 16131 return; /* better not do anything */ 16132 16133 case
007: /* ring the bell */ 16134 flush(cons); /* print any chars queued for output */ 16135 beep(); 16136 return; 16137
16138 case '\b': /* backspace */ 16139 if (--cons->c_column < 0) { 16140 if (--cons->c_row >= 0) cons->c_column +=
scr_width; 16141 } 16142 flush(cons); 16143 return; 16144 16145 case '\n': /* line feed */ 16146 if
((cons->c_tty->tty_termios.c_oflag & (OPOST|ONLCR)) 16147 == (OPOST|ONLCR)) { 16148 cons->c_column = 0;

109

109

16149 } 16150 /*FALL THROUGH*/ 16151 case 013: /* CTRL-K */ 16152 case 014: /* CTRL-L */ 16153 if
(cons->c_row == scr_lines-1) { 16154 scroll_screen(cons, SCROLL_UP); 16155 } else { 16156 cons->c_row++;
16157 } 16158 flush(cons); 16159 return;

[Page 853]

16160 16161 case '\r': /* carriage return */ 16162 cons->c_column = 0; 16163 flush(cons); 16164 return; 16165 16166
case '\t': /* tab */ 16167 cons->c_column = (cons->c_column + TAB_SIZE) & ~TAB_MASK; 16168 if
(cons->c_column > scr_width) { 16169 cons->c_column -= scr_width; 16170 if (cons->c_row == scr_lines-1) { 16171
scroll_screen(cons, SCROLL_UP); 16172 } else { 16173 cons->c_row++; 16174 } 16175 } 16176 flush(cons); 16177
return; 16178 16179 case 033: /* ESC - start of an escape sequence */ 16180 flush(cons); /* print any chars queued for
output */ 16181 cons->c_esc_state = 1; /* mark ESC as seen */ 16182 return; 16183 16184 default: /* printable chars
are stored in ramqueue */ 16185 if (cons->c_column >= scr_width) { 16186 if (!LINEWRAP) return; 16187 if
(cons->c_row == scr_lines-1) { 16188 scroll_screen(cons, SCROLL_UP); 16189 } else { 16190 cons->c_row++;
16191 } 16192 cons->c_column = 0; 16193 flush(cons); 16194 } 16195 if (cons->c_rwords ==
buflen(cons->c_ramqueue)) flush(cons); 16196 cons->c_ramqueue[cons->c_rwords++] = cons->c_attr | (c & BYTE);
16197 cons->c_column++; /* next column */ 16198 return; 16199 } 16200 } 16202
/*===* 16203 *
scroll_screen * 16204
===/ 16205
PRIVATE void scroll_screen(cons, dir) 16206 register console_t *cons; /* pointer to console struct */ 16207 int dir; /*
SCROLL_UP or SCROLL_DOWN */ 16208 { 16209 unsigned new_line, new_org, chars; 16210 16211 flush(cons);
16212 chars = scr_size - scr_width; /* one screen minus one line */ 16213 16214 /* Scrolling the screen is a real
nuisance due to the various incompatible 16215 * video cards. This driver supports software scrolling (Hercules?),
16216 * hardware scrolling (mono and CGA cards) and hardware scrolling without 16217 * wrapping (EGA cards). In
the latter case we must make sure that 16218 * c_start <= c_org && c_org + scr_size <= c_limit 16219 * holds,
because EGA doesn't wrap around the end of video memory.

[Page 854]

16220 */ 16221 if (dir == SCROLL_UP) { 16222 /* Scroll one line up in 3 ways: soft, avoid wrap, use origin. */
16223 if (softscroll) { 16224 vid_vid_copy(cons->c_start + scr_width, cons->c_start, chars); 16225 } else 16226 if
(!wrap && cons->c_org + scr_size + scr_width >= cons->c_limit) { 16227 vid_vid_copy(cons->c_org + scr_width,
cons->c_start, chars); 16228 cons->c_org = cons->c_start; 16229 } else { 16230 cons->c_org = (cons->c_org +
scr_width) & vid_mask; 16231 } 16232 new_line = (cons->c_org + chars) & vid_mask; 16233 } else { 16234 /* Scroll
one line down in 3 ways: soft, avoid wrap, use origin. */ 16235 if (softscroll) { 16236 vid_vid_copy(cons->c_start,
cons->c_start + scr_width, chars); 16237 } else 16238 if (!wrap && cons->c_org < cons->c_start + scr_width) { 16239
new_org = cons->c_limit - scr_size; 16240 vid_vid_copy(cons->c_org, new_org + scr_width, chars); 16241
cons->c_org = new_org; 16242 } else { 16243 cons->c_org = (cons->c_org - scr_width) & vid_mask; 16244 } 16245
new_line = cons->c_org; 16246 } 16247 /* Blank the new line at top or bottom. */ 16248 blank_color =
cons->c_blank; 16249 mem_vid_copy(BLANK_MEM, new_line, scr_width); 16250 16251 /* Set the new video
origin. */ 16252 if (cons == curcons) set_6845(VID_ORG, cons->c_org); 16253 flush(cons); 16254 } 16256
/*===* 16257 *
flush * 16258
===/ 16259
PRIVATE void flush(cons) 16260 register console_t *cons; /* pointer to console struct */ 16261 { 16262 /* Send
characters buffered in 'ramqueue' to screen memory, check the new 16263 * cursor position, compute the new
hardware cursor position and set it. 16264 */ 16265 unsigned cur; 16266 tty_t *tp = cons->c_tty; 16267 16268 /* Have
the characters in 'ramqueue' transferred to the screen. */ 16269 if (cons->c_rwords > 0) { 16270
mem_vid_copy(cons->c_ramqueue, cons->c_cur, cons->c_rwords); 16271 cons->c_rwords = 0; 16272 16273 /* TTY
likes to know the current column and if echoing messed up. */ 16274 tp->tty_position = cons->c_column; 16275
tp->tty_reprint = TRUE; 16276 } 16277 16278 /* Check and update the cursor position. */ 16279 if (cons->c_column
< 0) cons->c_column = 0;

110

110

[Page 855]

16280 if (cons->c_column > scr_width) cons->c_column = scr_width; 16281 if (cons->c_row < 0) cons->c_row = 0;
16282 if (cons->c_row >= scr_lines) cons->c_row = scr_lines - 1; 16283 cur = cons->c_org + cons->c_row *
scr_width + cons->c_column; 16284 if (cur != cons->c_cur) { 16285 if (cons == curcons) set_6845(CURSOR, cur);
16286 cons->c_cur = cur; 16287 } 16288 } 16290
/*===* 16291 *
parse_escape * 16292
===/ 16293
PRIVATE void parse_escape(cons, c) 16294 register console_t *cons; /* pointer to console struct */ 16295 char c; /*
next character in escape sequence */ 16296 { 16297 /* The following ANSI escape sequences are currently supported.
16298 * If n and/or m are omitted, they default to 1. 16299 * ESC [nA moves up n lines 16300 * ESC [nB moves
down n lines 16301 * ESC [nC moves right n spaces 16302 * ESC [nD moves left n spaces 16303 * ESC [m;nH"
moves cursor to (m,n) 16304 * ESC [J clears screen from cursor 16305 * ESC [K clears line from cursor 16306 * ESC
[nL inserts n lines ar cursor 16307 * ESC [nM deletes n lines at cursor 16308 * ESC [nP deletes n chars at cursor
16309 * ESC [n@ inserts n chars at cursor 16310 * ESC [nm enables rendition n (0=normal, 4=bold, 5=blinking,
7=reverse) 16311 * ESC M scrolls the screen backwards if the cursor is on the top line 16312 */ 16313 16314 switch
(cons->c_esc_state) { 16315 case 1: /* ESC seen */ 16316 cons->c_esc_intro = '\0'; 16317 cons->c_esc_parmp =
bufend(cons->c_esc_parmv); 16318 do { 16319 *--cons->c_esc_parmp = 0; 16320 } while (cons->c_esc_parmp >
cons->c_esc_parmv); 16321 switch (c) { 16322 case '[': /* Control Sequence Introducer */ 16323 cons->c_esc_intro =
c; 16324 cons->c_esc_state = 2; 16325 break; 16326 case 'M': /* Reverse Index */ 16327 do_escape(cons, c); 16328
break; 16329 default: 16330 cons->c_esc_state = 0; 16331 } 16332 break; 16333 16334 case 2: /* ESC [seen */ 16335
if (c >= '0' && c <= '9') { 16336 if (cons->c_esc_parmp < bufend(cons->c_esc_parmv)) 16337 *cons->c_esc_parmp =
*cons->c_esc_parmp * 10 + (c-'0'); 16338 } else 16339 if (c == ';') {

[Page 856]

16340 if (cons->c_esc_parmp < bufend(cons->c_esc_parmv)) 16341 cons->c_esc_parmp++; 16342 } else { 16343
do_escape(cons, c); 16344 } 16345 break; 16346 } 16347 } 16349
/*===* 16350 *
do_escape * 16351
===/ 16352
PRIVATE void do_escape(cons, c) 16353 register console_t *cons; /* pointer to console struct */ 16354 char c; /* next
character in escape sequence */ 16355 { 16356 int value, n; 16357 unsigned src, dst, count; 16358 int *parmp; 16359
16360 /* Some of these things hack on screen RAM, so it had better be up to date */ 16361 flush(cons); 16362 16363
if (cons->c_esc_intro == '\0') { 16364 /* Handle a sequence beginning with just ESC */ 16365 switch (c) { 16366 case
'M': /* Reverse Index */ 16367 if (cons->c_row == 0) { 16368 scroll_screen(cons, SCROLL_DOWN); 16369 } else {
16370 cons->c_row--; 16371 } 16372 flush(cons); 16373 break; 16374 16375 default: break; 16376 } 16377 } else
16378 if (cons->c_esc_intro == '[') { 16379 /* Handle a sequence beginning with ESC [and parameters */ 16380 value
= cons->c_esc_parmv[0]; 16381 switch (c) { 16382 case 'A': /* ESC [nA moves up n lines */ 16383 n = (value == 0 ?
1 : value); 16384 cons->c_row -= n; 16385 flush(cons); 16386 break; 16387 16388 case 'B': /* ESC [nB moves down n
lines */ 16389 n = (value == 0 ? 1 : value); 16390 cons->c_row += n; 16391 flush(cons); 16392 break; 16393 16394
case 'C': /* ESC [nC moves right n spaces */ 16395 n = (value == 0 ? 1 : value); 16396 cons->c_column += n; 16397
flush(cons); 16398 break; 16399

[Page 857]

16400 case 'D': /* ESC [nD moves left n spaces */ 16401 n = (value == 0 ? 1 : value); 16402 cons->c_column -= n;
16403 flush(cons); 16404 break; 16405 16406 case 'H': /* ESC [m;nH" moves cursor to (m,n) */ 16407 cons->c_row =
cons->c_esc_parmv[0] - 1; 16408 cons->c_column = cons->c_esc_parmv[1] - 1; 16409 flush(cons); 16410 break;
16411 16412 case 'J': /* ESC [sJ clears in display */ 16413 switch (value) { 16414 case 0: /* Clear from cursor to end
of screen */ 16415 count = scr_size - (cons->c_cur - cons->c_org); 16416 dst = cons->c_cur; 16417 break; 16418 case
1: /* Clear from start of screen to cursor */ 16419 count = cons->c_cur - cons->c_org; 16420 dst = cons->c_org; 16421
break; 16422 case 2: /* Clear entire screen */ 16423 count = scr_size; 16424 dst = cons->c_org; 16425 break; 16426

111

111

default: /* Do nothing */ 16427 count = 0; 16428 dst = cons->c_org; 16429 } 16430 blank_color = cons->c_blank;
16431 mem_vid_copy(BLANK_MEM, dst, count); 16432 break; 16433 16434 case 'K': /* ESC [sK clears line from
cursor */ 16435 switch (value) { 16436 case 0: /* Clear from cursor to end of line */ 16437 count = scr_width -
cons->c_column; 16438 dst = cons->c_cur; 16439 break; 16440 case 1: /* Clear from beginning of line to cursor */
16441 count = cons->c_column; 16442 dst = cons->c_cur - cons->c_column; 16443 break; 16444 case 2: /* Clear
entire line */ 16445 count = scr_width; 16446 dst = cons->c_cur - cons->c_column; 16447 break; 16448 default: /* Do
nothing */ 16449 count = 0; 16450 dst = cons->c_cur; 16451 } 16452 blank_color = cons->c_blank; 16453
mem_vid_copy(BLANK_MEM, dst, count); 16454 break; 16455 16456 case 'L': /* ESC [nL inserts n lines at cursor */
16457 n = value; 16458 if (n < 1) n = 1; 16459 if (n > (scr_lines - cons->c_row))

[Page 858]

16460 n = scr_lines - cons->c_row; 16461 16462 src = cons->c_org + cons->c_row * scr_width; 16463 dst = src + n *
scr_width; 16464 count = (scr_lines - cons->c_row - n) * scr_width; 16465 vid_vid_copy(src, dst, count); 16466
blank_color = cons->c_blank; 16467 mem_vid_copy(BLANK_MEM, src, n * scr_width); 16468 break; 16469 16470
case 'M': /* ESC [nM deletes n lines at cursor */ 16471 n = value; 16472 if (n < 1) n = 1; 16473 if (n > (scr_lines -
cons->c_row)) 16474 n = scr_lines - cons->c_row; 16475 16476 dst = cons->c_org + cons->c_row * scr_width; 16477
src = dst + n * scr_width; 16478 count = (scr_lines - cons->c_row - n) * scr_width; 16479 vid_vid_copy(src, dst,
count); 16480 blank_color = cons->c_blank; 16481 mem_vid_copy(BLANK_MEM, dst + count, n * scr_width);
16482 break; 16483 16484 case '@': /* ESC [n@ inserts n chars at cursor */ 16485 n = value; 16486 if (n < 1) n = 1;
16487 if (n > (scr_width - cons->c_column)) 16488 n = scr_width - cons->c_column; 16489 16490 src = cons->c_cur;
16491 dst = src + n; 16492 count = scr_width - cons->c_column - n; 16493 vid_vid_copy(src, dst, count); 16494
blank_color = cons->c_blank; 16495 mem_vid_copy(BLANK_MEM, src, n); 16496 break; 16497 16498 case 'P': /*
ESC [nP deletes n chars at cursor */ 16499 n = value; 16500 if (n < 1) n = 1; 16501 if (n > (scr_width -
cons->c_column)) 16502 n = scr_width - cons->c_column; 16503 16504 dst = cons->c_cur; 16505 src = dst + n;
16506 count = scr_width - cons->c_column - n; 16507 vid_vid_copy(src, dst, count); 16508 blank_color =
cons->c_blank; 16509 mem_vid_copy(BLANK_MEM, dst + count, n); 16510 break; 16511 16512 case 'm': /* ESC
[nm enables rendition n */ 16513 for (parmp = cons->c_esc_parmv; parmp <= cons->c_esc_parmp 16514 && parmp <
bufend(cons->c_esc_parmv); parmp++) { 16515 if (cons->c_reverse) { 16516 /* Unswap fg and bg colors */ 16517
cons->c_attr = ((cons->c_attr & 0x7000) >> 4) | 16518 ((cons->c_attr & 0x0700) << 4) | 16519 ((cons->c_attr &
0x8800));

[Page 859]

16520 } 16521 switch (n = *parmp) { 16522 case 0: /* NORMAL */ 16523 cons->c_attr = cons->c_blank =
BLANK_COLOR; 16524 cons->c_reverse = FALSE; 16525 break; 16526 16527 case 1: /* BOLD */ 16528 /* Set
intensity bit */ 16529 cons->c_attr |= 0x0800; 16530 break; 16531 16532 case 4: /* UNDERLINE */ 16533 if (color) {
16534 /* Change white to cyan, i.e. lose red 16535 */ 16536 cons->c_attr = (cons->c_attr & 0xBBFF); 16537 } else {
16538 /* Set underline attribute */ 16539 cons->c_attr = (cons->c_attr & 0x99FF); 16540 } 16541 break; 16542 16543
case 5: /* BLINKING */ 16544 /* Set the blink bit */ 16545 cons->c_attr |= 0x8000; 16546 break; 16547 16548 case
7: /* REVERSE */ 16549 cons->c_reverse = TRUE; 16550 break; 16551 16552 default: /* COLOR */ 16553 if (n ==
39) n = 37; /* set default color */ 16554 if (n == 49) n = 40; 16555 16556 if (!color) { 16557 /* Don't mess up a
monochrome screen */ 16558 } else 16559 if (30 <= n && n <= 37) { 16560 /* Foreground color */ 16561
cons->c_attr = 16562 (cons->c_attr & 0xF8FF) | 16563 (ansi_colors[(n - 30)] << 8); 16564 cons->c_blank = 16565
(cons->c_blank & 0xF8FF) | 16566 (ansi_colors[(n - 30)] << 8); 16567 } else 16568 if (40 <= n && n <= 47) { 16569
/* Background color */ 16570 cons->c_attr = 16571 (cons->c_attr & 0x8FFF) | 16572 (ansi_colors[(n - 40)] << 12);
16573 cons->c_blank = 16574 (cons->c_blank & 0x8FFF) | 16575 (ansi_colors[(n - 40)] << 12); 16576 } 16577 }
16578 if (cons->c_reverse) { 16579 /* Swap fg and bg colors */

[Page 860]

16580 cons->c_attr = ((cons->c_attr & 0x7000) >> 4) | 16581 ((cons->c_attr & 0x0700) << 4) | 16582 ((cons->c_attr
& 0x8800)); 16583 } 16584 } 16585 break; 16586 } 16587 } 16588 cons->c_esc_state = 0; 16589 } 16591
/*===* 16592 *

112

112

set_6845 * 16593
===/ 16594
PRIVATE void set_6845(reg, val) 16595 int reg; /* which register pair to set */ 16596 unsigned val; /* 16-bit value to
set it to */ 16597 { 16598 /* Set a register pair inside the 6845. 16599 * Registers 12-13 tell the 6845 where in video
ram to start 16600 * Registers 14-15 tell the 6845 where to put the cursor 16601 */ 16602 pvb_pair_t char_out[4];
16603 pv_set(char_out[0], vid_port + INDEX, reg); /* set index register */ 16604 pv_set(char_out[1], vid_port +
DATA, (val>>8) & BYTE); /* high byte */ 16605 pv_set(char_out[2], vid_port + INDEX, reg + 1); /* again */ 16606
pv_set(char_out[3], vid_port + DATA, val&BYTE); /* low byte */ 16607 sys_voutb(char_out, 4); /* do actual output
*/ 16608 } 16610
/*===* 16611 *
get_6845 * 16612
===/ 16613
PRIVATE void get_6845(reg, val) 16614 int reg; /* which register pair to set */ 16615 unsigned *val; /* 16-bit value
to set it to */ 16616 { 16617 char v1, v2; 16618 /* Get a register pair inside the 6845. */ 16619 sys_outb(vid_port +
INDEX, reg); 16620 sys_inb(vid_port + DATA, &v1); 16621 sys_outb(vid_port + INDEX, reg+1); 16622
sys_inb(vid_port + DATA, &v2); 16623 *val = (v1 << 8) | v2; 16624 } 16626
/*===* 16627 *
beep * 16628
===/ 16629
PRIVATE void beep() 16630 { 16631 /* Making a beeping sound on the speaker (output for CRTL-G). 16632 * This
routine works by turning on the bits 0 and 1 in port B of the 8255 16633 * chip that drive the speaker. 16634 */ 16635
static timer_t tmr_stop_beep; 16636 pvb_pair_t char_out[3]; 16637 clock_t now; 16638 int port_b_val, s; 16639

[Page 861]

16640 /* Fetch current time in advance to prevent beeping delay. */ 16641 if ((s=getuptime(&now)) != OK) 16642
panic("TTY","Console couldn't get clock's uptime.", s); 16643 if (!beeping) { 16644 /* Set timer channel 2, square
wave, with given frequency. */ 16645 pv_set(char_out[0], TIMER_MODE, 0xB6); 16646 pv_set(char_out[1],
TIMER2, (BEEP_FREQ >> 0) & BYTE); 16647 pv_set(char_out[2], TIMER2, (BEEP_FREQ >> 8) & BYTE); 16648
if (sys_voutb(char_out, 3)==OK) { 16649 if (sys_inb(PORT_B, &port_b_val)==OK && 16650 sys_outb(PORT_B,
(port_b_val|3))==OK) 16651 beeping = TRUE; 16652 } 16653 } 16654 /* Add a timer to the timers list. Possibly
reschedule the alarm. */ 16655 tmrs_settimer(&tty_timers, &tmr_stop_beep, now+B_TIME, stop_beep, NULL);
16656 if (tty_timers->tmr_exp_time != tty_next_timeout) { 16657 tty_next_timeout = tty_timers->tmr_exp_time;
16658 if ((s=sys_setalarm(tty_next_timeout, 1)) != OK) 16659 panic("TTY","Console couldn't set alarm.", s); 16660 }
16661 } 16663
/*===* 16664 *
stop_beep * 16665
===/ 16666
PRIVATE void stop_beep(tmrp) 16667 timer_t *tmrp; 16668 { 16669 /* Turn off the beeper by turning off bits 0 and
1 in PORT_B. */ 16670 int port_b_val; 16671 if (sys_inb(PORT_B, &port_b_val)==OK && 16672
sys_outb(PORT_B, (port_b_val & ~3))==OK) 16673 beeping = FALSE; 16674 } 16676
/*===* 16677 *
scr_init * 16678
===/ 16679
PUBLIC void scr_init(tp) 16680 tty_t *tp; 16681 { 16682 /* Initialize the screen driver. */ 16683 console_t *cons;
16684 phys_bytes vid_base; 16685 u16_t bios_columns, bios_crtbase, bios_fontlines; 16686 u8_t bios_rows; 16687
int line; 16688 int s; 16689 static int vdu_initialized = 0; 16690 unsigned page_size; 16691 16692 /* Associate console
and TTY. */ 16693 line = tp - &tty_table[0]; 16694 if (line >= nr_cons) return; 16695 cons = &cons_table[line]; 16696
cons->c_tty = tp; 16697 tp->tty_priv = cons; 16698 16699 /* Initialize the keyboard driver. */

[Page 862]

16700 kb_init(tp); 16701 16702 /* Fill in TTY function hooks. */ 16703 tp->tty_devwrite = cons_write; 16704
tp->tty_echo = cons_echo; 16705 tp->tty_ioctl = cons_ioctl; 16706 16707 /* Get the BIOS parameters that describe

113

113

the VDU. */ 16708 if (! vdu_initialized++) { 16709 16710 /* How about error checking? What to do on failure??? */
16711 s=sys_vircopy(SELF, BIOS_SEG, (vir_bytes) VDU_SCREEN_COLS_ADDR, 16712 SELF, D, (vir_bytes)
&bios_columns, VDU_SCREEN_COLS_SIZE); 16713 s=sys_vircopy(SELF, BIOS_SEG, (vir_bytes)
VDU_CRT_BASE_ADDR, 16714 SELF, D, (vir_bytes) &bios_crtbase, VDU_CRT_BASE_SIZE); 16715
s=sys_vircopy(SELF, BIOS_SEG, (vir_bytes) VDU_SCREEN_ROWS_ADDR, 16716 SELF, D, (vir_bytes)
&bios_rows, VDU_SCREEN_ROWS_SIZE); 16717 s=sys_vircopy(SELF, BIOS_SEG, (vir_bytes)
VDU_FONTLINES_ADDR, 16718 SELF, D, (vir_bytes) &bios_fontlines, VDU_FONTLINES_SIZE); 16719 16720
vid_port = bios_crtbase; 16721 scr_width = bios_columns; 16722 font_lines = bios_fontlines; 16723 scr_lines =
machine.vdu_ega ? bios_rows+1 : 25; 16724 16725 if (color) { 16726 vid_base = COLOR_BASE; 16727 vid_size =
COLOR_SIZE; 16728 } else { 16729 vid_base = MONO_BASE; 16730 vid_size = MONO_SIZE; 16731 } 16732 if
(machine.vdu_ega) vid_size = EGA_SIZE; 16733 wrap = ! machine.vdu_ega; 16734 16735 s =
sys_segctl(&vid_index, &vid_seg, &vid_off, vid_base, vid_size); 16736 16737 vid_size >>= 1; /* word count */
16738 vid_mask = vid_size - 1; 16739 16740 /* Size of the screen (number of displayed characters.) */ 16741 scr_size
= scr_lines * scr_width; 16742 16743 /* There can be as many consoles as video memory allows. */ 16744 nr_cons =
vid_size / scr_size; 16745 if (nr_cons > NR_CONS) nr_cons = NR_CONS; 16746 if (nr_cons > 1) wrap = 0; 16747
page_size = vid_size / nr_cons; 16748 } 16749 16750 cons->c_start = line * page_size; 16751 cons->c_limit =
cons->c_start + page_size; 16752 cons->c_cur = cons->c_org = cons->c_start; 16753 cons->c_attr = cons->c_blank =
BLANK_COLOR; 16754 16755 if (line != 0) { 16756 /* Clear the non-console vtys. */ 16757 blank_color =
BLANK_COLOR; 16758 mem_vid_copy(BLANK_MEM, cons->c_start, scr_size); 16759 } else {

[Page 863]

16760 int i, n; 16761 /* Set the cursor of the console vty at the bottom. c_cur 16762 * is updated automatically later.
16763 */ 16764 scroll_screen(cons, SCROLL_UP); 16765 cons->c_row = scr_lines - 1; 16766 cons->c_column = 0;
16767 } 16768 select_console(0); 16769 cons_ioctl(tp, 0); 16770 } 16772
/*===* 16773 *
kputc * 16774
===/ 16775
PUBLIC void kputc(c) 16776 int c; 16777 { 16778 putk(c); 16779 } 16781
/*===* 16782 *
do_new_kmess * 16783
===/ 16784
PUBLIC void do_new_kmess(m) 16785 message *m; 16786 { 16787 /* Notification for a new kernel message. */
16788 struct kmessages kmess; /* kmessages structure */ 16789 static int prev_next = 0; /* previous next seen */
16790 int size, next; 16791 int bytes; 16792 int r; 16793 16794 /* Try to get a fresh copy of the buffer with kernel
messages. */ 16795 sys_getkmessages(&kmess); 16796 16797 /* Print only the new part. Determine how many new
bytes there are with 16798 * help of the current and previous 'next' index. Note that the kernel 16799 * buffer is
circular. This works fine if less then KMESS_BUF_SIZE bytes 16800 * is new data; else we miss %
KMESS_BUF_SIZE here. 16801 * Check for size being positive, the buffer might as well be emptied! 16802 */ 16803
if (kmess.km_size > 0) { 16804 bytes = ((kmess.km_next + KMESS_BUF_SIZE) - prev_next) %
KMESS_BUF_SIZE; 16805 r=prev_next; /* start at previous old */ 16806 while (bytes > 0) { 16807 putk(
kmess.km_buf[(r%KMESS_BUF_SIZE)]); 16808 bytes --; 16809 r ++; 16810 } 16811 putk(0); /* terminate to flush
output */ 16812 } 16813 16814 /* Almost done, store 'next' so that we can determine what part of the 16815 * kernel
messages buffer to print next time a notification arrives. 16816 */ 16817 prev_next = kmess.km_next; 16818 }

[Page 864]

16820 /*===*
16821 * do_diagnostics * 16822
===/ 16823
PUBLIC void do_diagnostics(m_ptr) 16824 message *m_ptr; /* pointer to request message */ 16825 { 16826 /* Print a
string for a server. */ 16827 char c; 16828 vir_bytes src; 16829 int count; 16830 int result = OK; 16831 int proc_nr =
m_ptr->DIAG_PROC_NR; 16832 if (proc_nr == SELF) proc_nr = m_ptr->m_source; 16833 16834 src = (vir_bytes)
m_ptr->DIAG_PRINT_BUF; 16835 for (count = m_ptr->DIAG_BUF_COUNT; count > 0; count--) { 16836 if

114

114

(sys_vircopy(proc_nr, D, src++, SELF, D, (vir_bytes) &c, 1) != OK) { 16837 result = EFAULT; 16838 break; 16839 }
16840 putk(c); 16841 } 16842 putk(0); /* always terminate, even with EFAULT */ 16843 m_ptr->m_type = result;
16844 send(m_ptr->m_source, m_ptr); 16845 } 16847
/*===* 16848 *
putk * 16849
===/ 16850
PRIVATE void putk(c) 16851 int c; /* character to print */ 16852 { 16853 /* This procedure is used by the version of
printf() that is linked with 16854 * the TTY driver. The one in the library sends a message to FS, which is 16855 * not
what is needed for printing within the TTY. This version just queues 16856 * the character and starts the output. 16857
*/ 16858 if (c != 0) { 16859 if (c == '\n') putk('\r'); 16860 out_char(&cons_table[0], (int) c); 16861 } else { 16862
flush(&cons_table[0]); 16863 } 16864 } 16866
/*===* 16867 *
toggle_scroll * 16868
===/ 16869
PUBLIC void toggle_scroll() 16870 { 16871 /* Toggle between hardware and software scroll. */ 16872 16873
cons_org0(); 16874 softscroll = !softscroll; 16875 printf("%sware scrolling enabled.\n", softscroll ? "Soft" : "Hard");
16876 }

[Page 865]

16878 /*===*
16879 * cons_stop * 16880
===/ 16881
PUBLIC void cons_stop() 16882 { 16883 /* Prepare for halt or reboot. */ 16884 cons_org0(); 16885 softscroll = 1;
16886 select_console(0); 16887 cons_table[0].c_attr = cons_table[0].c_blank = BLANK_COLOR; 16888 } 16890
/*===* 16891 *
cons_org0 * 16892
===/ 16893
PRIVATE void cons_org0() 16894 { 16895 /* Scroll video memory back to put the origin at 0. */ 16896 int cons_line;
16897 console_t *cons; 16898 unsigned n; 16899 16900 for (cons_line = 0; cons_line < nr_cons; cons_line++) {
16901 cons = &cons_table[cons_line]; 16902 while (cons->c_org > cons->c_start) { 16903 n = vid_size - scr_size; /*
amount of unused memory */ 16904 if (n > cons->c_org - cons->c_start) 16905 n = cons->c_org - cons->c_start;
16906 vid_vid_copy(cons->c_org, cons->c_org - n, scr_size); 16907 cons->c_org -= n; 16908 } 16909 flush(cons);
16910 } 16911 select_console(ccurrent); 16912 } 16914
/*===* 16915 *
select_console * 16916
===/ 16917
PUBLIC void select_console(int cons_line) 16918 { 16919 /* Set the current console to console number 'cons_line'. */
16920 16921 if (cons_line < 0 || cons_line >= nr_cons) return; 16922 ccurrent = cons_line; 16923 curcons =
&cons_table[cons_line]; 16924 set_6845(VID_ORG, curcons->c_org); 16925 set_6845(CURSOR, curcons->c_cur);
16926 } 16928
/*===* 16929 *
con_loadfont * 16930
===/ 16931
PUBLIC int con_loadfont(m) 16932 message *m; 16933 { 16934 /* Load a font into the EGA or VGA adapter. */
16935 int result; 16936 static struct sequence seq1[7] = { 16937 { GA_SEQUENCER_INDEX, 0x00, 0x01 },

[Page 866]

16938 { GA_SEQUENCER_INDEX, 0x02, 0x04 }, 16939 { GA_SEQUENCER_INDEX, 0x04, 0x07 }, 16940 {
GA_SEQUENCER_INDEX, 0x00, 0x03 }, 16941 { GA_GRAPHICS_INDEX, 0x04, 0x02 }, 16942 {
GA_GRAPHICS_INDEX, 0x05, 0x00 }, 16943 { GA_GRAPHICS_INDEX, 0x06, 0x00 }, 16944 }; 16945 static
struct sequence seq2[7] = { 16946 { GA_SEQUENCER_INDEX, 0x00, 0x01 }, 16947 { GA_SEQUENCER_INDEX,
0x02, 0x03 }, 16948 { GA_SEQUENCER_INDEX, 0x04, 0x03 }, 16949 { GA_SEQUENCER_INDEX, 0x00, 0x03 },

115

115

16950 { GA_GRAPHICS_INDEX, 0x04, 0x00 }, 16951 { GA_GRAPHICS_INDEX, 0x05, 0x10 }, 16952 {
GA_GRAPHICS_INDEX, 0x06, 0 }, 16953 }; 16954 16955 seq2[6].value= color ? 0x0E : 0x0A; 16956 16957 if
(!machine.vdu_ega) return(ENOTTY); 16958 result = ga_program(seq1); /* bring font memory into view */ 16959
16960 result = sys_physcopy(m->PROC_NR, D, (vir_bytes) m->ADDRESS, 16961 NONE, PHYS_SEG,
(phys_bytes) GA_VIDEO_ADDRESS, (phys_bytes)GA_FONT_SIZE); 16962 16963 result = ga_program(seq2); /*
restore */ 16964 16965 return(result); 16966 } 16968
/*===* 16969 *
ga_program * 16970
===/ 16971
PRIVATE int ga_program(seq) 16972 struct sequence *seq; 16973 { 16974 pvb_pair_t char_out[14]; 16975 int i;
16976 for (i=0; i<7; i++) { 16977 pv_set(char_out[2*i], seq->index, seq->port); 16978 pv_set(char_out[2*i+1],
seq->index+1, seq->value); 16979 seq++; 16980 } 16981 return sys_voutb(char_out, 14); 16982 } 16984
/*===* 16985 *
cons_ioctl * 16986
===/ 16987
PRIVATE int cons_ioctl(tp, try) 16988 tty_t *tp; 16989 int try; 16990 { 16991 /* Set the screen dimensions. */ 16992
16993 tp->tty_winsize.ws_row= scr_lines; 16994 tp->tty_winsize.ws_col= scr_width; 16995
tp->tty_winsize.ws_xpixel= scr_width * 8; 16996 tp->tty_winsize.ws_ypixel= scr_lines * font_lines; 16997 }

[Page 867]

++
servers/pm/pm.h
++
17000 /* This is the master header for PM. It includes some other files 17001 * and defines the principal constants.
17002 */ 17003 #define _POSIX_SOURCE 1 /* tell headers to include POSIX stuff */ 17004 #define _MINIX 1 /* tell
headers to include MINIX stuff */ 17005 #define _SYSTEM 1 /* tell headers that this is the kernel */ 17006 17007 /*
The following are so basic, all the *.c files get them automatically. */ 17008 #include <minix/config.h> /* MUST be
first */ 17009 #include <ansi.h> /* MUST be second */ 17010 #include <sys/types.h> 17011 #include <minix/const.h>
17012 #include <minix/type.h> 17013 17014 #include <fcntl.h> 17015 #include <unistd.h> 17016 #include
<minix/syslib.h> 17017 #include <minix/sysutil.h> 17018 17019 #include <limits.h> 17020 #include <errno.h> 17021
17022 #include "const.h" 17023 #include "type.h" 17024 #include "proto.h" 17025 #include "glo.h"
++
servers/pm/const.h
++
17100 /* Constants used by the Process Manager. */ 17101 17102 #define NO_MEM ((phys_clicks) 0) /* returned by
alloc_mem() with mem is up */ 17103 17104 #define NR_PIDS 30000 /* process ids range from 0 to NR_PIDS-1.
17105 * (magic constant: some old applications use 17106 * a 'short' instead of pid_t.) 17107 */ 17108 17109 #define
PM_PID 0 /* PM's process id number */ 17110 #define INIT_PID 1 /* INIT's process id number */ 17111

[Page 868]

++
servers/pm/type.h
++
17200 /* If there were any type definitions local to the Process Manager, they would 17201 * be here. This file is
included only for symmetry with the kernel and File 17202 * System, which do have some local type definitions.
17203 */ 17204
++
servers/pm/proto.h
++
17300 /* Function prototypes. */ 17301 17302 struct mproc; 17303 struct stat; 17304 struct mem_map; 17305 struct
memory; 17306 17307 #include <timers.h> 17308 17309 /* alloc.c */ 17310 _PROTOTYPE(phys_clicks alloc_mem,
(phys_clicks clicks)); 17311 _PROTOTYPE(void free_mem, (phys_clicks base, phys_clicks clicks)); 17312

116

116

_PROTOTYPE(void mem_init, (struct memory *chunks, phys_clicks *free)); 17313 #define swap_in() ((void)0)
17314 #define swap_inqueue(rmp) ((void)0) 17315 17316 /* break.c */ 17317 _PROTOTYPE(int adjust, (struct
mproc *rmp, 17318 vir_clicks data_clicks, vir_bytes sp)); 17319 _PROTOTYPE(int do_brk, (void)); 17320
_PROTOTYPE(int size_ok, (int file_type, vir_clicks tc, vir_clicks dc, 17321 vir_clicks sc, vir_clicks dvir, vir_clicks
s_vir)); 17322 17323 /* devio.c */ 17324 _PROTOTYPE(int do_dev_io, (void)); 17325 _PROTOTYPE(int
do_dev_io, (void)); 17326 17327 /* dmp.c */ 17328 _PROTOTYPE(int do_fkey_pressed, (void)); 17329 17330 /*
exec.c */ 17331 _PROTOTYPE(int do_exec, (void)); 17332 _PROTOTYPE(void rw_seg, (int rw, int fd, int proc, int
seg, 17333 phys_bytes seg_bytes)); 17334 _PROTOTYPE(struct mproc *find_share, (struct mproc *mp_ign, Ino_t
ino, 17335 Dev_t dev, time_t ctime)); 17336 17337 /* forkexit.c */ 17338 _PROTOTYPE(int do_fork, (void));
17339 _PROTOTYPE(int do_pm_exit, (void)); 17340 _PROTOTYPE(int do_waitpid, (void)); 17341
_PROTOTYPE(void pm_exit, (struct mproc *rmp, int exit_status)); 17342 17343 /* getset.c */ 17344
_PROTOTYPE(int do_getset, (void));

[Page 869]

17345 17346 /* main.c */ 17347 _PROTOTYPE(int main, (void)); 17348 17349 /* misc.c */ 17350 _PROTOTYPE(
int do_reboot, (void)); 17351 _PROTOTYPE(int do_getsysinfo, (void)); 17352 _PROTOTYPE(int do_getprocnr,
(void)); 17353 _PROTOTYPE(int do_svrctl, (void)); 17354 _PROTOTYPE(int do_allocmem, (void)); 17355
_PROTOTYPE(int do_freemem, (void)); 17356 _PROTOTYPE(int do_getsetpriority, (void)); 17357 17358
_PROTOTYPE(void setreply, (int proc_nr, int result)); 17359 17360 /* signal.c */ 17361 _PROTOTYPE(int
do_alarm, (void)); 17362 _PROTOTYPE(int do_kill, (void)); 17363 _PROTOTYPE(int ksig_pending, (void));
17364 _PROTOTYPE(int do_pause, (void)); 17365 _PROTOTYPE(int set_alarm, (int proc_nr, int sec)); 17366
_PROTOTYPE(int check_sig, (pid_t proc_id, int signo)); 17367 _PROTOTYPE(void sig_proc, (struct mproc *rmp,
int sig_nr)); 17368 _PROTOTYPE(int do_sigaction, (void)); 17369 _PROTOTYPE(int do_sigpending, (void));
17370 _PROTOTYPE(int do_sigprocmask, (void)); 17371 _PROTOTYPE(int do_sigreturn, (void)); 17372
_PROTOTYPE(int do_sigsuspend, (void)); 17373 _PROTOTYPE(void check_pending, (struct mproc *rmp));
17374 17375 /* time.c */ 17376 _PROTOTYPE(int do_stime, (void)); 17377 _PROTOTYPE(int do_time, (void));
17378 _PROTOTYPE(int do_times, (void)); 17379 _PROTOTYPE(int do_gettimeofday, (void)); 17380 17381 /*
timers.c */ 17382 _PROTOTYPE(void pm_set_timer, (timer_t *tp, int delta, 17383 tmr_func_t watchdog, int arg));
17384 _PROTOTYPE(void pm_expire_timers, (clock_t now)); 17385 _PROTOTYPE(void pm_cancel_timer,
(timer_t *tp)); 17386 17387 /* trace.c */ 17388 _PROTOTYPE(int do_trace, (void)); 17389 _PROTOTYPE(void
stop_proc, (struct mproc *rmp, int sig_nr)); 17390 17391 /* utility.c */ 17392 _PROTOTYPE(pid_t get_free_pid,
(void)); 17393 _PROTOTYPE(int allowed, (char *name_buf, struct stat *s_buf, int mask)); 17394 _PROTOTYPE(
int no_sys, (void)); 17395 _PROTOTYPE(void panic, (char *who, char *mess, int num)); 17396 _PROTOTYPE(
void tell_fs, (int what, int p1, int p2, int p3)); 17397 _PROTOTYPE(int get_stack_ptr, (int proc_nr, vir_bytes *sp));
17398 _PROTOTYPE(int get_mem_map, (int proc_nr, struct mem_map *mem_map)); 17399 _PROTOTYPE(char
*find_param, (const char *key)); 17400 _PROTOTYPE(int proc_from_pid, (pid_t p));

[Page 870]

++
servers/pm/glo.h
++
17500 /* EXTERN should be extern except in table.c */ 17501 #ifdef _TABLE 17502 #undef EXTERN 17503 #define
EXTERN 17504 #endif 17505 17506 /* Global variables. */ 17507 EXTERN struct mproc *mp; /* ptr to 'mproc' slot
of current process */ 17508 EXTERN int procs_in_use; /* how many processes are marked as IN_USE */ 17509
EXTERN char monitor_params[128*sizeof(char *)]; /* boot monitor parameters */ 17510 EXTERN struct kinfo kinfo;
/* kernel information */ 17511 17512 /* The parameters of the call are kept here. */ 17513 EXTERN message m_in; /*
the incoming message itself is kept here. */ 17514 EXTERN int who; /* caller's proc number */ 17515 EXTERN int
call_nr; /* system call number */ 17516 17517 extern _PROTOTYPE (int (*call_vec[]), (void)); /* system call
handlers */ 17518 extern char core_name[]; /* file name where core images are produced */ 17519 EXTERN sigset_t
core_sset; /* which signals cause core images */ 17520 EXTERN sigset_t ign_sset; /* which signals are by default
ignored */ 17521
++

117

117

servers/pm/mproc.h
++
17600 /* This table has one slot per process. It contains all the process management 17601 * information for each
process. Among other things, it defines the text, data 17602 * and stack segments, uids and gids, and various flags. The
kernel and file 17603 * systems have tables that are also indexed by process, with the contents 17604 * of
corresponding slots referring to the same process in all three. 17605 */ 17606 #include <timers.h> 17607 17608
EXTERN struct mproc { 17609 struct mem_map mp_seg[NR_LOCAL_SEGS]; /* points to text, data, stack */ 17610
char mp_exitstatus; /* storage for status when process exits */ 17611 char mp_sigstatus; /* storage for signal # for
killed procs */ 17612 pid_t mp_pid; /* process id */ 17613 pid_t mp_procgrp; /* pid of process group (used for
signals) */ 17614 pid_t mp_wpid; /* pid this process is waiting for */ 17615 int mp_parent; /* index of parent process
/ 17616 17617 / Child user and system times. Accounting done on child exit. */ 17618 clock_t mp_child_utime; /*
cumulative user time of children */ 17619 clock_t mp_child_stime; /* cumulative sys time of children */ 17620 17621
/* Real and effective uids and gids. */ 17622 uid_t mp_realuid; /* process' real uid */ 17623 uid_t mp_effuid; /*
process' effective uid */ 17624 gid_t mp_realgid; /* process' real gid */

[Page 871]

17625 gid_t mp_effgid; /* process' effective gid */ 17626 17627 /* File identification for sharing. */ 17628 ino_t
mp_ino; /* inode number of file */ 17629 dev_t mp_dev; /* device number of file system */ 17630 time_t mp_ctime;
/* inode changed time */ 17631 17632 /* Signal handling information. */ 17633 sigset_t mp_ignore; /* 1 means ignore
the signal, 0 means don't */ 17634 sigset_t mp_catch; /* 1 means catch the signal, 0 means don't */ 17635 sigset_t
mp_sig2mess; /* 1 means transform into notify message */ 17636 sigset_t mp_sigmask; /* signals to be blocked */
17637 sigset_t mp_sigmask2; /* saved copy of mp_sigmask */ 17638 sigset_t mp_sigpending; /* pending signals to be
handled */ 17639 struct sigaction mp_sigact[_NSIG + 1]; /* as in sigaction(2) */ 17640 vir_bytes mp_sigreturn; /*
address of C library __sigreturn function */ 17641 struct timer mp_timer; /* watchdog timer for alarm(2) */ 17642
17643 /* Backwards compatibility for signals. */ 17644 sighandler_t mp_func; /* all sigs vectored to a single user fcn
/ 17645 17646 unsigned mp_flags; / flag bits */ 17647 vir_bytes mp_procargs; /* ptr to proc's initial stack arguments
*/ 17648 struct mproc *mp_swapq; /* queue of procs waiting to be swapped in */ 17649 message mp_reply; /* reply
message to be sent to one */ 17650 17651 /* Scheduling priority. */ 17652 signed int mp_nice; /* nice is
PRIO_MIN..PRIO_MAX, standard 0. */ 17653 17654 char mp_name[PROC_NAME_LEN]; /* process name */
17655 } mproc[NR_PROCS]; 17656 17657 /* Flag values */ 17658 #define IN_USE 0x001 /* set when 'mproc' slot in
use */ 17659 #define WAITING 0x002 /* set by WAIT system call */ 17660 #define ZOMBIE 0x004 /* set by EXIT,
cleared by WAIT */ 17661 #define PAUSED 0x008 /* set by PAUSE system call */ 17662 #define ALARM_ON
0x010 /* set when SIGALRM timer started */ 17663 #define SEPARATE 0x020 /* set if file is separate I & D space */
17664 #define TRACED 0x040 /* set if process is to be traced */ 17665 #define STOPPED 0x080 /* set if process
stopped for tracing */ 17666 #define SIGSUSPENDED 0x100 /* set by SIGSUSPEND system call */ 17667 #define
REPLY 0x200 /* set if a reply message is pending */ 17668 #define ONSWAP 0x400 /* set if data segment is
swapped out */ 17669 #define SWAPIN 0x800 /* set if on the "swap this in" queue */ 17670 #define DONT_SWAP
0x1000 /* never swap out this process */ 17671 #define PRIV_PROC 0x2000 /* system process, special privileges */
17672 17673 #define NIL_MPROC ((struct mproc *) 0) 17674
++
servers/pm/param.h
++
17700 /* The following names are synonyms for the variables in the input message. */ 17701 #define addr m1_p1
17702 #define exec_name m1_p1 17703 #define exec_len m1_i1 17704 #define func m6_f1

[Page 872]

17705 #define grp_id m1_i1 17706 #define namelen m1_i2 17707 #define pid m1_i1 17708 #define procnr m1_i1
17709 #define seconds m1_i1 17710 #define sig m6_i1 17711 #define stack_bytes m1_i2 17712 #define stack_ptr
m1_p2 17713 #define status m1_i1 17714 #define usr_id m1_i1 17715 #define request m2_i2 17716 #define taddr
m2_l1 17717 #define data m2_l2 17718 #define sig_nr m1_i2 17719 #define sig_nsa m1_p1 17720 #define sig_osa
m1_p2 17721 #define sig_ret m1_p3 17722 #define sig_set m2_l1 17723 #define sig_how m2_i1 17724 #define
sig_flags m2_i2 17725 #define sig_context m2_p1 17726 #define info_what m1_i1 17727 #define info_where m1_p1

118

118

17728 #define reboot_flag m1_i1 17729 #define reboot_code m1_p1 17730 #define reboot_strlen m1_i2 17731
#define svrctl_req m2_i1 17732 #define svrctl_argp m2_p1 17733 #define stime m2_l1 17734 #define memsize m4_l1
17735 #define membase m4_l2 17736 17737 /* The following names are synonyms for the variables in a reply
message. */ 17738 #define reply_res m_type 17739 #define reply_res2 m2_i1 17740 #define reply_ptr m2_p1 17741
#define reply_mask m2_l1 17742 #define reply_trace m2_l2 17743 #define reply_time m2_l1 17744 #define
reply_utime m2_l2 17745 #define reply_t1 m4_l1 17746 #define reply_t2 m4_l2 17747 #define reply_t3 m4_l3 17748
#define reply_t4 m4_l4 17749 #define reply_t5 m4_l5 17750 17751 /* The following names are used to inform the FS
about certain events. */ 17752 #define tell_fs_arg1 m1_i1 17753 #define tell_fs_arg2 m1_i2 17754 #define
tell_fs_arg3 m1_i3 17755

[Page 873]

++
servers/pm/table.c
++
17800 /* This file contains the table used to map system call numbers onto the 17801 * routines that perform them.
17802 */ 17803 17804 #define _TABLE 17805 17806 #include "pm.h" 17807 #include <minix/callnr.h> 17808
#include <signal.h> 17809 #include "mproc.h" 17810 #include "param.h" 17811 17812 /* Miscellaneous */ 17813
char core_name[] = "core"; /* file name where core images are produced */ 17814 17815 _PROTOTYPE (int
(*call_vec[NCALLS]), (void)) = { 17816 no_sys, /* 0 = unused */ 17817 do_pm_exit, /* 1 = exit */ 17818 do_fork, /*
2 = fork */ 17819 no_sys, /* 3 = read */ 17820 no_sys, /* 4 = write */ 17821 no_sys, /* 5 = open */ 17822 no_sys, /* 6
= close */ 17823 do_waitpid, /* 7 = wait */ 17824 no_sys, /* 8 = creat */ 17825 no_sys, /* 9 = link */ 17826 no_sys, /*
10 = unlink */ 17827 do_waitpid, /* 11 = waitpid */ 17828 no_sys, /* 12 = chdir */ 17829 do_time, /* 13 = time */
17830 no_sys, /* 14 = mknod */ 17831 no_sys, /* 15 = chmod */ 17832 no_sys, /* 16 = chown */ 17833 do_brk, /* 17
= break */ 17834 no_sys, /* 18 = stat */ 17835 no_sys, /* 19 = lseek */ 17836 do_getset, /* 20 = getpid */ 17837
no_sys, /* 21 = mount */ 17838 no_sys, /* 22 = umount */ 17839 do_getset, /* 23 = setuid */ 17840 do_getset, /* 24 =
getuid */ 17841 do_stime, /* 25 = stime */ 17842 do_trace, /* 26 = ptrace */ 17843 do_alarm, /* 27 = alarm */ 17844
no_sys, /* 28 = fstat */ 17845 do_pause, /* 29 = pause */ 17846 no_sys, /* 30 = utime */ 17847 no_sys, /* 31 = (stty)
/ 17848 no_sys, / 32 = (gtty) */ 17849 no_sys, /* 33 = access */ 17850 no_sys, /* 34 = (nice) */ 17851 no_sys, /* 35
= (ftime) */ 17852 no_sys, /* 36 = sync */ 17853 do_kill, /* 37 = kill */ 17854 no_sys, /* 38 = rename */

[Page 874]

17855 no_sys, /* 39 = mkdir */ 17856 no_sys, /* 40 = rmdir */ 17857 no_sys, /* 41 = dup */ 17858 no_sys, /* 42 =
pipe */ 17859 do_times, /* 43 = times */ 17860 no_sys, /* 44 = (prof) */ 17861 no_sys, /* 45 = unused */ 17862
do_getset, /* 46 = setgid */ 17863 do_getset, /* 47 = getgid */ 17864 no_sys, /* 48 = (signal)*/ 17865 no_sys, /* 49 =
unused */ 17866 no_sys, /* 50 = unused */ 17867 no_sys, /* 51 = (acct) */ 17868 no_sys, /* 52 = (phys) */ 17869
no_sys, /* 53 = (lock) */ 17870 no_sys, /* 54 = ioctl */ 17871 no_sys, /* 55 = fcntl */ 17872 no_sys, /* 56 = (mpx) */
17873 no_sys, /* 57 = unused */ 17874 no_sys, /* 58 = unused */ 17875 do_exec, /* 59 = execve */ 17876 no_sys, /*
60 = umask */ 17877 no_sys, /* 61 = chroot */ 17878 do_getset, /* 62 = setsid */ 17879 do_getset, /* 63 = getpgrp */
17880 17881 no_sys, /* 64 = unused */ 17882 no_sys, /* 65 = UNPAUSE */ 17883 no_sys, /* 66 = unused */ 17884
no_sys, /* 67 = REVIVE */ 17885 no_sys, /* 68 = TASK_REPLY */ 17886 no_sys, /* 69 = unused */ 17887 no_sys,
/* 70 = unused */ 17888 do_sigaction, /* 71 = sigaction */ 17889 do_sigsuspend, /* 72 = sigsuspend */ 17890
do_sigpending, /* 73 = sigpending */ 17891 do_sigprocmask, /* 74 = sigprocmask */ 17892 do_sigreturn, /* 75 =
sigreturn */ 17893 do_reboot, /* 76 = reboot */ 17894 do_svrctl, /* 77 = svrctl */ 17895 17896 no_sys, /* 78 = unused
/ 17897 do_getsysinfo, / 79 = getsysinfo */ 17898 do_getprocnr, /* 80 = getprocnr */ 17899 no_sys, /* 81 = unused
/ 17900 no_sys, / 82 = fstatfs */ 17901 do_allocmem, /* 83 = memalloc */ 17902 do_freemem, /* 84 = memfree */
17903 no_sys, /* 85 = select */ 17904 no_sys, /* 86 = fchdir */ 17905 no_sys, /* 87 = fsync */ 17906
do_getsetpriority, /* 88 = getpriority */ 17907 do_getsetpriority, /* 89 = setpriority */ 17908 do_time, /* 90 =
gettimeofday */ 17909 }; 17910 /* This should not fail with "array size is negative": */ 17911 extern int
dummy[sizeof(call_vec) == NCALLS * sizeof(call_vec[0]) ? 1 : -1];

[Page 875]

119

119

++
servers/pm/main.c
++
18000 /* This file contains the main program of the process manager and some related 18001 * procedures. When
MINIX starts up, the kernel runs for a little while, 18002 * initializing itself and its tasks, and then it runs PM and FS.
Both PM 18003 * and FS initialize themselves as far as they can. PM asks the kernel for 18004 * all free memory and
starts serving requests. 18005 * 18006 * The entry points into this file are: 18007 * main: starts PM running 18008 *
setreply: set the reply to be sent to process making an PM system call 18009 */ 18010 18011 #include "pm.h" 18012
#include <minix/keymap.h> 18013 #include <minix/callnr.h> 18014 #include <minix/com.h> 18015 #include
<signal.h> 18016 #include <stdlib.h> 18017 #include <fcntl.h> 18018 #include <sys/resource.h> 18019 #include
<string.h> 18020 #include "mproc.h" 18021 #include "param.h" 18022 18023 #include "../../kernel/const.h" 18024
#include "../../kernel/config.h" 18025 #include "../../kernel/type.h" 18026 #include "../../kernel/proc.h" 18027 18028
FORWARD _PROTOTYPE(void get_work, (void)); 18029 FORWARD _PROTOTYPE(void pm_init, (void));
18030 FORWARD _PROTOTYPE(int get_nice_value, (int queue)); 18031 FORWARD _PROTOTYPE(void
get_mem_chunks, (struct memory *mem_chunks)); 18032 FORWARD _PROTOTYPE(void patch_mem_chunks,
(struct memory *mem_chunks, 18033 struct mem_map *map_ptr)); 18034 18035 #define click_to_round_k(n) \
18036 ((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024)) 18037 18038
/*===* 18039 *
main * 18040
===/ 18041
PUBLIC int main() 18042 { 18043 /* Main routine of the process manager. */ 18044 int result, s, proc_nr; 18045 struct
mproc *rmp; 18046 sigset_t sigset; 18047 18048 pm_init(); /* initialize process manager tables */ 18049 18050 /* This
is PM's main loop- get work and do it, forever and forever. */ 18051 while (TRUE) { 18052 get_work(); /* wait for an
PM system call */ 18053 18054 /* Check for system notifications first. Special cases. */

[Page 876]

18055 if (call_nr == SYN_ALARM) { 18056 pm_expire_timers(m_in.NOTIFY_TIMESTAMP); 18057 result =
SUSPEND; /* don't reply */ 18058 } else if (call_nr == SYS_SIG) { /* signals pending */ 18059 sigset =
m_in.NOTIFY_ARG; 18060 if (sigismember(&sigset, SIGKSIG)) (void) ksig_pending(); 18061 result = SUSPEND;
/* don't reply */ 18062 } 18063 /* Else, if the system call number is valid, perform the call. */ 18064 else if ((unsigned)
call_nr >= NCALLS) { 18065 result = ENOSYS; 18066 } else { 18067 result = (*call_vec[call_nr])(); 18068 } 18069
18070 /* Send the results back to the user to indicate completion. */ 18071 if (result != SUSPEND) setreply(who,
result); 18072 18073 swap_in(); /* maybe a process can be swapped in? */ 18074 18075 /* Send out all pending reply
messages, including the answer to 18076 * the call just made above. The processes must not be swapped out. 18077 */
18078 for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) { 18079 /* In the meantime, the
process may have been killed by a 18080 * signal (e.g. if a lethal pending signal was unblocked) 18081 * without the
PM realizing it. If the slot is no longer in 18082 * use or just a zombie, don't try to reply. 18083 */ 18084 if
((rmp->mp_flags & (REPLY | ONSWAP | IN_USE | ZOMBIE)) == 18085 (REPLY | IN_USE)) { 18086 if
((s=send(proc_nr, &rmp->mp_reply)) != OK) { 18087 panic(__FILE__,"PM can't reply to", proc_nr); 18088 } 18089
rmp->mp_flags &= ~REPLY; 18090 } 18091 } 18092 } 18093 return(OK); 18094 } 18096
/*===* 18097 *
get_work * 18098
===/ 18099
PRIVATE void get_work() 18100 { 18101 /* Wait for the next message and extract useful information from it. */
18102 if (receive(ANY, &m_in) != OK) panic(__FILE__,"PM receive error", NO_NUM); 18103 who =
m_in.m_source; /* who sent the message */ 18104 call_nr = m_in.m_type; /* system call number */ 18105 18106 /*
Process slot of caller. Misuse PM's own process slot if the kernel is 18107 * calling. This can happen in case of
synchronous alarms (CLOCK) or or 18108 * event like pending kernel signals (SYSTEM). 18109 */ 18110 mp =
&mproc[who < 0 ? PM_PROC_NR : who]; 18111 }

[Page 877]

120

120

18113 /*===*
18114 * setreply * 18115
===/ 18116
PUBLIC void setreply(proc_nr, result) 18117 int proc_nr; /* process to reply to */ 18118 int result; /* result of call
(usually OK or error #) */ 18119 { 18120 /* Fill in a reply message to be sent later to a user process. System calls
18121 * may occasionally fill in other fields, this is only for the main return 18122 * value, and for setting the "must
send reply" flag. 18123 */ 18124 register struct mproc *rmp = &mproc[proc_nr]; 18125 18126
rmp->mp_reply.reply_res = result; 18127 rmp->mp_flags |= REPLY; /* reply pending */ 18128 18129 if
(rmp->mp_flags & ONSWAP) 18130 swap_inqueue(rmp); /* must swap this process back in */ 18131 } 18133
/*===* 18134 *
pm_init * 18135
===/ 18136
PRIVATE void pm_init() 18137 { 18138 /* Initialize the process manager. 18139 * Memory use info is collected from
the boot monitor, the kernel, and 18140 * all processes compiled into the system image. Initially this information
18141 * is put into an array mem_chunks. Elements of mem_chunks are struct memory, 18142 * and hold base, size
pairs in units of clicks. This array is small, there 18143 * should be no more than 8 chunks. After the array of chunks
has been built 18144 * the contents are used to initialize the hole list. Space for the hole list 18145 * is reserved as an
array with twice as many elements as the maximum number 18146 * of processes allowed. It is managed as a linked
list, and elements of the 18147 * array are struct hole, which, in addition to storage for a base and size in 18148 * click
units also contain space for a link, a pointer to another element. 18149 */ 18150 int s; 18151 static struct boot_image
image[NR_BOOT_PROCS]; 18152 register struct boot_image *ip; 18153 static char core_sigs[] = { SIGQUIT,
SIGILL, SIGTRAP, SIGABRT, 18154 SIGEMT, SIGFPE, SIGUSR1, SIGSEGV, SIGUSR2 }; 18155 static char
ign_sigs[] = { SIGCHLD }; 18156 register struct mproc *rmp; 18157 register char *sig_ptr; 18158 phys_clicks
total_clicks, minix_clicks, free_clicks; 18159 message mess; 18160 struct mem_map mem_map[NR_LOCAL_SEGS];
18161 struct memory mem_chunks[NR_MEMS]; 18162 18163 /* Initialize process table, including timers. */ 18164
for (rmp=&mproc[0]; rmp<&mproc[NR_PROCS]; rmp++) { 18165 tmr_inittimer(&rmp->mp_timer); 18166 } 18167
18168 /* Build the set of signals which cause core dumps, and the set of signals 18169 * that are by default ignored.
18170 */ 18171 sigemptyset(&core_sset); 18172 for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs);
sig_ptr++)

[Page 878]

18173 sigaddset(&core_sset, *sig_ptr); 18174 sigemptyset(&ign_sset); 18175 for (sig_ptr = ign_sigs; sig_ptr <
ign_sigs+sizeof(ign_sigs); sig_ptr++) 18176 sigaddset(&ign_sset, *sig_ptr); 18177 18178 /* Obtain a copy of the boot
monitor parameters and the kernel info struct. 18179 * Parse the list of free memory chunks. This list is what the boot
monitor 18180 * reported, but it must be corrected for the kernel and system processes. 18181 */ 18182 if
((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK) 18183 panic(__FILE__,"get monitor
params failed",s); 18184 get_mem_chunks(mem_chunks); 18185 if ((s=sys_getkinfo(&kinfo)) != OK) 18186
panic(__FILE__,"get kernel info failed",s); 18187 18188 /* Get the memory map of the kernel to see how much
memory it uses. */ 18189 if ((s=get_mem_map(SYSTASK, mem_map)) != OK) 18190 panic(__FILE__,"couldn't get
memory map of SYSTASK",s); 18191 minix_clicks =
(mem_map[S].mem_phys+mem_map[S].mem_len)-mem_map[T].mem_phys; 18192
patch_mem_chunks(mem_chunks, mem_map); 18193 18194 /* Initialize PM's process table. Request a copy of the
system image table 18195 * that is defined at the kernel level to see which slots to fill in. 18196 */ 18197 if (OK !=
(s=sys_getimage(image))) 18198 panic(__FILE__,"couldn't get image table: %d\n", s); 18199 procs_in_use = 0; /*
start populating table */ 18200 printf("Building process table:"); /* show what's happening */ 18201 for (ip =
&image[0]; ip < &image[NR_BOOT_PROCS]; ip++) { 18202 if (ip->proc_nr >= 0) { /* task have negative nrs */
18203 procs_in_use += 1; /* found user process */ 18204 18205 /* Set process details found in the image table. */
18206 rmp = &mproc[ip->proc_nr]; 18207 strncpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN); 18208
rmp->mp_parent = RS_PROC_NR; 18209 rmp->mp_nice = get_nice_value(ip->priority); 18210 if (ip->proc_nr ==
INIT_PROC_NR) { /* user process */ 18211 rmp->mp_pid = INIT_PID; 18212 rmp->mp_flags |= IN_USE; 18213
sigemptyset(&rmp->mp_ignore); 18214 } 18215 else { /* system process */ 18216 rmp->mp_pid = get_free_pid();
18217 rmp->mp_flags |= IN_USE | DONT_SWAP | PRIV_PROC; 18218 sigfillset(&rmp->mp_ignore); 18219 }
18220 sigemptyset(&rmp->mp_sigmask); 18221 sigemptyset(&rmp->mp_catch); 18222

121

121

sigemptyset(&rmp->mp_sig2mess); 18223 18224 /* Get memory map for this process from the kernel. */ 18225 if
((s=get_mem_map(ip->proc_nr, rmp->mp_seg)) != OK) 18226 panic(__FILE__,"couldn't get process entry",s); 18227
if (rmp->mp_seg[T].mem_len != 0) rmp->mp_flags |= SEPARATE; 18228 minix_clicks +=
rmp->mp_seg[S].mem_phys + 18229 rmp->mp_seg[S].mem_len - rmp->mp_seg[T].mem_phys; 18230
patch_mem_chunks(mem_chunks, rmp->mp_seg); 18231 18232 /* Tell FS about this system process. */

[Page 879]

18233 mess.PR_PROC_NR = ip->proc_nr; 18234 mess.PR_PID = rmp->mp_pid; 18235 if (OK !=
(s=send(FS_PROC_NR, &mess))) 18236 panic(__FILE__,"can't sync up with FS", s); 18237 printf(" %s",
ip->proc_name); /* display process name */ 18238 } 18239 } 18240 printf(".\n"); /* last process done */ 18241 18242
/* Override some details. PM is somewhat special. */ 18243 mproc[PM_PROC_NR].mp_pid = PM_PID; /* magically
override pid */ 18244 mproc[PM_PROC_NR].mp_parent = PM_PROC_NR; /* PM doesn't have parent */ 18245
18246 /* Tell FS that no more system processes follow and synchronize. */ 18247 mess.PR_PROC_NR = NONE;
18248 if (sendrec(FS_PROC_NR, &mess) != OK || mess.m_type != OK) 18249 panic(__FILE__,"can't sync up with
FS", NO_NUM); 18250 18251 /* Initialize tables to all physical memory and print memory information. */ 18252
printf("Physical memory:"); 18253 mem_init(mem_chunks, &free_clicks); 18254 total_clicks = minix_clicks +
free_clicks; 18255 printf(" total %u KB,", click_to_round_k(total_clicks)); 18256 printf(" system %u KB,",
click_to_round_k(minix_clicks)); 18257 printf(" free %u KB.\n", click_to_round_k(free_clicks)); 18258 } 18260
/*===* 18261 *
get_nice_value * 18262
===/ 18263
PRIVATE int get_nice_value(queue) 18264 int queue; /* store mem chunks here */ 18265 { 18266 /* Processes in the
boot image have a priority assigned. The PM doesn't know 18267 * about priorities, but uses 'nice' values instead. The
priority is between 18268 * MIN_USER_Q and MAX_USER_Q. We have to scale between PRIO_MIN and
PRIO_MAX. 18269 */ 18270 int nice_val = (queue - USER_Q) * (PRIO_MAX-PRIO_MIN+1) / 18271
(MIN_USER_Q-MAX_USER_Q+1); 18272 if (nice_val > PRIO_MAX) nice_val = PRIO_MAX; /* shouldn't happen
/ 18273 if (nice_val < PRIO_MIN) nice_val = PRIO_MIN; / shouldn't happen */ 18274 return nice_val; 18275 }
18277 /*===*
18278 * get_mem_chunks * 18279
===/ 18280
PRIVATE void get_mem_chunks(mem_chunks) 18281 struct memory *mem_chunks; /* store mem chunks here */
18282 { 18283 /* Initialize the free memory list from the 'memory' boot variable. Translate 18284 * the byte offsets
and sizes in this list to clicks, properly truncated. Also 18285 * make sure that we don't exceed the maximum address
space of the 286 or the 18286 * 8086, i.e. when running in 16-bit protected mode or real mode. 18287 */ 18288 long
base, size, limit; 18289 char *s, *end; /* use to parse boot variable */ 18290 int i, done = 0; 18291 struct memory
*memp; 18292

[Page 880]

18293 /* Initialize everything to zero. */ 18294 for (i = 0; i < NR_MEMS; i++) { 18295 memp = &mem_chunks[i]; /*
next mem chunk is stored here */ 18296 memp->base = memp->size = 0; 18297 } 18298 18299 /* The available
memory is determined by MINIX' boot loader as a list of 18300 * (base:size)-pairs in boothead.s. The 'memory' boot
variable is set in 18301 * in boot.s. The format is "b0:s0,b1:s1,b2:s2", where b0:s0 is low mem, 18302 * b1:s1 is mem
between 1M and 16M, b2:s2 is mem above 16M. Pairs b1:s1 18303 * and b2:s2 are combined if the memory is
adjacent. 18304 */ 18305 s = find_param("memory"); /* get memory boot variable */ 18306 for (i = 0; i < NR_MEMS
&& !done; i++) { 18307 memp = &mem_chunks[i]; /* next mem chunk is stored here */ 18308 base = size = 0; /*
initialize next base:size pair */ 18309 if (*s != 0) { /* get fresh data, unless at end */ 18310 18311 /* Read fresh base
and expect colon as next char. */ 18312 base = strtoul(s, &end, 0x10); /* get number */ 18313 if (end != s && *end ==
':') s = ++end; /* skip ':' */ 18314 else *s=0; /* terminate, should not happen */ 18315 18316 /* Read fresh size and
expect comma or assume end. */ 18317 size = strtoul(s, &end, 0x10); /* get number */ 18318 if (end != s && *end ==
',') s = ++end; /* skip ',' */ 18319 else done = 1; 18320 } 18321 limit = base + size; 18322 base = (base +
CLICK_SIZE-1) & ~(long)(CLICK_SIZE-1); 18323 limit &= ~(long)(CLICK_SIZE-1); 18324 if (limit <= base)
continue; 18325 memp->base = base >> CLICK_SHIFT; 18326 memp->size = (limit - base) >> CLICK_SHIFT;

122

122

18327 } 18328 } 18330
/*===* 18331 *
patch_mem_chunks * 18332
===/ 18333
PRIVATE void patch_mem_chunks(mem_chunks, map_ptr) 18334 struct memory *mem_chunks; /* store mem
chunks here */ 18335 struct mem_map *map_ptr; /* memory to remove */ 18336 { 18337 /* Remove server memory
from the free memory list. The boot monitor 18338 * promises to put processes at the start of memory chunks. The
18339 * tasks all use same base address, so only the first task changes 18340 * the memory lists. The servers and init
have their own memory 18341 * spaces and their memory will be removed from the list. 18342 */ 18343 struct
memory *memp; 18344 for (memp = mem_chunks; memp < &mem_chunks[NR_MEMS]; memp++) { 18345 if
(memp->base == map_ptr[T].mem_phys) { 18346 memp->base += map_ptr[T].mem_len + map_ptr[D].mem_len;
18347 memp->size -= map_ptr[T].mem_len + map_ptr[D].mem_len; 18348 } 18349 } 18350 }

[Page 881]

++
servers/pm/forkexit.c
++
18400 /* This file deals with creating processes (via FORK) and deleting them (via 18401 * EXIT/WAIT). When a
process forks, a new slot in the 'mproc' table is 18402 * allocated for it, and a copy of the parent's core image is made
for the 18403 * child. Then the kernel and file system are informed. A process is removed 18404 * from the 'mproc'
table when two events have occurred: (1) it has exited or 18405 * been killed by a signal, and (2) the parent has done a
WAIT. If the process 18406 * exits first, it continues to occupy a slot until the parent does a WAIT. 18407 * 18408 *
The entry points into this file are: 18409 * do_fork: perform the FORK system call 18410 * do_pm_exit: perform the
EXIT system call (by calling pm_exit()) 18411 * pm_exit: actually do the exiting 18412 * do_wait: perform the
WAITPID or WAIT system call 18413 */ 18414 18415 #include "pm.h" 18416 #include <sys/wait.h> 18417 #include
<minix/callnr.h> 18418 #include <minix/com.h> 18419 #include <signal.h> 18420 #include "mproc.h" 18421
#include "param.h" 18422 18423 #define LAST_FEW 2 /* last few slots reserved for superuser */ 18424 18425
FORWARD _PROTOTYPE (void cleanup, (register struct mproc *child)); 18426 18427
/*===* 18428 *
do_fork * 18429
===/ 18430
PUBLIC int do_fork() 18431 { 18432 /* The process pointed to by 'mp' has forked. Create a child process. */ 18433
register struct mproc *rmp; /* pointer to parent */ 18434 register struct mproc *rmc; /* pointer to child */ 18435 int
child_nr, s; 18436 phys_clicks prog_clicks, child_base; 18437 phys_bytes prog_bytes, parent_abs, child_abs; /* Intel
only */ 18438 pid_t new_pid; 18439 18440 /* If tables might fill up during FORK, don't even start since recovery half
18441 * way through is such a nuisance. 18442 */ 18443 rmp = mp; 18444 if ((procs_in_use == NR_PROCS) || 18445
(procs_in_use >= NR_PROCS-LAST_FEW && rmp->mp_effuid != 0)) 18446 { 18447 printf("PM: warning, process
table is full!\n"); 18448 return(EAGAIN); 18449 } 18450 18451 /* Determine how much memory to allocate. Only the
data and stack need to 18452 * be copied, because the text segment is either shared or of zero length. 18453 */ 18454
prog_clicks = (phys_clicks) rmp->mp_seg[S].mem_len;

[Page 882]

18455 prog_clicks += (rmp->mp_seg[S].mem_vir - rmp->mp_seg[D].mem_vir); 18456 prog_bytes = (phys_bytes)
prog_clicks << CLICK_SHIFT; 18457 if ((child_base = alloc_mem(prog_clicks)) == NO_MEM) return(ENOMEM);
18458 18459 /* Create a copy of the parent's core image for the child. */ 18460 child_abs = (phys_bytes) child_base
<< CLICK_SHIFT; 18461 parent_abs = (phys_bytes) rmp->mp_seg[D].mem_phys << CLICK_SHIFT; 18462 s =
sys_abscopy(parent_abs, child_abs, prog_bytes); 18463 if (s < 0) panic(__FILE__,"do_fork can't copy", s); 18464
18465 /* Find a slot in 'mproc' for the child process. A slot must exist. */ 18466 for (rmc = &mproc[0]; rmc <
&mproc[NR_PROCS]; rmc++) 18467 if ((rmc->mp_flags & IN_USE) == 0) break; 18468 18469 /* Set up the child
and its memory map; copy its 'mproc' slot from parent. */ 18470 child_nr = (int)(rmc - mproc); /* slot number of the
child */ 18471 procs_in_use++; 18472 *rmc = *rmp; /* copy parent's process slot to child's */ 18473 rmc->mp_parent
= who; /* record child's parent */ 18474 /* inherit only these flags */ 18475 rmc->mp_flags &=

123

123

(IN_USE|SEPARATE|PRIV_PROC|DONT_SWAP); 18476 rmc->mp_child_utime = 0; /* reset administration */
18477 rmc->mp_child_stime = 0; /* reset administration */ 18478 18479 /* A separate I&D child keeps the parents
text segment. The data and stack 18480 * segments must refer to the new copy. 18481 */ 18482 if (!(rmc->mp_flags &
SEPARATE)) rmc->mp_seg[T].mem_phys = child_base; 18483 rmc->mp_seg[D].mem_phys = child_base; 18484
rmc->mp_seg[S].mem_phys = rmc->mp_seg[D].mem_phys + 18485 (rmp->mp_seg[S].mem_vir -
rmp->mp_seg[D].mem_vir); 18486 rmc->mp_exitstatus = 0; 18487 rmc->mp_sigstatus = 0; 18488 18489 /* Find a
free pid for the child and put it in the table. */ 18490 new_pid = get_free_pid(); 18491 rmc->mp_pid = new_pid; /*
assign pid to child */ 18492 18493 /* Tell kernel and file system about the (now successful) FORK. */ 18494
sys_fork(who, child_nr); 18495 tell_fs(FORK, who, child_nr, rmc->mp_pid); 18496 18497 /* Report child's memory
map to kernel. */ 18498 sys_newmap(child_nr, rmc->mp_seg); 18499 18500 /* Reply to child to wake it up. */ 18501
setreply(child_nr, 0); /* only parent gets details */ 18502 rmp->mp_reply.procnr = child_nr; /* child's process number
/ 18503 return(new_pid); / child's pid */ 18504 } 18506
/*===* 18507 *
do_pm_exit * 18508
===/ 18509
PUBLIC int do_pm_exit() 18510 { 18511 /* Perform the exit(status) system call. The real work is done by pm_exit(),
18512 * which is also called when a process is killed by a signal. 18513 */ 18514 pm_exit(mp, m_in.status);

[Page 883]

18515 return(SUSPEND); /* can't communicate from beyond the grave */ 18516 } 18518
/*===* 18519 *
pm_exit * 18520
===/ 18521
PUBLIC void pm_exit(rmp, exit_status) 18522 register struct mproc *rmp; /* pointer to the process to be terminated */
18523 int exit_status; /* the process' exit status (for parent) */ 18524 { 18525 /* A process is done. Release most of the
process' possessions. If its 18526 * parent is waiting, release the rest, else keep the process slot and 18527 * become a
zombie. 18528 */ 18529 register int proc_nr; 18530 int parent_waiting, right_child; 18531 pid_t pidarg, procgrp;
18532 struct mproc *p_mp; 18533 clock_t t[5]; 18534 18535 proc_nr = (int) (rmp - mproc); /* get process slot number
/ 18536 18537 / Remember a session leader's process group. */ 18538 procgrp = (rmp->mp_pid ==
mp->mp_procgrp) ? mp->mp_procgrp : 0; 18539 18540 /* If the exited process has a timer pending, kill it. */ 18541 if
(rmp->mp_flags & ALARM_ON) set_alarm(proc_nr, (unsigned) 0); 18542 18543 /* Do accounting: fetch usage times
and accumulate at parent. */ 18544 sys_times(proc_nr, t); 18545 p_mp = &mproc[rmp->mp_parent]; /* process' parent
/ 18546 p_mp->mp_child_utime += t[0] + rmp->mp_child_utime; / add user time */ 18547 p_mp->mp_child_stime
+= t[1] + rmp->mp_child_stime; /* add system time */ 18548 18549 /* Tell the kernel and FS that the process is no
longer runnable. */ 18550 tell_fs(EXIT, proc_nr, 0, 0); /* file system can free the proc slot */ 18551 sys_exit(proc_nr);
18552 18553 /* Pending reply messages for the dead process cannot be delivered. */ 18554 rmp->mp_flags &=
~REPLY; 18555 18556 /* Release the memory occupied by the child. */ 18557 if (find_share(rmp, rmp->mp_ino,
rmp->mp_dev, rmp->mp_ctime) == NULL) { 18558 /* No other process shares the text segment, so free it. */ 18559
free_mem(rmp->mp_seg[T].mem_phys, rmp->mp_seg[T].mem_len); 18560 } 18561 /* Free the data and stack
segments. */ 18562 free_mem(rmp->mp_seg[D].mem_phys, 18563 rmp->mp_seg[S].mem_vir 18564 +
rmp->mp_seg[S].mem_len - rmp->mp_seg[D].mem_vir); 18565 18566 /* The process slot can only be freed if the
parent has done a WAIT. */ 18567 rmp->mp_exitstatus = (char) exit_status; 18568 18569 pidarg = p_mp->mp_wpid;
/* who's being waited for? */ 18570 parent_waiting = p_mp->mp_flags & WAITING; 18571 right_child = /* child
meets one of the 3 tests? */ 18572 (pidarg == -1 || pidarg == rmp->mp_pid || -pidarg == rmp->mp_procgrp); 18573
18574 if (parent_waiting && right_child) {

[Page 884]

18575 cleanup(rmp); /* tell parent and release child slot */ 18576 } else { 18577 rmp->mp_flags = IN_USE|ZOMBIE;
/* parent not waiting, zombify child */ 18578 sig_proc(p_mp, SIGCHLD); /* send parent a "child died" signal */
18579 } 18580 18581 /* If the process has children, disinherit them. INIT is the new parent. */ 18582 for (rmp =
&mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) { 18583 if (rmp->mp_flags & IN_USE && rmp->mp_parent ==
proc_nr) { 18584 /* 'rmp' now points to a child to be disinherited. */ 18585 rmp->mp_parent = INIT_PROC_NR;

124

124

18586 parent_waiting = mproc[INIT_PROC_NR].mp_flags & WAITING; 18587 if (parent_waiting &&
(rmp->mp_flags & ZOMBIE)) cleanup(rmp); 18588 } 18589 } 18590 18591 /* Send a hangup to the process' process
group if it was a session leader. */ 18592 if (procgrp != 0) check_sig(-procgrp, SIGHUP); 18593 } 18595
/*===* 18596 *
do_waitpid * 18597
===/ 18598
PUBLIC int do_waitpid() 18599 { 18600 /* A process wants to wait for a child to terminate. If a child is already 18601
* waiting, go clean it up and let this WAIT call terminate. Otherwise, 18602 * really wait. 18603 * A process calling
WAIT never gets a reply in the usual way at the end 18604 * of the main loop (unless WNOHANG is set or no
qualifying child exists). 18605 * If a child has already exited, the routine cleanup() sends the reply 18606 * to awaken
the caller. 18607 * Both WAIT and WAITPID are handled by this code. 18608 */ 18609 register struct mproc *rp;
18610 int pidarg, options, children; 18611 18612 /* Set internal variables, depending on whether this is WAIT or
WAITPID. */ 18613 pidarg = (call_nr == WAIT ? -1 : m_in.pid); /* 1st param of waitpid */ 18614 options = (call_nr
== WAIT ? 0 : m_in.sig_nr); /* 3rd param of waitpid */ 18615 if (pidarg == 0) pidarg = -mp->mp_procgrp; /* pidarg <
0 ==> proc grp */ 18616 18617 /* Is there a child waiting to be collected? At this point, pidarg != 0: 18618 * pidarg >
0 means pidarg is pid of a specific process to wait for 18619 * pidarg == -1 means wait for any child 18620 * pidarg <
-1 means wait for any child whose process group = -pidarg 18621 */ 18622 children = 0; 18623 for (rp = &mproc[0];
rp < &mproc[NR_PROCS]; rp++) { 18624 if ((rp->mp_flags & IN_USE) && rp->mp_parent == who) { 18625 /*
The value of pidarg determines which children qualify. */ 18626 if (pidarg > 0 && pidarg != rp->mp_pid) continue;
18627 if (pidarg < -1 && -pidarg != rp->mp_procgrp) continue; 18628 18629 children++; /* this child is acceptable */
18630 if (rp->mp_flags & ZOMBIE) { 18631 /* This child meets the pid test and has exited. */ 18632 cleanup(rp); /*
this child has already exited */ 18633 return(SUSPEND); 18634 }

[Page 885]

18635 if ((rp->mp_flags & STOPPED) && rp->mp_sigstatus) { 18636 /* This child meets the pid test and is being
traced.*/ 18637 mp->mp_reply.reply_res2 = 0177|(rp->mp_sigstatus << 8); 18638 rp->mp_sigstatus = 0; 18639
return(rp->mp_pid); 18640 } 18641 } 18642 } 18643 18644 /* No qualifying child has exited. Wait for one, unless
none exists. */ 18645 if (children > 0) { 18646 /* At least 1 child meets the pid test exists, but has not exited. */ 18647
if (options & WNOHANG) return(0); /* parent does not want to wait */ 18648 mp->mp_flags |= WAITING; /* parent
wants to wait */ 18649 mp->mp_wpid = (pid_t) pidarg; /* save pid for later */ 18650 return(SUSPEND); /* do not
reply, let it wait */ 18651 } else { 18652 /* No child even meets the pid test. Return error immediately. */ 18653
return(ECHILD); /* no - parent has no children */ 18654 } 18655 } 18657
/*===* 18658 *
cleanup * 18659
===/ 18660
PRIVATE void cleanup(child) 18661 register struct mproc *child; /* tells which process is exiting */ 18662 { 18663 /*
Finish off the exit of a process. The process has exited or been killed 18664 * by a signal, and its parent is waiting.
18665 */ 18666 struct mproc *parent = &mproc[child->mp_parent]; 18667 int exitstatus; 18668 18669 /* Wake up the
parent by sending the reply message. */ 18670 exitstatus = (child->mp_exitstatus << 8) | (child->mp_sigstatus &
0377); 18671 parent->mp_reply.reply_res2 = exitstatus; 18672 setreply(child->mp_parent, child->mp_pid); 18673
parent->mp_flags &= ~WAITING; /* parent no longer waiting */ 18674 18675 /* Release the process table entry and
reinitialize some field. */ 18676 child->mp_pid = 0; 18677 child->mp_flags = 0; 18678 child->mp_child_utime = 0;
18679 child->mp_child_stime = 0; 18680 procs_in_use--; 18681 }
++
servers/pm/exec.c
++
18700 /* This file handles the EXEC system call. It performs the work as follows: 18701 * - see if the permissions
allow the file to be executed 18702 * - read the header and extract the sizes 18703 * - fetch the initial args and
environment from the user space 18704 * - allocate the memory for the new process

[Page 886]

125

125

18705 * - copy the initial stack from PM to the process 18706 * - read in the text and data segments and copy to the
process 18707 * - take care of setuid and setgid bits 18708 * - fix up 'mproc' table 18709 * - tell kernel about EXEC
18710 * - save offset to initial argc (for ps) 18711 * 18712 * The entry points into this file are: 18713 * do_exec:
perform the EXEC system call 18714 * rw_seg: read or write a segment from or to a file 18715 * find_share: find a
process whose text segment can be shared 18716 */ 18717 18718 #include "pm.h" 18719 #include <sys/stat.h> 18720
#include <minix/callnr.h> 18721 #include <minix/com.h> 18722 #include <a.out.h> 18723 #include <signal.h> 18724
#include <string.h> 18725 #include "mproc.h" 18726 #include "param.h" 18727 18728 FORWARD _PROTOTYPE(
int new_mem, (struct mproc *sh_mp, vir_bytes text_bytes, 18729 vir_bytes data_bytes, vir_bytes bss_bytes, 18730
vir_bytes stk_bytes, phys_bytes tot_bytes)); 18731 FORWARD _PROTOTYPE(void patch_ptr, (char
stack[ARG_MAX], vir_bytes base)); 18732 FORWARD _PROTOTYPE(int insert_arg, (char stack[ARG_MAX],
18733 vir_bytes *stk_bytes, char *arg, int replace)); 18734 FORWARD _PROTOTYPE(char *patch_stack, (int fd,
char stack[ARG_MAX], 18735 vir_bytes *stk_bytes, char *script)); 18736 FORWARD _PROTOTYPE(int
read_header, (int fd, int *ft, vir_bytes *text_bytes, 18737 vir_bytes *data_bytes, vir_bytes *bss_bytes, 18738
phys_bytes *tot_bytes, long *sym_bytes, vir_clicks sc, 18739 vir_bytes *pc)); 18740 18741 #define ESCRIPT
(-2000) /* Returned by read_header for a #! script. */ 18742 #define PTRSIZE sizeof(char *) /* Size of pointers in
argv[] and envp[]. */ 18743 18744
/*===* 18745 *
do_exec * 18746
===/ 18747
PUBLIC int do_exec() 18748 { 18749 /* Perform the execve(name, argv, envp) call. The user library builds a 18750 *
complete stack image, including pointers, args, environ, etc. The stack 18751 * is copied to a buffer inside PM, and
then to the new core image. 18752 */ 18753 register struct mproc *rmp; 18754 struct mproc *sh_mp; 18755 int m, r,
fd, ft, sn; 18756 static char mbuf[ARG_MAX]; /* buffer for stack and zeroes */ 18757 static char
name_buf[PATH_MAX]; /* the name of the file to exec */ 18758 char *new_sp, *name, *basename; 18759 vir_bytes
src, dst, text_bytes, data_bytes, bss_bytes, stk_bytes, vsp; 18760 phys_bytes tot_bytes; /* total space for program,
including gap */ 18761 long sym_bytes; 18762 vir_clicks sc; 18763 struct stat s_buf[2], *s_p; 18764 vir_bytes pc;

[Page 887]

18765 18766 /* Do some validity checks. */ 18767 rmp = mp; 18768 stk_bytes = (vir_bytes) m_in.stack_bytes; 18769
if (stk_bytes > ARG_MAX) return(ENOMEM); /* stack too big */ 18770 if (m_in.exec_len <= 0 || m_in.exec_len >
PATH_MAX) return(EINVAL); 18771 18772 /* Get the exec file name and see if the file is executable. */ 18773 src =
(vir_bytes) m_in.exec_name; 18774 dst = (vir_bytes) name_buf; 18775 r = sys_datacopy(who, (vir_bytes) src, 18776
PM_PROC_NR, (vir_bytes) dst, (phys_bytes) m_in.exec_len); 18777 if (r != OK) return(r); /* file name not in user
data segment */ 18778 18779 /* Fetch the stack from the user before destroying the old core image. */ 18780 src =
(vir_bytes) m_in.stack_ptr; 18781 dst = (vir_bytes) mbuf; 18782 r = sys_datacopy(who, (vir_bytes) src, 18783
PM_PROC_NR, (vir_bytes) dst, (phys_bytes)stk_bytes); 18784 /* can't fetch stack (e.g. bad virtual addr) */ 18785 if (r
!= OK) return(EACCES); 18786 18787 r = 0; /* r = 0 (first attempt), or 1 (interpreted script) */ 18788 name =
name_buf; /* name of file to exec. */ 18789 do { 18790 s_p = &s_buf[r]; 18791 tell_fs(CHDIR, who, FALSE, 0); /*
switch to the user's FS environ */ 18792 fd = allowed(name, s_p, X_BIT); /* is file executable? */ 18793 if (fd < 0)
return(fd); /* file was not executable */ 18794 18795 /* Read the file header and extract the segment sizes. */ 18796 sc
= (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT; 18797 18798 m = read_header(fd, &ft, &text_bytes,
&data_bytes, &bss_bytes, 18799 &tot_bytes, &sym_bytes, sc, &pc); 18800 if (m != ESCRIPT || ++r > 1) break; 18801
} while ((name = patch_stack(fd, mbuf, &stk_bytes, name_buf)) != NULL); 18802 18803 if (m < 0) { 18804 close(fd);
/* something wrong with header */ 18805 return(stk_bytes > ARG_MAX ? ENOMEM : ENOEXEC); 18806 } 18807
18808 /* Can the process' text be shared with that of one already running? */ 18809 sh_mp = find_share(rmp,
s_p->st_ino, s_p->st_dev, s_p->st_ctime); 18810 18811 /* Allocate new memory and release old memory. Fix map
and tell kernel. */ 18812 r = new_mem(sh_mp, text_bytes, data_bytes, bss_bytes, stk_bytes, tot_bytes); 18813 if (r !=
OK) { 18814 close(fd); /* insufficient core or program too big */ 18815 return(r); 18816 } 18817 18818 /* Save file
identification to allow it to be shared. */ 18819 rmp->mp_ino = s_p->st_ino; 18820 rmp->mp_dev = s_p->st_dev;
18821 rmp->mp_ctime = s_p->st_ctime; 18822 18823 /* Patch up stack and copy it from PM to new core image. */
18824 vsp = (vir_bytes) rmp->mp_seg[S].mem_vir << CLICK_SHIFT;

[Page 888]

126

126

18825 vsp += (vir_bytes) rmp->mp_seg[S].mem_len << CLICK_SHIFT; 18826 vsp -= stk_bytes; 18827
patch_ptr(mbuf, vsp); 18828 src = (vir_bytes) mbuf; 18829 r = sys_datacopy(PM_PROC_NR, (vir_bytes) src, 18830
who, (vir_bytes) vsp, (phys_bytes)stk_bytes); 18831 if (r != OK) panic(__FILE__,"do_exec stack copy err on", who);
18832 18833 /* Read in text and data segments. */ 18834 if (sh_mp != NULL) { 18835 lseek(fd, (off_t) text_bytes,
SEEK_CUR); /* shared: skip text */ 18836 } else { 18837 rw_seg(0, fd, who, T, text_bytes); 18838 } 18839 rw_seg(0,
fd, who, D, data_bytes); 18840 18841 close(fd); /* don't need exec file any more */ 18842 18843 /* Take care of
setuid/setgid bits. */ 18844 if ((rmp->mp_flags & TRACED) == 0) { /* suppress if tracing */ 18845 if
(s_buf[0].st_mode & I_SET_UID_BIT) { 18846 rmp->mp_effuid = s_buf[0].st_uid; 18847 tell_fs(SETUID,who,
(int)rmp->mp_realuid, (int)rmp->mp_effuid); 18848 } 18849 if (s_buf[0].st_mode & I_SET_GID_BIT) { 18850
rmp->mp_effgid = s_buf[0].st_gid; 18851 tell_fs(SETGID,who, (int)rmp->mp_realgid, (int)rmp->mp_effgid); 18852 }
18853 } 18854 18855 /* Save offset to initial argc (for ps) */ 18856 rmp->mp_procargs = vsp; 18857 18858 /* Fix
'mproc' fields, tell kernel that exec is done, reset caught sigs. */ 18859 for (sn = 1; sn <= _NSIG; sn++) { 18860 if
(sigismember(&rmp->mp_catch, sn)) { 18861 sigdelset(&rmp->mp_catch, sn); 18862 rmp->mp_sigact[sn].sa_handler
= SIG_DFL; 18863 sigemptyset(&rmp->mp_sigact[sn].sa_mask); 18864 } 18865 } 18866 18867 rmp->mp_flags &=
~SEPARATE; /* turn off SEPARATE bit */ 18868 rmp->mp_flags |= ft; /* turn it on for separate I & D files */ 18869
new_sp = (char *) vsp; 18870 18871 tell_fs(EXEC, who, 0, 0); /* allow FS to handle FD_CLOEXEC files */ 18872
18873 /* System will save command line for debugging, ps(1) output, etc. */ 18874 basename = strrchr(name, '/');
18875 if (basename == NULL) basename = name; else basename++; 18876 strncpy(rmp->mp_name, basename,
PROC_NAME_LEN-1); 18877 rmp->mp_name[PROC_NAME_LEN] = '\0'; 18878 sys_exec(who, new_sp,
basename, pc); 18879 18880 /* Cause a signal if this process is traced. */ 18881 if (rmp->mp_flags & TRACED)
check_sig(rmp->mp_pid, SIGTRAP); 18882 18883 return(SUSPEND); /* no reply, new program just runs */ 18884 }

[Page 889]

18886 /*===*
18887 * read_header * 18888
===/ 18889
PRIVATE int read_header(fd, ft, text_bytes, data_bytes, bss_bytes, 18890 tot_bytes, sym_bytes, sc, pc) 18891 int fd;
/* file descriptor for reading exec file */ 18892 int *ft; /* place to return ft number */ 18893 vir_bytes *text_bytes; /*
place to return text size */ 18894 vir_bytes *data_bytes; /* place to return initialized data size */ 18895 vir_bytes
bss_bytes; / place to return bss size */ 18896 phys_bytes *tot_bytes; /* place to return total size */ 18897 long
sym_bytes; / place to return symbol table size */ 18898 vir_clicks sc; /* stack size in clicks */ 18899 vir_bytes *pc;
/* program entry point (initial PC) */ 18900 { 18901 /* Read the header and extract the text, data, bss and total sizes
from it. */ 18902 18903 int m, ct; 18904 vir_clicks tc, dc, s_vir, dvir; 18905 phys_clicks totc; 18906 struct exec hdr; /*
a.out header is read in here */ 18907 18908 /* Read the header and check the magic number. The standard MINIX
header 18909 * is defined in <a.out.h>. It consists of 8 chars followed by 6 longs. 18910 * Then come 4 more longs
that are not used here. 18911 * Byte 0: magic number 0x01 18912 * Byte 1: magic number 0x03 18913 * Byte 2:
normal = 0x10 (not checked, 0 is OK), separate I/D = 0x20 18914 * Byte 3: CPU type, Intel 16 bit = 0x04, Intel 32 bit
= 0x10, 18915 * Motorola = 0x0B, Sun SPARC = 0x17 18916 * Byte 4: Header length = 0x20 18917 * Bytes 5-7 are
not used. 18918 * 18919 * Now come the 6 longs 18920 * Bytes 8-11: size of text segments in bytes 18921 * Bytes
12-15: size of initialized data segment in bytes 18922 * Bytes 16-19: size of bss in bytes 18923 * Bytes 20-23:
program entry point 18924 * Bytes 24-27: total memory allocated to program (text, data + stack) 18925 * Bytes 28-31:
size of symbol table in bytes 18926 * The longs are represented in a machine dependent order, 18927 * little-endian on
the 8088, big-endian on the 68000. 18928 * The header is followed directly by the text and data segments, and the
18929 * symbol table (if any). The sizes are given in the header. Only the 18930 * text and data segments are copied
into memory by exec. The header is 18931 * used here only. The symbol table is for the benefit of a debugger and
18932 * is ignored here. 18933 */ 18934 18935 if ((m= read(fd, &hdr, A_MINHDR)) < 2) return(ENOEXEC); 18936
18937 /* Interpreted script? */ 18938 if (((char *) &hdr)[0] == '#' && ((char *) &hdr)[1] == '!') return(ESCRIPT);
18939 18940 if (m != A_MINHDR) return(ENOEXEC); 18941 18942 /* Check magic number, cpu type, and flags. */
18943 if (BADMAG(hdr)) return(ENOEXEC); 18944 if (hdr.a_cpu != A_I80386) return(ENOEXEC);

[Page 890]

127

127

18945 if ((hdr.a_flags & ~(A_NSYM | A_EXEC | A_SEP)) != 0) return(ENOEXEC); 18946 18947 *ft = ((hdr.a_flags
& A_SEP) ? SEPARATE : 0); /* separate I & D or not */ 18948 18949 /* Get text and data sizes. */ 18950 *text_bytes
= (vir_bytes) hdr.a_text; /* text size in bytes */ 18951 *data_bytes = (vir_bytes) hdr.a_data; /* data size in bytes */
18952 *bss_bytes = (vir_bytes) hdr.a_bss; /* bss size in bytes */ 18953 *tot_bytes = hdr.a_total; /* total bytes to
allocate for prog */ 18954 *sym_bytes = hdr.a_syms; /* symbol table size in bytes */ 18955 if (*tot_bytes == 0)
return(ENOEXEC); 18956 18957 if (*ft != SEPARATE) { 18958 /* If I & D space is not separated, it is all considered
data. Text=0*/ 18959 *data_bytes += *text_bytes; 18960 *text_bytes = 0; 18961 } 18962 *pc = hdr.a_entry; /* initial
address to start execution */ 18963 18964 /* Check to see if segment sizes are feasible. */ 18965 tc = ((unsigned long)
*text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT; 18966 dc = (*data_bytes + *bss_bytes + CLICK_SIZE - 1) >>
CLICK_SHIFT; 18967 totc = (*tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT; 18968 if (dc >= totc)
return(ENOEXEC); /* stack must be at least 1 click */ 18969 dvir = (*ft == SEPARATE ? 0 : tc); 18970 s_vir = dvir +
(totc - sc); 18971 m = (dvir + dc > s_vir) ? ENOMEM : OK; 18972 ct = hdr.a_hdrlen & BYTE; /* header length */
18973 if (ct > A_MINHDR) lseek(fd, (off_t) ct, SEEK_SET); /* skip unused hdr */ 18974 return(m); 18975 } 18977
/*===* 18978 *
new_mem * 18979
===/ 18980
PRIVATE int new_mem(sh_mp, text_bytes, data_bytes, 18981 bss_bytes,stk_bytes,tot_bytes) 18982 struct mproc
sh_mp; / text can be shared with this process */ 18983 vir_bytes text_bytes; /* text segment size in bytes */ 18984
vir_bytes data_bytes; /* size of initialized data in bytes */ 18985 vir_bytes bss_bytes; /* size of bss in bytes */ 18986
vir_bytes stk_bytes; /* size of initial stack segment in bytes */ 18987 phys_bytes tot_bytes; /* total memory to
allocate, including gap */ 18988 { 18989 /* Allocate new memory and release the old memory. Change the map and
report 18990 * the new map to the kernel. Zero the new core image's bss, gap and stack. 18991 */ 18992 18993 register
struct mproc *rmp = mp; 18994 vir_clicks text_clicks, data_clicks, gap_clicks, stack_clicks, tot_clicks; 18995
phys_clicks new_base; 18996 phys_bytes bytes, base, bss_offset; 18997 int s; 18998 18999 /* No need to allocate text
if it can be shared. */ 19000 if (sh_mp != NULL) text_bytes = 0; 19001 19002 /* Allow the old data to be swapped out
to make room. (Which is really a 19003 * waste of time, because we are going to throw it away anyway.) 19004 */

[Page 891]

19005 rmp->mp_flags |= WAITING; 19006 19007 /* Acquire the new memory. Each of the 4 parts: text, (data+bss),
gap, 19008 * and stack occupies an integral number of clicks, starting at click 19009 * boundary. The data and bss
parts are run together with no space. 19010 */ 19011 text_clicks = ((unsigned long) text_bytes + CLICK_SIZE - 1) >>
CLICK_SHIFT; 19012 data_clicks = (data_bytes + bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT; 19013
stack_clicks = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT; 19014 tot_clicks = (tot_bytes + CLICK_SIZE - 1)
>> CLICK_SHIFT; 19015 gap_clicks = tot_clicks - data_clicks - stack_clicks; 19016 if ((int) gap_clicks < 0)
return(ENOMEM); 19017 19018 /* Try to allocate memory for the new process. */ 19019 new_base =
alloc_mem(text_clicks + tot_clicks); 19020 if (new_base == NO_MEM) return(ENOMEM); 19021 19022 /* We've
got memory for the new core image. Release the old one. */ 19023 rmp = mp; 19024 19025 if (find_share(rmp,
rmp->mp_ino, rmp->mp_dev, rmp->mp_ctime) == NULL) { 19026 /* No other process shares the text segment, so
free it. */ 19027 free_mem(rmp->mp_seg[T].mem_phys, rmp->mp_seg[T].mem_len); 19028 } 19029 /* Free the data
and stack segments. */ 19030 free_mem(rmp->mp_seg[D].mem_phys, 19031 rmp->mp_seg[S].mem_vir +
rmp->mp_seg[S].mem_len - rmp->mp_seg[D].mem_vir); 19032 19033 /* We have now passed the point of no return.
The old core image has been 19034 * forever lost, memory for a new core image has been allocated. Set up 19035 *
and report new map. 19036 */ 19037 if (sh_mp != NULL) { 19038 /* Share the text segment. */ 19039
rmp->mp_seg[T] = sh_mp->mp_seg[T]; 19040 } else { 19041 rmp->mp_seg[T].mem_phys = new_base; 19042
rmp->mp_seg[T].mem_vir = 0; 19043 rmp->mp_seg[T].mem_len = text_clicks; 19044 } 19045
rmp->mp_seg[D].mem_phys = new_base + text_clicks; 19046 rmp->mp_seg[D].mem_vir = 0; 19047
rmp->mp_seg[D].mem_len = data_clicks; 19048 rmp->mp_seg[S].mem_phys = rmp->mp_seg[D].mem_phys +
data_clicks + gap_clicks; 19049 rmp->mp_seg[S].mem_vir = rmp->mp_seg[D].mem_vir + data_clicks + gap_clicks;
19050 rmp->mp_seg[S].mem_len = stack_clicks; 19051 19052 sys_newmap(who, rmp->mp_seg); /* report new map
to the kernel */ 19053 19054 /* The old memory may have been swapped out, but the new memory is real. */ 19055
rmp->mp_flags &= ~(WAITING|ONSWAP|SWAPIN); 19056 19057 /* Zero the bss, gap, and stack segment. */
19058 bytes = (phys_bytes)(data_clicks + gap_clicks + stack_clicks) << CLICK_SHIFT; 19059 base = (phys_bytes)
rmp->mp_seg[D].mem_phys << CLICK_SHIFT; 19060 bss_offset = (data_bytes >> CLICK_SHIFT) <<

128

128

CLICK_SHIFT; 19061 base += bss_offset; 19062 bytes -= bss_offset; 19063 19064 if ((s=sys_memset(0, base, bytes))
!= OK) {

[Page 892]

19065 panic(__FILE__,"new_mem can't zero", s); 19066 } 19067 19068 return(OK); 19069 } 19071
/*===* 19072 *
patch_ptr * 19073
===/ 19074
PRIVATE void patch_ptr(stack, base) 19075 char stack[ARG_MAX]; /* pointer to stack image within PM */ 19076
vir_bytes base; /* virtual address of stack base inside user */ 19077 { 19078 /* When doing an exec(name, argv, envp)
call, the user builds up a stack 19079 * image with arg and env pointers relative to the start of the stack. Now 19080 *
these pointers must be relocated, since the stack is not positioned at 19081 * address 0 in the user's address space.
19082 */ 19083 19084 char **ap, flag; 19085 vir_bytes v; 19086 19087 flag = 0; /* counts number of 0-pointers seen
*/ 19088 ap = (char **) stack; /* points initially to 'nargs' */ 19089 ap++; /* now points to argv[0] */ 19090 while (flag
< 2) { 19091 if (ap >= (char **) &stack[ARG_MAX]) return; /* too bad */ 19092 if (*ap != NULL) { 19093 v =
(vir_bytes) *ap; /* v is relative pointer */ 19094 v += base; /* relocate it */ 19095 *ap = (char *) v; /* put it back */
19096 } else { 19097 flag++; 19098 } 19099 ap++; 19100 } 19101 } 19103
/*===* 19104 *
insert_arg * 19105
===/ 19106
PRIVATE int insert_arg(stack, stk_bytes, arg, replace) 19107 char stack[ARG_MAX]; /* pointer to stack image within
PM */ 19108 vir_bytes *stk_bytes; /* size of initial stack */ 19109 char *arg; /* argument to prepend/replace as new
argv[0] */ 19110 int replace; 19111 { 19112 /* Patch the stack so that arg will become argv[0]. Be careful, the stack
may 19113 * be filled with garbage, although it normally looks like this: 19114 * nargs argv[0] ... argv[nargs-1] NULL
envp[0] ... NULL 19115 * followed by the strings "pointed" to by the argv[i] and the envp[i]. The 19116 * pointers are
really offsets from the start of stack. 19117 * Return true iff the operation succeeded. 19118 */ 19119 int offset, a0, a1,
old_bytes = *stk_bytes; 19120 19121 /* Prepending arg adds at least one string and a zero byte. */ 19122 offset =
strlen(arg) + 1; 19123 19124 a0 = (int) ((char **) stack)[1]; /* argv[0] */

[Page 893]

19125 if (a0 < 4 * PTRSIZE || a0 >= old_bytes) return(FALSE); 19126 19127 a1 = a0; /* a1 will point to the strings to
be moved */ 19128 if (replace) { 19129 /* Move a1 to the end of argv[0][] (argv[1] if nargs > 1). */ 19130 do { 19131
if (a1 == old_bytes) return(FALSE); 19132 --offset; 19133 } while (stack[a1++] != 0); 19134 } else { 19135 offset +=
PTRSIZE; /* new argv[0] needs new pointer in argv[] */ 19136 a0 += PTRSIZE; /* location of new argv[0][]. */
19137 } 19138 19139 /* stack will grow by offset bytes (or shrink by -offset bytes) */ 19140 if ((*stk_bytes += offset)
> ARG_MAX) return(FALSE); 19141 19142 /* Reposition the strings by offset bytes */ 19143 memmove(stack + a1
+ offset, stack + a1, old_bytes - a1); 19144 19145 strcpy(stack + a0, arg); /* Put arg in the new space. */ 19146 19147
if (!replace) { 19148 /* Make space for a new argv[0]. */ 19149 memmove(stack + 2 * PTRSIZE, stack + 1 *
PTRSIZE, a0 - 2 * PTRSIZE); 19150 19151 ((char **) stack)[0]++; /* nargs++; */ 19152 } 19153 /* Now patch up
argv[] and envp[] by offset. */ 19154 patch_ptr(stack, (vir_bytes) offset); 19155 ((char **) stack)[1] = (char *) a0; /*
set argv[0] correctly */ 19156 return(TRUE); 19157 } 19159
/*===* 19160 *
patch_stack * 19161
===/ 19162
PRIVATE char *patch_stack(fd, stack, stk_bytes, script) 19163 int fd; /* file descriptor to open script file */ 19164
char stack[ARG_MAX]; /* pointer to stack image within PM */ 19165 vir_bytes *stk_bytes; /* size of initial stack */
19166 char *script; /* name of script to interpret */ 19167 { 19168 /* Patch the argument vector to include the path
name of the script to be 19169 * interpreted, and all strings on the #! line. Returns the path name of 19170 * the
interpreter. 19171 */ 19172 char *sp, *interp = NULL; 19173 int n; 19174 enum { INSERT=FALSE,
REPLACE=TRUE }; 19175 19176 /* Make script[] the new argv[0]. */ 19177 if (!insert_arg(stack, stk_bytes, script,
REPLACE)) return(NULL); 19178 19179 if (lseek(fd, 2L, 0) == -1 /* just behind the #! */ 19180 || (n= read(fd, script,
PATH_MAX)) < 0 /* read line one */ 19181 || (sp= memchr(script, '\n', n)) == NULL) /* must be a proper line */

129

129

19182 return(NULL); 19183 19184 /* Move sp backwards through script[], prepending each string to stack. */

[Page 894]

19185 for (;;) { 19186 /* skip spaces behind argument. */ 19187 while (sp > script && (*--sp == ' ' || *sp == '\t')) {}
19188 if (sp == script) break; 19189 19190 sp[1] = 0; 19191 /* Move to the start of the argument. */ 19192 while (sp >
script && sp[-1] != ' ' && sp[-1] != '\t') --sp; 19193 19194 interp = sp; 19195 if (!insert_arg(stack, stk_bytes, sp,
INSERT)) return(NULL); 19196 } 19197 19198 /* Round *stk_bytes up to the size of a pointer for alignment
contraints. */ 19199 *stk_bytes= ((*stk_bytes + PTRSIZE - 1) / PTRSIZE) * PTRSIZE; 19200 19201 close(fd); 19202
return(interp); 19203 } 19205
/*===* 19206 *
rw_seg * 19207
===/ 19208
PUBLIC void rw_seg(rw, fd, proc, seg, seg_bytes0) 19209 int rw; /* 0 = read, 1 = write */ 19210 int fd; /* file
descriptor to read from / write to */ 19211 int proc; /* process number */ 19212 int seg; /* T, D, or S */ 19213
phys_bytes seg_bytes0; /* how much is to be transferred? */ 19214 { 19215 /* Transfer text or data from/to a file and
copy to/from a process segment. 19216 * This procedure is a little bit tricky. The logical way to transfer a 19217 *
segment would be block by block and copying each block to/from the user 19218 * space one at a time. This is too
slow, so we do something dirty here, 19219 * namely send the user space and virtual address to the file system in the
19220 * upper 10 bits of the file descriptor, and pass it the user virtual address 19221 * instead of a PM address. The
file system extracts these parameters when 19222 * gets a read or write call from the process manager, which is the
only 19223 * process that is permitted to use this trick. The file system then copies 19224 * the whole segment directly
to/from user space, bypassing PM completely. 19225 * 19226 * The byte count on read is usually smaller than the
segment count, because 19227 * a segment is padded out to a click multiple, and the data segment is only 19228 *
partially initialized. 19229 */ 19230 19231 int new_fd, bytes, r; 19232 char *ubuf_ptr; 19233 struct mem_map *sp =
&mproc[proc].mp_seg[seg]; 19234 phys_bytes seg_bytes = seg_bytes0; 19235 19236 new_fd = (proc << 7) | (seg <<
5) | fd; 19237 ubuf_ptr = (char *) ((vir_bytes) sp->mem_vir << CLICK_SHIFT); 19238 19239 while (seg_bytes != 0)
{ 19240 #define PM_CHUNK_SIZE 8192 19241 bytes = MIN((INT_MAX / PM_CHUNK_SIZE) *
PM_CHUNK_SIZE, seg_bytes); 19242 if (rw == 0) { 19243 r = read(new_fd, ubuf_ptr, bytes); 19244 } else {

[Page 895]

19245 r = write(new_fd, ubuf_ptr, bytes); 19246 } 19247 if (r != bytes) break; 19248 ubuf_ptr += bytes; 19249
seg_bytes -= bytes; 19250 } 19251 } 19253
/*===* 19254 *
find_share * 19255
===/ 19256
PUBLIC struct mproc *find_share(mp_ign, ino, dev, ctime) 19257 struct mproc *mp_ign; /* process that should not be
looked at */ 19258 ino_t ino; /* parameters that uniquely identify a file */ 19259 dev_t dev; 19260 time_t ctime; 19261
{ 19262 /* Look for a process that is the file <ino, dev, ctime> in execution. Don't 19263 * accidentally "find" mp_ign,
because it is the process on whose behalf this 19264 * call is made. 19265 */ 19266 struct mproc *sh_mp; 19267 for
(sh_mp = &mproc[0]; sh_mp < &mproc[NR_PROCS]; sh_mp++) { 19268 19269 if (!(sh_mp->mp_flags &
SEPARATE)) continue; 19270 if (sh_mp == mp_ign) continue; 19271 if (sh_mp->mp_ino != ino) continue; 19272 if
(sh_mp->mp_dev != dev) continue; 19273 if (sh_mp->mp_ctime != ctime) continue; 19274 return sh_mp; 19275 }
19276 return(NULL); 19277 }
++
servers/pm/break.c
++
19300 /* The MINIX model of memory allocation reserves a fixed amount of memory for 19301 * the combined text,
data, and stack segments. The amount used for a child 19302 * process created by FORK is the same as the parent had.
If the child does 19303 * an EXEC later, the new size is taken from the header of the file EXEC'ed. 19304 * 19305 *
The layout in memory consists of the text segment, followed by the data 19306 * segment, followed by a gap (unused
memory), followed by the stack segment. 19307 * The data segment grows upward and the stack grows downward, so
each can 19308 * take memory from the gap. If they meet, the process must be killed. The 19309 * procedures in this

130

130

file deal with the growth of the data and stack segments. 19310 * 19311 * The entry points into this file are: 19312 *
do_brk: BRK/SBRK system calls to grow or shrink the data segment 19313 * adjust: see if a proposed segment
adjustment is allowed 19314 * size_ok: see if the segment sizes are feasible 19315 */ 19316 19317 #include "pm.h"
19318 #include <signal.h> 19319 #include "mproc.h"

[Page 896]

19320 #include "param.h" 19321 19322 #define DATA_CHANGED 1 /* flag value when data segment size changed
/ 19323 #define STACK_CHANGED 2 / flag value when stack size changed */ 19324 19325
/*===* 19326 *
do_brk * 19327
===/ 19328
PUBLIC int do_brk() 19329 { 19330 /* Perform the brk(addr) system call. 19331 * 19332 * The call is complicated by
the fact that on some machines (e.g., 8088), 19333 * the stack pointer can grow beyond the base of the stack segment
without 19334 * anybody noticing it. 19335 * The parameter, 'addr' is the new virtual address in D space. 19336 */
19337 19338 register struct mproc *rmp; 19339 int r; 19340 vir_bytes v, new_sp; 19341 vir_clicks new_clicks; 19342
19343 rmp = mp; 19344 v = (vir_bytes) m_in.addr; 19345 new_clicks = (vir_clicks) (((long) v + CLICK_SIZE - 1) >>
CLICK_SHIFT); 19346 if (new_clicks < rmp->mp_seg[D].mem_vir) { 19347 rmp->mp_reply.reply_ptr = (char *) -1;
19348 return(ENOMEM); 19349 } 19350 new_clicks -= rmp->mp_seg[D].mem_vir; 19351 if ((r=get_stack_ptr(who,
&new_sp)) != OK) /* ask kernel for sp value */ 19352 panic(__FILE__,"couldn't get stack pointer", r); 19353 r =
adjust(rmp, new_clicks, new_sp); 19354 rmp->mp_reply.reply_ptr = (r == OK ? m_in.addr : (char *) -1); 19355
return(r); /* return new address or -1 */ 19356 } 19358
/*===* 19359 *
adjust * 19360
===/ 19361
PUBLIC int adjust(rmp, data_clicks, sp) 19362 register struct mproc *rmp; /* whose memory is being adjusted? */
19363 vir_clicks data_clicks; /* how big is data segment to become? */ 19364 vir_bytes sp; /* new value of sp */
19365 { 19366 /* See if data and stack segments can coexist, adjusting them if need be. 19367 * Memory is never
allocated or freed. Instead it is added or removed from the 19368 * gap between data segment and stack segment. If the
gap size becomes 19369 * negative, the adjustment of data or stack fails and ENOMEM is returned. 19370 */ 19371
19372 register struct mem_map *mem_sp, *mem_dp; 19373 vir_clicks sp_click, gap_base, lower, old_clicks; 19374
int changed, r, ft; 19375 long base_of_stack, delta; /* longs avoid certain problems */ 19376 19377 mem_dp =
&rmp->mp_seg[D]; /* pointer to data segment map */ 19378 mem_sp = &rmp->mp_seg[S]; /* pointer to stack
segment map */ 19379 changed = 0; /* set when either segment changed */

[Page 897]

19380 19381 if (mem_sp->mem_len == 0) return(OK); /* don't bother init */ 19382 19383 /* See if stack size has
gone negative (i.e., sp too close to 0xFFFF...) */ 19384 base_of_stack = (long) mem_sp->mem_vir + (long)
mem_sp->mem_len; 19385 sp_click = sp >> CLICK_SHIFT; /* click containing sp */ 19386 if (sp_click >=
base_of_stack) return(ENOMEM); /* sp too high */ 19387 19388 /* Compute size of gap between stack and data
segments. */ 19389 delta = (long) mem_sp->mem_vir - (long) sp_click; 19390 lower = (delta > 0 ? sp_click :
mem_sp->mem_vir); 19391 19392 /* Add a safety margin for future stack growth. Impossible to do right. */ 19393
#define SAFETY_BYTES (384 * sizeof(char *)) 19394 #define SAFETY_CLICKS ((SAFETY_BYTES +
CLICK_SIZE - 1) / CLICK_SIZE) 19395 gap_base = mem_dp->mem_vir + data_clicks + SAFETY_CLICKS; 19396
if (lower < gap_base) return(ENOMEM); /* data and stack collided */ 19397 19398 /* Update data length (but not data
orgin) on behalf of brk() system call. */ 19399 old_clicks = mem_dp->mem_len; 19400 if (data_clicks !=
mem_dp->mem_len) { 19401 mem_dp->mem_len = data_clicks; 19402 changed |= DATA_CHANGED; 19403 }
19404 19405 /* Update stack length and origin due to change in stack pointer. */ 19406 if (delta > 0) { 19407
mem_sp->mem_vir -= delta; 19408 mem_sp->mem_phys -= delta; 19409 mem_sp->mem_len += delta; 19410
changed |= STACK_CHANGED; 19411 } 19412 19413 /* Do the new data and stack segment sizes fit in the address
space? */ 19414 ft = (rmp->mp_flags & SEPARATE); 19415 r = (rmp->mp_seg[D].mem_vir +
rmp->mp_seg[D].mem_len > 19416 rmp->mp_seg[S].mem_vir) ? ENOMEM : OK; 19417 if (r == OK) { 19418 if
(changed) sys_newmap((int)(rmp - mproc), rmp->mp_seg); 19419 return(OK); 19420 } 19421 19422 /* New sizes

131

131

don't fit or require too many page/segment registers. Restore.*/ 19423 if (changed & DATA_CHANGED)
mem_dp->mem_len = old_clicks; 19424 if (changed & STACK_CHANGED) { 19425 mem_sp->mem_vir += delta;
19426 mem_sp->mem_phys += delta; 19427 mem_sp->mem_len -= delta; 19428 } 19429 return(ENOMEM); 19430 }

[Page 898]

++
servers/pm/signal.c
++
19500 /* This file handles signals, which are asynchronous events and are generally 19501 * a messy and unpleasant
business. Signals can be generated by the KILL 19502 * system call, or from the keyboard (SIGINT) or from the clock
(SIGALRM). 19503 * In all cases control eventually passes to check_sig() to see which processes 19504 * can be
signaled. The actual signaling is done by sig_proc(). 19505 * 19506 * The entry points into this file are: 19507 *
do_sigaction: perform the SIGACTION system call 19508 * do_sigpending: perform the SIGPENDING system call
19509 * do_sigprocmask: perform the SIGPROCMASK system call 19510 * do_sigreturn: perform the SIGRETURN
system call 19511 * do_sigsuspend: perform the SIGSUSPEND system call 19512 * do_kill: perform the KILL system
call 19513 * do_alarm: perform the ALARM system call by calling set_alarm() 19514 * set_alarm: tell the clock task
to start or stop a timer 19515 * do_pause: perform the PAUSE system call 19516 * ksig_pending: the kernel notified
about pending signals 19517 * sig_proc: interrupt or terminate a signaled process 19518 * check_sig: check which
processes to signal with sig_proc() 19519 * check_pending: check if a pending signal can now be delivered 19520 */
19521 19522 #include "pm.h" 19523 #include <sys/stat.h> 19524 #include <sys/ptrace.h> 19525 #include
<minix/callnr.h> 19526 #include <minix/com.h> 19527 #include <signal.h> 19528 #include <sys/sigcontext.h> 19529
#include <string.h> 19530 #include "mproc.h" 19531 #include "param.h" 19532 19533 #define CORE_MODE 0777
/* mode to use on core image files */ 19534 #define DUMPED 0200 /* bit set in status when core dumped */ 19535
19536 FORWARD _PROTOTYPE(void dump_core, (struct mproc *rmp)); 19537 FORWARD _PROTOTYPE(void
unpause, (int pro)); 19538 FORWARD _PROTOTYPE(void handle_sig, (int proc_nr, sigset_t sig_map)); 19539
FORWARD _PROTOTYPE(void cause_sigalrm, (struct timer *tp)); 19540 19541
/*===* 19542 *
do_sigaction * 19543
===/ 19544
PUBLIC int do_sigaction() 19545 { 19546 int r; 19547 struct sigaction svec; 19548 struct sigaction *svp; 19549 19550
if (m_in.sig_nr == SIGKILL) return(OK); 19551 if (m_in.sig_nr < 1 || m_in.sig_nr > _NSIG) return (EINVAL); 19552
svp = &mp->mp_sigact[m_in.sig_nr]; 19553 if ((struct sigaction *) m_in.sig_osa != (struct sigaction *) NULL) {
19554 r = sys_datacopy(PM_PROC_NR,(vir_bytes) svp,

[Page 899]

19555 who, (vir_bytes) m_in.sig_osa, (phys_bytes) sizeof(svec)); 19556 if (r != OK) return(r); 19557 } 19558 19559 if
((struct sigaction *) m_in.sig_nsa == (struct sigaction *) NULL) 19560 return(OK); 19561 19562 /* Read in the
sigaction structure. */ 19563 r = sys_datacopy(who, (vir_bytes) m_in.sig_nsa, 19564 PM_PROC_NR, (vir_bytes)
&svec, (phys_bytes) sizeof(svec)); 19565 if (r != OK) return(r); 19566 19567 if (svec.sa_handler == SIG_IGN) {
19568 sigaddset(&mp->mp_ignore, m_in.sig_nr); 19569 sigdelset(&mp->mp_sigpending, m_in.sig_nr); 19570
sigdelset(&mp->mp_catch, m_in.sig_nr); 19571 sigdelset(&mp->mp_sig2mess, m_in.sig_nr); 19572 } else if
(svec.sa_handler == SIG_DFL) { 19573 sigdelset(&mp->mp_ignore, m_in.sig_nr); 19574 sigdelset(&mp->mp_catch,
m_in.sig_nr); 19575 sigdelset(&mp->mp_sig2mess, m_in.sig_nr); 19576 } else if (svec.sa_handler == SIG_MESS) {
19577 if (! (mp->mp_flags & PRIV_PROC)) return(EPERM); 19578 sigdelset(&mp->mp_ignore, m_in.sig_nr); 19579
sigaddset(&mp->mp_sig2mess, m_in.sig_nr); 19580 sigdelset(&mp->mp_catch, m_in.sig_nr); 19581 } else { 19582
sigdelset(&mp->mp_ignore, m_in.sig_nr); 19583 sigaddset(&mp->mp_catch, m_in.sig_nr); 19584
sigdelset(&mp->mp_sig2mess, m_in.sig_nr); 19585 } 19586 mp->mp_sigact[m_in.sig_nr].sa_handler =
svec.sa_handler; 19587 sigdelset(&svec.sa_mask, SIGKILL); 19588 mp->mp_sigact[m_in.sig_nr].sa_mask =
svec.sa_mask; 19589 mp->mp_sigact[m_in.sig_nr].sa_flags = svec.sa_flags; 19590 mp->mp_sigreturn = (vir_bytes)
m_in.sig_ret; 19591 return(OK); 19592 } 19594
/*===* 19595 *

132

132

do_sigpending * 19596
===/ 19597
PUBLIC int do_sigpending() 19598 { 19599 mp->mp_reply.reply_mask = (long) mp->mp_sigpending; 19600 return
OK; 19601 } 19603
/*===* 19604 *
do_sigprocmask * 19605
===/ 19606
PUBLIC int do_sigprocmask() 19607 { 19608 /* Note that the library interface passes the actual mask in sigmask_set,
19609 * not a pointer to the mask, in order to save a copy. Similarly, 19610 * the old mask is placed in the return
message which the library 19611 * interface copies (if requested) to the user specified address. 19612 * 19613 * The
library interface must set SIG_INQUIRE if the 'act' argument 19614 * is NULL.

[Page 900]

19615 */ 19616 19617 int i; 19618 19619 mp->mp_reply.reply_mask = (long) mp->mp_sigmask; 19620 19621 switch
(m_in.sig_how) { 19622 case SIG_BLOCK: 19623 sigdelset((sigset_t *)&m_in.sig_set, SIGKILL); 19624 for (i = 1; i
<= _NSIG; i++) { 19625 if (sigismember((sigset_t *)&m_in.sig_set, i)) 19626 sigaddset(&mp->mp_sigmask, i);
19627 } 19628 break; 19629 19630 case SIG_UNBLOCK: 19631 for (i = 1; i <= _NSIG; i++) { 19632 if
(sigismember((sigset_t *)&m_in.sig_set, i)) 19633 sigdelset(&mp->mp_sigmask, i); 19634 } 19635
check_pending(mp); 19636 break; 19637 19638 case SIG_SETMASK: 19639 sigdelset((sigset_t *) &m_in.sig_set,
SIGKILL); 19640 mp->mp_sigmask = (sigset_t) m_in.sig_set; 19641 check_pending(mp); 19642 break; 19643 19644
case SIG_INQUIRE: 19645 break; 19646 19647 default: 19648 return(EINVAL); 19649 break; 19650 } 19651 return
OK; 19652 } 19654
/*===* 19655 *
do_sigsuspend * 19656
===/ 19657
PUBLIC int do_sigsuspend() 19658 { 19659 mp->mp_sigmask2 = mp->mp_sigmask; /* save the old mask */ 19660
mp->mp_sigmask = (sigset_t) m_in.sig_set; 19661 sigdelset(&mp->mp_sigmask, SIGKILL); 19662 mp->mp_flags |=
SIGSUSPENDED; 19663 check_pending(mp); 19664 return(SUSPEND); 19665 } 19667
/*===* 19668 *
do_sigreturn * 19669
===/ 19670
PUBLIC int do_sigreturn() 19671 { 19672 /* A user signal handler is done. Restore context and check for 19673 *
pending unblocked signals. 19674 */

[Page 901]

19675 19676 int r; 19677 19678 mp->mp_sigmask = (sigset_t) m_in.sig_set; 19679 sigdelset(&mp->mp_sigmask,
SIGKILL); 19680 19681 r = sys_sigreturn(who, (struct sigmsg *) m_in.sig_context); 19682 check_pending(mp);
19683 return(r); 19684 } 19686
/*===* 19687 *
do_kill * 19688
===/ 19689
PUBLIC int do_kill() 19690 { 19691 /* Perform the kill(pid, signo) system call. */ 19692 19693 return
check_sig(m_in.pid, m_in.sig_nr); 19694 } 19696
/*===* 19697 *
ksig_pending * 19698
===/ 19699
PUBLIC int ksig_pending() 19700 { 19701 /* Certain signals, such as segmentation violations originate in the kernel.
19702 * When the kernel detects such signals, it notifies the PM to take further 19703 * action. The PM requests the
kernel to send messages with the process 19704 * slot and bit map for all signaled processes. The File System, for
example, 19705 * uses this mechanism to signal writing on broken pipes (SIGPIPE). 19706 * 19707 * The kernel has
notified the PM about pending signals. Request pending 19708 * signals until all signals are handled. If there are no
more signals, 19709 * NONE is returned in the process number field. 19710 */ 19711 int proc_nr; 19712 sigset_t

133

133

sig_map; 19713 19714 while (TRUE) { 19715 sys_getksig(&proc_nr, &sig_map); /* get an arbitrary pending signal */
19716 if (NONE == proc_nr) { /* stop if no more pending signals */ 19717 break; 19718 } else { 19719
handle_sig(proc_nr, sig_map); /* handle the received signal */ 19720 sys_endksig(proc_nr); /* tell kernel it's done */
19721 } 19722 } 19723 return(SUSPEND); /* prevents sending reply */ 19724 } 19726
/*===* 19727 *
handle_sig * 19728
===/ 19729
PRIVATE void handle_sig(proc_nr, sig_map) 19730 int proc_nr; 19731 sigset_t sig_map; 19732 { 19733 register
struct mproc *rmp; 19734 int i;

[Page 902]

19735 pid_t proc_id, id; 19736 19737 rmp = &mproc[proc_nr]; 19738 if ((rmp->mp_flags & (IN_USE | ZOMBIE)) !=
IN_USE) return; 19739 proc_id = rmp->mp_pid; 19740 mp = &mproc[0]; /* pretend signals are from PM */ 19741
mp->mp_procgrp = rmp->mp_procgrp; /* get process group right */ 19742 19743 /* Check each bit in turn to see if a
signal is to be sent. Unlike 19744 * kill(), the kernel may collect several unrelated signals for a 19745 * process and
pass them to PM in one blow. Thus loop on the bit 19746 * map. For SIGINT and SIGQUIT, use proc_id 0 to indicate
a broadcast 19747 * to the recipient's process group. For SIGKILL, use proc_id -1 to 19748 * indicate a systemwide
broadcast. 19749 */ 19750 for (i = 1; i <= _NSIG; i++) { 19751 if (!sigismember(&sig_map, i)) continue; 19752
switch (i) { 19753 case SIGINT: 19754 case SIGQUIT: 19755 id = 0; break; /* broadcast to process group */ 19756
case SIGKILL: 19757 id = -1; break; /* broadcast to all except INIT */ 19758 default: 19759 id = proc_id; 19760
break; 19761 } 19762 check_sig(id, i); 19763 } 19764 } 19766
/*===* 19767 *
do_alarm * 19768
===/ 19769
PUBLIC int do_alarm() 19770 { 19771 /* Perform the alarm(seconds) system call. */ 19772 return(set_alarm(who,
m_in.seconds)); 19773 } 19775
/*===* 19776 *
set_alarm * 19777
===/ 19778
PUBLIC int set_alarm(proc_nr, sec) 19779 int proc_nr; /* process that wants the alarm */ 19780 int sec; /* how many
seconds delay before the signal */ 19781 { 19782 /* This routine is used by do_alarm() to set the alarm timer. It is also
used 19783 * to turn the timer off when a process exits with the timer still on. 19784 */ 19785 clock_t ticks; /* number
of ticks for alarm */ 19786 clock_t exptime; /* needed for remaining time on previous alarm */ 19787 clock_t uptime;
/* current system time */ 19788 int remaining; /* previous time left in seconds */ 19789 int s; 19790 19791 /* First
determine remaining time of previous alarm, if set. */ 19792 if (mproc[proc_nr].mp_flags & ALARM_ON) { 19793 if
((s=getuptime(&uptime)) != OK) 19794 panic(__FILE__,"set_alarm couldn't get uptime", s);

[Page 903]

19795 exptime = *tmr_exp_time(&mproc[proc_nr].mp_timer); 19796 remaining = (int) ((exptime - uptime +
(HZ-1))/HZ); 19797 if (remaining < 0) remaining = 0; 19798 } else { 19799 remaining = 0; 19800 } 19801 19802 /*
Tell the clock task to provide a signal message when the time comes. 19803 * 19804 * Large delays cause a lot of
problems. First, the alarm system call 19805 * takes an unsigned seconds count and the library has cast it to an int.
19806 * That probably works, but on return the library will convert "negative" 19807 * unsigneds to errors.
Presumably no one checks for these errors, so 19808 * force this call through. Second, If unsigned and long have the
same 19809 * size, converting from seconds to ticks can easily overflow. Finally, 19810 * the kernel has similar
overflow bugs adding ticks. 19811 * 19812 * Fixing this requires a lot of ugly casts to fit the wrong interface 19813 *
types and to avoid overflow traps. ALRM_EXP_TIME has the right type 19814 * (clock_t) although it is declared as
long. How can variables like 19815 * this be declared properly without combinatorial explosion of message 19816 *
types? 19817 */ 19818 ticks = (clock_t) (HZ * (unsigned long) (unsigned) sec); 19819 if ((unsigned long) ticks / HZ
!= (unsigned) sec) 19820 ticks = LONG_MAX; /* eternity (really TMR_NEVER) */ 19821 19822 if (ticks != 0) {
19823 pm_set_timer(&mproc[proc_nr].mp_timer, ticks, cause_sigalrm, proc_nr); 19824 mproc[proc_nr].mp_flags |=
ALARM_ON; 19825 } else if (mproc[proc_nr].mp_flags & ALARM_ON) { 19826

134

134

pm_cancel_timer(&mproc[proc_nr].mp_timer); 19827 mproc[proc_nr].mp_flags &= ~ALARM_ON; 19828 } 19829
return(remaining); 19830 } 19832
/*===* 19833 *
cause_sigalrm * 19834
===/ 19835
PRIVATE void cause_sigalrm(tp) 19836 struct timer *tp; 19837 { 19838 int proc_nr; 19839 register struct mproc
rmp; 19840 19841 proc_nr = tmr_arg(tp)->ta_int; / get process from timer */ 19842 rmp = &mproc[proc_nr]; 19843
19844 if ((rmp->mp_flags & (IN_USE | ZOMBIE)) != IN_USE) return; 19845 if ((rmp->mp_flags & ALARM_ON)
== 0) return; 19846 rmp->mp_flags &= ~ALARM_ON; 19847 check_sig(rmp->mp_pid, SIGALRM); 19848 } 19850
/*===* 19851 *
do_pause * 19852
===/ 19853
PUBLIC int do_pause() 19854 {

[Page 904]

19855 /* Perform the pause() system call. */ 19856 19857 mp->mp_flags |= PAUSED; 19858 return(SUSPEND);
19859 } 19861
/*===* 19862 *
sig_proc * 19863
===/ 19864
PUBLIC void sig_proc(rmp, signo) 19865 register struct mproc *rmp; /* pointer to the process to be signaled */ 19866
int signo; /* signal to send to process (1 to _NSIG) */ 19867 { 19868 /* Send a signal to a process. Check to see if the
signal is to be caught, 19869 * ignored, tranformed into a message (for system processes) or blocked. 19870 * - If the
signal is to be transformed into a message, request the KERNEL to 19871 * send the target process a system
notification with the pending signal as an 19872 * argument. 19873 * - If the signal is to be caught, request the
KERNEL to push a sigcontext 19874 * structure and a sigframe structure onto the catcher's stack. Also, KERNEL
19875 * will reset the program counter and stack pointer, so that when the process 19876 * next runs, it will be
executing the signal handler. When the signal handler 19877 * returns, sigreturn(2) will be called. Then KERNEL will
restore the signal 19878 * context from the sigcontext structure. 19879 * If there is insufficient stack space, kill the
process. 19880 */ 19881 19882 vir_bytes new_sp; 19883 int s; 19884 int slot; 19885 int sigflags; 19886 struct sigmsg
sm; 19887 19888 slot = (int) (rmp - mproc); 19889 if ((rmp->mp_flags & (IN_USE | ZOMBIE)) != IN_USE) { 19890
printf("PM: signal %d sent to %s process %d\n", 19891 signo, (rmp->mp_flags & ZOMBIE) ? "zombie" : "dead",
slot); 19892 panic(__FILE__,"", NO_NUM); 19893 } 19894 if ((rmp->mp_flags & TRACED) && signo !=
SIGKILL) { 19895 /* A traced process has special handling. */ 19896 unpause(slot); 19897 stop_proc(rmp, signo); /*
a signal causes it to stop */ 19898 return; 19899 } 19900 /* Some signals are ignored by default. */ 19901 if
(sigismember(&rmp->mp_ignore, signo)) { 19902 return; 19903 } 19904 if (sigismember(&rmp->mp_sigmask,
signo)) { 19905 /* Signal should be blocked. */ 19906 sigaddset(&rmp->mp_sigpending, signo); 19907 return; 19908
} 19909 sigflags = rmp->mp_sigact[signo].sa_flags; 19910 if (sigismember(&rmp->mp_catch, signo)) { 19911 if
(rmp->mp_flags & SIGSUSPENDED) 19912 sm.sm_mask = rmp->mp_sigmask2; 19913 else 19914 sm.sm_mask =
rmp->mp_sigmask;

[Page 905]

19915 sm.sm_signo = signo; 19916 sm.sm_sighandler = (vir_bytes) rmp->mp_sigact[signo].sa_handler; 19917
sm.sm_sigreturn = rmp->mp_sigreturn; 19918 if ((s=get_stack_ptr(slot, &new_sp)) != OK) 19919
panic(__FILE__,"couldn't get new stack pointer",s); 19920 sm.sm_stkptr = new_sp; 19921 19922 /* Make room for
the sigcontext and sigframe struct. */ 19923 new_sp -= sizeof(struct sigcontext) 19924 + 3 * sizeof(char *) + 2 *
sizeof(int); 19925 19926 if (adjust(rmp, rmp->mp_seg[D].mem_len, new_sp) != OK) 19927 goto doterminate; 19928
19929 rmp->mp_sigmask |= rmp->mp_sigact[signo].sa_mask; 19930 if (sigflags & SA_NODEFER) 19931
sigdelset(&rmp->mp_sigmask, signo); 19932 else 19933 sigaddset(&rmp->mp_sigmask, signo); 19934 19935 if
(sigflags & SA_RESETHAND) { 19936 sigdelset(&rmp->mp_catch, signo); 19937
rmp->mp_sigact[signo].sa_handler = SIG_DFL; 19938 } 19939 19940 if (OK == (s=sys_sigsend(slot, &sm))) { 19941
19942 sigdelset(&rmp->mp_sigpending, signo); 19943 /* If process is hanging on PAUSE, WAIT, SIGSUSPEND, tty,

135

135

19944 * pipe, etc., release it. 19945 */ 19946 unpause(slot); 19947 return; 19948 } 19949 panic(__FILE__, "warning,
sys_sigsend failed", s); 19950 } 19951 else if (sigismember(&rmp->mp_sig2mess, signo)) { 19952 if (OK !=
(s=sys_kill(slot,signo))) 19953 panic(__FILE__, "warning, sys_kill failed", s); 19954 return; 19955 } 19956 19957
doterminate: 19958 /* Signal should not or cannot be caught. Take default action. */ 19959 if (sigismember(&ign_sset,
signo)) return; 19960 19961 rmp->mp_sigstatus = (char) signo; 19962 if (sigismember(&core_sset, signo)) { 19963 /*
Switch to the user's FS environment and dump core. */ 19964 tell_fs(CHDIR, slot, FALSE, 0); 19965
dump_core(rmp); 19966 } 19967 pm_exit(rmp, 0); /* terminate process */ 19968 } 19970
/*===* 19971 *
check_sig * 19972
===/ 19973
PUBLIC int check_sig(proc_id, signo) 19974 pid_t proc_id; /* pid of proc to sig, or 0 or -1, or -pgrp */

[Page 906]

19975 int signo; /* signal to send to process (0 to _NSIG) */ 19976 { 19977 /* Check to see if it is possible to send a
signal. The signal may have to be 19978 * sent to a group of processes. This routine is invoked by the KILL system
19979 * call, and also when the kernel catches a DEL or other signal. 19980 */ 19981 19982 register struct mproc
rmp; 19983 int count; / count # of signals sent */ 19984 int error_code; 19985 19986 if (signo < 0 || signo > _NSIG)
return(EINVAL); 19987 19988 /* Return EINVAL for attempts to send SIGKILL to INIT alone. */ 19989 if (proc_id
== INIT_PID && signo == SIGKILL) return(EINVAL); 19990 19991 /* Search the proc table for processes to signal.
(See forkexit.c about 19992 * pid magic.) 19993 */ 19994 count = 0; 19995 error_code = ESRCH; 19996 for (rmp =
&mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) { 19997 if (!(rmp->mp_flags & IN_USE)) continue; 19998 if
((rmp->mp_flags & ZOMBIE) && signo != 0) continue; 19999 20000 /* Check for selection. */ 20001 if (proc_id > 0
&& proc_id != rmp->mp_pid) continue; 20002 if (proc_id == 0 && mp->mp_procgrp != rmp->mp_procgrp) continue;
20003 if (proc_id == -1 && rmp->mp_pid <= INIT_PID) continue; 20004 if (proc_id < -1 && rmp->mp_procgrp !=
-proc_id) continue; 20005 20006 /* Check for permission. */ 20007 if (mp->mp_effuid != SUPER_USER 20008 &&
mp->mp_realuid != rmp->mp_realuid 20009 && mp->mp_effuid != rmp->mp_realuid 20010 && mp->mp_realuid !=
rmp->mp_effuid 20011 && mp->mp_effuid != rmp->mp_effuid) { 20012 error_code = EPERM; 20013 continue;
20014 } 20015 20016 count++; 20017 if (signo == 0) continue; 20018 20019 /* 'sig_proc' will handle the disposition
of the signal. The 20020 * signal may be caught, blocked, ignored, or cause process 20021 * termination, possibly with
core dump. 20022 */ 20023 sig_proc(rmp, signo); 20024 20025 if (proc_id > 0) break; /* only one process being
signaled */ 20026 } 20027 20028 /* If the calling process has killed itself, don't reply. */ 20029 if ((mp->mp_flags &
(IN_USE | ZOMBIE)) != IN_USE) return(SUSPEND); 20030 return(count > 0 ? OK : error_code); 20031 }

[Page 907]

20033 /*===*
20034 * check_pending * 20035
===/ 20036
PUBLIC void check_pending(rmp) 20037 register struct mproc *rmp; 20038 { 20039 /* Check to see if any pending
signals have been unblocked. The 20040 * first such signal found is delivered. 20041 * 20042 * If multiple pending
unmasked signals are found, they will be 20043 * delivered sequentially. 20044 * 20045 * There are several places in
this file where the signal mask is 20046 * changed. At each such place, check_pending() should be called to 20047 *
check for newly unblocked signals. 20048 */ 20049 20050 int i; 20051 20052 for (i = 1; i <= _NSIG; i++) { 20053 if
(sigismember(&rmp->mp_sigpending, i) && 20054 !sigismember(&rmp->mp_sigmask, i)) { 20055
sigdelset(&rmp->mp_sigpending, i); 20056 sig_proc(rmp, i); 20057 break; 20058 } 20059 } 20060 } 20062
/*===* 20063 *
unpause * 20064
===/ 20065
PRIVATE void unpause(pro) 20066 int pro; /* which process number */ 20067 { 20068 /* A signal is to be sent to a
process. If that process is hanging on a 20069 * system call, the system call must be terminated with EINTR. Possible
20070 * calls are PAUSE, WAIT, READ and WRITE, the latter two for pipes and ttys. 20071 * First check if the
process is hanging on an PM call. If not, tell FS, 20072 * so it can check for READs and WRITEs from pipes, ttys and
the like. 20073 */ 20074 20075 register struct mproc *rmp; 20076 20077 rmp = &mproc[pro]; 20078 20079 /* Check

136

136

to see if process is hanging on a PAUSE, WAIT or SIGSUSPEND call. */ 20080 if (rmp->mp_flags & (PAUSED |
WAITING | SIGSUSPENDED)) { 20081 rmp->mp_flags &= ~(PAUSED | WAITING | SIGSUSPENDED); 20082
setreply(pro, EINTR); 20083 return; 20084 } 20085 20086 /* Process is not hanging on an PM call. Ask FS to take a
look. */ 20087 tell_fs(UNPAUSE, pro, 0, 0); 20088 }

[Page 908]

20090 /*===*
20091 * dump_core * 20092
===/ 20093
PRIVATE void dump_core(rmp) 20094 register struct mproc *rmp; /* whose core is to be dumped */ 20095 { 20096
/* Make a core dump on the file "core", if possible. */ 20097 20098 int s, fd, seg, slot; 20099 vir_bytes current_sp;
20100 long trace_data, trace_off; 20101 20102 slot = (int) (rmp - mproc); 20103 20104 /* Can core file be written? We
are operating in the user's FS environment, 20105 * so no special permission checks are needed. 20106 */ 20107 if
(rmp->mp_realuid != rmp->mp_effuid) return; 20108 if ((fd = open(core_name, O_WRONLY | O_CREAT |
O_TRUNC | O_NONBLOCK, 20109 CORE_MODE)) < 0) return; 20110 rmp->mp_sigstatus |= DUMPED; 20111
20112 /* Make sure the stack segment is up to date. 20113 * We don't want adjust() to fail unless current_sp is
preposterous, 20114 * but it might fail due to safety checking. Also, we don't really want 20115 * the adjust() for
sending a signal to fail due to safety checking. 20116 * Maybe make SAFETY_BYTES a parameter. 20117 */ 20118 if
((s=get_stack_ptr(slot, ¤t_sp)) != OK) 20119 panic(__FILE__,"couldn't get new stack pointer",s); 20120
adjust(rmp, rmp->mp_seg[D].mem_len, current_sp); 20121 20122 /* Write the memory map of all segments to begin
the core file. */ 20123 if (write(fd, (char *) rmp->mp_seg, (unsigned) sizeof rmp->mp_seg) 20124 != (unsigned) sizeof
rmp->mp_seg) { 20125 close(fd); 20126 return; 20127 } 20128 20129 /* Write out the whole kernel process table
entry to get the regs. */ 20130 trace_off = 0; 20131 while (sys_trace(T_GETUSER, slot, trace_off, &trace_data) ==
OK) { 20132 if (write(fd, (char *) &trace_data, (unsigned) sizeof (long)) 20133 != (unsigned) sizeof (long)) { 20134
close(fd); 20135 return; 20136 } 20137 trace_off += sizeof (long); 20138 } 20139 20140 /* Loop through segments
and write the segments themselves out. */ 20141 for (seg = 0; seg < NR_LOCAL_SEGS; seg++) { 20142 rw_seg(1, fd,
slot, seg, 20143 (phys_bytes) rmp->mp_seg[seg].mem_len << CLICK_SHIFT); 20144 } 20145 close(fd); 20146 }

[Page 909]

++
servers/pm/timers.c
++
20200 /* PM watchdog timer management. These functions in this file provide 20201 * a convenient interface to the
timers library that manages a list of 20202 * watchdog timers. All details of scheduling an alarm at the CLOCK task
20203 * are hidden behind this interface. 20204 * Only system processes are allowed to set an alarm timer at the
kernel. 20205 * Therefore, the PM maintains a local list of timers for user processes 20206 * that requested an alarm
signal. 20207 * 20208 * The entry points into this file are: 20209 * pm_set_timer: reset and existing or set a new
watchdog timer 20210 * pm_expire_timers: check for expired timers and run watchdog functions 20211 *
pm_cancel_timer: remove a time from the list of timers 20212 * 20213 */ 20214 20215 #include "pm.h" 20216 20217
#include <timers.h> 20218 #include <minix/syslib.h> 20219 #include <minix/com.h> 20220 20221 PRIVATE timer_t
*pm_timers = NULL; 20222 20223
/*===* 20224 *
pm_set_timer * 20225
===/ 20226
PUBLIC void pm_set_timer(timer_t *tp, int ticks, tmr_func_t watchdog, int arg) 20227 { 20228 int r; 20229 clock_t
now, prev_time = 0, next_time; 20230 20231 if ((r = getuptime(&now)) != OK) 20232 panic(__FILE__, "PM couldn't
get uptime", NO_NUM); 20233 20234 /* Set timer argument and add timer to the list. */ 20235 tmr_arg(tp)->ta_int =
arg; 20236 prev_time = tmrs_settimer(&pm_timers,tp,now+ticks,watchdog,&next_time); 20237 20238 /* Reschedule
our synchronous alarm if necessary. */ 20239 if (! prev_time || prev_time > next_time) { 20240 if
(sys_setalarm(next_time, 1) != OK) 20241 panic(__FILE__, "PM set timer couldn't set alarm.", NO_NUM); 20242 }
20243 20244 return; 20245 } 20247
/*===* 20248 *

137

137

pm_expire_timers * 20249
===/ 20250
PUBLIC void pm_expire_timers(clock_t now) 20251 { 20252 clock_t next_time; 20253 20254 /* Check for expired
timers and possibly reschedule an alarm. */

[Page 910]

20255 tmrs_exptimers(&pm_timers, now, &next_time); 20256 if (next_time > 0) { 20257 if
(sys_setalarm(next_time, 1) != OK) 20258 panic(__FILE__, "PM expire timer couldn't set alarm.", NO_NUM); 20259
} 20260 } 20262
/*===* 20263 *
pm_cancel_timer * 20264
===/ 20265
PUBLIC void pm_cancel_timer(timer_t *tp) 20266 { 20267 clock_t next_time, prev_time; 20268 prev_time =
tmrs_clrtimer(&pm_timers, tp, &next_time); 20269 20270 /* If the earliest timer has been removed, we have to set the
alarm to 20271 * the next timer, or cancel the alarm altogether if the last timer has 20272 * been cancelled (next_time
will be 0 then). 20273 */ 20274 if (prev_time < next_time || ! next_time) { 20275 if (sys_setalarm(next_time, 1) !=
OK) 20276 panic(__FILE__, "PM expire timer couldn't set alarm.", NO_NUM); 20277 } 20278 }
++
servers/pm/time.c
++
20300 /* This file takes care of those system calls that deal with time. 20301 * 20302 * The entry points into this file
are 20303 * do_time: perform the TIME system call 20304 * do_stime: perform the STIME system call 20305 *
do_times: perform the TIMES system call 20306 */ 20307 20308 #include "pm.h" 20309 #include <minix/callnr.h>
20310 #include <minix/com.h> 20311 #include <signal.h> 20312 #include "mproc.h" 20313 #include "param.h"
20314 20315 PRIVATE time_t boottime; 20316 20317
/*===* 20318 *
do_time * 20319
===/ 20320
PUBLIC int do_time() 20321 { 20322 /* Perform the time(tp) system call. This returns the time in seconds since
20323 * 1.1.1970. MINIX is an astrophysically naive system that assumes the earth 20324 * rotates at a constant rate
and that such things as leap seconds do not 20325 * exist. 20326 */ 20327 clock_t uptime; 20328 int s; 20329

[Page 911]

20330 if ((s=getuptime(&uptime)) != OK) 20331 panic(__FILE__,"do_time couldn't get uptime", s); 20332 20333
mp->mp_reply.reply_time = (time_t) (boottime + (uptime/HZ)); 20334 mp->mp_reply.reply_utime =
(uptime%HZ)*1000000/HZ; 20335 return(OK); 20336 } 20338
/*===* 20339 *
do_stime * 20340
===/ 20341
PUBLIC int do_stime() 20342 { 20343 /* Perform the stime(tp) system call. Retrieve the system's uptime (ticks 20344
* since boot) and store the time in seconds at system boot in the global 20345 * variable 'boottime'. 20346 */ 20347
clock_t uptime; 20348 int s; 20349 20350 if (mp->mp_effuid != SUPER_USER) { 20351 return(EPERM); 20352 }
20353 if ((s=getuptime(&uptime)) != OK) 20354 panic(__FILE__,"do_stime couldn't get uptime", s); 20355 boottime
= (long) m_in.stime - (uptime/HZ); 20356 20357 /* Also inform FS about the new system time. */ 20358
tell_fs(STIME, boottime, 0, 0); 20359 20360 return(OK); 20361 } 20363
/*===* 20364 *
do_times * 20365
===/ 20366
PUBLIC int do_times() 20367 { 20368 /* Perform the times(buffer) system call. */ 20369 register struct mproc *rmp =
mp; 20370 clock_t t[5]; 20371 int s; 20372 20373 if (OK != (s=sys_times(who, t))) 20374 panic(__FILE__,"do_times
couldn't get times", s); 20375 rmp->mp_reply.reply_t1 = t[0]; /* user time */ 20376 rmp->mp_reply.reply_t2 = t[1]; /*
system time */ 20377 rmp->mp_reply.reply_t3 = rmp->mp_child_utime; /* child user time */ 20378

138

138

rmp->mp_reply.reply_t4 = rmp->mp_child_stime; /* child system time */ 20379 rmp->mp_reply.reply_t5 = t[4]; /*
uptime since boot */ 20380 20381 return(OK); 20382 }

[Page 912]

++
servers/pm/getset.c
++
20400 /* This file handles the 4 system calls that get and set uids and gids. 20401 * It also handles getpid(), setsid(),
and getpgrp(). The code for each 20402 * one is so tiny that it hardly seemed worthwhile to make each a separate
20403 * function. 20404 */ 20405 20406 #include "pm.h" 20407 #include <minix/callnr.h> 20408 #include <signal.h>
20409 #include "mproc.h" 20410 #include "param.h" 20411 20412
/*===* 20413 *
do_getset * 20414
===/ 20415
PUBLIC int do_getset() 20416 { 20417 /* Handle GETUID, GETGID, GETPID, GETPGRP, SETUID, SETGID,
SETSID. The four 20418 * GETs and SETSID return their primary results in 'r'. GETUID, GETGID, and 20419 *
GETPID also return secondary results (the effective IDs, or the parent 20420 * process ID) in 'reply_res2', which is
returned to the user. 20421 */ 20422 20423 register struct mproc *rmp = mp; 20424 register int r; 20425 20426
switch(call_nr) { 20427 case GETUID: 20428 r = rmp->mp_realuid; 20429 rmp->mp_reply.reply_res2 =
rmp->mp_effuid; 20430 break; 20431 20432 case GETGID: 20433 r = rmp->mp_realgid; 20434
rmp->mp_reply.reply_res2 = rmp->mp_effgid; 20435 break; 20436 20437 case GETPID: 20438 r =
mproc[who].mp_pid; 20439 rmp->mp_reply.reply_res2 = mproc[rmp->mp_parent].mp_pid; 20440 break; 20441
20442 case SETUID: 20443 if (rmp->mp_realuid != (uid_t) m_in.usr_id && 20444 rmp->mp_effuid !=
SUPER_USER) 20445 return(EPERM); 20446 rmp->mp_realuid = (uid_t) m_in.usr_id; 20447 rmp->mp_effuid =
(uid_t) m_in.usr_id; 20448 tell_fs(SETUID, who, rmp->mp_realuid, rmp->mp_effuid); 20449 r = OK; 20450 break;
20451 20452 case SETGID: 20453 if (rmp->mp_realgid != (gid_t) m_in.grp_id && 20454 rmp->mp_effuid !=
SUPER_USER)

[Page 913]

20455 return(EPERM); 20456 rmp->mp_realgid = (gid_t) m_in.grp_id; 20457 rmp->mp_effgid = (gid_t) m_in.grp_id;
20458 tell_fs(SETGID, who, rmp->mp_realgid, rmp->mp_effgid); 20459 r = OK; 20460 break; 20461 20462 case
SETSID: 20463 if (rmp->mp_procgrp == rmp->mp_pid) return(EPERM); 20464 rmp->mp_procgrp = rmp->mp_pid;
20465 tell_fs(SETSID, who, 0, 0); 20466 /* fall through */ 20467 20468 case GETPGRP: 20469 r =
rmp->mp_procgrp; 20470 break; 20471 20472 default: 20473 r = EINVAL; 20474 break; 20475 } 20476 return(r);
20477 }
++
servers/pm/misc.c
++
20500 /* Miscellaneous system calls. Author: Kees J. Bot 20501 * 31 Mar 2000 20502 * The entry points into this file
are: 20503 * do_reboot: kill all processes, then reboot system 20504 * do_svrctl: process manager control 20505 *
do_getsysinfo: request copy of PM data structure (Jorrit N. Herder) 20506 * do_getprocnr: lookup process slot number
(Jorrit N. Herder) 20507 * do_memalloc: allocate a chunk of memory (Jorrit N. Herder) 20508 * do_memfree:
deallocate a chunk of memory (Jorrit N. Herder) 20509 * do_getsetpriority: get/set process priority 20510 */ 20511
20512 #include "pm.h" 20513 #include <minix/callnr.h> 20514 #include <signal.h> 20515 #include <sys/svrctl.h>
20516 #include <sys/resource.h> 20517 #include <minix/com.h> 20518 #include <string.h> 20519 #include
"mproc.h" 20520 #include "param.h" 20521 20522
/*===* 20523 *
do_allocmem * 20524
===/ 20525
PUBLIC int do_allocmem() 20526 { 20527 vir_clicks mem_clicks; 20528 phys_clicks mem_base; 20529

[Page 914]

139

139

20530 mem_clicks = (m_in.memsize + CLICK_SIZE -1) >> CLICK_SHIFT; 20531 mem_base =
alloc_mem(mem_clicks); 20532 if (mem_base == NO_MEM) return(ENOMEM); 20533 mp->mp_reply.membase =
(phys_bytes) (mem_base << CLICK_SHIFT); 20534 return(OK); 20535 } 20537
/*===* 20538 *
do_freemem * 20539
===/ 20540
PUBLIC int do_freemem() 20541 { 20542 vir_clicks mem_clicks; 20543 phys_clicks mem_base; 20544 20545
mem_clicks = (m_in.memsize + CLICK_SIZE -1) >> CLICK_SHIFT; 20546 mem_base = (m_in.membase +
CLICK_SIZE -1) >> CLICK_SHIFT; 20547 free_mem(mem_base, mem_clicks); 20548 return(OK); 20549 } 20551
/*===* 20552 *
do_getsysinfo * 20553
===/ 20554
PUBLIC int do_getsysinfo() 20555 { 20556 struct mproc *proc_addr; 20557 vir_bytes src_addr, dst_addr; 20558
struct kinfo kinfo; 20559 size_t len; 20560 int s; 20561 20562 switch(m_in.info_what) { 20563 case SI_KINFO: /*
kernel info is obtained via PM */ 20564 sys_getkinfo(&kinfo); 20565 src_addr = (vir_bytes) &kinfo; 20566 len =
sizeof(struct kinfo); 20567 break; 20568 case SI_PROC_ADDR: /* get address of PM process table */ 20569
proc_addr = &mproc[0]; 20570 src_addr = (vir_bytes) &proc_addr; 20571 len = sizeof(struct mproc *); 20572 break;
20573 case SI_PROC_TAB: /* copy entire process table */ 20574 src_addr = (vir_bytes) mproc; 20575 len =
sizeof(struct mproc) * NR_PROCS; 20576 break; 20577 default: 20578 return(EINVAL); 20579 } 20580 20581
dst_addr = (vir_bytes) m_in.info_where; 20582 if (OK != (s=sys_datacopy(SELF, src_addr, who, dst_addr, len)))
20583 return(s); 20584 return(OK); 20585 }

[Page 915]

20587 /*===*
20588 * do_getprocnr * 20589
===/ 20590
PUBLIC int do_getprocnr() 20591 { 20592 register struct mproc *rmp; 20593 static char
search_key[PROC_NAME_LEN+1]; 20594 int key_len; 20595 int s; 20596 20597 if (m_in.pid >= 0) { /* lookup
process by pid */ 20598 for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) { 20599 if ((rmp->mp_flags &
IN_USE) && (rmp->mp_pid==m_in.pid)) { 20600 mp->mp_reply.procnr = (int) (rmp - mproc); 20601 return(OK);
20602 } 20603 } 20604 return(ESRCH); 20605 } else if (m_in.namelen > 0) { /* lookup process by name */ 20606
key_len = MIN(m_in.namelen, PROC_NAME_LEN); 20607 if (OK != (s=sys_datacopy(who, (vir_bytes) m_in.addr,
20608 SELF, (vir_bytes) search_key, key_len))) 20609 return(s); 20610 search_key[key_len] = '\0'; /* terminate for
safety */ 20611 for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) { 20612 if ((rmp->mp_flags & IN_USE)
&& 20613 strncmp(rmp->mp_name, search_key, key_len)==0) { 20614 mp->mp_reply.procnr = (int) (rmp - mproc);
20615 return(OK); 20616 } 20617 } 20618 return(ESRCH); 20619 } else { /* return own process number */ 20620
mp->mp_reply.procnr = who; 20621 } 20622 return(OK); 20623 } 20625
/*===* 20626 *
do_reboot * 20627
===/ 20628
#define REBOOT_CODE "delay; boot" 20629 PUBLIC int do_reboot() 20630 { 20631 char
monitor_code[32*sizeof(char *)]; 20632 int code_len; 20633 int abort_flag; 20634 20635 if (mp->mp_effuid !=
SUPER_USER) return(EPERM); 20636 20637 switch (m_in.reboot_flag) { 20638 case RBT_HALT: 20639 case
RBT_PANIC: 20640 case RBT_RESET: 20641 abort_flag = m_in.reboot_flag; 20642 break; 20643 case
RBT_REBOOT: 20644 code_len = strlen(REBOOT_CODE) + 1; 20645 strncpy(monitor_code, REBOOT_CODE,
code_len); 20646 abort_flag = RBT_MONITOR;

[Page 916]

20647 break; 20648 case RBT_MONITOR: 20649 code_len = m_in.reboot_strlen + 1; 20650 if (code_len >
sizeof(monitor_code)) return(EINVAL); 20651 if (sys_datacopy(who, (vir_bytes) m_in.reboot_code, 20652
PM_PROC_NR, (vir_bytes) monitor_code, 20653 (phys_bytes) (code_len)) != OK) return(EFAULT); 20654 if
(monitor_code[code_len-1] != 0) return(EINVAL); 20655 abort_flag = RBT_MONITOR; 20656 break; 20657 default:

140

140

20658 return(EINVAL); 20659 } 20660 20661 check_sig(-1, SIGKILL); /* kill all processes except init */ 20662
tell_fs(REBOOT,0,0,0); /* tell FS to prepare for shutdown */ 20663 20664 /* Ask the kernel to abort. All system
services, including the PM, will 20665 * get a HARD_STOP notification. Await the notification in the main loop.
20666 */ 20667 sys_abort(abort_flag, PM_PROC_NR, monitor_code, code_len); 20668 return(SUSPEND); /* don't
reply to killed process */ 20669 } 20671
/*===* 20672 *
do_getsetpriority * 20673
===/ 20674
PUBLIC int do_getsetpriority() 20675 { 20676 int arg_which, arg_who, arg_pri; 20677 int rmp_nr; 20678 struct
mproc *rmp; 20679 20680 arg_which = m_in.m1_i1; 20681 arg_who = m_in.m1_i2; 20682 arg_pri = m_in.m1_i3; /*
for SETPRIORITY */ 20683 20684 /* Code common to GETPRIORITY and SETPRIORITY. */ 20685 20686 /* Only
support PRIO_PROCESS for now. */ 20687 if (arg_which != PRIO_PROCESS) 20688 return(EINVAL); 20689
20690 if (arg_who == 0) 20691 rmp_nr = who; 20692 else 20693 if ((rmp_nr = proc_from_pid(arg_who)) < 0) 20694
return(ESRCH); 20695 20696 rmp = &mproc[rmp_nr]; 20697 20698 if (mp->mp_effuid != SUPER_USER && 20699
mp->mp_effuid != rmp->mp_effuid && mp->mp_effuid != rmp->mp_realuid) 20700 return EPERM; 20701 20702 /*
If GET, that's it. */ 20703 if (call_nr == GETPRIORITY) { 20704 return(rmp->mp_nice - PRIO_MIN); 20705 } 20706

[Page 917]

20707 /* Only root is allowed to reduce the nice level. */ 20708 if (rmp->mp_nice > arg_pri && mp->mp_effuid !=
SUPER_USER) 20709 return(EACCES); 20710 20711 /* We're SET, and it's allowed. Do it and tell kernel. */ 20712
rmp->mp_nice = arg_pri; 20713 return sys_nice(rmp_nr, arg_pri); 20714 } 20716
/*===* 20717 *
do_svrctl * 20718
===/ 20719
PUBLIC int do_svrctl() 20720 { 20721 int s, req; 20722 vir_bytes ptr; 20723 #define MAX_LOCAL_PARAMS 2
20724 static struct { 20725 char name[30]; 20726 char value[30]; 20727 }
local_param_overrides[MAX_LOCAL_PARAMS]; 20728 static int local_params = 0; 20729 20730 req =
m_in.svrctl_req; 20731 ptr = (vir_bytes) m_in.svrctl_argp; 20732 20733 /* Is the request indeed for the MM? */ 20734
if (((req >> 8) & 0xFF) != 'M') return(EINVAL); 20735 20736 /* Control operations local to the PM. */ 20737
switch(req) { 20738 case MMSETPARAM: 20739 case MMGETPARAM: { 20740 struct sysgetenv sysgetenv; 20741
char search_key[64]; 20742 char *val_start; 20743 size_t val_len; 20744 size_t copy_len; 20745 20746 /* Copy
sysgetenv structure to PM. */ 20747 if (sys_datacopy(who, ptr, SELF, (vir_bytes) &sysgetenv, 20748
sizeof(sysgetenv)) != OK) return(EFAULT); 20749 20750 /* Set a param override? */ 20751 if (req ==
MMSETPARAM) { 20752 if (local_params >= MAX_LOCAL_PARAMS) return ENOSPC; 20753 if
(sysgetenv.keylen <= 0 20754 || sysgetenv.keylen >= 20755 sizeof(local_param_overrides[local_params].name) 20756
|| sysgetenv.vallen <= 0 20757 || sysgetenv.vallen >= 20758 sizeof(local_param_overrides[local_params].value)) 20759
return EINVAL; 20760 20761 if ((s = sys_datacopy(who, (vir_bytes) sysgetenv.key, 20762 SELF, (vir_bytes)
local_param_overrides[local_params].name, 20763 sysgetenv.keylen)) != OK) 20764 return s; 20765 if ((s =
sys_datacopy(who, (vir_bytes) sysgetenv.val, 20766 SELF, (vir_bytes) local_param_overrides[local_params].value,

[Page 918]

20767 sysgetenv.keylen)) != OK) 20768 return s; 20769
local_param_overrides[local_params].name[sysgetenv.keylen] = '\0'; 20770
local_param_overrides[local_params].value[sysgetenv.vallen] = '\0'; 20771 20772 local_params++; 20773 20774
return OK; 20775 } 20776 20777 if (sysgetenv.keylen == 0) { /* copy all parameters */ 20778 val_start =
monitor_params; 20779 val_len = sizeof(monitor_params); 20780 } 20781 else { /* lookup value for key */ 20782 int
p; 20783 /* Try to get a copy of the requested key. */ 20784 if (sysgetenv.keylen > sizeof(search_key))
return(EINVAL); 20785 if ((s = sys_datacopy(who, (vir_bytes) sysgetenv.key, 20786 SELF, (vir_bytes) search_key,
sysgetenv.keylen)) != OK) 20787 return(s); 20788 20789 /* Make sure key is null-terminated and lookup value. 20790
* First check local overrides. 20791 */ 20792 search_key[sysgetenv.keylen-1]= '\0'; 20793 for(p = 0; p < local_params;
p++) { 20794 if (!strcmp(search_key, local_param_overrides[p].name)) { 20795 val_start =

141

141

local_param_overrides[p].value; 20796 break; 20797 } 20798 } 20799 if (p >= local_params && (val_start =
find_param(search_key)) == NULL) 20800 return(ESRCH); 20801 val_len = strlen(val_start) + 1; 20802 } 20803
20804 /* See if it fits in the client's buffer. */ 20805 if (val_len > sysgetenv.vallen) 20806 return E2BIG; 20807 20808
/* Value found, make the actual copy (as far as possible). */ 20809 copy_len = MIN(val_len, sysgetenv.vallen); 20810
if ((s=sys_datacopy(SELF, (vir_bytes) val_start, 20811 who, (vir_bytes) sysgetenv.val, copy_len)) != OK) 20812
return(s); 20813 20814 return OK; 20815 } 20816 default: 20817 return(EINVAL); 20818 } 20819 }

[Page 919]

++
servers/fs/fs.h
++
20900 /* This is the master header for fs. It includes some other files 20901 * and defines the principal constants.
20902 */ 20903 #define _POSIX_SOURCE 1 /* tell headers to include POSIX stuff */ 20904 #define _MINIX 1 /* tell
headers to include MINIX stuff */ 20905 #define _SYSTEM 1 /* tell headers that this is the kernel */ 20906 20907
#define VERBOSE 0 /* show messages during initialization? */ 20908 20909 /* The following are so basic, all the *.c
files get them automatically. */ 20910 #include <minix/config.h> /* MUST be first */ 20911 #include <ansi.h> /*
MUST be second */ 20912 #include <sys/types.h> 20913 #include <minix/const.h> 20914 #include <minix/type.h>
20915 #include <minix/dmap.h> 20916 20917 #include <limits.h> 20918 #include <errno.h> 20919 20920 #include
<minix/syslib.h> 20921 #include <minix/sysutil.h> 20922 20923 #include "const.h" 20924 #include "type.h" 20925
#include "proto.h" 20926 #include "glo.h"
++
servers/fs/const.h
++
21000 /* Tables sizes */ 21001 #define V1_NR_DZONES 7 /* # direct zone numbers in a V1 inode */ 21002 #define
V1_NR_TZONES 9 /* total # zone numbers in a V1 inode */ 21003 #define V2_NR_DZONES 7 /* # direct zone
numbers in a V2 inode */ 21004 #define V2_NR_TZONES 10 /* total # zone numbers in a V2 inode */ 21005 21006
#define NR_FILPS 128 /* # slots in filp table */ 21007 #define NR_INODES 64 /* # slots in "in core" inode table */
21008 #define NR_SUPERS 8 /* # slots in super block table */ 21009 #define NR_LOCKS 8 /* # slots in the file
locking table */ 21010 21011 /* The type of sizeof may be (unsigned) long. Use the following macro for 21012 *
taking the sizes of small objects so that there are no surprises like 21013 * (small) long constants being passed to
routines expecting an int. 21014 */ 21015 #define usizeof(t) ((unsigned) sizeof(t)) 21016 21017 /* File system types. */
21018 #define SUPER_MAGIC 0x137F /* magic number contained in super-block */ 21019 #define SUPER_REV
0x7F13 /* magic # when 68000 disk read on PC or vv */

[Page 920]

21020 #define SUPER_V2 0x2468 /* magic # for V2 file systems */ 21021 #define SUPER_V2_REV 0x6824 /* V2
magic written on PC, read on 68K or vv */ 21022 #define SUPER_V3 0x4d5a /* magic # for V3 file systems */ 21023
21024 #define V1 1 /* version number of V1 file systems */ 21025 #define V2 2 /* version number of V2 file systems
/ 21026 #define V3 3 / version number of V3 file systems */ 21027 21028 /* Miscellaneous constants */ 21029
#define SU_UID ((uid_t) 0) /* super_user's uid_t */ 21030 #define SYS_UID ((uid_t) 0) /* uid_t for processes MM
and INIT */ 21031 #define SYS_GID ((gid_t) 0) /* gid_t for processes MM and INIT */ 21032 #define NORMAL 0 /*
forces get_block to do disk read */ 21033 #define NO_READ 1 /* prevents get_block from doing disk read */ 21034
#define PREFETCH 2 /* tells get_block not to read or mark dev */ 21035 21036 #define XPIPE (-NR_TASKS-1) /*
used in fp_task when susp'd on pipe */ 21037 #define XLOCK (-NR_TASKS-2) /* used in fp_task when susp'd on
lock */ 21038 #define XPOPEN (-NR_TASKS-3) /* used in fp_task when susp'd on pipe open */ 21039 #define
XSELECT (-NR_TASKS-4) /* used in fp_task when susp'd on select */ 21040 21041 #define NO_BIT ((bit_t) 0) /*
returned by alloc_bit() to signal failure */ 21042 21043 #define DUP_MASK 0100 /* mask to distinguish dup2 from
dup */ 21044 21045 #define LOOK_UP 0 /* tells search_dir to lookup string */ 21046 #define ENTER 1 /* tells
search_dir to make dir entry */ 21047 #define DELETE 2 /* tells search_dir to delete entry */ 21048 #define
IS_EMPTY 3 /* tells search_dir to ret. OK or ENOTEMPTY */ 21049 21050 #define CLEAN 0 /* disk and memory
copies identical */ 21051 #define DIRTY 1 /* disk and memory copies differ */ 21052 #define ATIME 002 /* set if
atime field needs updating */ 21053 #define CTIME 004 /* set if ctime field needs updating */ 21054 #define MTIME

142

142

010 /* set if mtime field needs updating */ 21055 21056 #define BYTE_SWAP 0 /* tells conv2/conv4 to swap bytes */
21057 21058 #define END_OF_FILE (-104) /* eof detected */ 21059 21060 #define ROOT_INODE 1 /* inode
number for root directory */ 21061 #define BOOT_BLOCK ((block_t) 0) /* block number of boot block */ 21062
#define SUPER_BLOCK_BYTES (1024) /* bytes offset */ 21063 #define START_BLOCK 2 /* first block of FS (not
counting SB) */ 21064 21065 #define DIR_ENTRY_SIZE usizeof (struct direct) /* # bytes/dir entry */ 21066 #define
NR_DIR_ENTRIES(b) ((b)/DIR_ENTRY_SIZE) /* # dir entries/blk */ 21067 #define SUPER_SIZE usizeof (struct
super_block) /* super_block size */ 21068 #define PIPE_SIZE(b) (V1_NR_DZONES*(b)) /* pipe size in bytes */
21069 21070 #define FS_BITMAP_CHUNKS(b) ((b)/usizeof (bitchunk_t))/* # map chunks/blk */ 21071 #define
FS_BITCHUNK_BITS (usizeof(bitchunk_t) * CHAR_BIT) 21072 #define FS_BITS_PER_BLOCK(b)
(FS_BITMAP_CHUNKS(b) * FS_BITCHUNK_BITS) 21073 21074 /* Derived sizes pertaining to the V1 file system.
/ 21075 #define V1_ZONE_NUM_SIZE usizeof (zone1_t) / # bytes in V1 zone */ 21076 #define V1_INODE_SIZE
usizeof (d1_inode) /* bytes in V1 dsk ino */ 21077 21078 /* # zones/indir block */ 21079 #define V1_INDIRECTS
(STATIC_BLOCK_SIZE/V1_ZONE_NUM_SIZE)

[Page 921]

21080 21081 /* # V1 dsk inodes/blk */ 21082 #define V1_INODES_PER_BLOCK
(STATIC_BLOCK_SIZE/V1_INODE_SIZE) 21083 21084 /* Derived sizes pertaining to the V2 file system. */ 21085
#define V2_ZONE_NUM_SIZE usizeof (zone_t) /* # bytes in V2 zone */ 21086 #define V2_INODE_SIZE usizeof
(d2_inode) /* bytes in V2 dsk ino */ 21087 #define V2_INDIRECTS(b) ((b)/V2_ZONE_NUM_SIZE) /* # zones/indir
block */ 21088 #define V2_INODES_PER_BLOCK(b) ((b)/V2_INODE_SIZE)/* # V2 dsk inodes/blk */
++
servers/fs/type.h
++
21100 /* Declaration of the V1 inode as it is on the disk (not in core). */ 21101 typedef struct { /* V1.x disk inode */
21102 mode_t d1_mode; /* file type, protection, etc. */ 21103 uid_t d1_uid; /* user id of the file's owner */ 21104
off_t d1_size; /* current file size in bytes */ 21105 time_t d1_mtime; /* when was file data last changed */ 21106 u8_t
d1_gid; /* group number */ 21107 u8_t d1_nlinks; /* how many links to this file */ 21108 u16_t
d1_zone[V1_NR_TZONES]; /* block nums for direct, ind, and dbl ind */ 21109 } d1_inode; 21110 21111 /*
Declaration of the V2 inode as it is on the disk (not in core). */ 21112 typedef struct { /* V2.x disk inode */ 21113
mode_t d2_mode; /* file type, protection, etc. */ 21114 u16_t d2_nlinks; /* how many links to this file. HACK! */
21115 uid_t d2_uid; /* user id of the file's owner. */ 21116 u16_t d2_gid; /* group number HACK! */ 21117 off_t
d2_size; /* current file size in bytes */ 21118 time_t d2_atime; /* when was file data last accessed */ 21119 time_t
d2_mtime; /* when was file data last changed */ 21120 time_t d2_ctime; /* when was inode data last changed */ 21121
zone_t d2_zone[V2_NR_TZONES]; /* block nums for direct, ind, and dbl ind */ 21122 } d2_inode;
++
servers/fs/proto.h
++
21200 /* Function prototypes. */ 21201 21202 #include "timers.h" 21203 21204 /* Structs used in prototypes must be
declared as such first. */ 21205 struct buf; 21206 struct filp; 21207 struct inode; 21208 struct super_block; 21209
21210 /* cache.c */ 21211 _PROTOTYPE(zone_t alloc_zone, (Dev_t dev, zone_t z)); 21212 _PROTOTYPE(void
flushall, (Dev_t dev)); 21213 _PROTOTYPE(void free_zone, (Dev_t dev, zone_t numb)); 21214 _PROTOTYPE(
struct buf *get_block, (Dev_t dev, block_t block,int only_search));

[Page 922]

21215 _PROTOTYPE(void invalidate, (Dev_t device)); 21216 _PROTOTYPE(void put_block, (struct buf *bp, int
block_type)); 21217 _PROTOTYPE(void rw_block, (struct buf *bp, int rw_flag)); 21218 _PROTOTYPE(void
rw_scattered, (Dev_t dev, 21219 struct buf **bufq, int bufqsize, int rw_flag)); 21220 21221 /* device.c */ 21222
_PROTOTYPE(int dev_open, (Dev_t dev, int proc, int flags)); 21223 _PROTOTYPE(void dev_close, (Dev_t dev));
21224 _PROTOTYPE(int dev_io, (int op, Dev_t dev, int proc, void *buf, 21225 off_t pos, int bytes, int flags));
21226 _PROTOTYPE(int gen_opcl, (int op, Dev_t dev, int proc, int flags)); 21227 _PROTOTYPE(void gen_io, (int
task_nr, message *mess_ptr)); 21228 _PROTOTYPE(int no_dev, (int op, Dev_t dev, int proc, int flags)); 21229
_PROTOTYPE(int tty_opcl, (int op, Dev_t dev, int proc, int flags)); 21230 _PROTOTYPE(int ctty_opcl, (int op,

143

143

Dev_t dev, int proc, int flags)); 21231 _PROTOTYPE(int clone_opcl, (int op, Dev_t dev, int proc, int flags)); 21232
_PROTOTYPE(void ctty_io, (int task_nr, message *mess_ptr)); 21233 _PROTOTYPE(int do_ioctl, (void)); 21234
_PROTOTYPE(int do_setsid, (void)); 21235 _PROTOTYPE(void dev_status, (message *)); 21236 21237 /* dmp.c
/ 21238 _PROTOTYPE(int do_fkey_pressed, (void)); 21239 21240 / dmap.c */ 21241 _PROTOTYPE(int
do_devctl, (void)); 21242 _PROTOTYPE(void build_dmap, (void)); 21243 _PROTOTYPE(int map_driver, (int
major, int proc_nr, int dev_style)); 21244 21245 /* filedes.c */ 21246 _PROTOTYPE(struct filp *find_filp, (struct
inode *rip, mode_t bits)); 21247 _PROTOTYPE(int get_fd, (int start, mode_t bits, int *k, struct filp **fpt)); 21248
_PROTOTYPE(struct filp *get_filp, (int fild)); 21249 21250 /* inode.c */ 21251 _PROTOTYPE(struct inode
*alloc_inode, (dev_t dev, mode_t bits)); 21252 _PROTOTYPE(void dup_inode, (struct inode *ip)); 21253
_PROTOTYPE(void free_inode, (Dev_t dev, Ino_t numb)); 21254 _PROTOTYPE(struct inode *get_inode, (Dev_t
dev, int numb)); 21255 _PROTOTYPE(void put_inode, (struct inode *rip)); 21256 _PROTOTYPE(void
update_times, (struct inode *rip)); 21257 _PROTOTYPE(void rw_inode, (struct inode *rip, int rw_flag)); 21258
_PROTOTYPE(void wipe_inode, (struct inode *rip)); 21259 21260 /* link.c */ 21261 _PROTOTYPE(int do_link,
(void)); 21262 _PROTOTYPE(int do_unlink, (void)); 21263 _PROTOTYPE(int do_rename, (void)); 21264
_PROTOTYPE(void truncate, (struct inode *rip)); 21265 21266 /* lock.c */ 21267 _PROTOTYPE(int lock_op,
(struct filp *f, int req)); 21268 _PROTOTYPE(void lock_revive, (void)); 21269 21270 /* main.c */ 21271
_PROTOTYPE(int main, (void)); 21272 _PROTOTYPE(void reply, (int whom, int result)); 21273 21274 /* misc.c
*/

[Page 923]

21275 _PROTOTYPE(int do_dup, (void)); 21276 _PROTOTYPE(int do_exit, (void)); 21277 _PROTOTYPE(int
do_fcntl, (void)); 21278 _PROTOTYPE(int do_fork, (void)); 21279 _PROTOTYPE(int do_exec, (void)); 21280
_PROTOTYPE(int do_revive, (void)); 21281 _PROTOTYPE(int do_set, (void)); 21282 _PROTOTYPE(int
do_sync, (void)); 21283 _PROTOTYPE(int do_fsync, (void)); 21284 _PROTOTYPE(int do_reboot, (void)); 21285
_PROTOTYPE(int do_svrctl, (void)); 21286 _PROTOTYPE(int do_getsysinfo, (void)); 21287 21288 /* mount.c */
21289 _PROTOTYPE(int do_mount, (void)); 21290 _PROTOTYPE(int do_umount, (void)); 21291
_PROTOTYPE(int unmount, (Dev_t dev)); 21292 21293 /* open.c */ 21294 _PROTOTYPE(int do_close, (void));
21295 _PROTOTYPE(int do_creat, (void)); 21296 _PROTOTYPE(int do_lseek, (void)); 21297 _PROTOTYPE(int
do_mknod, (void)); 21298 _PROTOTYPE(int do_mkdir, (void)); 21299 _PROTOTYPE(int do_open, (void));
21300 21301 /* path.c */ 21302 _PROTOTYPE(struct inode *advance,(struct inode *dirp, char
string[NAME_MAX])); 21303 _PROTOTYPE(int search_dir, (struct inode *ldir_ptr, 21304 char string
[NAME_MAX], ino_t *numb, int flag)); 21305 _PROTOTYPE(struct inode *eat_path, (char *path)); 21306
_PROTOTYPE(struct inode *last_dir, (char *path, char string [NAME_MAX])); 21307 21308 /* pipe.c */ 21309
_PROTOTYPE(int do_pipe, (void)); 21310 _PROTOTYPE(int do_unpause, (void)); 21311 _PROTOTYPE(int
pipe_check, (struct inode *rip, int rw_flag, 21312 int oflags, int bytes, off_t position, int *canwrite, int notouch));
21313 _PROTOTYPE(void release, (struct inode *ip, int call_nr, int count)); 21314 _PROTOTYPE(void revive, (int
proc_nr, int bytes)); 21315 _PROTOTYPE(void suspend, (int task)); 21316 _PROTOTYPE(int select_request_pipe,
(struct filp *f, int *ops, int bl)); 21317 _PROTOTYPE(int select_cancel_pipe, (struct filp *f)); 21318
_PROTOTYPE(int select_match_pipe, (struct filp *f)); 21319 21320 /* protect.c */ 21321 _PROTOTYPE(int
do_access, (void)); 21322 _PROTOTYPE(int do_chmod, (void)); 21323 _PROTOTYPE(int do_chown, (void));
21324 _PROTOTYPE(int do_umask, (void)); 21325 _PROTOTYPE(int forbidden, (struct inode *rip, mode_t
access_desired)); 21326 _PROTOTYPE(int read_only, (struct inode *ip)); 21327 21328 /* read.c */ 21329
_PROTOTYPE(int do_read, (void)); 21330 _PROTOTYPE(struct buf *rahead, (struct inode *rip, block_t baseblock,
21331 off_t position, unsigned bytes_ahead)); 21332 _PROTOTYPE(void read_ahead, (void)); 21333
_PROTOTYPE(block_t read_map, (struct inode *rip, off_t position)); 21334 _PROTOTYPE(int read_write, (int
rw_flag));

[Page 924]

21335 _PROTOTYPE(zone_t rd_indir, (struct buf *bp, int index)); 21336 21337 /* stadir.c */ 21338
_PROTOTYPE(int do_chdir, (void)); 21339 _PROTOTYPE(int do_fchdir, (void)); 21340 _PROTOTYPE(int
do_chroot, (void)); 21341 _PROTOTYPE(int do_fstat, (void)); 21342 _PROTOTYPE(int do_stat, (void)); 21343
_PROTOTYPE(int do_fstatfs, (void)); 21344 21345 /* super.c */ 21346 _PROTOTYPE(bit_t alloc_bit, (struct

144

144

super_block *sp, int map, bit_t origin)); 21347 _PROTOTYPE(void free_bit, (struct super_block *sp, int map, 21348
bit_t bit_returned)); 21349 _PROTOTYPE(struct super_block *get_super, (Dev_t dev)); 21350 _PROTOTYPE(int
mounted, (struct inode *rip)); 21351 _PROTOTYPE(int read_super, (struct super_block *sp)); 21352
_PROTOTYPE(int get_block_size, (dev_t dev)); 21353 21354 /* time.c */ 21355 _PROTOTYPE(int do_stime,
(void)); 21356 _PROTOTYPE(int do_utime, (void)); 21357 21358 /* utility.c */ 21359 _PROTOTYPE(time_t
clock_time, (void)); 21360 _PROTOTYPE(unsigned conv2, (int norm, int w)); 21361 _PROTOTYPE(long conv4,
(int norm, long x)); 21362 _PROTOTYPE(int fetch_name, (char *path, int len, int flag)); 21363 _PROTOTYPE(int
no_sys, (void)); 21364 _PROTOTYPE(void panic, (char *who, char *mess, int num)); 21365 21366 /* write.c */
21367 _PROTOTYPE(void clear_zone, (struct inode *rip, off_t pos, int flag)); 21368 _PROTOTYPE(int do_write,
(void)); 21369 _PROTOTYPE(struct buf *new_block, (struct inode *rip, off_t position)); 21370 _PROTOTYPE(
void zero_block, (struct buf *bp)); 21371 21372 /* select.c */ 21373 _PROTOTYPE(int do_select, (void)); 21374
_PROTOTYPE(int select_callback, (struct filp *, int ops)); 21375 _PROTOTYPE(void select_forget, (int fproc));
21376 _PROTOTYPE(void select_timeout_check, (timer_t *)); 21377 _PROTOTYPE(void init_select, (void));
21378 _PROTOTYPE(int select_notified, (int major, int minor, int ops)); 21379 21380 /* timers.c */ 21381
_PROTOTYPE(void fs_set_timer, (timer_t *tp, int delta, tmr_func_t watchdog, int arg)); 21382 _PROTOTYPE(
void fs_expire_timers, (clock_t now)); 21383 _PROTOTYPE(void fs_cancel_timer, (timer_t *tp)); 21384
_PROTOTYPE(void fs_init_timer, (timer_t *tp)); 21385 21386 /* cdprobe.c */ 21387 _PROTOTYPE(int cdprobe,
(void));

[Page 925]

145

145

++
servers/fs/glo.h
++
21400 /* EXTERN should be extern except for the table file */ 21401 #ifdef _TABLE 21402 #undef EXTERN 21403
#define EXTERN 21404 #endif 21405 21406 /* File System global variables */ 21407 EXTERN struct fproc *fp; /*
pointer to caller's fproc struct */ 21408 EXTERN int super_user; /* 1 if caller is super_user, else 0 */ 21409 EXTERN
int susp_count; /* number of procs suspended on pipe */ 21410 EXTERN int nr_locks; /* number of locks currently in
place */ 21411 EXTERN int reviving; /* number of pipe processes to be revived */ 21412 EXTERN off_t rdahedpos;
/* position to read ahead */ 21413 EXTERN struct inode *rdahed_inode; /* pointer to inode to read ahead */ 21414
EXTERN Dev_t root_dev; /* device number of the root device */ 21415 EXTERN time_t boottime; /* time in seconds
at system boot */ 21416 21417 /* The parameters of the call are kept here. */ 21418 EXTERN message m_in; /* the
input message itself */ 21419 EXTERN message m_out; /* the output message used for reply */ 21420 EXTERN int
who; /* caller's proc number */ 21421 EXTERN int call_nr; /* system call number */ 21422 EXTERN char
user_path[PATH_MAX];/* storage for user path name */ 21423 21424 /* The following variables are used for
returning results to the caller. */ 21425 EXTERN int err_code; /* temporary storage for error number */ 21426
EXTERN int rdwt_err; /* status of last disk i/o request */ 21427 21428 /* Data initialized elsewhere. */ 21429 extern
_PROTOTYPE (int (*call_vec[]), (void)); /* sys call table */ 21430 extern char dot1[2]; /* dot1 (&dot1[0]) and dot2
(&dot2[0]) have a special */ 21431 extern char dot2[3]; /* meaning to search_dir: no access permission check. */
++
servers/fs/fproc.h
++
21500 /* This is the per-process information. A slot is reserved for each potential 21501 * process. Thus NR_PROCS
must be the same as in the kernel. It is not 21502 * possible or even necessary to tell when a slot is free here. 21503 */
21504 EXTERN struct fproc { 21505 mode_t fp_umask; /* mask set by umask system call */ 21506 struct inode
fp_workdir; / pointer to working directory's inode */ 21507 struct inode *fp_rootdir; /* pointer to current root dir
(see chroot) */ 21508 struct filp *fp_filp[OPEN_MAX];/* the file descriptor table */ 21509 uid_t fp_realuid; /* real
user id */ 21510 uid_t fp_effuid; /* effective user id */ 21511 gid_t fp_realgid; /* real group id */ 21512 gid_t
fp_effgid; /* effective group id */ 21513 dev_t fp_tty; /* major/minor of controlling tty */ 21514 int fp_fd; /* place to
save fd if rd/wr can't finish */

[Page 926]

21515 char *fp_buffer; /* place to save buffer if rd/wr can't finish*/ 21516 int fp_nbytes; /* place to save bytes if rd/wr
can't finish */ 21517 int fp_cum_io_partial; /* partial byte count if rd/wr can't finish */ 21518 char fp_suspended; /* set
to indicate process hanging */ 21519 char fp_revived; /* set to indicate process being revived */ 21520 char fp_task; /*
which task is proc suspended on */ 21521 char fp_sesldr; /* true if proc is a session leader */ 21522 pid_t fp_pid; /*
process id */ 21523 long fp_cloexec; /* bit map for POSIX Table 6-2 FD_CLOEXEC */ 21524 } fproc[NR_PROCS];
21525 21526 /* Field values. */ 21527 #define NOT_SUSPENDED 0 /* process is not suspended on pipe or task */
21528 #define SUSPENDED 1 /* process is suspended on pipe or task */ 21529 #define NOT_REVIVING 0 /*
process is not being revived */ 21530 #define REVIVING 1 /* process is being revived from suspension */ 21531
#define PID_FREE 0 /* process slot free */ 21532 21533 /* Check is process number is acceptable - includes system
processes. */ 21534 #define isokprocnr(n) ((unsigned)((n)+NR_TASKS) < NR_PROCS + NR_TASKS) 21535
++
servers/fs/buf.h
++
21600 /* Buffer (block) cache. To acquire a block, a routine calls get_block(), 21601 * telling which block it wants.
The block is then regarded as "in use" 21602 * and has its 'b_count' field incremented. All the blocks that are not
21603 * in use are chained together in an LRU list, with 'front' pointing 21604 * to the least recently used block, and
'rear' to the most recently used 21605 * block. A reverse chain, using the field b_prev is also maintained. 21606 *
Usage for LRU is measured by the time the put_block() is done. The second 21607 * parameter to put_block() can
violate the LRU order and put a block on the 21608 * front of the list, if it will probably not be needed soon. If a block
21609 * is modified, the modifying routine must set b_dirt to DIRTY, so the block 21610 * will eventually be
rewritten to the disk. 21611 */ 21612 21613 #include <sys/dir.h> /* need struct direct */ 21614 #include <dirent.h>
21615 21616 EXTERN struct buf { 21617 /* Data portion of the buffer. */ 21618 union { 21619 char

146

146

b__data[MAX_BLOCK_SIZE]; /* ordinary user data */ 21620 /* directory block */ 21621 struct direct
b__dir[NR_DIR_ENTRIES(MAX_BLOCK_SIZE)]; 21622 /* V1 indirect block */ 21623 zone1_t
b__v1_ind[V1_INDIRECTS]; 21624 /* V2 indirect block */ 21625 zone_t
b__v2_ind[V2_INDIRECTS(MAX_BLOCK_SIZE)]; 21626 /* V1 inode block */ 21627 d1_inode
b__v1_ino[V1_INODES_PER_BLOCK]; 21628 /* V2 inode block */ 21629 d2_inode
b__v2_ino[V2_INODES_PER_BLOCK(MAX_BLOCK_SIZE)];

[Page 927]

21630 /* bit map block */ 21631 bitchunk_t b__bitmap[FS_BITMAP_CHUNKS(MAX_BLOCK_SIZE)]; 21632 } b;
21633 21634 /* Header portion of the buffer. */ 21635 struct buf *b_next; /* used to link all free bufs in a chain */
21636 struct buf *b_prev; /* used to link all free bufs the other way */ 21637 struct buf *b_hash; /* used to link bufs
on hash chains */ 21638 block_t b_blocknr; /* block number of its (minor) device */ 21639 dev_t b_dev; /* major |
minor device where block resides */ 21640 char b_dirt; /* CLEAN or DIRTY */ 21641 char b_count; /* number of
users of this buffer */ 21642 } buf[NR_BUFS]; 21643 21644 /* A block is free if b_dev == NO_DEV. */ 21645 21646
#define NIL_BUF ((struct buf *) 0) /* indicates absence of a buffer */ 21647 21648 /* These defs make it possible to
use to bp->b_data instead of bp->b.b__data */ 21649 #define b_data b.b__data 21650 #define b_dir b.b__dir 21651
#define b_v1_ind b.b__v1_ind 21652 #define b_v2_ind b.b__v2_ind 21653 #define b_v1_ino b.b__v1_ino 21654
#define b_v2_ino b.b__v2_ino 21655 #define b_bitmap b.b__bitmap 21656 21657 EXTERN struct buf
buf_hash[NR_BUF_HASH]; / the buffer hash table */ 21658 21659 EXTERN struct buf *front; /* points to least
recently used free block */ 21660 EXTERN struct buf *rear; /* points to most recently used free block */ 21661
EXTERN int bufs_in_use; /* # bufs currently in use (not on free list)*/ 21662 21663 /* When a block is released, the
type of usage is passed to put_block(). */ 21664 #define WRITE_IMMED 0100 /* block should be written to disk now
/ 21665 #define ONE_SHOT 0200 / set if block not likely to be needed soon */ 21666 21667 #define
INODE_BLOCK 0 /* inode block */ 21668 #define DIRECTORY_BLOCK 1 /* directory block */ 21669 #define
INDIRECT_BLOCK 2 /* pointer block */ 21670 #define MAP_BLOCK 3 /* bit map */ 21671 #define
FULL_DATA_BLOCK 5 /* data, fully used */ 21672 #define PARTIAL_DATA_BLOCK 6 /* data, partly used*/
21673 21674 #define HASH_MASK (NR_BUF_HASH - 1) /* mask for hashing block numbers */
++
servers/fs/file.h
++
21700 /* This is the filp table. It is an intermediary between file descriptors and 21701 * inodes. A slot is free if
filp_count == 0. 21702 */ 21703 21704 EXTERN struct filp { 21705 mode_t filp_mode; /* RW bits, telling how file is
opened */ 21706 int filp_flags; /* flags from open and fcntl */ 21707 int filp_count; /* how many file descriptors share
this slot?*/ 21708 struct inode *filp_ino; /* pointer to the inode */ 21709 off_t filp_pos; /* file position */

[Page 928]

21710 21711 /* the following fields are for select() and are owned by the generic 21712 * select() code (i.e.,
fd-type-specific select() code can't touch these). 21713 */ 21714 int filp_selectors; /* select()ing processes blocking on
this fd */ 21715 int filp_select_ops; /* interested in these SEL_* operations */ 21716 21717 /* following are for
fd-type-specific select() */ 21718 int filp_pipe_select_ops; 21719 } filp[NR_FILPS]; 21720 21721 #define
FILP_CLOSED 0 /* filp_mode: associated device closed */ 21722 21723 #define NIL_FILP (struct filp *) 0 /*
indicates absence of a filp slot */
++
servers/fs/lock.h
++
21800 /* This is the file locking table. Like the filp table, it points to the 21801 * inode table, however, in this case to
achieve advisory locking. 21802 */ 21803 EXTERN struct file_lock { 21804 short lock_type; /* F_RDLOCK or
F_WRLOCK; 0 means unused slot */ 21805 pid_t lock_pid; /* pid of the process holding the lock */ 21806 struct
inode *lock_inode; /* pointer to the inode locked */ 21807 off_t lock_first; /* offset of first byte locked */ 21808 off_t
lock_last; /* offset of last byte locked */ 21809 } file_lock[NR_LOCKS];
++
servers/fs/inode.h

147

147

++
21900 /* Inode table. This table holds inodes that are currently in use. In some 21901 * cases they have been opened
by an open() or creat() system call, in other 21902 * cases the file system itself needs the inode for one reason or
another, 21903 * such as to search a directory for a path name. 21904 * The first part of the struct holds fields that are
present on the 21905 * disk; the second part holds fields not present on the disk. 21906 * The disk inode part is also
declared in "type.h" as 'd1_inode' for V1 21907 * file systems and 'd2_inode' for V2 file systems. 21908 */ 21909
21910 EXTERN struct inode { 21911 mode_t i_mode; /* file type, protection, etc. */ 21912 nlink_t i_nlinks; /* how
many links to this file */ 21913 uid_t i_uid; /* user id of the file's owner */ 21914 gid_t i_gid; /* group number */
21915 off_t i_size; /* current file size in bytes */ 21916 time_t i_atime; /* time of last access (V2 only) */ 21917
time_t i_mtime; /* when was file data last changed */ 21918 time_t i_ctime; /* when was inode itself changed (V2
only)*/ 21919 zone_t i_zone[V2_NR_TZONES]; /* zone numbers for direct, ind, and dbl ind */ 21920 21921 /* The
following items are not present on the disk. */ 21922 dev_t i_dev; /* which device is the inode on */ 21923 ino_t
i_num; /* inode number on its (minor) device */ 21924 int i_count; /* # times inode used; 0 means slot is free */

[Page 929]

21925 int i_ndzones; /* # direct zones (Vx_NR_DZONES) */ 21926 int i_nindirs; /* # indirect zones per indirect block
*/ 21927 struct super_block *i_sp; /* pointer to super block for inode's device */ 21928 char i_dirt; /* CLEAN or
DIRTY */ 21929 char i_pipe; /* set to I_PIPE if pipe */ 21930 char i_mount; /* this bit is set if file mounted on */
21931 char i_seek; /* set on LSEEK, cleared on READ/WRITE */ 21932 char i_update; /* the ATIME, CTIME, and
MTIME bits are here */ 21933 } inode[NR_INODES]; 21934 21935 #define NIL_INODE (struct inode *) 0 /*
indicates absence of inode slot */ 21936 21937 /* Field values. Note that CLEAN and DIRTY are defined in "const.h"
/ 21938 #define NO_PIPE 0 / i_pipe is NO_PIPE if inode is not a pipe */ 21939 #define I_PIPE 1 /* i_pipe is
I_PIPE if inode is a pipe */ 21940 #define NO_MOUNT 0 /* i_mount is NO_MOUNT if file not mounted on*/ 21941
#define I_MOUNT 1 /* i_mount is I_MOUNT if file mounted on */ 21942 #define NO_SEEK 0 /* i_seek =
NO_SEEK if last op was not SEEK */ 21943 #define ISEEK 1 /* i_seek = ISEEK if last op was SEEK */
++
servers/fs/param.h
++
22000 /* The following names are synonyms for the variables in the input message. */ 22001 #define acc_time m2_l1
22002 #define addr m1_i3 22003 #define buffer m1_p1 22004 #define child m1_i2 22005 #define co_mode m1_i1
22006 #define eff_grp_id m1_i3 22007 #define eff_user_id m1_i3 22008 #define erki m1_p1 22009 #define fd m1_i1
22010 #define fd2 m1_i2 22011 #define ioflags m1_i3 22012 #define group m1_i3 22013 #define real_grp_id m1_i2
22014 #define ls_fd m2_i1 22015 #define mk_mode m1_i2 22016 #define mk_z0 m1_i3 22017 #define mode m3_i2
22018 #define c_mode m1_i3 22019 #define c_name m1_p1 22020 #define name m3_p1 22021 #define name1 m1_p1
22022 #define name2 m1_p2 22023 #define name_length m3_i1 22024 #define name1_length m1_i1 22025 #define
name2_length m1_i2 22026 #define nbytes m1_i2 22027 #define owner m1_i2 22028 #define parent m1_i1 22029
#define pathname m3_ca1 22030 #define pid m1_i3 22031 #define pro m1_i1 22032 #define ctl_req m4_l1 22033
#define driver_nr m4_l2 22034 #define dev_nr m4_l3

[Page 930]

22035 #define dev_style m4_l4 22036 #define rd_only m1_i3 22037 #define real_user_id m1_i2 22038 #define
request m1_i2 22039 #define sig m1_i2 22040 #define slot1 m1_i1 22041 #define tp m2_l1 22042 #define
utime_actime m2_l1 22043 #define utime_modtime m2_l2 22044 #define utime_file m2_p1 22045 #define
utime_length m2_i1 22046 #define utime_strlen m2_i2 22047 #define whence m2_i2 22048 #define svrctl_req m2_i1
22049 #define svrctl_argp m2_p1 22050 #define pm_stime m1_i1 22051 #define info_what m1_i1 22052 #define
info_where m1_p1 22053 22054 /* The following names are synonyms for the variables in the output message. */
22055 #define reply_type m_type 22056 #define reply_l1 m2_l1 22057 #define reply_i1 m1_i1 22058 #define
reply_i2 m1_i2 22059 #define reply_t1 m4_l1 22060 #define reply_t2 m4_l2 22061 #define reply_t3 m4_l3 22062
#define reply_t4 m4_l4 22063 #define reply_t5 m4_l5
++
servers/fs/super.h
++

148

148

22100 /* Super block table. The root file system and every mounted file system 22101 * has an entry here. The entry
holds information about the sizes of the bit 22102 * maps and inodes. The s_ninodes field gives the number of inodes
available 22103 * for files and directories, including the root directory. Inode 0 is 22104 * on the disk, but not used.
Thus s_ninodes = 4 means that 5 bits will be 22105 * used in the bit map, bit 0, which is always 1 and not used, and
bits 1-4 22106 * for files and directories. The disk layout is: 22107 * 22108 * Item # blocks 22109 * boot block 1
22110 * super block 1 (offset 1kB) 22111 * inode map s_imap_blocks 22112 * zone map s_zmap_blocks 22113 *
inodes (s_ninodes + 'inodes per block' - 1)/'inodes per block' 22114 * unused whatever is needed to fill out the current
zone 22115 * data zones (s_zones - s_firstdatazone) << s_log_zone_size 22116 * 22117 * A super_block slot is free if
s_dev == NO_DEV. 22118 */ 22119 22120 EXTERN struct super_block { 22121 ino_t s_ninodes; /* # usable inodes
on the minor device */ 22122 zone1_t s_nzones; /* total device size, including bit maps etc */ 22123 short
s_imap_blocks; /* # of blocks used by inode bit map */ 22124 short s_zmap_blocks; /* # of blocks used by zone bit
map */

[Page 931]

22125 zone1_t s_firstdatazone; /* number of first data zone */ 22126 short s_log_zone_size; /* log2 of blocks/zone */
22127 short s_pad; /* try to avoid compiler-dependent padding */ 22128 off_t s_max_size; /* maximum file size on
this device */ 22129 zone_t s_zones; /* number of zones (replaces s_nzones in V2) */ 22130 short s_magic; /* magic
number to recognize super-blocks */ 22131 22132 /* The following items are valid on disk only for V3 and above */
22133 22134 /* The block size in bytes. Minimum MIN_BLOCK SIZE. SECTOR_SIZE 22135 * multiple. If V1 or
V2 filesystem, this should be 22136 * initialised to STATIC_BLOCK_SIZE. Maximum MAX_BLOCK_SIZE. 22137
/ 22138 short s_pad2; / try to avoid compiler-dependent padding */ 22139 unsigned short s_block_size; /* block size
in bytes. */ 22140 char s_disk_version; /* filesystem format sub-version */ 22141 22142 /* The following items are
only used when the super_block is in memory. */ 22143 struct inode *s_isup; /* inode for root dir of mounted file sys
*/ 22144 struct inode *s_imount; /* inode mounted on */ 22145 unsigned s_inodes_per_block; /* precalculated from
magic number */ 22146 dev_t s_dev; /* whose super block is this? */ 22147 int s_rd_only; /* set to 1 iff file sys
mounted read only */ 22148 int s_native; /* set to 1 iff not byte swapped file system */ 22149 int s_version; /* file
system version, zero means bad magic */ 22150 int s_ndzones; /* # direct zones in an inode */ 22151 int s_nindirs; /* #
indirect zones per indirect block */ 22152 bit_t s_isearch; /* inodes below this bit number are in use */ 22153 bit_t
s_zsearch; /* all zones below this bit number are in use*/ 22154 } super_block[NR_SUPERS]; 22155 22156 #define
NIL_SUPER (struct super_block *) 0 22157 #define IMAP 0 /* operating on the inode bit map */ 22158 #define
ZMAP 1 /* operating on the zone bit map */
++
servers/fs/table.c
++
22200 /* This file contains the table used to map system call numbers onto the 22201 * routines that perform them.
22202 */ 22203 22204 #define _TABLE 22205 22206 #include "fs.h" 22207 #include <minix/callnr.h> 22208
#include <minix/com.h> 22209 #include "buf.h" 22210 #include "file.h" 22211 #include "fproc.h" 22212 #include
"inode.h" 22213 #include "lock.h" 22214 #include "super.h" 22215 22216 PUBLIC _PROTOTYPE (int (*call_vec[]),
(void)) = { 22217 no_sys, /* 0 = unused */ 22218 do_exit, /* 1 = exit */ 22219 do_fork, /* 2 = fork */

[Page 932]

22220 do_read, /* 3 = read */ 22221 do_write, /* 4 = write */ 22222 do_open, /* 5 = open */ 22223 do_close, /* 6 =
close */ 22224 no_sys, /* 7 = wait */ 22225 do_creat, /* 8 = creat */ 22226 do_link, /* 9 = link */ 22227 do_unlink, /*
10 = unlink */ 22228 no_sys, /* 11 = waitpid */ 22229 do_chdir, /* 12 = chdir */ 22230 no_sys, /* 13 = time */ 22231
do_mknod, /* 14 = mknod */ 22232 do_chmod, /* 15 = chmod */ 22233 do_chown, /* 16 = chown */ 22234 no_sys, /*
17 = break */ 22235 do_stat, /* 18 = stat */ 22236 do_lseek, /* 19 = lseek */ 22237 no_sys, /* 20 = getpid */ 22238
do_mount, /* 21 = mount */ 22239 do_umount, /* 22 = umount */ 22240 do_set, /* 23 = setuid */ 22241 no_sys, /* 24
= getuid */ 22242 do_stime, /* 25 = stime */ 22243 no_sys, /* 26 = ptrace */ 22244 no_sys, /* 27 = alarm */ 22245
do_fstat, /* 28 = fstat */ 22246 no_sys, /* 29 = pause */ 22247 do_utime, /* 30 = utime */ 22248 no_sys, /* 31 = (stty)
/ 22249 no_sys, / 32 = (gtty) */ 22250 do_access, /* 33 = access */ 22251 no_sys, /* 34 = (nice) */ 22252 no_sys, /*
35 = (ftime) */ 22253 do_sync, /* 36 = sync */ 22254 no_sys, /* 37 = kill */ 22255 do_rename, /* 38 = rename */
22256 do_mkdir, /* 39 = mkdir */ 22257 do_unlink, /* 40 = rmdir */ 22258 do_dup, /* 41 = dup */ 22259 do_pipe, /*

149

149

42 = pipe */ 22260 no_sys, /* 43 = times */ 22261 no_sys, /* 44 = (prof) */ 22262 no_sys, /* 45 = unused */ 22263
do_set, /* 46 = setgid */ 22264 no_sys, /* 47 = getgid */ 22265 no_sys, /* 48 = (signal)*/ 22266 no_sys, /* 49 =
unused */ 22267 no_sys, /* 50 = unused */ 22268 no_sys, /* 51 = (acct) */ 22269 no_sys, /* 52 = (phys) */ 22270
no_sys, /* 53 = (lock) */ 22271 do_ioctl, /* 54 = ioctl */ 22272 do_fcntl, /* 55 = fcntl */ 22273 no_sys, /* 56 = (mpx)
/ 22274 no_sys, / 57 = unused */ 22275 no_sys, /* 58 = unused */ 22276 do_exec, /* 59 = execve */ 22277
do_umask, /* 60 = umask */ 22278 do_chroot, /* 61 = chroot */ 22279 do_setsid, /* 62 = setsid */

[Page 933]

22280 no_sys, /* 63 = getpgrp */ 22281 22282 no_sys, /* 64 = KSIG: signals originating in the kernel */ 22283
do_unpause, /* 65 = UNPAUSE */ 22284 no_sys, /* 66 = unused */ 22285 do_revive, /* 67 = REVIVE */ 22286
no_sys, /* 68 = TASK_REPLY */ 22287 no_sys, /* 69 = unused */ 22288 no_sys, /* 70 = unused */ 22289 no_sys, /*
71 = si */ 22290 no_sys, /* 72 = sigsuspend */ 22291 no_sys, /* 73 = sigpending */ 22292 no_sys, /* 74 = sigprocmask
/ 22293 no_sys, / 75 = sigreturn */ 22294 do_reboot, /* 76 = reboot */ 22295 do_svrctl, /* 77 = svrctl */ 22296
22297 no_sys, /* 78 = unused */ 22298 do_getsysinfo, /* 79 = getsysinfo */ 22299 no_sys, /* 80 = unused */ 22300
do_devctl, /* 81 = devctl */ 22301 do_fstatfs, /* 82 = fstatfs */ 22302 no_sys, /* 83 = memalloc */ 22303 no_sys, /* 84
= memfree */ 22304 do_select, /* 85 = select */ 22305 do_fchdir, /* 86 = fchdir */ 22306 do_fsync, /* 87 = fsync */
22307 no_sys, /* 88 = getpriority */ 22308 no_sys, /* 89 = setpriority */ 22309 no_sys, /* 90 = gettimeofday */ 22310
}; 22311 /* This should not fail with "array size is negative": */ 22312 extern int dummy[sizeof(call_vec) == NCALLS
* sizeof(call_vec[0]) ? 1 : -1]; 22313
++
servers/fs/cache.c
++
22400 /* The file system maintains a buffer cache to reduce the number of disk 22401 * accesses needed. Whenever a
read or write to the disk is done, a check is 22402 * first made to see if the block is in the cache. This file manages the
22403 * cache. 22404 * 22405 * The entry points into this file are: 22406 * get_block: request to fetch a block for
reading or writing from cache 22407 * put_block: return a block previously requested with get_block 22408 *
alloc_zone: allocate a new zone (to increase the length of a file) 22409 * free_zone: release a zone (when a file is
removed) 22410 * rw_block: read or write a block from the disk itself 22411 * invalidate: remove all the cache blocks
on some device 22412 */ 22413 22414 #include "fs.h" 22415 #include <minix/com.h> 22416 #include "buf.h" 22417
#include "file.h" 22418 #include "fproc.h" 22419 #include "super.h"

[Page 934]

22420 22421 FORWARD _PROTOTYPE(void rm_lru, (struct buf *bp)); 22422 22423
/*===* 22424 *
get_block * 22425
===/ 22426
PUBLIC struct buf *get_block(dev, block, only_search) 22427 register dev_t dev; /* on which device is the block? */
22428 register block_t block; /* which block is wanted? */ 22429 int only_search; /* if NO_READ, don't read, else act
normal */ 22430 { 22431 /* Check to see if the requested block is in the block cache. If so, return 22432 * a pointer to
it. If not, evict some other block and fetch it (unless 22433 * 'only_search' is 1). All the blocks in the cache that are not
in use 22434 * are linked together in a chain, with 'front' pointing to the least recently 22435 * used block and 'rear' to
the most recently used block. If 'only_search' is 22436 * 1, the block being requested will be overwritten in its entirety,
so it is 22437 * only necessary to see if it is in the cache; if it is not, any free buffer 22438 * will do. It is not necessary
to actually read the block in from disk. 22439 * If 'only_search' is PREFETCH, the block need not be read from the
disk, 22440 * and the device is not to be marked on the block, so callers can tell if 22441 * the block returned is valid.
22442 * In addition to the LRU chain, there is also a hash chain to link together 22443 * blocks whose block numbers
end with the same bit strings, for fast lookup. 22444 */ 22445 22446 int b; 22447 register struct buf *bp, *prev_ptr;
22448 22449 /* Search the hash chain for (dev, block). Do_read() can use 22450 * get_block(NO_DEV ...) to get an
unnamed block to fill with zeros when 22451 * someone wants to read from a hole in a file, in which case this search
22452 * is skipped 22453 */ 22454 if (dev != NO_DEV) { 22455 b = (int) block & HASH_MASK; 22456 bp =
buf_hash[b]; 22457 while (bp != NIL_BUF) { 22458 if (bp->b_blocknr == block && bp->b_dev == dev) { 22459 /*
Block needed has been found. */ 22460 if (bp->b_count == 0) rm_lru(bp); 22461 bp->b_count++; /* record that block

150

150

is in use */ 22462 22463 return(bp); 22464 } else { 22465 /* This block is not the one sought. */ 22466 bp =
bp->b_hash; /* move to next block on hash chain */ 22467 } 22468 } 22469 } 22470 22471 /* Desired block is not on
available chain. Take oldest block ('front'). */ 22472 if ((bp = front) == NIL_BUF) panic(__FILE__,"all buffers in
use", NR_BUFS); 22473 rm_lru(bp); 22474 22475 /* Remove the block that was just taken from its hash chain. */
22476 b = (int) bp->b_blocknr & HASH_MASK; 22477 prev_ptr = buf_hash[b]; 22478 if (prev_ptr == bp) { 22479
buf_hash[b] = bp->b_hash;

[Page 935]

22480 } else { 22481 /* The block just taken is not on the front of its hash chain. */ 22482 while (prev_ptr->b_hash !=
NIL_BUF) 22483 if (prev_ptr->b_hash == bp) { 22484 prev_ptr->b_hash = bp->b_hash; /* found it */ 22485 break;
22486 } else { 22487 prev_ptr = prev_ptr->b_hash; /* keep looking */ 22488 } 22489 } 22490 22491 /* If the block
taken is dirty, make it clean by writing it to the disk. 22492 * Avoid hysteresis by flushing all other dirty blocks for the
same device. 22493 */ 22494 if (bp->b_dev != NO_DEV) { 22495 if (bp->b_dirt == DIRTY) flushall(bp->b_dev);
22496 } 22497 22498 /* Fill in block's parameters and add it to the hash chain where it goes. */ 22499 bp->b_dev =
dev; /* fill in device number */ 22500 bp->b_blocknr = block; /* fill in block number */ 22501 bp->b_count++; /*
record that block is being used */ 22502 b = (int) bp->b_blocknr & HASH_MASK; 22503 bp->b_hash = buf_hash[b];
22504 buf_hash[b] = bp; /* add to hash list */ 22505 22506 /* Go get the requested block unless searching or
prefetching. */ 22507 if (dev != NO_DEV) { 22508 if (only_search == PREFETCH) bp->b_dev = NO_DEV; 22509
else 22510 if (only_search == NORMAL) { 22511 rw_block(bp, READING); 22512 } 22513 } 22514 return(bp); /*
return the newly acquired block */ 22515 } 22517
/*===* 22518 *
put_block * 22519
===/ 22520
PUBLIC void put_block(bp, block_type) 22521 register struct buf *bp; /* pointer to the buffer to be released */ 22522
int block_type; /* INODE_BLOCK, DIRECTORY_BLOCK, or whatever */ 22523 { 22524 /* Return a block to the
list of available blocks. Depending on 'block_type' 22525 * it may be put on the front or rear of the LRU chain. Blocks
that are 22526 * expected to be needed again shortly (e.g., partially full data blocks) 22527 * go on the rear; blocks that
are unlikely to be needed again shortly 22528 * (e.g., full data blocks) go on the front. Blocks whose loss can hurt
22529 * the integrity of the file system (e.g., inode blocks) are written to 22530 * disk immediately if they are dirty.
22531 */ 22532 if (bp == NIL_BUF) return; /* it is easier to check here than in caller */ 22533 22534 bp->b_count--;
/* there is one use fewer now */ 22535 if (bp->b_count != 0) return; /* block is still in use */ 22536 22537
bufs_in_use--; /* one fewer block buffers in use */ 22538 22539 /* Put this block back on the LRU chain. If the
ONE_SHOT bit is set in

[Page 936]

22540 * 'block_type', the block is not likely to be needed again shortly, so put 22541 * it on the front of the LRU chain
where it will be the first one to be 22542 * taken when a free buffer is needed later. 22543 */ 22544 if (bp->b_dev ==
DEV_RAM || block_type & ONE_SHOT) { 22545 /* Block probably won't be needed quickly. Put it on front of chain.
22546 * It will be the next block to be evicted from the cache. 22547 */ 22548 bp->b_prev = NIL_BUF; 22549
bp->b_next = front; 22550 if (front == NIL_BUF) 22551 rear = bp; /* LRU chain was empty */ 22552 else 22553
front->b_prev = bp; 22554 front = bp; 22555 } else { 22556 /* Block probably will be needed quickly. Put it on rear of
chain. 22557 * It will not be evicted from the cache for a long time. 22558 */ 22559 bp->b_prev = rear; 22560
bp->b_next = NIL_BUF; 22561 if (rear == NIL_BUF) 22562 front = bp; 22563 else 22564 rear->b_next = bp; 22565
rear = bp; 22566 } 22567 22568 /* Some blocks are so important (e.g., inodes, indirect blocks) that they 22569 *
should be written to the disk immediately to avoid messing up the file 22570 * system in the event of a crash. 22571 */
22572 if ((block_type & WRITE_IMMED) && bp->b_dirt==DIRTY && bp->b_dev != NO_DEV) { 22573
rw_block(bp, WRITING); 22574 } 22575 } 22577
/*===* 22578 *
alloc_zone * 22579
===/ 22580
PUBLIC zone_t alloc_zone(dev, z) 22581 dev_t dev; /* device where zone wanted */ 22582 zone_t z; /* try to allocate
new zone near this one */ 22583 { 22584 /* Allocate a new zone on the indicated device and return its number. */

151

151

22585 22586 int major, minor; 22587 bit_t b, bit; 22588 struct super_block *sp; 22589 22590 /* Note that the routine
alloc_bit() returns 1 for the lowest possible 22591 * zone, which corresponds to sp->s_firstdatazone. To convert a
value 22592 * between the bit number, 'b', used by alloc_bit() and the zone number, 'z', 22593 * stored in the inode,
use the formula: 22594 * z = b + sp->s_firstdatazone - 1 22595 * Alloc_bit() never returns 0, since this is used for
NO_BIT (failure). 22596 */ 22597 sp = get_super(dev); 22598 22599 /* If z is 0, skip initial part of the map known to
be fully in use. */

[Page 937]

22600 if (z == sp->s_firstdatazone) { 22601 bit = sp->s_zsearch; 22602 } else { 22603 bit = (bit_t) z -
(sp->s_firstdatazone - 1); 22604 } 22605 b = alloc_bit(sp, ZMAP, bit); 22606 if (b == NO_BIT) { 22607 err_code =
ENOSPC; 22608 major = (int) (sp->s_dev >> MAJOR) & BYTE; 22609 minor = (int) (sp->s_dev >> MINOR) &
BYTE; 22610 printf("No space on %sdevice %d/%d\n", 22611 sp->s_dev == root_dev ? "root " : "", major, minor);
22612 return(NO_ZONE); 22613 } 22614 if (z == sp->s_firstdatazone) sp->s_zsearch = b; /* for next time */ 22615
return(sp->s_firstdatazone - 1 + (zone_t) b); 22616 } 22618
/*===* 22619 *
free_zone * 22620
===/ 22621
PUBLIC void free_zone(dev, numb) 22622 dev_t dev; /* device where zone located */ 22623 zone_t numb; /* zone to
be returned */ 22624 { 22625 /* Return a zone. */ 22626 22627 register struct super_block *sp; 22628 bit_t bit; 22629
22630 /* Locate the appropriate super_block and return bit. */ 22631 sp = get_super(dev); 22632 if (numb <
sp->s_firstdatazone || numb >= sp->s_zones) return; 22633 bit = (bit_t) (numb - (sp->s_firstdatazone - 1)); 22634
free_bit(sp, ZMAP, bit); 22635 if (bit < sp->s_zsearch) sp->s_zsearch = bit; 22636 } 22638
/*===* 22639 *
rw_block * 22640
===/ 22641
PUBLIC void rw_block(bp, rw_flag) 22642 register struct buf *bp; /* buffer pointer */ 22643 int rw_flag; /*
READING or WRITING */ 22644 { 22645 /* Read or write a disk block. This is the only routine in which actual disk
22646 * I/O is invoked. If an error occurs, a message is printed here, but the error 22647 * is not reported to the caller.
If the error occurred while purging a block 22648 * from the cache, it is not clear what the caller could do about it
anyway. 22649 */ 22650 22651 int r, op; 22652 off_t pos; 22653 dev_t dev; 22654 int block_size; 22655 22656
block_size = get_block_size(bp->b_dev); 22657 22658 if ((dev = bp->b_dev) != NO_DEV) { 22659 pos = (off_t)
bp->b_blocknr * block_size;

[Page 938]

22660 op = (rw_flag == READING ? DEV_READ : DEV_WRITE); 22661 r = dev_io(op, dev, FS_PROC_NR,
bp->b_data, pos, block_size, 0); 22662 if (r != block_size) { 22663 if (r >= 0) r = END_OF_FILE; 22664 if (r !=
END_OF_FILE) 22665 printf("Unrecoverable disk error on device %d/%d, block %ld\n", 22666
(dev>>MAJOR)&BYTE, (dev>>MINOR)&BYTE, bp->b_blocknr); 22667 bp->b_dev = NO_DEV; /* invalidate
block */ 22668 22669 /* Report read errors to interested parties. */ 22670 if (rw_flag == READING) rdwt_err = r;
22671 } 22672 } 22673 22674 bp->b_dirt = CLEAN; 22675 } 22677
/*===* 22678 *
invalidate * 22679
===/ 22680
PUBLIC void invalidate(device) 22681 dev_t device; /* device whose blocks are to be purged */ 22682 { 22683 /*
Remove all the blocks belonging to some device from the cache. */ 22684 22685 register struct buf *bp; 22686 22687
for (bp = &buf[0]; bp < &buf[NR_BUFS]; bp++) 22688 if (bp->b_dev == device) bp->b_dev = NO_DEV; 22689 }
22691 /*===*
22692 * flushall * 22693
===/ 22694
PUBLIC void flushall(dev) 22695 dev_t dev; /* device to flush */ 22696 { 22697 /* Flush all dirty blocks for one
device. */ 22698 22699 register struct buf *bp; 22700 static struct buf *dirty[NR_BUFS]; /* static so it isn't on stack */
22701 int ndirty; 22702 22703 for (bp = &buf[0], ndirty = 0; bp < &buf[NR_BUFS]; bp++) 22704 if (bp->b_dirt ==

152

152

DIRTY && bp->b_dev == dev) dirty[ndirty++] = bp; 22705 rw_scattered(dev, dirty, ndirty, WRITING); 22706 }
22708 /*===*
22709 * rw_scattered * 22710
===/ 22711
PUBLIC void rw_scattered(dev, bufq, bufqsize, rw_flag) 22712 dev_t dev; /* major-minor device number */ 22713
struct buf **bufq; /* pointer to array of buffers */ 22714 int bufqsize; /* number of buffers */ 22715 int rw_flag; /*
READING or WRITING */ 22716 { 22717 /* Read or write scattered data from a device. */ 22718 22719 register
struct buf *bp;

[Page 939]

22720 int gap; 22721 register int i; 22722 register iovec_t *iop; 22723 static iovec_t iovec[NR_IOREQS]; /* static so
it isn't on stack */ 22724 int j, r; 22725 int block_size; 22726 22727 block_size = get_block_size(dev); 22728 22729 /*
(Shell) sort buffers on b_blocknr. */ 22730 gap = 1; 22731 do 22732 gap = 3 * gap + 1; 22733 while (gap <=
bufqsize); 22734 while (gap != 1) { 22735 gap /= 3; 22736 for (j = gap; j < bufqsize; j++) { 22737 for (i = j - gap;
22738 i >= 0 && bufq[i]->b_blocknr > bufq[i + gap]->b_blocknr; 22739 i -= gap) { 22740 bp = bufq[i]; 22741 bufq[i]
= bufq[i + gap]; 22742 bufq[i + gap] = bp; 22743 } 22744 } 22745 } 22746 22747 /* Set up I/O vector and do I/O. The
result of dev_io is OK if everything 22748 * went fine, otherwise the error code for the first failed transfer. 22749 */
22750 while (bufqsize > 0) { 22751 for (j = 0, iop = iovec; j < NR_IOREQS && j < bufqsize; j++, iop++) { 22752 bp
= bufq[j]; 22753 if (bp->b_blocknr != bufq[0]->b_blocknr + j) break; 22754 iop->iov_addr = (vir_bytes) bp->b_data;
22755 iop->iov_size = block_size; 22756 } 22757 r = dev_io(rw_flag == WRITING ? DEV_SCATTER :
DEV_GATHER, 22758 dev, FS_PROC_NR, iovec, 22759 (off_t) bufq[0]->b_blocknr * block_size, j, 0); 22760
22761 /* Harvest the results. Dev_io reports the first error it may have 22762 * encountered, but we only care if it's the
first block that failed. 22763 */ 22764 for (i = 0, iop = iovec; i < j; i++, iop++) { 22765 bp = bufq[i]; 22766 if
(iop->iov_size != 0) { 22767 /* Transfer failed. An error? Do we care? */ 22768 if (r != OK && i == 0) { 22769
printf(22770 "fs: I/O error on device %d/%d, block %lu\n", 22771 (dev>>MAJOR)&BYTE, (dev>>MINOR)&BYTE,
22772 bp->b_blocknr); 22773 bp->b_dev = NO_DEV; /* invalidate block */ 22774 } 22775 break; 22776 } 22777 if
(rw_flag == READING) { 22778 bp->b_dev = dev; /* validate block */ 22779 put_block(bp,
PARTIAL_DATA_BLOCK);

[Page 940]

22780 } else { 22781 bp->b_dirt = CLEAN; 22782 } 22783 } 22784 bufq += i; 22785 bufqsize -= i; 22786 if (rw_flag
== READING) { 22787 /* Don't bother reading more than the device is willing to 22788 * give at this time. Don't
forget to release those extras. 22789 */ 22790 while (bufqsize > 0) { 22791 put_block(*bufq++,
PARTIAL_DATA_BLOCK); 22792 bufqsize--; 22793 } 22794 } 22795 if (rw_flag == WRITING && i == 0) {
22796 /* We're not making progress, this means we might keep 22797 * looping. Buffers remain dirty if un-written.
Buffers are 22798 * lost if invalidate()d or LRU-removed while dirty. This 22799 * is better than keeping unwritable
blocks around forever.. 22800 */ 22801 break; 22802 } 22803 } 22804 } 22806
/*===* 22807 *
rm_lru * 22808
===/ 22809
PRIVATE void rm_lru(bp) 22810 struct buf *bp; 22811 { 22812 /* Remove a block from its LRU chain. */ 22813
struct buf *next_ptr, *prev_ptr; 22814 22815 bufs_in_use++; 22816 next_ptr = bp->b_next; /* successor on LRU
chain */ 22817 prev_ptr = bp->b_prev; /* predecessor on LRU chain */ 22818 if (prev_ptr != NIL_BUF) 22819
prev_ptr->b_next = next_ptr; 22820 else 22821 front = next_ptr; /* this block was at front of chain */ 22822 22823 if
(next_ptr != NIL_BUF) 22824 next_ptr->b_prev = prev_ptr; 22825 else 22826 rear = prev_ptr; /* this block was at
rear of chain */ 22827 }
++
servers/fs/inode.c
++
22900 /* This file manages the inode table. There are procedures to allocate and 22901 * deallocate inodes, acquire,
erase, and release them, and read and write 22902 * them from the disk. 22903 * 22904 * The entry points into this file
are

153

153

[Page 941]

22905 * get_inode: search inode table for a given inode; if not there, 22906 * read it 22907 * put_inode: indicate that
an inode is no longer needed in memory 22908 * alloc_inode: allocate a new, unused inode 22909 * wipe_inode: erase
some fields of a newly allocated inode 22910 * free_inode: mark an inode as available for a new file 22911 *
update_times: update atime, ctime, and mtime 22912 * rw_inode: read a disk block and extract an inode, or corresp.
write 22913 * old_icopy: copy to/from in-core inode struct and disk inode (V1.x) 22914 * new_icopy: copy to/from
in-core inode struct and disk inode (V2.x) 22915 * dup_inode: indicate that someone else is using an inode table entry
22916 */ 22917 22918 #include "fs.h" 22919 #include "buf.h" 22920 #include "file.h" 22921 #include "fproc.h" 22922
#include "inode.h" 22923 #include "super.h" 22924 22925 FORWARD _PROTOTYPE(void old_icopy, (struct inode
*rip, d1_inode *dip, 22926 int direction, int norm)); 22927 FORWARD _PROTOTYPE(void new_icopy, (struct
inode *rip, d2_inode *dip, 22928 int direction, int norm)); 22929 22930
/*===* 22931 *
get_inode * 22932
===/ 22933
PUBLIC struct inode *get_inode(dev, numb) 22934 dev_t dev; /* device on which inode resides */ 22935 int numb; /*
inode number (ANSI: may not be unshort) */ 22936 { 22937 /* Find a slot in the inode table, load the specified inode
into it, and 22938 * return a pointer to the slot. If 'dev' == NO_DEV, just return a free slot. 22939 */ 22940 22941
register struct inode *rip, *xp; 22942 22943 /* Search the inode table both for (dev, numb) and a free slot. */ 22944 xp
= NIL_INODE; 22945 for (rip = &inode[0]; rip < &inode[NR_INODES]; rip++) { 22946 if (rip->i_count > 0) { /*
only check used slots for (dev, numb) */ 22947 if (rip->i_dev == dev && rip->i_num == numb) { 22948 /* This is the
inode that we are looking for. */ 22949 rip->i_count++; 22950 return(rip); /* (dev, numb) found */ 22951 } 22952 }
else { 22953 xp = rip; /* remember this free slot for later */ 22954 } 22955 } 22956 22957 /* Inode we want is not
currently in use. Did we find a free slot? */ 22958 if (xp == NIL_INODE) { /* inode table completely full */ 22959
err_code = ENFILE; 22960 return(NIL_INODE); 22961 } 22962 22963 /* A free inode slot has been located. Load the
inode into it. */ 22964 xp->i_dev = dev;

[Page 942]

22965 xp->i_num = numb; 22966 xp->i_count = 1; 22967 if (dev != NO_DEV) rw_inode(xp, READING); /* get
inode from disk */ 22968 xp->i_update = 0; /* all the times are initially up-to-date */ 22969 22970 return(xp); 22971 }
22973 /*===*
22974 * put_inode * 22975
===/ 22976
PUBLIC void put_inode(rip) 22977 register struct inode *rip; /* pointer to inode to be released */ 22978 { 22979 /*
The caller is no longer using this inode. If no one else is using it either 22980 * write it back to the disk immediately. If
it has no links, truncate it and 22981 * return it to the pool of available inodes. 22982 */ 22983 22984 if (rip ==
NIL_INODE) return; /* checking here is easier than in caller */ 22985 if (--rip->i_count == 0) { /* i_count == 0 means
no one is using it now */ 22986 if (rip->i_nlinks == 0) { 22987 /* i_nlinks == 0 means free the inode. */ 22988
truncate(rip); /* return all the disk blocks */ 22989 rip->i_mode = I_NOT_ALLOC; /* clear I_TYPE field */ 22990
rip->i_dirt = DIRTY; 22991 free_inode(rip->i_dev, rip->i_num); 22992 } else { 22993 if (rip->i_pipe == I_PIPE)
truncate(rip); 22994 } 22995 rip->i_pipe = NO_PIPE; /* should always be cleared */ 22996 if (rip->i_dirt == DIRTY)
rw_inode(rip, WRITING); 22997 } 22998 } 23000
/*===* 23001 *
alloc_inode * 23002
===/ 23003
PUBLIC struct inode *alloc_inode(dev_t dev, mode_t bits) 23004 { 23005 /* Allocate a free inode on 'dev', and return
a pointer to it. */ 23006 23007 register struct inode *rip; 23008 register struct super_block *sp; 23009 int major, minor,
inumb; 23010 bit_t b; 23011 23012 sp = get_super(dev); /* get pointer to super_block */ 23013 if (sp->s_rd_only) { /*
can't allocate an inode on a read only device. */ 23014 err_code = EROFS; 23015 return(NIL_INODE); 23016 } 23017
23018 /* Acquire an inode from the bit map. */ 23019 b = alloc_bit(sp, IMAP, sp->s_isearch); 23020 if (b ==
NO_BIT) { 23021 err_code = ENFILE; 23022 major = (int) (sp->s_dev >> MAJOR) & BYTE; 23023 minor = (int)
(sp->s_dev >> MINOR) & BYTE; 23024 printf("Out of i-nodes on %sdevice %d/%d\n",

154

154

[Page 943]

23025 sp->s_dev == root_dev ? "root " : "", major, minor); 23026 return(NIL_INODE); 23027 } 23028 sp->s_isearch
= b; /* next time start here */ 23029 inumb = (int) b; /* be careful not to pass unshort as param */ 23030 23031 /* Try
to acquire a slot in the inode table. */ 23032 if ((rip = get_inode(NO_DEV, inumb)) == NIL_INODE) { 23033 /* No
inode table slots available. Free the inode just allocated. */ 23034 free_bit(sp, IMAP, b); 23035 } else { 23036 /* An
inode slot is available. Put the inode just allocated into it. */ 23037 rip->i_mode = bits; /* set up RWX bits */ 23038
rip->i_nlinks = 0; /* initial no links */ 23039 rip->i_uid = fp->fp_effuid; /* file's uid is owner's */ 23040 rip->i_gid =
fp->fp_effgid; /* ditto group id */ 23041 rip->i_dev = dev; /* mark which device it is on */ 23042 rip->i_ndzones =
sp->s_ndzones; /* number of direct zones */ 23043 rip->i_nindirs = sp->s_nindirs; /* number of indirect zones per
blk*/ 23044 rip->i_sp = sp; /* pointer to super block */ 23045 23046 /* Fields not cleared already are cleared in
wipe_inode(). They have 23047 * been put there because truncate() needs to clear the same fields if 23048 * the file
happens to be open while being truncated. It saves space 23049 * not to repeat the code twice. 23050 */ 23051
wipe_inode(rip); 23052 } 23053 23054 return(rip); 23055 } 23057
/*===* 23058 *
wipe_inode * 23059
===/ 23060
PUBLIC void wipe_inode(rip) 23061 register struct inode *rip; /* the inode to be erased */ 23062 { 23063 /* Erase
some fields in the inode. This function is called from alloc_inode() 23064 * when a new inode is to be allocated, and
from truncate(), when an existing 23065 * inode is to be truncated. 23066 */ 23067 23068 register int i; 23069 23070
rip->i_size = 0; 23071 rip->i_update = ATIME | CTIME | MTIME; /* update all times later */ 23072 rip->i_dirt =
DIRTY; 23073 for (i = 0; i < V2_NR_TZONES; i++) rip->i_zone[i] = NO_ZONE; 23074 } 23076
/*===* 23077 *
free_inode * 23078
===/ 23079
PUBLIC void free_inode(dev, inumb) 23080 dev_t dev; /* on which device is the inode */ 23081 ino_t inumb; /*
number of inode to be freed */ 23082 { 23083 /* Return an inode to the pool of unallocated inodes. */ 23084

[Page 944]

23085 register struct super_block *sp; 23086 bit_t b; 23087 23088 /* Locate the appropriate super_block. */ 23089 sp
= get_super(dev); 23090 if (inumb <= 0 || inumb > sp->s_ninodes) return; 23091 b = inumb; 23092 free_bit(sp, IMAP,
b); 23093 if (b < sp->s_isearch) sp->s_isearch = b; 23094 } 23096
/*===* 23097 *
update_times * 23098
===/ 23099
PUBLIC void update_times(rip) 23100 register struct inode *rip; /* pointer to inode to be read/written */ 23101 {
23102 /* Various system calls are required by the standard to update atime, ctime, 23103 * or mtime. Since updating a
time requires sending a message to the clock 23104 * task--an expensive business--the times are marked for update by
setting 23105 * bits in i_update. When a stat, fstat, or sync is done, or an inode is 23106 * released, update_times()
may be called to actually fill in the times. 23107 */ 23108 23109 time_t cur_time; 23110 struct super_block *sp; 23111
23112 sp = rip->i_sp; /* get pointer to super block. */ 23113 if (sp->s_rd_only) return; /* no updates for read-only file
systems */ 23114 23115 cur_time = clock_time(); 23116 if (rip->i_update & ATIME) rip->i_atime = cur_time; 23117
if (rip->i_update & CTIME) rip->i_ctime = cur_time; 23118 if (rip->i_update & MTIME) rip->i_mtime = cur_time;
23119 rip->i_update = 0; /* they are all up-to-date now */ 23120 } 23122
/*===* 23123 *
rw_inode * 23124
===/ 23125
PUBLIC void rw_inode(rip, rw_flag) 23126 register struct inode *rip; /* pointer to inode to be read/written */ 23127
int rw_flag; /* READING or WRITING */ 23128 { 23129 /* An entry in the inode table is to be copied to or from the
disk. */ 23130 23131 register struct buf *bp; 23132 register struct super_block *sp; 23133 d1_inode *dip; 23134
d2_inode *dip2; 23135 block_t b, offset; 23136 23137 /* Get the block where the inode resides. */ 23138 sp =
get_super(rip->i_dev); /* get pointer to super block */ 23139 rip->i_sp = sp; /* inode must contain super block pointer

155

155

*/ 23140 offset = sp->s_imap_blocks + sp->s_zmap_blocks + 2; 23141 b = (block_t) (rip->i_num -
1)/sp->s_inodes_per_block + offset; 23142 bp = get_block(rip->i_dev, b, NORMAL); 23143 dip = bp->b_v1_ino +
(rip->i_num - 1) % V1_INODES_PER_BLOCK; 23144 dip2 = bp->b_v2_ino + (rip->i_num - 1) %

[Page 945]

23145 V2_INODES_PER_BLOCK(sp->s_block_size); 23146 23147 /* Do the read or write. */ 23148 if (rw_flag ==
WRITING) { 23149 if (rip->i_update) update_times(rip); /* times need updating */ 23150 if (sp->s_rd_only ==
FALSE) bp->b_dirt = DIRTY; 23151 } 23152 23153 /* Copy the inode from the disk block to the in-core table or vice
versa. 23154 * If the fourth parameter below is FALSE, the bytes are swapped. 23155 */ 23156 if (sp->s_version ==
V1) 23157 old_icopy(rip, dip, rw_flag, sp->s_native); 23158 else 23159 new_icopy(rip, dip2, rw_flag, sp->s_native);
23160 23161 put_block(bp, INODE_BLOCK); 23162 rip->i_dirt = CLEAN; 23163 } 23165
/*===* 23166 *
old_icopy * 23167
===/ 23168
PRIVATE void old_icopy(rip, dip, direction, norm) 23169 register struct inode *rip; /* pointer to the in-core inode
struct */ 23170 register d1_inode *dip; /* pointer to the d1_inode inode struct */ 23171 int direction; /* READING
(from disk) or WRITING (to disk) */ 23172 int norm; /* TRUE = do not swap bytes; FALSE = swap */ 23173 23174 {
23175 /* The V1.x IBM disk, the V1.x 68000 disk, and the V2 disk (same for IBM and 23176 * 68000) all have
different inode layouts. When an inode is read or written 23177 * this routine handles the conversions so that the
information in the inode 23178 * table is independent of the disk structure from which the inode came. 23179 * The
old_icopy routine copies to and from V1 disks. 23180 */ 23181 23182 int i; 23183 23184 if (direction == READING)
{ 23185 /* Copy V1.x inode to the in-core table, swapping bytes if need be. */ 23186 rip->i_mode = conv2(norm, (int)
dip->d1_mode); 23187 rip->i_uid = conv2(norm, (int) dip->d1_uid); 23188 rip->i_size = conv4(norm, dip->d1_size);
23189 rip->i_mtime = conv4(norm, dip->d1_mtime); 23190 rip->i_atime = rip->i_mtime; 23191 rip->i_ctime =
rip->i_mtime; 23192 rip->i_nlinks = dip->d1_nlinks; /* 1 char */ 23193 rip->i_gid = dip->d1_gid; /* 1 char */ 23194
rip->i_ndzones = V1_NR_DZONES; 23195 rip->i_nindirs = V1_INDIRECTS; 23196 for (i = 0; i <
V1_NR_TZONES; i++) 23197 rip->i_zone[i] = conv2(norm, (int) dip->d1_zone[i]); 23198 } else { 23199 /* Copying
V1.x inode to disk from the in-core table. */ 23200 dip->d1_mode = conv2(norm, (int) rip->i_mode); 23201
dip->d1_uid = conv2(norm, (int) rip->i_uid); 23202 dip->d1_size = conv4(norm, rip->i_size); 23203 dip->d1_mtime
= conv4(norm, rip->i_mtime); 23204 dip->d1_nlinks = rip->i_nlinks; /* 1 char */

[Page 946]

23205 dip->d1_gid = rip->i_gid; /* 1 char */ 23206 for (i = 0; i < V1_NR_TZONES; i++) 23207 dip->d1_zone[i] =
conv2(norm, (int) rip->i_zone[i]); 23208 } 23209 } 23211
/*===* 23212 *
new_icopy * 23213
===/ 23214
PRIVATE void new_icopy(rip, dip, direction, norm) 23215 register struct inode *rip; /* pointer to the in-core inode
struct */ 23216 register d2_inode *dip; /* pointer to the d2_inode struct */ 23217 int direction; /* READING (from
disk) or WRITING (to disk) */ 23218 int norm; /* TRUE = do not swap bytes; FALSE = swap */ 23219 23220 {
23221 /* Same as old_icopy, but to/from V2 disk layout. */ 23222 23223 int i; 23224 23225 if (direction ==
READING) { 23226 /* Copy V2.x inode to the in-core table, swapping bytes if need be. */ 23227 rip->i_mode =
conv2(norm,dip->d2_mode); 23228 rip->i_uid = conv2(norm,dip->d2_uid); 23229 rip->i_nlinks =
conv2(norm,dip->d2_nlinks); 23230 rip->i_gid = conv2(norm,dip->d2_gid); 23231 rip->i_size =
conv4(norm,dip->d2_size); 23232 rip->i_atime = conv4(norm,dip->d2_atime); 23233 rip->i_ctime =
conv4(norm,dip->d2_ctime); 23234 rip->i_mtime = conv4(norm,dip->d2_mtime); 23235 rip->i_ndzones =
V2_NR_DZONES; 23236 rip->i_nindirs = V2_INDIRECTS(rip->i_sp->s_block_size); 23237 for (i = 0; i <
V2_NR_TZONES; i++) 23238 rip->i_zone[i] = conv4(norm, (long) dip->d2_zone[i]); 23239 } else { 23240 /*
Copying V2.x inode to disk from the in-core table. */ 23241 dip->d2_mode = conv2(norm,rip->i_mode); 23242
dip->d2_uid = conv2(norm,rip->i_uid); 23243 dip->d2_nlinks = conv2(norm,rip->i_nlinks); 23244 dip->d2_gid =
conv2(norm,rip->i_gid); 23245 dip->d2_size = conv4(norm,rip->i_size); 23246 dip->d2_atime =
conv4(norm,rip->i_atime); 23247 dip->d2_ctime = conv4(norm,rip->i_ctime); 23248 dip->d2_mtime =

156

156

conv4(norm,rip->i_mtime); 23249 for (i = 0; i < V2_NR_TZONES; i++) 23250 dip->d2_zone[i] = conv4(norm, (long)
rip->i_zone[i]); 23251 } 23252 } 23254
/*===* 23255 *
dup_inode * 23256
===/ 23257
PUBLIC void dup_inode(ip) 23258 struct inode *ip; /* The inode to be duplicated. */ 23259 { 23260 /* This routine is
a simplified form of get_inode() for the case where 23261 * the inode pointer is already known. 23262 */ 23263 23264
ip->i_count++;

[Page 947]

23265 }
++
servers/fs/super.c
++
23300 /* This file manages the super block table and the related data structures, 23301 * namely, the bit maps that
keep track of which zones and which inodes are 23302 * allocated and which are free. When a new inode or zone is
needed, the 23303 * appropriate bit map is searched for a free entry. 23304 * 23305 * The entry points into this file are
23306 * alloc_bit: somebody wants to allocate a zone or inode; find one 23307 * free_bit: indicate that a zone or inode
is available for allocation 23308 * get_super: search the 'superblock' table for a device 23309 * mounted: tells if file
inode is on mounted (or ROOT) file system 23310 * read_super: read a superblock 23311 */ 23312 23313 #include
"fs.h" 23314 #include <string.h> 23315 #include <minix/com.h> 23316 #include "buf.h" 23317 #include "inode.h"
23318 #include "super.h" 23319 #include "const.h" 23320 23321
/*===* 23322 *
alloc_bit * 23323
===/ 23324
PUBLIC bit_t alloc_bit(sp, map, origin) 23325 struct super_block *sp; /* the filesystem to allocate from */ 23326 int
map; /* IMAP (inode map) or ZMAP (zone map) */ 23327 bit_t origin; /* number of bit to start searching at */ 23328
{ 23329 /* Allocate a bit from a bit map and return its bit number. */ 23330 23331 block_t start_block; /* first bit
block */ 23332 bit_t map_bits; /* how many bits are there in the bit map? */ 23333 unsigned bit_blocks; /* how many
blocks are there in the bit map? */ 23334 unsigned block, word, bcount; 23335 struct buf *bp; 23336 bitchunk_t *wptr,
*wlim, k; 23337 bit_t i, b; 23338 23339 if (sp->s_rd_only) 23340 panic(__FILE__,"can't allocate bit on read-only
filesys.", NO_NUM); 23341 23342 if (map == IMAP) { 23343 start_block = START_BLOCK; 23344 map_bits =
sp->s_ninodes + 1; 23345 bit_blocks = sp->s_imap_blocks; 23346 } else { 23347 start_block = START_BLOCK +
sp->s_imap_blocks; 23348 map_bits = sp->s_zones - (sp->s_firstdatazone - 1); 23349 bit_blocks =
sp->s_zmap_blocks;

[Page 948]

23350 } 23351 23352 /* Figure out where to start the bit search (depends on 'origin'). */ 23353 if (origin >= map_bits)
origin = 0; /* for robustness */ 23354 23355 /* Locate the starting place. */ 23356 block = origin /
FS_BITS_PER_BLOCK(sp->s_block_size); 23357 word = (origin % FS_BITS_PER_BLOCK(sp->s_block_size)) /
FS_BITCHUNK_BITS; 23358 23359 /* Iterate over all blocks plus one, because we start in the middle. */ 23360
bcount = bit_blocks + 1; 23361 do { 23362 bp = get_block(sp->s_dev, start_block + block, NORMAL); 23363 wlim =
&bp->b_bitmap[FS_BITMAP_CHUNKS(sp->s_block_size)]; 23364 23365 /* Iterate over the words in block. */
23366 for (wptr = &bp->b_bitmap[word]; wptr < wlim; wptr++) { 23367 23368 /* Does this word contain a free bit?
*/ 23369 if (*wptr == (bitchunk_t) ~0) continue; 23370 23371 /* Find and allocate the free bit. */ 23372 k =
conv2(sp->s_native, (int) *wptr); 23373 for (i = 0; (k & (1 << i)) != 0; ++i) {} 23374 23375 /* Bit number from the
start of the bit map. */ 23376 b = ((bit_t) block * FS_BITS_PER_BLOCK(sp->s_block_size)) 23377 + (wptr -
&bp->b_bitmap[0]) * FS_BITCHUNK_BITS 23378 + i; 23379 23380 /* Don't allocate bits beyond the end of the
map. */ 23381 if (b >= map_bits) break; 23382 23383 /* Allocate and return bit number. */ 23384 k |= 1 << i; 23385
*wptr = conv2(sp->s_native, (int) k); 23386 bp->b_dirt = DIRTY; 23387 put_block(bp, MAP_BLOCK); 23388
return(b); 23389 } 23390 put_block(bp, MAP_BLOCK); 23391 if (++block >= bit_blocks) block = 0; /* last block,
wrap around */ 23392 word = 0; 23393 } while (--bcount > 0); 23394 return(NO_BIT); /* no bit could be allocated */

157

157

23395 } 23397
/*===* 23398 *
free_bit * 23399
===/ 23400
PUBLIC void free_bit(sp, map, bit_returned) 23401 struct super_block *sp; /* the filesystem to operate on */ 23402
int map; /* IMAP (inode map) or ZMAP (zone map) */ 23403 bit_t bit_returned; /* number of bit to insert into the
map */ 23404 { 23405 /* Return a zone or inode by turning off its bitmap bit. */ 23406 23407 unsigned block, word,
bit; 23408 struct buf *bp; 23409 bitchunk_t k, mask;

[Page 949]

23410 block_t start_block; 23411 23412 if (sp->s_rd_only) 23413 panic(__FILE__,"can't free bit on read-only
filesys.", NO_NUM); 23414 23415 if (map == IMAP) { 23416 start_block = START_BLOCK; 23417 } else { 23418
start_block = START_BLOCK + sp->s_imap_blocks; 23419 } 23420 block = bit_returned /
FS_BITS_PER_BLOCK(sp->s_block_size); 23421 word = (bit_returned %
FS_BITS_PER_BLOCK(sp->s_block_size)) 23422 / FS_BITCHUNK_BITS; 23423 23424 bit = bit_returned %
FS_BITCHUNK_BITS; 23425 mask = 1 << bit; 23426 23427 bp = get_block(sp->s_dev, start_block + block,
NORMAL); 23428 23429 k = conv2(sp->s_native, (int) bp->b_bitmap[word]); 23430 if (!(k & mask)) { 23431
panic(__FILE__,map == IMAP ? "tried to free unused inode" : 23432 "tried to free unused block", NO_NUM); 23433
} 23434 23435 k &= ~mask; 23436 bp->b_bitmap[word] = conv2(sp->s_native, (int) k); 23437 bp->b_dirt = DIRTY;
23438 23439 put_block(bp, MAP_BLOCK); 23440 } 23442
/*===* 23443 *
get_super * 23444
===/ 23445
PUBLIC struct super_block *get_super(dev) 23446 dev_t dev; /* device number whose super_block is sought */
23447 { 23448 /* Search the superblock table for this device. It is supposed to be there. */ 23449 23450 register struct
super_block *sp; 23451 23452 if (dev == NO_DEV) 23453 panic(__FILE__,"request for super_block of NO_DEV",
NO_NUM); 23454 23455 for (sp = &super_block[0]; sp < &super_block[NR_SUPERS]; sp++) 23456 if (sp->s_dev
== dev) return(sp); 23457 23458 /* Search failed. Something wrong. */ 23459 panic(__FILE__,"can't find superblock
for device (in decimal)", (int) dev); 23460 23461 return(NIL_SUPER); /* to keep the compiler and lint quiet */ 23462
} 23464 /*===*
23465 * get_block_size * 23466
===/ 23467
PUBLIC int get_block_size(dev_t dev) 23468 { 23469 /* Search the superblock table for this device. */

[Page 950]

23470 23471 register struct super_block *sp; 23472 23473 if (dev == NO_DEV) 23474 panic(__FILE__,"request for
block size of NO_DEV", NO_NUM); 23475 23476 for (sp = &super_block[0]; sp < &super_block[NR_SUPERS];
sp++) { 23477 if (sp->s_dev == dev) { 23478 return(sp->s_block_size); 23479 } 23480 } 23481 23482 /* no mounted
filesystem? use this block size then. */ 23483 return MIN_BLOCK_SIZE; 23484 } 23486
/*===* 23487 *
mounted * 23488
===/ 23489
PUBLIC int mounted(rip) 23490 register struct inode *rip; /* pointer to inode */ 23491 { 23492 /* Report on whether
the given inode is on a mounted (or ROOT) file system. */ 23493 23494 register struct super_block *sp; 23495 register
dev_t dev; 23496 23497 dev = (dev_t) rip->i_zone[0]; 23498 if (dev == root_dev) return(TRUE); /* inode is on root
file system */ 23499 23500 for (sp = &super_block[0]; sp < &super_block[NR_SUPERS]; sp++) 23501 if (sp->s_dev
== dev) return(TRUE); 23502 23503 return(FALSE); 23504 } 23506
/*===* 23507 *
read_super * 23508
===/ 23509
PUBLIC int read_super(sp) 23510 register struct super_block *sp; /* pointer to a superblock */ 23511 { 23512 /* Read
a superblock. */ 23513 dev_t dev; 23514 int magic; 23515 int version, native, r; 23516 static char

158

158

sbbuf[MIN_BLOCK_SIZE]; 23517 23518 dev = sp->s_dev; /* save device (will be overwritten by copy) */ 23519 if
(dev == NO_DEV) 23520 panic(__FILE__,"request for super_block of NO_DEV", NO_NUM); 23521 r =
dev_io(DEV_READ, dev, FS_PROC_NR, 23522 sbbuf, SUPER_BLOCK_BYTES, MIN_BLOCK_SIZE, 0); 23523 if
(r != MIN_BLOCK_SIZE) { 23524 return EINVAL; 23525 } 23526 memcpy(sp, sbbuf, sizeof(*sp)); 23527 sp->s_dev
= NO_DEV; /* restore later */ 23528 magic = sp->s_magic; /* determines file system type */ 23529

[Page 951]

23530 /* Get file system version and type. */ 23531 if (magic == SUPER_MAGIC || magic == conv2(BYTE_SWAP,
SUPER_MAGIC)) { 23532 version = V1; 23533 native = (magic == SUPER_MAGIC); 23534 } else if (magic ==
SUPER_V2 || magic == conv2(BYTE_SWAP, SUPER_V2)) { 23535 version = V2; 23536 native = (magic ==
SUPER_V2); 23537 } else if (magic == SUPER_V3) { 23538 version = V3; 23539 native = 1; 23540 } else { 23541
return(EINVAL); 23542 } 23543 23544 /* If the super block has the wrong byte order, swap the fields; the magic
23545 * number doesn't need conversion. */ 23546 sp->s_ninodes = conv4(native, sp->s_ninodes); 23547
sp->s_nzones = conv2(native, (int) sp->s_nzones); 23548 sp->s_imap_blocks = conv2(native, (int)
sp->s_imap_blocks); 23549 sp->s_zmap_blocks = conv2(native, (int) sp->s_zmap_blocks); 23550 sp->s_firstdatazone
= conv2(native, (int) sp->s_firstdatazone); 23551 sp->s_log_zone_size = conv2(native, (int) sp->s_log_zone_size);
23552 sp->s_max_size = conv4(native, sp->s_max_size); 23553 sp->s_zones = conv4(native, sp->s_zones); 23554
23555 /* In V1, the device size was kept in a short, s_nzones, which limited 23556 * devices to 32K zones. For V2, it
was decided to keep the size as a 23557 * long. However, just changing s_nzones to a long would not work, since
23558 * then the position of s_magic in the super block would not be the same 23559 * in V1 and V2 file systems, and
there would be no way to tell whether 23560 * a newly mounted file system was V1 or V2. The solution was to
introduce 23561 * a new variable, s_zones, and copy the size there. 23562 * 23563 * Calculate some other numbers
that depend on the version here too, to 23564 * hide some of the differences. 23565 */ 23566 if (version == V1) {
23567 sp->s_block_size = STATIC_BLOCK_SIZE; 23568 sp->s_zones = sp->s_nzones; /* only V1 needs this copy */
23569 sp->s_inodes_per_block = V1_INODES_PER_BLOCK; 23570 sp->s_ndzones = V1_NR_DZONES; 23571
sp->s_nindirs = V1_INDIRECTS; 23572 } else { 23573 if (version == V2) 23574 sp->s_block_size =
STATIC_BLOCK_SIZE; 23575 if (sp->s_block_size < MIN_BLOCK_SIZE) 23576 return EINVAL; 23577
sp->s_inodes_per_block = V2_INODES_PER_BLOCK(sp->s_block_size); 23578 sp->s_ndzones =
V2_NR_DZONES; 23579 sp->s_nindirs = V2_INDIRECTS(sp->s_block_size); 23580 } 23581 23582 if
(sp->s_block_size < MIN_BLOCK_SIZE) { 23583 return EINVAL; 23584 } 23585 if (sp->s_block_size >
MAX_BLOCK_SIZE) { 23586 printf("Filesystem block size is %d kB; maximum filesystem\n" 23587 "block size is
%d kB. This limit can be increased by recompiling.\n", 23588 sp->s_block_size/1024, MAX_BLOCK_SIZE/1024);
23589 return EINVAL;

[Page 952]

23590 } 23591 if ((sp->s_block_size % 512) != 0) { 23592 return EINVAL; 23593 } 23594 if (SUPER_SIZE >
sp->s_block_size) { 23595 return EINVAL; 23596 } 23597 if ((sp->s_block_size % V2_INODE_SIZE) != 0 || 23598
(sp->s_block_size % V1_INODE_SIZE) != 0) { 23599 return EINVAL; 23600 } 23601 23602 sp->s_isearch = 0; /*
inode searches initially start at 0 */ 23603 sp->s_zsearch = 0; /* zone searches initially start at 0 */ 23604
sp->s_version = version; 23605 sp->s_native = native; 23606 23607 /* Make a few basic checks to see if super block
looks reasonable. */ 23608 if (sp->s_imap_blocks < 1 || sp->s_zmap_blocks < 1 23609 || sp->s_ninodes < 1 ||
sp->s_zones < 1 23610 || (unsigned) sp->s_log_zone_size > 4) { 23611 printf("not enough imap or zone map blocks,
\n"); 23612 printf("or not enough inodes, or not enough zones, " 23613 "or zone size too large\n"); 23614
return(EINVAL); 23615 } 23616 sp->s_dev = dev; /* restore device number */ 23617 return(OK); 23618 }
++
servers/fs/filedes.c
++
23700 /* This file contains the procedures that manipulate file descriptors. 23701 * 23702 * The entry points into this
file are 23703 * get_fd: look for free file descriptor and free filp slots 23704 * get_filp: look up the filp entry for a
given file descriptor 23705 * find_filp: find a filp slot that points to a given inode 23706 */ 23707 23708 #include
"fs.h" 23709 #include "file.h" 23710 #include "fproc.h" 23711 #include "inode.h" 23712 23713
/*===* 23714 *

159

159

get_fd * 23715
===/ 23716
PUBLIC int get_fd(int start, mode_t bits, int *k, struct filp **fpt) 23717 { 23718 /* Look for a free file descriptor and
a free filp slot. Fill in the mode word 23719 * in the latter, but don't claim either one yet, since the open() or creat()
23720 * may yet fail. 23721 */ 23722 23723 register struct filp *f; 23724 register int i;

[Page 953]

23725 23726 *k = -1; /* we need a way to tell if file desc found */ 23727 23728 /* Search the fproc fp_filp table for a
free file descriptor. */ 23729 for (i = start; i < OPEN_MAX; i++) { 23730 if (fp->fp_filp[i] == NIL_FILP) { 23731 /*
A file descriptor has been located. */ 23732 *k = i; 23733 break; 23734 } 23735 } 23736 23737 /* Check to see if a file
descriptor has been found. */ 23738 if (*k < 0) return(EMFILE); /* this is why we initialized k to -1 */ 23739 23740 /*
Now that a file descriptor has been found, look for a free filp slot. */ 23741 for (f = &filp[0]; f < &filp[NR_FILPS];
f++) { 23742 if (f->filp_count == 0) { 23743 f->filp_mode = bits; 23744 f->filp_pos = 0L; 23745 f->filp_selectors = 0;
23746 f->filp_select_ops = 0; 23747 f->filp_pipe_select_ops = 0; 23748 f->filp_flags = 0; 23749 *fpt = f; 23750
return(OK); 23751 } 23752 } 23753 23754 /* If control passes here, the filp table must be full. Report that back. */
23755 return(ENFILE); 23756 } 23758
/*===* 23759 *
get_filp * 23760
===/ 23761
PUBLIC struct filp *get_filp(fild) 23762 int fild; /* file descriptor */ 23763 { 23764 /* See if 'fild' refers to a valid file
descr. If so, return its filp ptr. */ 23765 23766 err_code = EBADF; 23767 if (fild < 0 || fild >= OPEN_MAX)
return(NIL_FILP); 23768 return(fp->fp_filp[fild]); /* may also be NIL_FILP */ 23769 } 23771
/*===* 23772 *
find_filp * 23773
===/ 23774
PUBLIC struct filp *find_filp(register struct inode *rip, mode_t bits) 23775 { 23776 /* Find a filp slot that refers to the
inode 'rip' in a way as described 23777 * by the mode bit 'bits'. Used for determining whether somebody is still 23778
* interested in either end of a pipe. Also used when opening a FIFO to 23779 * find partners to share a filp field with
(to shared the file position). 23780 * Like 'get_fd' it performs its job by linear search through the filp table. 23781 */
23782 23783 register struct filp *f; 23784

[Page 954]

23785 for (f = &filp[0]; f < &filp[NR_FILPS]; f++) { 23786 if (f->filp_count != 0 && f->filp_ino == rip &&
(f->filp_mode & bits)){ 23787 return(f); 23788 } 23789 } 23790 23791 /* If control passes here, the filp wasn't there.
Report that back. */ 23792 return(NIL_FILP); 23793 }
++
servers/fs/lock.c
++
23800 /* This file handles advisory file locking as required by POSIX. 23801 * 23802 * The entry points into this file
are 23803 * lock_op: perform locking operations for FCNTL system call 23804 * lock_revive: revive processes when
a lock is released 23805 */ 23806 23807 #include "fs.h" 23808 #include <minix/com.h> 23809 #include <fcntl.h>
23810 #include <unistd.h> 23811 #include "file.h" 23812 #include "fproc.h" 23813 #include "inode.h" 23814 #include
"lock.h" 23815 #include "param.h" 23816 23817
/*===* 23818 *
lock_op * 23819
===/ 23820
PUBLIC int lock_op(f, req) 23821 struct filp *f; 23822 int req; /* either F_SETLK or F_SETLKW */ 23823 { 23824
/* Perform the advisory locking required by POSIX. */ 23825 23826 int r, ltype, i, conflict = 0, unlocking = 0; 23827
mode_t mo; 23828 off_t first, last; 23829 struct flock flock; 23830 vir_bytes user_flock; 23831 struct file_lock *flp,
*flp2, *empty; 23832 23833 /* Fetch the flock structure from user space. */ 23834 user_flock = (vir_bytes)
m_in.name1; 23835 r = sys_datacopy(who, (vir_bytes) user_flock, 23836 FS_PROC_NR, (vir_bytes) &flock,
(phys_bytes) sizeof(flock)); 23837 if (r != OK) return(EINVAL); 23838 23839 /* Make some error checks. */ 23840

160

160

ltype = flock.l_type; 23841 mo = f->filp_mode; 23842 if (ltype != F_UNLCK && ltype != F_RDLCK && ltype !=
F_WRLCK) return(EINVAL); 23843 if (req == F_GETLK && ltype == F_UNLCK) return(EINVAL); 23844 if (
(f->filp_ino->i_mode & I_TYPE) != I_REGULAR) return(EINVAL);

[Page 955]

23845 if (req != F_GETLK && ltype == F_RDLCK && (mo & R_BIT) == 0) return(EBADF); 23846 if (req !=
F_GETLK && ltype == F_WRLCK && (mo & W_BIT) == 0) return(EBADF); 23847 23848 /* Compute the first
and last bytes in the lock region. */ 23849 switch (flock.l_whence) { 23850 case SEEK_SET: first = 0; break; 23851
case SEEK_CUR: first = f->filp_pos; break; 23852 case SEEK_END: first = f->filp_ino->i_size; break; 23853 default:
return(EINVAL); 23854 } 23855 /* Check for overflow. */ 23856 if (((long)flock.l_start > 0) && ((first +
flock.l_start) < first)) 23857 return(EINVAL); 23858 if (((long)flock.l_start < 0) && ((first + flock.l_start) > first))
23859 return(EINVAL); 23860 first = first + flock.l_start; 23861 last = first + flock.l_len - 1; 23862 if (flock.l_len ==
0) last = MAX_FILE_POS; 23863 if (last < first) return(EINVAL); 23864 23865 /* Check if this region conflicts with
any existing lock. */ 23866 empty = (struct file_lock *) 0; 23867 for (flp = &file_lock[0]; flp < &
file_lock[NR_LOCKS]; flp++) { 23868 if (flp->lock_type == 0) { 23869 if (empty == (struct file_lock *) 0) empty =
flp; 23870 continue; /* 0 means unused slot */ 23871 } 23872 if (flp->lock_inode != f->filp_ino) continue; /* different
file */ 23873 if (last < flp->lock_first) continue; /* new one is in front */ 23874 if (first > flp->lock_last) continue; /*
new one is afterwards */ 23875 if (ltype == F_RDLCK && flp->lock_type == F_RDLCK) continue; 23876 if (ltype !=
F_UNLCK && flp->lock_pid == fp->fp_pid) continue; 23877 23878 /* There might be a conflict. Process it. */ 23879
conflict = 1; 23880 if (req == F_GETLK) break; 23881 23882 /* If we are trying to set a lock, it just failed. */ 23883 if
(ltype == F_RDLCK || ltype == F_WRLCK) { 23884 if (req == F_SETLK) { 23885 /* For F_SETLK, just report back
failure. */ 23886 return(EAGAIN); 23887 } else { 23888 /* For F_SETLKW, suspend the process. */ 23889
suspend(XLOCK); 23890 return(SUSPEND); 23891 } 23892 } 23893 23894 /* We are clearing a lock and we found
something that overlaps. */ 23895 unlocking = 1; 23896 if (first <= flp->lock_first && last >= flp->lock_last) { 23897
flp->lock_type = 0; /* mark slot as unused */ 23898 nr_locks--; /* number of locks is now 1 less */ 23899 continue;
23900 } 23901 23902 /* Part of a locked region has been unlocked. */ 23903 if (first <= flp->lock_first) { 23904
flp->lock_first = last + 1;

[Page 956]

23905 continue; 23906 } 23907 23908 if (last >= flp->lock_last) { 23909 flp->lock_last = first - 1; 23910 continue;
23911 } 23912 23913 /* Bad luck. A lock has been split in two by unlocking the middle. */ 23914 if (nr_locks ==
NR_LOCKS) return(ENOLCK); 23915 for (i = 0; i < NR_LOCKS; i++) 23916 if (file_lock[i].lock_type == 0) break;
23917 flp2 = &file_lock[i]; 23918 flp2->lock_type = flp->lock_type; 23919 flp2->lock_pid = flp->lock_pid; 23920
flp2->lock_inode = flp->lock_inode; 23921 flp2->lock_first = last + 1; 23922 flp2->lock_last = flp->lock_last; 23923
flp->lock_last = first - 1; 23924 nr_locks++; 23925 } 23926 if (unlocking) lock_revive(); 23927 23928 if (req ==
F_GETLK) { 23929 if (conflict) { 23930 /* GETLK and conflict. Report on the conflicting lock. */ 23931 flock.l_type
= flp->lock_type; 23932 flock.l_whence = SEEK_SET; 23933 flock.l_start = flp->lock_first; 23934 flock.l_len =
flp->lock_last - flp->lock_first + 1; 23935 flock.l_pid = flp->lock_pid; 23936 23937 } else { 23938 /* It is GETLK
and there is no conflict. */ 23939 flock.l_type = F_UNLCK; 23940 } 23941 23942 /* Copy the flock structure back to
the caller. */ 23943 r = sys_datacopy(FS_PROC_NR, (vir_bytes) &flock, 23944 who, (vir_bytes) user_flock,
(phys_bytes) sizeof(flock)); 23945 return(r); 23946 } 23947 23948 if (ltype == F_UNLCK) return(OK); /* unlocked a
region with no locks */ 23949 23950 /* There is no conflict. If space exists, store new lock in the table. */ 23951 if
(empty == (struct file_lock *) 0) return(ENOLCK); /* table full */ 23952 empty->lock_type = ltype; 23953
empty->lock_pid = fp->fp_pid; 23954 empty->lock_inode = f->filp_ino; 23955 empty->lock_first = first; 23956
empty->lock_last = last; 23957 nr_locks++; 23958 return(OK); 23959 }

[Page 957]

23961 /*===*
23962 * lock_revive * 23963
===/ 23964
PUBLIC void lock_revive() 23965 { 23966 /* Go find all the processes that are waiting for any kind of lock and 23967

161

161

* revive them all. The ones that are still blocked will block again when 23968 * they run. The others will complete.
This strategy is a space-time 23969 * tradeoff. Figuring out exactly which ones to unblock now would take 23970 *
extra code, and the only thing it would win would be some performance in 23971 * extremely rare circumstances
(namely, that somebody actually used 23972 * locking). 23973 */ 23974 23975 int task; 23976 struct fproc *fptr;
23977 23978 for (fptr = &fproc[INIT_PROC_NR + 1]; fptr < &fproc[NR_PROCS]; fptr++) { 23979 task =
-fptr->fp_task; 23980 if (fptr->fp_suspended == SUSPENDED && task == XLOCK) { 23981 revive((int) (fptr -
fproc), 0); 23982 } 23983 } 23984 }
++
servers/fs/main.c
++
24000 /* This file contains the main program of the File System. It consists of 24001 * a loop that gets messages
requesting work, carries out the work, and sends 24002 * replies. 24003 * 24004 * The entry points into this file are:
24005 * main: main program of the File System 24006 * reply: send a reply to a process after the requested work is
done 24007 * 24008 */ 24009 24010 struct super_block; /* proto.h needs to know this */ 24011 24012 #include "fs.h"
24013 #include <fcntl.h> 24014 #include <string.h> 24015 #include <stdio.h> 24016 #include <signal.h> 24017
#include <stdlib.h> 24018 #include <sys/ioc_memory.h> 24019 #include <sys/svrctl.h> 24020 #include
<minix/callnr.h> 24021 #include <minix/com.h> 24022 #include <minix/keymap.h> 24023 #include <minix/const.h>
24024 #include "buf.h" 24025 #include "file.h" 24026 #include "fproc.h" 24027 #include "inode.h" 24028 #include
"param.h" 24029 #include "super.h"

[Page 958]

24030 24031 FORWARD _PROTOTYPE(void fs_init, (void)); 24032 FORWARD _PROTOTYPE(int igetenv,
(char *var, int optional)); 24033 FORWARD _PROTOTYPE(void get_work, (void)); 24034 FORWARD
_PROTOTYPE(void load_ram, (void)); 24035 FORWARD _PROTOTYPE(void load_super, (Dev_t super_dev));
24036 24037
/*===* 24038 *
main * 24039
===/ 24040
PUBLIC int main() 24041 { 24042 /* This is the main program of the file system. The main loop consists of 24043 *
three major activities: getting new work, processing the work, and sending 24044 * the reply. This loop never
terminates as long as the file system runs. 24045 */ 24046 sigset_t sigset; 24047 int error; 24048 24049 fs_init();
24050 24051 /* This is the main loop that gets work, processes it, and sends replies. */ 24052 while (TRUE) { 24053
get_work(); /* sets who and call_nr */ 24054 24055 fp = &fproc[who]; /* pointer to proc table struct */ 24056
super_user = (fp->fp_effuid == SU_UID ? TRUE : FALSE); /* su? */ 24057 24058 /* Check for special control
messages first. */ 24059 if (call_nr == SYS_SIG) { 24060 sigset = m_in.NOTIFY_ARG; 24061 if
(sigismember(&sigset, SIGKSTOP)) { 24062 do_sync(); 24063 sys_exit(0); /* never returns */ 24064 } 24065 } else if
(call_nr == SYN_ALARM) { 24066 /* Not a user request; system has expired one of our timers, 24067 * currently
only in use for select(). Check it. 24068 */ 24069 fs_expire_timers(m_in.NOTIFY_TIMESTAMP); 24070 } else if
((call_nr & NOTIFY_MESSAGE)) { 24071 /* Device notifies us of an event. */ 24072 dev_status(&m_in); 24073 }
else { 24074 /* Call the internal function that does the work. */ 24075 if (call_nr < 0 || call_nr >= NCALLS) { 24076
error = ENOSYS; 24077 printf("FS,warning illegal %d system call by %d\n",call_nr,who); 24078 } else if (fp->fp_pid
== PID_FREE) { 24079 error = ENOSYS; 24080 printf("FS, bad process, who = %d, call_nr = %d, slot1 = %d\n",
24081 who, call_nr, m_in.slot1); 24082 } else { 24083 error = (*call_vec[call_nr])(); 24084 } 24085 24086 /* Copy
the results back to the user and send reply. */ 24087 if (error != SUSPEND) { reply(who, error); } 24088 if
(rdahed_inode != NIL_INODE) { 24089 read_ahead(); /* do block read ahead */

[Page 959]

24090 } 24091 } 24092 } 24093 return(OK); /* shouldn't come here */ 24094 } 24096
/*===* 24097 *
get_work * 24098
===/ 24099
PRIVATE void get_work() 24100 { 24101 /* Normally wait for new input. However, if 'reviving' is 24102 * nonzero,

162

162

a suspended process must be awakened. 24103 */ 24104 register struct fproc *rp; 24105 24106 if (reviving != 0) {
24107 /* Revive a suspended process. */ 24108 for (rp = &fproc[0]; rp < &fproc[NR_PROCS]; rp++) 24109 if
(rp->fp_revived == REVIVING) { 24110 who = (int)(rp - fproc); 24111 call_nr = rp->fp_fd & BYTE; 24112 m_in.fd
= (rp->fp_fd >>8) & BYTE; 24113 m_in.buffer = rp->fp_buffer; 24114 m_in.nbytes = rp->fp_nbytes; 24115
rp->fp_suspended = NOT_SUSPENDED; /*no longer hanging*/ 24116 rp->fp_revived = NOT_REVIVING; 24117
reviving--; 24118 return; 24119 } 24120 panic(__FILE__,"get_work couldn't revive anyone", NO_NUM); 24121 }
24122 24123 /* Normal case. No one to revive. */ 24124 if (receive(ANY, &m_in) != OK) panic(__FILE__,"fs
receive error", NO_NUM); 24125 who = m_in.m_source; 24126 call_nr = m_in.m_type; 24127 } 24129
/*===* 24130 *
buf_pool * 24131
===/ 24132
PRIVATE void buf_pool(void) 24133 { 24134 /* Initialize the buffer pool. */ 24135 24136 register struct buf *bp;
24137 24138 bufs_in_use = 0; 24139 front = &buf[0]; 24140 rear = &buf[NR_BUFS - 1]; 24141 24142 for (bp =
&buf[0]; bp < &buf[NR_BUFS]; bp++) { 24143 bp->b_blocknr = NO_BLOCK; 24144 bp->b_dev = NO_DEV;
24145 bp->b_next = bp + 1; 24146 bp->b_prev = bp - 1; 24147 } 24148 buf[0].b_prev = NIL_BUF; 24149
buf[NR_BUFS - 1].b_next = NIL_BUF;

[Page 960]

24150 24151 for (bp = &buf[0]; bp < &buf[NR_BUFS]; bp++) bp->b_hash = bp->b_next; 24152 buf_hash[0] = front;
24153 24154 } 24156
/*===* 24157 *
reply * 24158
===/ 24159
PUBLIC void reply(whom, result) 24160 int whom; /* process to reply to */ 24161 int result; /* result of the call
(usually OK or error #) */ 24162 { 24163 /* Send a reply to a user process. It may fail (if the process has just 24164 *
been killed by a signal), so don't check the return code. If the send 24165 * fails, just ignore it. 24166 */ 24167 int s;
24168 m_out.reply_type = result; 24169 s = send(whom, &m_out); 24170 if (s != OK) printf("FS: couldn't send reply
%d: %d\n", result, s); 24171 } 24173
/*===* 24174 *
fs_init * 24175
===/ 24176
PRIVATE void fs_init() 24177 { 24178 /* Initialize global variables, tables, etc. */ 24179 register struct inode *rip;
24180 register struct fproc *rfp; 24181 message mess; 24182 int s; 24183 24184 /* Initialize the process table with
help of the process manager messages. 24185 * Expect one message for each system process with its slot number and
pid. 24186 * When no more processes follow, the magic process number NONE is sent. 24187 * Then, stop and
synchronize with the PM. 24188 */ 24189 do { 24190 if (OK != (s=receive(PM_PROC_NR, &mess))) 24191
panic(__FILE__,"FS couldn't receive from PM", s); 24192 if (NONE == mess.PR_PROC_NR) break; 24193 24194
rfp = &fproc[mess.PR_PROC_NR]; 24195 rfp->fp_pid = mess.PR_PID; 24196 rfp->fp_realuid = (uid_t) SYS_UID;
24197 rfp->fp_effuid = (uid_t) SYS_UID; 24198 rfp->fp_realgid = (gid_t) SYS_GID; 24199 rfp->fp_effgid = (gid_t)
SYS_GID; 24200 rfp->fp_umask = ~0; 24201 24202 } while (TRUE); /* continue until process NONE */ 24203
mess.m_type = OK; /* tell PM that we succeeded */ 24204 s=send(PM_PROC_NR, &mess); /* send synchronization
message */ 24205 24206 /* All process table entries have been set. Continue with FS initialization. 24207 * Certain
relations must hold for the file system to work at all. Some 24208 * extra block_size requirements are checked at
super-block-read-in time. 24209 */

[Page 961]

24210 if (OPEN_MAX > 127) panic(__FILE__,"OPEN_MAX > 127", NO_NUM); 24211 if (NR_BUFS < 6)
panic(__FILE__,"NR_BUFS < 6", NO_NUM); 24212 if (V1_INODE_SIZE != 32) panic(__FILE__,"V1 inode size !=
32", NO_NUM); 24213 if (V2_INODE_SIZE != 64) panic(__FILE__,"V2 inode size != 64", NO_NUM); 24214 if
(OPEN_MAX > 8 * sizeof(long)) 24215 panic(__FILE__,"Too few bits in fp_cloexec", NO_NUM); 24216 24217 /*
The following initializations are needed to let dev_opcl succeed .*/ 24218 fp = (struct fproc *) NULL; 24219 who =
FS_PROC_NR; 24220 24221 buf_pool(); /* initialize buffer pool */ 24222 build_dmap(); /* build device table and

163

163

map boot driver */ 24223 load_ram(); /* init RAM disk, load if it is root */ 24224 load_super(root_dev); /* load super
block for root device */ 24225 init_select(); /* init select() structures */ 24226 24227 /* The root device can now be
accessed; set process directories. */ 24228 for (rfp=&fproc[0]; rfp < &fproc[NR_PROCS]; rfp++) { 24229 if
(rfp->fp_pid != PID_FREE) { 24230 rip = get_inode(root_dev, ROOT_INODE); 24231 dup_inode(rip); 24232
rfp->fp_rootdir = rip; 24233 rfp->fp_workdir = rip; 24234 } 24235 } 24236 } 24238
/*===* 24239 *
igetenv * 24240
===/ 24241
PRIVATE int igetenv(key, optional) 24242 char *key; 24243 int optional; 24244 { 24245 /* Ask kernel for an integer
valued boot environment variable. */ 24246 char value[64]; 24247 int i; 24248 24249 if ((i = env_get_param(key,
value, sizeof(value))) != OK) { 24250 if (!optional) 24251 printf("FS: Warning, couldn't get monitor param: %d\n", i);
24252 return 0; 24253 } 24254 return(atoi(value)); 24255 } 24257
/*===* 24258 *
load_ram * 24259
===/ 24260
PRIVATE void load_ram(void) 24261 { 24262 /* Allocate a RAM disk with size given in the boot parameters. If a
RAM disk 24263 * image is given, the copy the entire image device block-by-block to a RAM 24264 * disk with the
same size as the image. 24265 * If the root device is not set, the RAM disk will be used as root instead. 24266 */
24267 register struct buf *bp, *bp1; 24268 u32_t lcount, ram_size_kb; 24269 zone_t zones;

[Page 962]

24270 struct super_block *sp, *dsp; 24271 block_t b; 24272 Dev_t image_dev; 24273 static char
sbbuf[MIN_BLOCK_SIZE]; 24274 int block_size_image, block_size_ram, ramfs_block_size; 24275 int s; 24276
24277 /* Get some boot environment variables. */ 24278 root_dev = igetenv("rootdev", 0); 24279 image_dev =
igetenv("ramimagedev", 0); 24280 ram_size_kb = igetenv("ramsize", 0); 24281 24282 /* Open the root device. */
24283 if (dev_open(root_dev, FS_PROC_NR, R_BIT|W_BIT) != OK) 24284 panic(__FILE__,"Cannot open root
device",NO_NUM); 24285 24286 /* If we must initialize a ram disk, get details from the image device. */ 24287 if
(root_dev == DEV_RAM) { 24288 u32_t fsmax, probedev; 24289 24290 /* If we are running from CD, see if we can
find it. */ 24291 if (igetenv("cdproberoot", 1) && (probedev=cdprobe()) != NO_DEV) { 24292 char devnum[10];
24293 struct sysgetenv env; 24294 24295 /* If so, this is our new RAM image device. */ 24296 image_dev =
probedev; 24297 24298 /* Tell PM about it, so userland can find out about it 24299 * with sysenv interface. 24300 */
24301 env.key = "cdproberoot"; 24302 env.keylen = strlen(env.key); 24303 sprintf(devnum, "%d", (int) probedev);
24304 env.val = devnum; 24305 env.vallen = strlen(devnum); 24306 svrctl(MMSETPARAM, &env); 24307 } 24308
24309 /* Open image device for RAM root. */ 24310 if (dev_open(image_dev, FS_PROC_NR, R_BIT) != OK) 24311
panic(__FILE__,"Cannot open RAM image device", NO_NUM); 24312 24313 /* Get size of RAM disk image from
the super block. */ 24314 sp = &super_block[0]; 24315 sp->s_dev = image_dev; 24316 if (read_super(sp) != OK)
24317 panic(__FILE__,"Bad RAM disk image FS", NO_NUM); 24318 24319 lcount = sp->s_zones <<
sp->s_log_zone_size; /* # blks on root dev*/ 24320 24321 /* Stretch the RAM disk file system to the boot parameters
size, but 24322 * no further than the last zone bit map block allows. 24323 */ 24324 if (ram_size_kb*1024 <
lcount*sp->s_block_size) 24325 ram_size_kb = lcount*sp->s_block_size/1024; 24326 fsmax = (u32_t)
sp->s_zmap_blocks * CHAR_BIT * sp->s_block_size; 24327 fsmax = (fsmax + (sp->s_firstdatazone-1)) <<
sp->s_log_zone_size; 24328 if (ram_size_kb*1024 > fsmax*sp->s_block_size) 24329 ram_size_kb =
fsmax*sp->s_block_size/1024;

[Page 963]

24330 } 24331 24332 /* Tell RAM driver how big the RAM disk must be. */ 24333 m_out.m_type = DEV_IOCTL;
24334 m_out.PROC_NR = FS_PROC_NR; 24335 m_out.DEVICE = RAM_DEV; 24336 m_out.REQUEST =
MIOCRAMSIZE; /* I/O control to use */ 24337 m_out.POSITION = (ram_size_kb * 1024); /* request in bytes */
24338 if ((s=sendrec(MEM_PROC_NR, &m_out)) != OK) 24339 panic("FS","sendrec from MEM failed", s); 24340
else if (m_out.REP_STATUS != OK) { 24341 /* Report and continue, unless RAM disk is required as root FS. */
24342 if (root_dev != DEV_RAM) { 24343 report("FS","can't set RAM disk size", m_out.REP_STATUS); 24344
return; 24345 } else { 24346 panic(__FILE__,"can't set RAM disk size", m_out.REP_STATUS); 24347 } 24348 }

164

164

24349 24350 /* See if we must load the RAM disk image, otherwise return. */ 24351 if (root_dev != DEV_RAM)
24352 return; 24353 24354 /* Copy the blocks one at a time from the image to the RAM disk. */ 24355
printf("Loading RAM disk onto /dev/ram:\33[23CLoaded: 0 KB"); 24356 24357 inode[0].i_mode =
I_BLOCK_SPECIAL; /* temp inode for rahead() */ 24358 inode[0].i_size = LONG_MAX; 24359 inode[0].i_dev =
image_dev; 24360 inode[0].i_zone[0] = image_dev; 24361 24362 block_size_ram = get_block_size(DEV_RAM);
24363 block_size_image = get_block_size(image_dev); 24364 24365 /* RAM block size has to be a multiple of the
root image block 24366 * size to make copying easier. 24367 */ 24368 if (block_size_image % block_size_ram) {
24369 printf("\nram block size: %d image block size: %d\n", 24370 block_size_ram, block_size_image); 24371
panic(__FILE__, "ram disk block size must be a multiple of " 24372 "the image disk block size", NO_NUM); 24373 }
24374 24375 /* Loading blocks from image device. */ 24376 for (b = 0; b < (block_t) lcount; b++) { 24377 int rb,
factor; 24378 bp = rahead(&inode[0], b, (off_t)block_size_image * b, block_size_image); 24379 factor =
block_size_image/block_size_ram; 24380 for(rb = 0; rb < factor; rb++) { 24381 bp1 = get_block(root_dev, b * factor
+ rb, NO_READ); 24382 memcpy(bp1->b_data, bp->b_data + rb * block_size_ram, 24383 (size_t) block_size_ram);
24384 bp1->b_dirt = DIRTY; 24385 put_block(bp1, FULL_DATA_BLOCK); 24386 } 24387 put_block(bp,
FULL_DATA_BLOCK); 24388 if (b % 11 == 0) 24389 printf("\b\b\b\b\b\b\b\b\b%6ld KB", ((long) b *
block_size_image)/1024L);

[Page 964]

24390 } 24391 24392 /* Commit changes to RAM so dev_io will see it. */ 24393 do_sync(); 24394 24395
printf("\rRAM disk of %u KB loaded onto /dev/ram.", (unsigned) ram_size_kb); 24396 if (root_dev == DEV_RAM)
printf(" Using RAM disk as root FS."); 24397 printf(" \n"); 24398 24399 /* Invalidate and close the image device. */
24400 invalidate(image_dev); 24401 dev_close(image_dev); 24402 24403 /* Resize the RAM disk root file system. */
24404 if (dev_io(DEV_READ, root_dev, FS_PROC_NR, 24405 sbbuf, SUPER_BLOCK_BYTES,
MIN_BLOCK_SIZE, 0) != MIN_BLOCK_SIZE) { 24406 printf("WARNING: ramdisk read for resizing failed\n");
24407 } 24408 dsp = (struct super_block *) sbbuf; 24409 if (dsp->s_magic == SUPER_V3) 24410 ramfs_block_size =
dsp->s_block_size; 24411 else 24412 ramfs_block_size = STATIC_BLOCK_SIZE; 24413 zones = (ram_size_kb *
1024 / ramfs_block_size) >> sp->s_log_zone_size; 24414 24415 dsp->s_nzones = conv2(sp->s_native, (u16_t) zones);
24416 dsp->s_zones = conv4(sp->s_native, zones); 24417 if (dev_io(DEV_WRITE, root_dev, FS_PROC_NR, 24418
sbbuf, SUPER_BLOCK_BYTES, MIN_BLOCK_SIZE, 0) != MIN_BLOCK_SIZE) { 24419 printf("WARNING:
ramdisk write for resizing failed\n"); 24420 } 24421 } 24423
/*===* 24424 *
load_super * 24425
===/ 24426
PRIVATE void load_super(super_dev) 24427 dev_t super_dev; /* place to get superblock from */ 24428 { 24429 int
bad; 24430 register struct super_block *sp; 24431 register struct inode *rip; 24432 24433 /* Initialize the super_block
table. */ 24434 for (sp = &super_block[0]; sp < &super_block[NR_SUPERS]; sp++) 24435 sp->s_dev = NO_DEV;
24436 24437 /* Read in super_block for the root file system. */ 24438 sp = &super_block[0]; 24439 sp->s_dev =
super_dev; 24440 24441 /* Check super_block for consistency. */ 24442 bad = (read_super(sp) != OK); 24443 if
(!bad) { 24444 rip = get_inode(super_dev, ROOT_INODE); /* inode for root dir */ 24445 if ((rip->i_mode &
I_TYPE) != I_DIRECTORY || rip->i_nlinks < 3) bad++; 24446 } 24447 if (bad) panic(__FILE__,"Invalid root file
system", NO_NUM); 24448 24449 sp->s_imount = rip;

[Page 965]

24450 dup_inode(rip); 24451 sp->s_isup = rip; 24452 sp->s_rd_only = 0; 24453 return; 24454 }
++
servers/fs/open.c
++
24500 /* This file contains the procedures for creating, opening, closing, and 24501 * seeking on files. 24502 * 24503
* The entry points into this file are 24504 * do_creat: perform the CREAT system call 24505 * do_open: perform the
OPEN system call 24506 * do_mknod: perform the MKNOD system call 24507 * do_mkdir: perform the MKDIR
system call 24508 * do_close: perform the CLOSE system call 24509 * do_lseek: perform the LSEEK system call
24510 */ 24511 24512 #include "fs.h" 24513 #include <sys/stat.h> 24514 #include <fcntl.h> 24515 #include

165

165

<minix/callnr.h> 24516 #include <minix/com.h> 24517 #include "buf.h" 24518 #include "file.h" 24519 #include
"fproc.h" 24520 #include "inode.h" 24521 #include "lock.h" 24522 #include "param.h" 24523 #include "super.h"
24524 24525 #define offset m2_l1 24526 24527 PRIVATE char mode_map[] = {R_BIT, W_BIT, R_BIT|W_BIT, 0};
24528 24529 FORWARD _PROTOTYPE(int common_open, (int oflags, mode_t omode)); 24530 FORWARD
_PROTOTYPE(int pipe_open, (struct inode *rip,mode_t bits,int oflags)); 24531 FORWARD _PROTOTYPE(struct
inode *new_node, (char *path, mode_t bits, 24532 zone_t z0)); 24533 24534
/*===* 24535 *
do_creat * 24536
===/ 24537
PUBLIC int do_creat() 24538 { 24539 /* Perform the creat(name, mode) system call. */ 24540 int r; 24541 24542 if
(fetch_name(m_in.name, m_in.name_length, M3) != OK) return(err_code); 24543 r = common_open(O_WRONLY |
O_CREAT | O_TRUNC, (mode_t) m_in.mode); 24544 return(r); 24545 }

[Page 966]

24547 /*===*
24548 * do_open * 24549
===/ 24550
PUBLIC int do_open() 24551 { 24552 /* Perform the open(name, flags,...) system call. */ 24553 24554 int
create_mode = 0; /* is really mode_t but this gives problems */ 24555 int r; 24556 24557 /* If O_CREAT is set, open
has three parameters, otherwise two. */ 24558 if (m_in.mode & O_CREAT) { 24559 create_mode = m_in.c_mode;
24560 r = fetch_name(m_in.c_name, m_in.name1_length, M1); 24561 } else { 24562 r = fetch_name(m_in.name,
m_in.name_length, M3); 24563 } 24564 24565 if (r != OK) return(err_code); /* name was bad */ 24566 r =
common_open(m_in.mode, create_mode); 24567 return(r); 24568 } 24570
/*===* 24571 *
common_open * 24572
===/ 24573
PRIVATE int common_open(register int oflags, mode_t omode) 24574 { 24575 /* Common code from do_creat and
do_open. */ 24576 24577 register struct inode *rip; 24578 int r, b, exist = TRUE; 24579 dev_t dev; 24580 mode_t bits;
24581 off_t pos; 24582 struct filp *fil_ptr, *filp2; 24583 24584 /* Remap the bottom two bits of oflags. */ 24585 bits
= (mode_t) mode_map[oflags & O_ACCMODE]; 24586 24587 /* See if file descriptor and filp slots are available. */
24588 if ((r = get_fd(0, bits, &m_in.fd, &fil_ptr)) != OK) return(r); 24589 24590 /* If O_CREATE is set, try to make
the file. */ 24591 if (oflags & O_CREAT) { 24592 /* Create a new inode by calling new_node(). */ 24593 omode =
I_REGULAR | (omode & ALL_MODES & fp->fp_umask); 24594 rip = new_node(user_path, omode, NO_ZONE);
24595 r = err_code; 24596 if (r == OK) exist = FALSE; /* we just created the file */ 24597 else if (r != EEXIST)
return(r); /* other error */ 24598 else exist = !(oflags & O_EXCL); /* file exists, if the O_EXCL 24599 flag is set this
is an error */ 24600 } else { 24601 /* Scan path name. */ 24602 if ((rip = eat_path(user_path)) == NIL_INODE)
return(err_code); 24603 } 24604 24605 /* Claim the file descriptor and filp slot and fill them in. */ 24606
fp->fp_filp[m_in.fd] = fil_ptr;

[Page 967]

24607 fil_ptr->filp_count = 1; 24608 fil_ptr->filp_ino = rip; 24609 fil_ptr->filp_flags = oflags; 24610 24611 /* Only
do the normal open code if we didn't just create the file. */ 24612 if (exist) { 24613 /* Check protections. */ 24614 if
((r = forbidden(rip, bits)) == OK) { 24615 /* Opening reg. files directories and special files differ. */ 24616 switch
(rip->i_mode & I_TYPE) { 24617 case I_REGULAR: 24618 /* Truncate regular file if O_TRUNC. */ 24619 if (oflags
& O_TRUNC) { 24620 if ((r = forbidden(rip, W_BIT)) !=OK) break; 24621 truncate(rip); 24622 wipe_inode(rip);
24623 /* Send the inode from the inode cache to the 24624 * block cache, so it gets written on the next 24625 * cache
flush. 24626 */ 24627 rw_inode(rip, WRITING); 24628 } 24629 break; 24630 24631 case I_DIRECTORY: 24632 /*
Directories may be read but not written. */ 24633 r = (bits & W_BIT ? EISDIR : OK); 24634 break; 24635 24636 case
I_CHAR_SPECIAL: 24637 case I_BLOCK_SPECIAL: 24638 /* Invoke the driver for special processing. */ 24639
dev = (dev_t) rip->i_zone[0]; 24640 r = dev_open(dev, who, bits | (oflags & ~O_ACCMODE)); 24641 break; 24642
24643 case I_NAMED_PIPE: 24644 oflags |= O_APPEND; /* force append mode */ 24645 fil_ptr->filp_flags =
oflags; 24646 r = pipe_open(rip, bits, oflags); 24647 if (r != ENXIO) { 24648 /* See if someone else is doing a rd or

166

166

wt on 24649 * the FIFO. If so, use its filp entry so the 24650 * file position will be automatically shared. 24651 */
24652 b = (bits & R_BIT ? R_BIT : W_BIT); 24653 fil_ptr->filp_count = 0; /* don't find self */ 24654 if ((filp2 =
find_filp(rip, b)) != NIL_FILP) { 24655 /* Co-reader or writer found. Use it.*/ 24656 fp->fp_filp[m_in.fd] = filp2;
24657 filp2->filp_count++; 24658 filp2->filp_ino = rip; 24659 filp2->filp_flags = oflags; 24660 24661 /* i_count was
incremented incorrectly 24662 * by eatpath above, not knowing that 24663 * we were going to use an existing 24664 *
filp entry. Correct this error. 24665 */ 24666 rip->i_count--;

[Page 968]

24667 } else { 24668 /* Nobody else found. Restore filp. */ 24669 fil_ptr->filp_count = 1; 24670 if (b == R_BIT)
24671 pos = rip->i_zone[V2_NR_DZONES+0]; 24672 else 24673 pos = rip->i_zone[V2_NR_DZONES+1]; 24674
fil_ptr->filp_pos = pos; 24675 } 24676 } 24677 break; 24678 } 24679 } 24680 } 24681 24682 /* If error, release
inode. */ 24683 if (r != OK) { 24684 if (r == SUSPEND) return(r); /* Oops, just suspended */ 24685
fp->fp_filp[m_in.fd] = NIL_FILP; 24686 fil_ptr->filp_count= 0; 24687 put_inode(rip); 24688 return(r); 24689 }
24690 24691 return(m_in.fd); 24692 } 24694
/*===* 24695 *
new_node * 24696
===/ 24697
PRIVATE struct inode *new_node(char *path, mode_t bits, zone_t z0) 24698 { 24699 /* New_node() is called by
common_open(), do_mknod(), and do_mkdir(). 24700 * In all cases it allocates a new inode, makes a directory entry
for it on 24701 * the path 'path', and initializes it. It returns a pointer to the inode if 24702 * it can do this; otherwise it
returns NIL_INODE. It always sets 'err_code' 24703 * to an appropriate value (OK or an error code). 24704 */ 24705
24706 register struct inode *rlast_dir_ptr, *rip; 24707 register int r; 24708 char string[NAME_MAX]; 24709 24710 /*
See if the path can be opened down to the last directory. */ 24711 if ((rlast_dir_ptr = last_dir(path, string)) ==
NIL_INODE) return(NIL_INODE); 24712 24713 /* The final directory is accessible. Get final component of the path.
/ 24714 rip = advance(rlast_dir_ptr, string); 24715 if (rip == NIL_INODE && err_code == ENOENT) { 24716 /
Last path component does not exist. Make new directory entry. */ 24717 if ((rip = alloc_inode(rlast_dir_ptr->i_dev,
bits)) == NIL_INODE) { 24718 /* Can't creat new inode: out of inodes. */ 24719 put_inode(rlast_dir_ptr); 24720
return(NIL_INODE); 24721 } 24722 24723 /* Force inode to the disk before making directory entry to make 24724 *
the system more robust in the face of a crash: an inode with 24725 * no directory entry is much better than the
opposite. 24726 */

[Page 969]

24727 rip->i_nlinks++; 24728 rip->i_zone[0] = z0; /* major/minor device numbers */ 24729 rw_inode(rip,
WRITING); /* force inode to disk now */ 24730 24731 /* New inode acquired. Try to make directory entry. */ 24732
if ((r = search_dir(rlast_dir_ptr, string, &rip->i_num,ENTER)) != OK) { 24733 put_inode(rlast_dir_ptr); 24734
rip->i_nlinks--; /* pity, have to free disk inode */ 24735 rip->i_dirt = DIRTY; /* dirty inodes are written out */ 24736
put_inode(rip); /* this call frees the inode */ 24737 err_code = r; 24738 return(NIL_INODE); 24739 } 24740 24741 }
else { 24742 /* Either last component exists, or there is some problem. */ 24743 if (rip != NIL_INODE) 24744 r =
EEXIST; 24745 else 24746 r = err_code; 24747 } 24748 24749 /* Return the directory inode and exit. */ 24750
put_inode(rlast_dir_ptr); 24751 err_code = r; 24752 return(rip); 24753 } 24755
/*===* 24756 *
pipe_open * 24757
===/ 24758
PRIVATE int pipe_open(register struct inode *rip, register mode_t bits, 24759 register int oflags) 24760 { 24761 /*
This function is called from common_open. It checks if 24762 * there is at least one reader/writer pair for the pipe, if
not 24763 * it suspends the caller, otherwise it revives all other blocked 24764 * processes hanging on the pipe. 24765
*/ 24766 24767 rip->i_pipe = I_PIPE; 24768 if (find_filp(rip, bits & W_BIT ? R_BIT : W_BIT) == NIL_FILP) {
24769 if (oflags & O_NONBLOCK) { 24770 if (bits & W_BIT) return(ENXIO); 24771 } else { 24772
suspend(XPOPEN); /* suspend caller */ 24773 return(SUSPEND); 24774 } 24775 } else if (susp_count > 0) {/* revive
blocked processes */ 24776 release(rip, OPEN, susp_count); 24777 release(rip, CREAT, susp_count); 24778 } 24779
return(OK); 24780 } 24782
/*===* 24783 *

167

167

do_mknod * 24784
===/ 24785
PUBLIC int do_mknod() 24786 {

[Page 970]

24787 /* Perform the mknod(name, mode, addr) system call. */ 24788 24789 register mode_t bits, mode_bits; 24790
struct inode *ip; 24791 24792 /* Only the super_user may make nodes other than fifos. */ 24793 mode_bits =
(mode_t) m_in.mk_mode; /* mode of the inode */ 24794 if (!super_user && ((mode_bits & I_TYPE) !=
I_NAMED_PIPE)) return(EPERM); 24795 if (fetch_name(m_in.name1, m_in.name1_length, M1) != OK)
return(err_code); 24796 bits = (mode_bits & I_TYPE) | (mode_bits & ALL_MODES & fp->fp_umask); 24797 ip =
new_node(user_path, bits, (zone_t) m_in.mk_z0); 24798 put_inode(ip); 24799 return(err_code); 24800 } 24802
/*===* 24803 *
do_mkdir * 24804
===/ 24805
PUBLIC int do_mkdir() 24806 { 24807 /* Perform the mkdir(name, mode) system call. */ 24808 24809 int r1, r2; /*
status codes */ 24810 ino_t dot, dotdot; /* inode numbers for . and .. */ 24811 mode_t bits; /* mode bits for the new
inode */ 24812 char string[NAME_MAX]; /* last component of the new dir's path name */ 24813 register struct inode
*rip, *ldirp; 24814 24815 /* Check to see if it is possible to make another link in the parent dir. */ 24816 if
(fetch_name(m_in.name1, m_in.name1_length, M1) != OK) return(err_code); 24817 ldirp = last_dir(user_path,
string); /* pointer to new dir's parent */ 24818 if (ldirp == NIL_INODE) return(err_code); 24819 if (ldirp->i_nlinks >=
(ldirp->i_sp->s_version == V1 ? 24820 CHAR_MAX : SHRT_MAX)) { 24821 put_inode(ldirp); /* return parent */
24822 return(EMLINK); 24823 } 24824 24825 /* Next make the inode. If that fails, return error code. */ 24826 bits =
I_DIRECTORY | (m_in.mode & RWX_MODES & fp->fp_umask); 24827 rip = new_node(user_path, bits, (zone_t)
0); 24828 if (rip == NIL_INODE || err_code == EEXIST) { 24829 put_inode(rip); /* can't make dir: it already exists */
24830 put_inode(ldirp); /* return parent too */ 24831 return(err_code); 24832 } 24833 24834 /* Get the inode numbers
for . and .. to enter in the directory. */ 24835 dotdot = ldirp->i_num; /* parent's inode number */ 24836 dot =
rip->i_num; /* inode number of the new dir itself */ 24837 24838 /* Now make dir entries for . and .. unless the disk is
completely full. */ 24839 /* Use dot1 and dot2, so the mode of the directory isn't important. */ 24840 rip->i_mode =
bits; /* set mode */ 24841 r1 = search_dir(rip, dot1, &dot, ENTER); /* enter . in the new dir */ 24842 r2 =
search_dir(rip, dot2, &dotdot, ENTER); /* enter .. in the new dir */ 24843 24844 /* If both . and .. were successfully
entered, increment the link counts. */ 24845 if (r1 == OK && r2 == OK) { 24846 /* Normal case. It was possible to
enter . and .. in the new dir. */

[Page 971]

24847 rip->i_nlinks++; /* this accounts for . */ 24848 ldirp->i_nlinks++; /* this accounts for .. */ 24849 ldirp->i_dirt =
DIRTY; /* mark parent's inode as dirty */ 24850 } else { 24851 /* It was not possible to enter . or .. probably disk was
full. */ 24852 (void) search_dir(ldirp, string, (ino_t *) 0, DELETE); 24853 rip->i_nlinks--; /* undo the increment done
in new_node() */ 24854 } 24855 rip->i_dirt = DIRTY; /* either way, i_nlinks has changed */ 24856 24857
put_inode(ldirp); /* return the inode of the parent dir */ 24858 put_inode(rip); /* return the inode of the newly made
dir */ 24859 return(err_code); /* new_node() always sets 'err_code' */ 24860 } 24862
/*===* 24863 *
do_close * 24864
===/ 24865
PUBLIC int do_close() 24866 { 24867 /* Perform the close(fd) system call. */ 24868 24869 register struct filp *rfilp;
24870 register struct inode *rip; 24871 struct file_lock *flp; 24872 int rw, mode_word, lock_count; 24873 dev_t dev;
24874 24875 /* First locate the inode that belongs to the file descriptor. */ 24876 if ((rfilp = get_filp(m_in.fd)) ==
NIL_FILP) return(err_code); 24877 rip = rfilp->filp_ino; /* 'rip' points to the inode */ 24878 24879 if
(rfilp->filp_count - 1 == 0 && rfilp->filp_mode != FILP_CLOSED) { 24880 /* Check to see if the file is special. */
24881 mode_word = rip->i_mode & I_TYPE; 24882 if (mode_word == I_CHAR_SPECIAL || mode_word ==
I_BLOCK_SPECIAL) { 24883 dev = (dev_t) rip->i_zone[0]; 24884 if (mode_word == I_BLOCK_SPECIAL) { 24885
/* Invalidate cache entries unless special is mounted 24886 * or ROOT 24887 */ 24888 if (!mounted(rip)) { 24889
(void) do_sync(); /* purge cache */ 24890 invalidate(dev); 24891 } 24892 } 24893 /* Do any special processing on

168

168

device close. */ 24894 dev_close(dev); 24895 } 24896 } 24897 24898 /* If the inode being closed is a pipe, release
everyone hanging on it. */ 24899 if (rip->i_pipe == I_PIPE) { 24900 rw = (rfilp->filp_mode & R_BIT ? WRITE :
READ); 24901 release(rip, rw, NR_PROCS); 24902 } 24903 24904 /* If a write has been done, the inode is already
marked as DIRTY. */ 24905 if (--rfilp->filp_count == 0) { 24906 if (rip->i_pipe == I_PIPE && rip->i_count > 1) {

[Page 972]

24907 /* Save the file position in the i-node in case needed later. 24908 * The read and write positions are saved
separately. The 24909 * last 3 zones in the i-node are not used for (named) pipes. 24910 */ 24911 if (rfilp->filp_mode
== R_BIT) 24912 rip->i_zone[V2_NR_DZONES+0] = (zone_t) rfilp->filp_pos; 24913 else 24914
rip->i_zone[V2_NR_DZONES+1] = (zone_t) rfilp->filp_pos; 24915 } 24916 put_inode(rip); 24917 } 24918 24919
fp->fp_cloexec &= ~(1L << m_in.fd); /* turn off close-on-exec bit */ 24920 fp->fp_filp[m_in.fd] = NIL_FILP; 24921
24922 /* Check to see if the file is locked. If so, release all locks. */ 24923 if (nr_locks == 0) return(OK); 24924
lock_count = nr_locks; /* save count of locks */ 24925 for (flp = &file_lock[0]; flp < &file_lock[NR_LOCKS]; flp++)
{ 24926 if (flp->lock_type == 0) continue; /* slot not in use */ 24927 if (flp->lock_inode == rip && flp->lock_pid ==
fp->fp_pid) { 24928 flp->lock_type = 0; 24929 nr_locks--; 24930 } 24931 } 24932 if (nr_locks < lock_count)
lock_revive(); /* lock released */ 24933 return(OK); 24934 } 24936
/*===* 24937 *
do_lseek * 24938
===/ 24939
PUBLIC int do_lseek() 24940 { 24941 /* Perform the lseek(ls_fd, offset, whence) system call. */ 24942 24943 register
struct filp *rfilp; 24944 register off_t pos; 24945 24946 /* Check to see if the file descriptor is valid. */ 24947 if ((rfilp
= get_filp(m_in.ls_fd)) == NIL_FILP) return(err_code); 24948 24949 /* No lseek on pipes. */ 24950 if
(rfilp->filp_ino->i_pipe == I_PIPE) return(ESPIPE); 24951 24952 /* The value of 'whence' determines the start
position to use. */ 24953 switch(m_in.whence) { 24954 case 0: pos = 0; break; 24955 case 1: pos = rfilp->filp_pos;
break; 24956 case 2: pos = rfilp->filp_ino->i_size; break; 24957 default: return(EINVAL); 24958 } 24959 24960 /*
Check for overflow. */ 24961 if (((long)m_in.offset > 0) && ((long)(pos + m_in.offset) < (long)pos)) 24962
return(EINVAL); 24963 if (((long)m_in.offset < 0) && ((long)(pos + m_in.offset) > (long)pos)) 24964
return(EINVAL); 24965 pos = pos + m_in.offset; 24966

[Page 973]

24967 if (pos != rfilp->filp_pos) 24968 rfilp->filp_ino->i_seek = ISEEK; /* inhibit read ahead */ 24969 rfilp->filp_pos
= pos; 24970 m_out.reply_l1 = pos; /* insert the long into the output message */ 24971 return(OK); 24972 }
++
servers/fs/read.c
++
25000 /* This file contains the heart of the mechanism used to read (and write) 25001 * files. Read and write requests
are split up into chunks that do not cross 25002 * block boundaries. Each chunk is then processed in turn. Reads on
special 25003 * files are also detected and handled. 25004 * 25005 * The entry points into this file are 25006 *
do_read: perform the READ system call by calling read_write 25007 * read_write: actually do the work of READ and
WRITE 25008 * read_map: given an inode and file position, look up its zone number 25009 * rd_indir: read an entry
in an indirect block 25010 * read_ahead: manage the block read ahead business 25011 */ 25012 25013 #include "fs.h"
25014 #include <fcntl.h> 25015 #include <minix/com.h> 25016 #include "buf.h" 25017 #include "file.h" 25018
#include "fproc.h" 25019 #include "inode.h" 25020 #include "param.h" 25021 #include "super.h" 25022 25023
FORWARD _PROTOTYPE(int rw_chunk, (struct inode *rip, off_t position, 25024 unsigned off, int chunk, unsigned
left, int rw_flag, 25025 char *buff, int seg, int usr, int block_size, int *completed)); 25026 25027
/*===* 25028 *
do_read * 25029
===/ 25030
PUBLIC int do_read() 25031 { 25032 return(read_write(READING)); 25033 } 25035
/*===* 25036 *
read_write * 25037
===/ 25038

169

169

PUBLIC int read_write(rw_flag) 25039 int rw_flag; /* READING or WRITING */ 25040 { 25041 /* Perform read(fd,
buffer, nbytes) or write(fd, buffer, nbytes) call. */ 25042 25043 register struct inode *rip; 25044 register struct filp *f;

[Page 974]

25045 off_t bytes_left, f_size, position; 25046 unsigned int off, cum_io; 25047 int op, oflags, r, chunk, usr, seg,
block_spec, char_spec; 25048 int regular, partial_pipe = 0, partial_cnt = 0; 25049 mode_t mode_word; 25050 struct
filp *wf; 25051 int block_size; 25052 int completed, r2 = OK; 25053 phys_bytes p; 25054 25055 /* left unfinished
rw_chunk()s from previous call! this can't happen. 25056 * it means something has gone wrong we can't repair now.
25057 */ 25058 if (bufs_in_use < 0) { 25059 panic(__FILE__,"start - bufs_in_use negative", bufs_in_use); 25060 }
25061 25062 /* MM loads segments by putting funny things in upper 10 bits of 'fd'. */ 25063 if (who ==
PM_PROC_NR && (m_in.fd & (~BYTE))) { 25064 usr = m_in.fd >> 7; 25065 seg = (m_in.fd >> 5) & 03; 25066
m_in.fd &= 037; /* get rid of user and segment bits */ 25067 } else { 25068 usr = who; /* normal case */ 25069 seg =
D; 25070 } 25071 25072 /* If the file descriptor is valid, get the inode, size and mode. */ 25073 if (m_in.nbytes < 0)
return(EINVAL); 25074 if ((f = get_filp(m_in.fd)) == NIL_FILP) return(err_code); 25075 if (((f->filp_mode) &
(rw_flag == READING ? R_BIT : W_BIT)) == 0) { 25076 return(f->filp_mode == FILP_CLOSED ? EIO : EBADF);
25077 } 25078 if (m_in.nbytes == 0) 25079 return(0); /* so char special files need not check for 0*/ 25080 25081 /*
check if user process has the memory it needs. 25082 * if not, copying will fail later. 25083 * do this after 0-check
above because umap doesn't want to map 0 bytes. 25084 */ 25085 if ((r = sys_umap(usr, seg, (vir_bytes) m_in.buffer,
m_in.nbytes, &p)) != OK) 25086 return r; 25087 position = f->filp_pos; 25088 oflags = f->filp_flags; 25089 rip =
f->filp_ino; 25090 f_size = rip->i_size; 25091 r = OK; 25092 if (rip->i_pipe == I_PIPE) { 25093 /*
fp->fp_cum_io_partial is only nonzero when doing partial writes */ 25094 cum_io = fp->fp_cum_io_partial; 25095 }
else { 25096 cum_io = 0; 25097 } 25098 op = (rw_flag == READING ? DEV_READ : DEV_WRITE); 25099
mode_word = rip->i_mode & I_TYPE; 25100 regular = mode_word == I_REGULAR || mode_word ==
I_NAMED_PIPE; 25101 25102 if ((char_spec = (mode_word == I_CHAR_SPECIAL ? 1 : 0))) { 25103 if
(rip->i_zone[0] == NO_DEV) 25104 panic(__FILE__,"read_write tries to read from "

[Page 975]

25105 "character device NO_DEV", NO_NUM); 25106 block_size = get_block_size(rip->i_zone[0]); 25107 } 25108
if ((block_spec = (mode_word == I_BLOCK_SPECIAL ? 1 : 0))) { 25109 f_size = ULONG_MAX; 25110 if
(rip->i_zone[0] == NO_DEV) 25111 panic(__FILE__,"read_write tries to read from " 25112 " block device
NO_DEV", NO_NUM); 25113 block_size = get_block_size(rip->i_zone[0]); 25114 } 25115 25116 if (!char_spec &&
!block_spec) 25117 block_size = rip->i_sp->s_block_size; 25118 25119 rdwt_err = OK; /* set to EIO if disk error
occurs */ 25120 25121 /* Check for character special files. */ 25122 if (char_spec) { 25123 dev_t dev; 25124 dev =
(dev_t) rip->i_zone[0]; 25125 r = dev_io(op, dev, usr, m_in.buffer, position, m_in.nbytes, oflags); 25126 if (r >= 0) {
25127 cum_io = r; 25128 position += r; 25129 r = OK; 25130 } 25131 } else { 25132 if (rw_flag == WRITING &&
block_spec == 0) { 25133 /* Check in advance to see if file will grow too big. */ 25134 if (position >
rip->i_sp->s_max_size - m_in.nbytes) 25135 return(EFBIG); 25136 25137 /* Check for O_APPEND flag. */ 25138 if
(oflags & O_APPEND) position = f_size; 25139 25140 /* Clear the zone containing present EOF if hole about 25141
* to be created. This is necessary because all unwritten 25142 * blocks prior to the EOF must read as zeros. 25143 */
25144 if (position > f_size) clear_zone(rip, f_size, 0); 25145 } 25146 25147 /* Pipes are a little different. Check. */
25148 if (rip->i_pipe == I_PIPE) { 25149 r = pipe_check(rip, rw_flag, oflags, 25150 m_in.nbytes, position,
&partial_cnt, 0); 25151 if (r <= 0) return(r); 25152 } 25153 25154 if (partial_cnt > 0) partial_pipe = 1; 25155 25156 /*
Split the transfer into chunks that don't span two blocks. */ 25157 while (m_in.nbytes != 0) { 25158 25159 off =
(unsigned int) (position % block_size);/* offset in blk*/ 25160 if (partial_pipe) { /* pipes only */ 25161 chunk =
MIN(partial_cnt, block_size - off); 25162 } else 25163 chunk = MIN(m_in.nbytes, block_size - off); 25164 if (chunk <
0) chunk = block_size - off;

[Page 976]

25165 25166 if (rw_flag == READING) { 25167 bytes_left = f_size - position; 25168 if (position >= f_size) break; /*
we are beyond EOF */ 25169 if (chunk > bytes_left) chunk = (int) bytes_left; 25170 } 25171 25172 /* Read or write
'chunk' bytes. */ 25173 r = rw_chunk(rip, position, off, chunk, (unsigned) m_in.nbytes, 25174 rw_flag, m_in.buffer,

170

170

seg, usr, block_size, &completed); 25175 25176 if (r != OK) break; /* EOF reached */ 25177 if (rdwt_err < 0) break;
25178 25179 /* Update counters and pointers. */ 25180 m_in.buffer += chunk; /* user buffer address */ 25181
m_in.nbytes -= chunk; /* bytes yet to be read */ 25182 cum_io += chunk; /* bytes read so far */ 25183 position +=
chunk; /* position within the file */ 25184 25185 if (partial_pipe) { 25186 partial_cnt -= chunk; 25187 if (partial_cnt
<= 0) break; 25188 } 25189 } 25190 } 25191 25192 /* On write, update file size and access time. */ 25193 if (rw_flag
== WRITING) { 25194 if (regular || mode_word == I_DIRECTORY) { 25195 if (position > f_size) rip->i_size =
position; 25196 } 25197 } else { 25198 if (rip->i_pipe == I_PIPE) { 25199 if (position >= rip->i_size) { 25200 /*
Reset pipe pointers. */ 25201 rip->i_size = 0; /* no data left */ 25202 position = 0; /* reset reader(s) */ 25203 wf =
find_filp(rip, W_BIT); 25204 if (wf != NIL_FILP) wf->filp_pos = 0; 25205 } 25206 } 25207 } 25208 f->filp_pos =
position; 25209 25210 /* Check to see if read-ahead is called for, and if so, set it up. */ 25211 if (rw_flag ==
READING && rip->i_seek == NO_SEEK && position % block_size== 0 25212 && (regular || mode_word ==
I_DIRECTORY)) { 25213 rdahed_inode = rip; 25214 rdahedpos = position; 25215 } 25216 rip->i_seek = NO_SEEK;
25217 25218 if (rdwt_err != OK) r = rdwt_err; /* check for disk error */ 25219 if (rdwt_err == END_OF_FILE) r =
OK; 25220 25221 /* if user-space copying failed, read/write failed. */ 25222 if (r == OK && r2 != OK) { 25223 r =
r2; 25224 }

[Page 977]

25225 if (r == OK) { 25226 if (rw_flag == READING) rip->i_update |= ATIME; 25227 if (rw_flag == WRITING)
rip->i_update |= CTIME | MTIME; 25228 rip->i_dirt = DIRTY; /* inode is thus now dirty */ 25229 if (partial_pipe) {
25230 partial_pipe = 0; 25231 /* partial write on pipe with */ 25232 /* O_NONBLOCK, return write count */ 25233 if
(!(oflags & O_NONBLOCK)) { 25234 fp->fp_cum_io_partial = cum_io; 25235 suspend(XPIPE); /* partial write on
pipe with */ 25236 return(SUSPEND); /* nbyte > PIPE_SIZE - non-atomic */ 25237 } 25238 } 25239
fp->fp_cum_io_partial = 0; 25240 return(cum_io); 25241 } 25242 if (bufs_in_use < 0) { 25243 panic(__FILE__,"end -
bufs_in_use negative", bufs_in_use); 25244 } 25245 return(r); 25246 } 25248
/*===* 25249 *
rw_chunk * 25250
===/ 25251
PRIVATE int rw_chunk(rip, position, off, chunk, left, rw_flag, buff, 25252 seg, usr, block_size, completed) 25253
register struct inode *rip; /* pointer to inode for file to be rd/wr */ 25254 off_t position; /* position within file to read
or write */ 25255 unsigned off; /* off within the current block */ 25256 int chunk; /* number of bytes to read or write
/ 25257 unsigned left; / max number of bytes wanted after position */ 25258 int rw_flag; /* READING or
WRITING */ 25259 char *buff; /* virtual address of the user buffer */ 25260 int seg; /* T or D segment in user space
/ 25261 int usr; / which user process */ 25262 int block_size; /* block size of FS operating on */ 25263 int
completed; / number of bytes copied */ 25264 { 25265 /* Read or write (part of) a block. */ 25266 25267 register
struct buf *bp; 25268 register int r = OK; 25269 int n, block_spec; 25270 block_t b; 25271 dev_t dev; 25272 25273
*completed = 0; 25274 25275 block_spec = (rip->i_mode & I_TYPE) == I_BLOCK_SPECIAL; 25276 if
(block_spec) { 25277 b = position/block_size; 25278 dev = (dev_t) rip->i_zone[0]; 25279 } else { 25280 b =
read_map(rip, position); 25281 dev = rip->i_dev; 25282 } 25283 25284 if (!block_spec && b == NO_BLOCK) {

[Page 978]

25285 if (rw_flag == READING) { 25286 /* Reading from a nonexistent block. Must read as all zeros.*/ 25287 bp =
get_block(NO_DEV, NO_BLOCK, NORMAL); /* get a buffer */ 25288 zero_block(bp); 25289 } else { 25290 /*
Writing to a nonexistent block. Create and enter in inode.*/ 25291 if ((bp= new_block(rip, position)) ==
NIL_BUF)return(err_code); 25292 } 25293 } else if (rw_flag == READING) { 25294 /* Read and read ahead if
convenient. */ 25295 bp = rahead(rip, b, position, left); 25296 } else { 25297 /* Normally an existing block to be
partially overwritten is first read 25298 * in. However, a full block need not be read in. If it is already in 25299 * the
cache, acquire it, otherwise just acquire a free buffer. 25300 */ 25301 n = (chunk == block_size ? NO_READ :
NORMAL); 25302 if (!block_spec && off == 0 && position >= rip->i_size) n = NO_READ; 25303 bp =
get_block(dev, b, n); 25304 } 25305 25306 /* In all cases, bp now points to a valid buffer. */ 25307 if (bp ==
NIL_BUF) { 25308 panic(__FILE__,"bp not valid in rw_chunk, this can't happen", NO_NUM); 25309 } 25310 if
(rw_flag == WRITING && chunk != block_size && !block_spec && 25311 position >= rip->i_size && off == 0) {
25312 zero_block(bp); 25313 } 25314 25315 if (rw_flag == READING) { 25316 /* Copy a chunk from the block

171

171

buffer to user space. */ 25317 r = sys_vircopy(FS_PROC_NR, D, (phys_bytes) (bp->b_data+off), 25318 usr, seg,
(phys_bytes) buff, 25319 (phys_bytes) chunk); 25320 } else { 25321 /* Copy a chunk from user space to the block
buffer. */ 25322 r = sys_vircopy(usr, seg, (phys_bytes) buff, 25323 FS_PROC_NR, D, (phys_bytes) (bp->b_data+off),
25324 (phys_bytes) chunk); 25325 bp->b_dirt = DIRTY; 25326 } 25327 n = (off + chunk == block_size ?
FULL_DATA_BLOCK : PARTIAL_DATA_BLOCK); 25328 put_block(bp, n); 25329 25330 return(r); 25331 }
25334 /*===*
25335 * read_map * 25336
===/ 25337
PUBLIC block_t read_map(rip, position) 25338 register struct inode *rip; /* ptr to inode to map from */ 25339 off_t
position; /* position in file whose blk wanted */ 25340 { 25341 /* Given an inode and a position within the
corresponding file, locate the 25342 * block (not zone) number in which that position is to be found and return it.
25343 */ 25344

[Page 979]

25345 register struct buf *bp; 25346 register zone_t z; 25347 int scale, boff, dzones, nr_indirects, index, zind, ex;
25348 block_t b; 25349 long excess, zone, block_pos; 25350 25351 scale = rip->i_sp->s_log_zone_size; /* for
block-zone conversion */ 25352 block_pos = position/rip->i_sp->s_block_size; /* relative blk # in file */ 25353 zone =
block_pos >> scale; /* position's zone */ 25354 boff = (int) (block_pos - (zone << scale)); /* relative blk # within zone
/ 25355 dzones = rip->i_ndzones; 25356 nr_indirects = rip->i_nindirs; 25357 25358 / Is 'position' to be found in the
inode itself? */ 25359 if (zone < dzones) { 25360 zind = (int) zone; /* index should be an int */ 25361 z =
rip->i_zone[zind]; 25362 if (z == NO_ZONE) return(NO_BLOCK); 25363 b = ((block_t) z << scale) + boff; 25364
return(b); 25365 } 25366 25367 /* It is not in the inode, so it must be single or double indirect. */ 25368 excess = zone
- dzones; /* first Vx_NR_DZONES don't count */ 25369 25370 if (excess < nr_indirects) { 25371 /* 'position' can be
located via the single indirect block. */ 25372 z = rip->i_zone[dzones]; 25373 } else { 25374 /* 'position' can be
located via the double indirect block. */ 25375 if ((z = rip->i_zone[dzones+1]) == NO_ZONE) return(NO_BLOCK);
25376 excess -= nr_indirects; /* single indir doesn't count*/ 25377 b = (block_t) z << scale; 25378 bp =
get_block(rip->i_dev, b, NORMAL); /* get double indirect block */ 25379 index = (int) (excess/nr_indirects); 25380 z
= rd_indir(bp, index); /* z= zone for single*/ 25381 put_block(bp, INDIRECT_BLOCK); /* release double ind block
/ 25382 excess = excess % nr_indirects; / index into single ind blk */ 25383 } 25384 25385 /* 'z' is zone num for
single indirect block; 'excess' is index into it. */ 25386 if (z == NO_ZONE) return(NO_BLOCK); 25387 b = (block_t)
z << scale; /* b is blk # for single ind */ 25388 bp = get_block(rip->i_dev, b, NORMAL); /* get single indirect block
/ 25389 ex = (int) excess; / need an integer */ 25390 z = rd_indir(bp, ex); /* get block pointed to */ 25391
put_block(bp, INDIRECT_BLOCK); /* release single indir blk */ 25392 if (z == NO_ZONE) return(NO_BLOCK);
25393 b = ((block_t) z << scale) + boff; 25394 return(b); 25395 } 25397
/*===* 25398 *
rd_indir * 25399
===/ 25400
PUBLIC zone_t rd_indir(bp, index) 25401 struct buf *bp; /* pointer to indirect block */ 25402 int index; /* index into
*bp */ 25403 { 25404 /* Given a pointer to an indirect block, read one entry. The reason for

[Page 980]

25405 * making a separate routine out of this is that there are four cases: 25406 * V1 (IBM and 68000), and V2 (IBM
and 68000). 25407 */ 25408 25409 struct super_block *sp; 25410 zone_t zone; /* V2 zones are longs (shorts in V1) */
25411 25412 sp = get_super(bp->b_dev); /* need super block to find file sys type */ 25413 25414 /* read a zone from
an indirect block */ 25415 if (sp->s_version == V1) 25416 zone = (zone_t) conv2(sp->s_native, (int)
bp->b_v1_ind[index]); 25417 else 25418 zone = (zone_t) conv4(sp->s_native, (long) bp->b_v2_ind[index]); 25419
25420 if (zone != NO_ZONE && 25421 (zone < (zone_t) sp->s_firstdatazone || zone >= sp->s_zones)) { 25422
printf("Illegal zone number %ld in indirect block, index %d\n", 25423 (long) zone, index); 25424
panic(__FILE__,"check file system", NO_NUM); 25425 } 25426 return(zone); 25427 } 25429
/*===* 25430 *
read_ahead * 25431
===/ 25432

172

172

PUBLIC void read_ahead() 25433 { 25434 /* Read a block into the cache before it is needed. */ 25435 int block_size;
25436 register struct inode *rip; 25437 struct buf *bp; 25438 block_t b; 25439 25440 rip = rdahed_inode; /* pointer to
inode to read ahead from */ 25441 block_size = get_block_size(rip->i_dev); 25442 rdahed_inode = NIL_INODE; /*
turn off read ahead */ 25443 if ((b = read_map(rip, rdahedpos)) == NO_BLOCK) return; /* at EOF */ 25444 bp =
rahead(rip, b, rdahedpos, block_size); 25445 put_block(bp, PARTIAL_DATA_BLOCK); 25446 } 25448
/*===* 25449 *
rahead * 25450
===/ 25451
PUBLIC struct buf *rahead(rip, baseblock, position, bytes_ahead) 25452 register struct inode *rip; /* pointer to inode
for file to be read */ 25453 block_t baseblock; /* block at current position */ 25454 off_t position; /* position within
file */ 25455 unsigned bytes_ahead; /* bytes beyond position for immediate use */ 25456 { 25457 /* Fetch a block
from the cache or the device. If a physical read is 25458 * required, prefetch as many more blocks as convenient into
the cache. 25459 * This usually covers bytes_ahead and is at least BLOCKS_MINIMUM. 25460 * The device driver
may decide it knows better and stop reading at a 25461 * cylinder boundary (or after an error). Rw_scattered() puts an
optional 25462 * flag on all reads to allow this. 25463 */ 25464 int block_size;

[Page 981]

25465 /* Minimum number of blocks to prefetch. */ 25466 # define BLOCKS_MINIMUM (NR_BUFS < 50 ? 18 : 32)
25467 int block_spec, scale, read_q_size; 25468 unsigned int blocks_ahead, fragment; 25469 block_t block,
blocks_left; 25470 off_t ind1_pos; 25471 dev_t dev; 25472 struct buf *bp; 25473 static struct buf
*read_q[NR_BUFS]; 25474 25475 block_spec = (rip->i_mode & I_TYPE) == I_BLOCK_SPECIAL; 25476 if
(block_spec) { 25477 dev = (dev_t) rip->i_zone[0]; 25478 } else { 25479 dev = rip->i_dev; 25480 } 25481 block_size
= get_block_size(dev); 25482 25483 block = baseblock; 25484 bp = get_block(dev, block, PREFETCH); 25485 if
(bp->b_dev != NO_DEV) return(bp); 25486 25487 /* The best guess for the number of blocks to prefetch: A lot.
25488 * It is impossible to tell what the device looks like, so we don't even 25489 * try to guess the geometry, but
leave it to the driver. 25490 * 25491 * The floppy driver can read a full track with no rotational delay, and it 25492 *
avoids reading partial tracks if it can, so handing it enough buffers to 25493 * read two tracks is perfect. (Two, because
some diskette types have 25494 * an odd number of sectors per track, so a block may span tracks.) 25495 * 25496 *
The disk drivers don't try to be smart. With todays disks it is 25497 * impossible to tell what the real geometry looks
like, so it is best to 25498 * read as much as you can. With luck the caching on the drive allows 25499 * for a little
time to start the next read. 25500 * 25501 * The current solution below is a bit of a hack, it just reads blocks from
25502 * the current file position hoping that more of the file can be found. A 25503 * better solution must look at the
already available zone pointers and 25504 * indirect blocks (but don't call read_map!). 25505 */ 25506 25507 fragment
= position % block_size; 25508 position -= fragment; 25509 bytes_ahead += fragment; 25510 25511 blocks_ahead =
(bytes_ahead + block_size - 1) / block_size; 25512 25513 if (block_spec && rip->i_size == 0) { 25514 blocks_left =
NR_IOREQS; 25515 } else { 25516 blocks_left = (rip->i_size - position + block_size - 1) / block_size; 25517 25518
/* Go for the first indirect block if we are in its neighborhood. */ 25519 if (!block_spec) { 25520 scale =
rip->i_sp->s_log_zone_size; 25521 ind1_pos = (off_t) rip->i_ndzones * (block_size << scale); 25522 if (position <=
ind1_pos && rip->i_size > ind1_pos) { 25523 blocks_ahead++; 25524 blocks_left++;

[Page 982]

25525 } 25526 } 25527 } 25528 25529 /* No more than the maximum request. */ 25530 if (blocks_ahead >
NR_IOREQS) blocks_ahead = NR_IOREQS; 25531 25532 /* Read at least the minimum number of blocks, but not
after a seek. */ 25533 if (blocks_ahead < BLOCKS_MINIMUM && rip->i_seek == NO_SEEK) 25534 blocks_ahead
= BLOCKS_MINIMUM; 25535 25536 /* Can't go past end of file. */ 25537 if (blocks_ahead > blocks_left)
blocks_ahead = blocks_left; 25538 25539 read_q_size = 0; 25540 25541 /* Acquire block buffers. */ 25542 for (;;) {
25543 read_q[read_q_size++] = bp; 25544 25545 if (--blocks_ahead == 0) break; 25546 25547 /* Don't trash the
cache, leave 4 free. */ 25548 if (bufs_in_use >= NR_BUFS - 4) break; 25549 25550 block++; 25551 25552 bp =
get_block(dev, block, PREFETCH); 25553 if (bp->b_dev != NO_DEV) { 25554 /* Oops, block already in the cache,
get out. */ 25555 put_block(bp, FULL_DATA_BLOCK); 25556 break; 25557 } 25558 } 25559 rw_scattered(dev,
read_q, read_q_size, READING); 25560 return(get_block(dev, baseblock, NORMAL)); 25561 }
++

173

173

servers/fs/write.c
++
25600 /* This file is the counterpart of "read.c". It contains the code for writing 25601 * insofar as this is not contained
in read_write(). 25602 * 25603 * The entry points into this file are 25604 * do_write: call read_write to perform the
WRITE system call 25605 * clear_zone: erase a zone in the middle of a file 25606 * new_block: acquire a new block
25607 */ 25608 25609 #include "fs.h" 25610 #include <string.h> 25611 #include "buf.h" 25612 #include "file.h"
25613 #include "fproc.h" 25614 #include "inode.h"

[Page 983]

25615 #include "super.h" 25616 25617 FORWARD _PROTOTYPE(int write_map, (struct inode *rip, off_t position,
25618 zone_t new_zone)); 25619 25620 FORWARD _PROTOTYPE(void wr_indir, (struct buf *bp, int index,
zone_t zone)); 25621 25622
/*===* 25623 *
do_write * 25624
===/ 25625
PUBLIC int do_write() 25626 { 25627 /* Perform the write(fd, buffer, nbytes) system call. */ 25628 25629
return(read_write(WRITING)); 25630 } 25632
/*===* 25633 *
write_map * 25634
===/ 25635
PRIVATE int write_map(rip, position, new_zone) 25636 register struct inode *rip; /* pointer to inode to be changed */
25637 off_t position; /* file address to be mapped */ 25638 zone_t new_zone; /* zone # to be inserted */ 25639 {
25640 /* Write a new zone into an inode. */ 25641 int scale, ind_ex, new_ind, new_dbl, zones, nr_indirects, single,
zindex, ex; 25642 zone_t z, z1; 25643 register block_t b; 25644 long excess, zone; 25645 struct buf *bp; 25646 25647
rip->i_dirt = DIRTY; /* inode will be changed */ 25648 bp = NIL_BUF; 25649 scale = rip->i_sp->s_log_zone_size; /*
for zone-block conversion */ 25650 /* relative zone # to insert */ 25651 zone = (position/rip->i_sp->s_block_size) >>
scale; 25652 zones = rip->i_ndzones; /* # direct zones in the inode */ 25653 nr_indirects = rip->i_nindirs;/* # indirect
zones per indirect block */ 25654 25655 /* Is 'position' to be found in the inode itself? */ 25656 if (zone < zones) {
25657 zindex = (int) zone; /* we need an integer here */ 25658 rip->i_zone[zindex] = new_zone; 25659 return(OK);
25660 } 25661 25662 /* It is not in the inode, so it must be single or double indirect. */ 25663 excess = zone - zones;
/* first Vx_NR_DZONES don't count */ 25664 new_ind = FALSE; 25665 new_dbl = FALSE; 25666 25667 if (excess
< nr_indirects) { 25668 /* 'position' can be located via the single indirect block. */ 25669 z1 = rip->i_zone[zones]; /*
single indirect zone */ 25670 single = TRUE; 25671 } else { 25672 /* 'position' can be located via the double indirect
block. */ 25673 if ((z = rip->i_zone[zones+1]) == NO_ZONE) { 25674 /* Create the double indirect block. */

[Page 984]

25675 if ((z = alloc_zone(rip->i_dev, rip->i_zone[0])) == NO_ZONE) 25676 return(err_code); 25677
rip->i_zone[zones+1] = z; 25678 new_dbl = TRUE; /* set flag for later */ 25679 } 25680 25681 /* Either way, 'z' is
zone number for double indirect block. */ 25682 excess -= nr_indirects; /* single indirect doesn't count */ 25683
ind_ex = (int) (excess / nr_indirects); 25684 excess = excess % nr_indirects; 25685 if (ind_ex >= nr_indirects)
return(EFBIG); 25686 b = (block_t) z << scale; 25687 bp = get_block(rip->i_dev, b, (new_dbl ? NO_READ :
NORMAL)); 25688 if (new_dbl) zero_block(bp); 25689 z1 = rd_indir(bp, ind_ex); 25690 single = FALSE; 25691 }
25692 25693 /* z1 is now single indirect zone; 'excess' is index. */ 25694 if (z1 == NO_ZONE) { 25695 /* Create
indirect block and store zone # in inode or dbl indir blk. */ 25696 z1 = alloc_zone(rip->i_dev, rip->i_zone[0]); 25697
if (single) 25698 rip->i_zone[zones] = z1; /* update inode */ 25699 else 25700 wr_indir(bp, ind_ex, z1); /* update dbl
indir */ 25701 25702 new_ind = TRUE; 25703 if (bp != NIL_BUF) bp->b_dirt = DIRTY; /* if double ind, it is dirty*/
25704 if (z1 == NO_ZONE) { 25705 put_block(bp, INDIRECT_BLOCK); /* release dbl indirect blk */ 25706
return(err_code); /* couldn't create single ind */ 25707 } 25708 } 25709 put_block(bp, INDIRECT_BLOCK); /*
release double indirect blk */ 25710 25711 /* z1 is indirect block's zone number. */ 25712 b = (block_t) z1 << scale;
25713 bp = get_block(rip->i_dev, b, (new_ind ? NO_READ : NORMAL)); 25714 if (new_ind) zero_block(bp);
25715 ex = (int) excess; /* we need an int here */ 25716 wr_indir(bp, ex, new_zone); 25717 bp->b_dirt = DIRTY;
25718 put_block(bp, INDIRECT_BLOCK); 25719 25720 return(OK); 25721 } 25723

174

174

/*===* 25724 *
wr_indir * 25725
===/ 25726
PRIVATE void wr_indir(bp, index, zone) 25727 struct buf *bp; /* pointer to indirect block */ 25728 int index; /*
index into *bp */ 25729 zone_t zone; /* zone to write */ 25730 { 25731 /* Given a pointer to an indirect block, write
one entry. */ 25732 25733 struct super_block *sp; 25734

[Page 985]

25735 sp = get_super(bp->b_dev); /* need super block to find file sys type */ 25736 25737 /* write a zone into an
indirect block */ 25738 if (sp->s_version == V1) 25739 bp->b_v1_ind[index] = (zone1_t) conv2(sp->s_native, (int)
zone); 25740 else 25741 bp->b_v2_ind[index] = (zone_t) conv4(sp->s_native, (long) zone); 25742 } 25744
/*===* 25745 *
clear_zone * 25746
===/ 25747
PUBLIC void clear_zone(rip, pos, flag) 25748 register struct inode *rip; /* inode to clear */ 25749 off_t pos; /* points
to block to clear */ 25750 int flag; /* 0 if called by read_write, 1 by new_block */ 25751 { 25752 /* Zero a zone,
possibly starting in the middle. The parameter 'pos' gives 25753 * a byte in the first block to be zeroed. Clearzone() is
called from 25754 * read_write and new_block(). 25755 */ 25756 25757 register struct buf *bp; 25758 register block_t
b, blo, bhi; 25759 register off_t next; 25760 register int scale; 25761 register zone_t zone_size; 25762 25763 /* If the
block size and zone size are the same, clear_zone() not needed. */ 25764 scale = rip->i_sp->s_log_zone_size; 25765 if
(scale == 0) return; 25766 25767 zone_size = (zone_t) rip->i_sp->s_block_size << scale; 25768 if (flag == 1) pos =
(pos/zone_size) * zone_size; 25769 next = pos + rip->i_sp->s_block_size - 1; 25770 25771 /* If 'pos' is in the last
block of a zone, do not clear the zone. */ 25772 if (next/zone_size != pos/zone_size) return; 25773 if ((blo =
read_map(rip, next)) == NO_BLOCK) return; 25774 bhi = (((blo>>scale)+1) << scale) - 1; 25775 25776 /* Clear all
the blocks between 'blo' and 'bhi'. */ 25777 for (b = blo; b <= bhi; b++) { 25778 bp = get_block(rip->i_dev, b,
NO_READ); 25779 zero_block(bp); 25780 put_block(bp, FULL_DATA_BLOCK); 25781 } 25782 } 25784
/*===* 25785 *
new_block * 25786
===/ 25787
PUBLIC struct buf *new_block(rip, position) 25788 register struct inode *rip; /* pointer to inode */ 25789 off_t
position; /* file pointer */ 25790 { 25791 /* Acquire a new block and return a pointer to it. Doing so may require
25792 * allocating a complete zone, and then returning the initial block. 25793 * On the other hand, the current zone
may still have some unused blocks. 25794 */

[Page 986]

25795 25796 register struct buf *bp; 25797 block_t b, base_block; 25798 zone_t z; 25799 zone_t zone_size; 25800 int
scale, r; 25801 struct super_block *sp; 25802 25803 /* Is another block available in the current zone? */ 25804 if ((b =
read_map(rip, position)) == NO_BLOCK) { 25805 /* Choose first zone if possible. */ 25806 /* Lose if the file is
nonempty but the first zone number is NO_ZONE 25807 * corresponding to a zone full of zeros. It would be better to
25808 * search near the last real zone. 25809 */ 25810 if (rip->i_zone[0] == NO_ZONE) { 25811 sp = rip->i_sp;
25812 z = sp->s_firstdatazone; 25813 } else { 25814 z = rip->i_zone[0]; /* hunt near first zone */ 25815 } 25816 if ((z
= alloc_zone(rip->i_dev, z)) == NO_ZONE) return(NIL_BUF); 25817 if ((r = write_map(rip, position, z)) != OK) {
25818 free_zone(rip->i_dev, z); 25819 err_code = r; 25820 return(NIL_BUF); 25821 } 25822 25823 /* If we are not
writing at EOF, clear the zone, just to be safe. */ 25824 if (position != rip->i_size) clear_zone(rip, position, 1); 25825
scale = rip->i_sp->s_log_zone_size; 25826 base_block = (block_t) z << scale; 25827 zone_size = (zone_t)
rip->i_sp->s_block_size << scale; 25828 b = base_block + (block_t)((position % zone_size)/rip->i_sp->s_block_size);
25829 } 25830 25831 bp = get_block(rip->i_dev, b, NO_READ); 25832 zero_block(bp); 25833 return(bp); 25834 }
25836 /*===*
25837 * zero_block * 25838
===/ 25839
PUBLIC void zero_block(bp) 25840 register struct buf *bp; /* pointer to buffer to zero */ 25841 { 25842 /* Zero a
block. */ 25843 memset(bp->b_data, 0, MAX_BLOCK_SIZE); 25844 bp->b_dirt = DIRTY; 25845 }

175

175

[Page 987]

++
servers/fs/pipe.c
++
25900 /* This file deals with the suspension and revival of processes. A process can 25901 * be suspended because it
wants to read or write from a pipe and can't, or 25902 * because it wants to read or write from a special file and can't.
When a 25903 * process can't continue it is suspended, and revived later when it is able 25904 * to continue. 25905 *
25906 * The entry points into this file are 25907 * do_pipe: perform the PIPE system call 25908 * pipe_check: check
to see that a read or write on a pipe is feasible now 25909 * suspend: suspend a process that cannot do a requested read
or write 25910 * release: check to see if a suspended process can be released and do 25911 * it 25912 * revive: mark a
suspended process as able to run again 25913 * do_unpause: a signal has been sent to a process; see if it suspended
25914 */ 25915 25916 #include "fs.h" 25917 #include <fcntl.h> 25918 #include <signal.h> 25919 #include
<minix/callnr.h> 25920 #include <minix/com.h> 25921 #include <sys/select.h> 25922 #include <sys/time.h> 25923
#include "file.h" 25924 #include "fproc.h" 25925 #include "inode.h" 25926 #include "param.h" 25927 #include
"super.h" 25928 #include "select.h" 25929 25930
/*===* 25931 *
do_pipe * 25932
===/ 25933
PUBLIC int do_pipe() 25934 { 25935 /* Perform the pipe(fil_des) system call. */ 25936 25937 register struct fproc
*rfp; 25938 register struct inode *rip; 25939 int r; 25940 struct filp *fil_ptr0, *fil_ptr1; 25941 int fil_des[2]; /* reply
goes here */ 25942 25943 /* Acquire two file descriptors. */ 25944 rfp = fp; 25945 if ((r = get_fd(0, R_BIT,
&fil_des[0], &fil_ptr0)) != OK) return(r); 25946 rfp->fp_filp[fil_des[0]] = fil_ptr0; 25947 fil_ptr0->filp_count = 1;
25948 if ((r = get_fd(0, W_BIT, &fil_des[1], &fil_ptr1)) != OK) { 25949 rfp->fp_filp[fil_des[0]] = NIL_FILP; 25950
fil_ptr0->filp_count = 0; 25951 return(r); 25952 } 25953 rfp->fp_filp[fil_des[1]] = fil_ptr1; 25954 fil_ptr1->filp_count
= 1;

[Page 988]

25955 25956 /* Make the inode on the pipe device. */ 25957 if ((rip = alloc_inode(root_dev, I_REGULAR)) ==
NIL_INODE) { 25958 rfp->fp_filp[fil_des[0]] = NIL_FILP; 25959 fil_ptr0->filp_count = 0; 25960
rfp->fp_filp[fil_des[1]] = NIL_FILP; 25961 fil_ptr1->filp_count = 0; 25962 return(err_code); 25963 } 25964 25965 if
(read_only(rip) != OK) 25966 panic(__FILE__,"pipe device is read only", NO_NUM); 25967 25968 rip->i_pipe =
I_PIPE; 25969 rip->i_mode &= ~I_REGULAR; 25970 rip->i_mode |= I_NAMED_PIPE; /* pipes and FIFOs have this
bit set */ 25971 fil_ptr0->filp_ino = rip; 25972 fil_ptr0->filp_flags = O_RDONLY; 25973 dup_inode(rip); /* for
double usage */ 25974 fil_ptr1->filp_ino = rip; 25975 fil_ptr1->filp_flags = O_WRONLY; 25976 rw_inode(rip,
WRITING); /* mark inode as allocated */ 25977 m_out.reply_i1 = fil_des[0]; 25978 m_out.reply_i2 = fil_des[1];
25979 rip->i_update = ATIME | CTIME | MTIME; 25980 return(OK); 25981 } 25983
/*===* 25984 *
pipe_check * 25985
===/ 25986
PUBLIC int pipe_check(rip, rw_flag, oflags, bytes, position, canwrite, notouch) 25987 register struct inode *rip; /* the
inode of the pipe */ 25988 int rw_flag; /* READING or WRITING */ 25989 int oflags; /* flags set by open or fcntl */
25990 register int bytes; /* bytes to be read or written (all chunks) */ 25991 register off_t position; /* current file
position */ 25992 int *canwrite; /* return: number of bytes we can write */ 25993 int notouch; /* check only */ 25994
{ 25995 /* Pipes are a little different. If a process reads from an empty pipe for 25996 * which a writer still exists,
suspend the reader. If the pipe is empty 25997 * and there is no writer, return 0 bytes. If a process is writing to a 25998
* pipe and no one is reading from it, give a broken pipe error. 25999 */ 26000 26001 /* If reading, check for empty
pipe. */ 26002 if (rw_flag == READING) { 26003 if (position >= rip->i_size) { 26004 /* Process is reading from an
empty pipe. */ 26005 int r = 0; 26006 if (find_filp(rip, W_BIT) != NIL_FILP) { 26007 /* Writer exists */ 26008 if
(oflags & O_NONBLOCK) { 26009 r = EAGAIN; 26010 } else { 26011 if (!notouch) 26012 suspend(XPIPE); /*
block reader */ 26013 r = SUSPEND; 26014 }

176

176

[Page 989]

26015 /* If need be, activate sleeping writers. */ 26016 if (susp_count > 0 && !notouch) 26017 release(rip, WRITE,
susp_count); 26018 } 26019 return(r); 26020 } 26021 } else { 26022 /* Process is writing to a pipe. */ 26023 if
(find_filp(rip, R_BIT) == NIL_FILP) { 26024 /* Tell kernel to generate a SIGPIPE signal. */ 26025 if (!notouch)
26026 sys_kill((int)(fp - fproc), SIGPIPE); 26027 return(EPIPE); 26028 } 26029 26030 if (position + bytes >
PIPE_SIZE(rip->i_sp->s_block_size)) { 26031 if ((oflags & O_NONBLOCK) 26032 && bytes <
PIPE_SIZE(rip->i_sp->s_block_size)) 26033 return(EAGAIN); 26034 else if ((oflags & O_NONBLOCK) 26035 &&
bytes > PIPE_SIZE(rip->i_sp->s_block_size)) { 26036 if ((*canwrite = (PIPE_SIZE(rip->i_sp->s_block_size) 26037
- position)) > 0) { 26038 /* Do a partial write. Need to wakeup reader */ 26039 if (!notouch) 26040 release(rip, READ,
susp_count); 26041 return(1); 26042 } else { 26043 return(EAGAIN); 26044 } 26045 } 26046 if (bytes >
PIPE_SIZE(rip->i_sp->s_block_size)) { 26047 if ((*canwrite = PIPE_SIZE(rip->i_sp->s_block_size) 26048 -
position) > 0) { 26049 /* Do a partial write. Need to wakeup reader 26050 * since we'll suspend ourself in read_write()
26051 */ 26052 release(rip, READ, susp_count); 26053 return(1); 26054 } 26055 } 26056 if (!notouch) 26057
suspend(XPIPE); /* stop writer -- pipe full */ 26058 return(SUSPEND); 26059 } 26060 26061 /* Writing to an empty
pipe. Search for suspended reader. */ 26062 if (position == 0 && !notouch) 26063 release(rip, READ, susp_count);
26064 } 26065 26066 *canwrite = 0; 26067 return(1); 26068 } 26070
/*===* 26071 *
suspend * 26072
===/ 26073
PUBLIC void suspend(task) 26074 int task; /* who is proc waiting for? (PIPE = pipe) */

[Page 990]

26075 { 26076 /* Take measures to suspend the processing of the present system call. 26077 * Store the parameters to
be used upon resuming in the process table. 26078 * (Actually they are not used when a process is waiting for an I/O
device, 26079 * but they are needed for pipes, and it is not worth making the distinction.) 26080 * The SUSPEND
pseudo error should be returned after calling suspend(). 26081 */ 26082 26083 if (task == XPIPE || task == XPOPEN)
susp_count++;/* #procs susp'ed on pipe*/ 26084 fp->fp_suspended = SUSPENDED; 26085 fp->fp_fd = m_in.fd << 8 |
call_nr; 26086 fp->fp_task = -task; 26087 if (task == XLOCK) { 26088 fp->fp_buffer = (char *) m_in.name1; /* third
arg to fcntl() */ 26089 fp->fp_nbytes = m_in.request; /* second arg to fcntl() */ 26090 } else { 26091 fp->fp_buffer =
m_in.buffer; /* for reads and writes */ 26092 fp->fp_nbytes = m_in.nbytes; 26093 } 26094 } 26096
/*===* 26097 *
release * 26098
===/ 26099
PUBLIC void release(ip, call_nr, count) 26100 register struct inode *ip; /* inode of pipe */ 26101 int call_nr; /*
READ, WRITE, OPEN or CREAT */ 26102 int count; /* max number of processes to release */ 26103 { 26104 /*
Check to see if any process is hanging on the pipe whose inode is in 'ip'. 26105 * If one is, and it was trying to perform
the call indicated by 'call_nr', 26106 * release it. 26107 */ 26108 26109 register struct fproc *rp; 26110 struct filp *f;
26111 26112 /* Trying to perform the call also includes SELECTing on it with that 26113 * operation. 26114 */ 26115
if (call_nr == READ || call_nr == WRITE) { 26116 int op; 26117 if (call_nr == READ) 26118 op = SEL_RD; 26119
else 26120 op = SEL_WR; 26121 for(f = &filp[0]; f < &filp[NR_FILPS]; f++) { 26122 if (f->filp_count < 1 ||
!(f->filp_pipe_select_ops & op) || 26123 f->filp_ino != ip) 26124 continue; 26125 select_callback(f, op); 26126
f->filp_pipe_select_ops &= ~op; 26127 } 26128 } 26129 26130 /* Search the proc table. */ 26131 for (rp = &fproc[0];
rp < &fproc[NR_PROCS]; rp++) { 26132 if (rp->fp_suspended == SUSPENDED && 26133 rp->fp_revived ==
NOT_REVIVING && 26134 (rp->fp_fd & BYTE) == call_nr &&

[Page 991]

26135 rp->fp_filp[rp->fp_fd>>8]->filp_ino == ip) { 26136 revive((int)(rp - fproc), 0); 26137 susp_count--; /* keep
track of who is suspended */ 26138 if (--count == 0) return; 26139 } 26140 } 26141 } 26143
/*===* 26144 *
revive * 26145
===/ 26146

177

177

PUBLIC void revive(proc_nr, returned) 26147 int proc_nr; /* process to revive */ 26148 int returned; /* if hanging on
task, how many bytes read */ 26149 { 26150 /* Revive a previously blocked process. When a process hangs on tty, this
26151 * is the way it is eventually released. 26152 */ 26153 26154 register struct fproc *rfp; 26155 register int task;
26156 26157 if (proc_nr < 0 || proc_nr >= NR_PROCS) 26158 panic(__FILE__,"revive err", proc_nr); 26159 rfp =
&fproc[proc_nr]; 26160 if (rfp->fp_suspended == NOT_SUSPENDED || rfp->fp_revived == REVIVING)return;
26161 26162 /* The 'reviving' flag only applies to pipes. Processes waiting for TTY get 26163 * a message right away.
The revival process is different for TTY and pipes. 26164 * For select and TTY revival, the work is already done, for
pipes it is not: 26165 * the proc must be restarted so it can try again. 26166 */ 26167 task = -rfp->fp_task; 26168 if
(task == XPIPE || task == XLOCK) { 26169 /* Revive a process suspended on a pipe or lock. */ 26170
rfp->fp_revived = REVIVING; 26171 reviving++; /* process was waiting on pipe or lock */ 26172 } else { 26173
rfp->fp_suspended = NOT_SUSPENDED; 26174 if (task == XPOPEN) /* process blocked in open or create */ 26175
reply(proc_nr, rfp->fp_fd>>8); 26176 else if (task == XSELECT) { 26177 reply(proc_nr, returned); 26178 } else {
26179 /* Revive a process suspended on TTY or other device. */ 26180 rfp->fp_nbytes = returned; /*pretend it wants
only what there is*/ 26181 reply(proc_nr, returned); /* unblock the process */ 26182 } 26183 } 26184 } 26186
/*===* 26187 *
do_unpause * 26188
===/ 26189
PUBLIC int do_unpause() 26190 { 26191 /* A signal has been sent to a user who is paused on the file system. 26192 *
Abort the system call with the EINTR error message. 26193 */ 26194

[Page 992]

26195 register struct fproc *rfp; 26196 int proc_nr, task, fild; 26197 struct filp *f; 26198 dev_t dev; 26199 message
mess; 26200 26201 if (who > PM_PROC_NR) return(EPERM); 26202 proc_nr = m_in.pro; 26203 if (proc_nr < 0 ||

178

178

proc_nr >= NR_PROCS) 26204 panic(__FILE__,"unpause err 1", proc_nr); 26205 rfp = &fproc[proc_nr]; 26206 if
(rfp->fp_suspended == NOT_SUSPENDED) return(OK); 26207 task = -rfp->fp_task; 26208 26209 switch (task) {
26210 case XPIPE: /* process trying to read or write a pipe */ 26211 break; 26212 26213 case XLOCK: /* process
trying to set a lock with FCNTL */ 26214 break; 26215 26216 case XSELECT: /* process blocking on select() */
26217 select_forget(proc_nr); 26218 break; 26219 26220 case XPOPEN: /* process trying to open a fifo */ 26221
break; 26222 26223 default: /* process trying to do device I/O (e.g. tty)*/ 26224 fild = (rfp->fp_fd >> 8) & BYTE;/*
extract file descriptor */ 26225 if (fild < 0 || fild >= OPEN_MAX) 26226 panic(__FILE__,"unpause err 2",NO_NUM);
26227 f = rfp->fp_filp[fild]; 26228 dev = (dev_t) f->filp_ino->i_zone[0]; /* device hung on */ 26229 mess.TTY_LINE
= (dev >> MINOR) & BYTE; 26230 mess.PROC_NR = proc_nr; 26231 26232 /* Tell kernel R or W. Mode is from
current call, not open. */ 26233 mess.COUNT = (rfp->fp_fd & BYTE) == READ ? R_BIT : W_BIT; 26234
mess.m_type = CANCEL; 26235 fp = rfp; /* hack - ctty_io uses fp */ 26236 (*dmap[(dev >> MAJOR) &
BYTE].dmap_io)(task, &mess); 26237 } 26238 26239 rfp->fp_suspended = NOT_SUSPENDED; 26240
reply(proc_nr, EINTR); /* signal interrupted call */ 26241 return(OK); 26242 } 26244
/*===* 26245 *
select_request_pipe * 26246
===/ 26247
PUBLIC int select_request_pipe(struct filp *f, int *ops, int block) 26248 { 26249 int orig_ops, r = 0, err, canwrite;
26250 orig_ops = *ops; 26251 if ((*ops & SEL_RD)) { 26252 if ((err = pipe_check(f->filp_ino, READING, 0, 26253
1, f->filp_pos, &canwrite, 1)) != SUSPEND) 26254 r |= SEL_RD;

[Page 993]

26255 if (err < 0 && err != SUSPEND && (*ops & SEL_ERR)) 26256 r |= SEL_ERR; 26257 } 26258 if ((*ops &
SEL_WR)) { 26259 if ((err = pipe_check(f->filp_ino, WRITING, 0, 26260 1, f->filp_pos, &canwrite, 1)) !=
SUSPEND) 26261 r |= SEL_WR; 26262 if (err < 0 && err != SUSPEND && (*ops & SEL_ERR)) 26263 r |=
SEL_ERR; 26264 } 26265 26266 *ops = r; 26267 26268 if (!r && block) { 26269 f->filp_pipe_select_ops |= orig_ops;
26270 } 26271 26272 return SEL_OK; 26273 } 26275
/*===* 26276 *
select_match_pipe * 26277
===/ 26278
PUBLIC int select_match_pipe(struct filp *f) 26279 { 26280 /* recognize either pipe or named pipe (FIFO) */ 26281 if
(f && f->filp_ino && (f->filp_ino->i_mode & I_NAMED_PIPE)) 26282 return 1; 26283 return 0; 26284 }
++
servers/fs/path.c
++
26300 /* This file contains the procedures that look up path names in the directory 26301 * system and determine the
inode number that goes with a given path name. 26302 * 26303 * The entry points into this file are 26304 * eat_path:
the 'main' routine of the path-to-inode conversion mechanism 26305 * last_dir: find the final directory on a given path
26306 * advance: parse one component of a path name 26307 * search_dir: search a directory for a string and return its
inode number 26308 */ 26309 26310 #include "fs.h" 26311 #include <string.h> 26312 #include <minix/callnr.h>
26313 #include "buf.h" 26314 #include "file.h" 26315 #include "fproc.h" 26316 #include "inode.h" 26317 #include
"super.h" 26318 26319 PUBLIC char dot1[2] = "."; /* used for search_dir to bypass the access */

[Page 994]

26320 PUBLIC char dot2[3] = ".."; /* permissions for . and .. */ 26321 26322 FORWARD _PROTOTYPE(char
*get_name, (char *old_name, char string [NAME_MAX])); 26323 26324
/*===* 26325 *
eat_path * 26326
===/ 26327
PUBLIC struct inode *eat_path(path) 26328 char *path; /* the path name to be parsed */ 26329 { 26330 /* Parse the
path 'path' and put its inode in the inode table. If not possible, 26331 * return NIL_INODE as function value and an
error code in 'err_code'. 26332 */ 26333 26334 register struct inode *ldip, *rip; 26335 char string[NAME_MAX]; /*
hold 1 path component name here */ 26336 26337 /* First open the path down to the final directory. */ 26338 if ((ldip

179

179

= last_dir(path, string)) == NIL_INODE) { 26339 return(NIL_INODE); /* we couldn't open final directory */ 26340 }
26341 26342 /* The path consisting only of "/" is a special case, check for it. */ 26343 if (string[0] == '\0') return(ldip);
26344 26345 /* Get final component of the path. */ 26346 rip = advance(ldip, string); 26347 put_inode(ldip); 26348
return(rip); 26349 } 26351
/*===* 26352 *
last_dir * 26353
===/ 26354
PUBLIC struct inode *last_dir(path, string) 26355 char *path; /* the path name to be parsed */ 26356 char
string[NAME_MAX]; /* the final component is returned here */ 26357 { 26358 /* Given a path, 'path', located in the
fs address space, parse it as 26359 * far as the last directory, fetch the inode for the last directory into 26360 * the
inode table, and return a pointer to the inode. In 26361 * addition, return the final component of the path in 'string'.
26362 * If the last directory can't be opened, return NIL_INODE and 26363 * the reason for failure in 'err_code'.
26364 */ 26365 26366 register struct inode *rip; 26367 register char *new_name; 26368 register struct inode *new_ip;
26369 26370 /* Is the path absolute or relative? Initialize 'rip' accordingly. */ 26371 rip = (*path == '/' ? fp->fp_rootdir
: fp->fp_workdir); 26372 26373 /* If dir has been removed or path is empty, return ENOENT. */ 26374 if
(rip->i_nlinks == 0 || *path == '\0') { 26375 err_code = ENOENT; 26376 return(NIL_INODE); 26377 } 26378 26379
dup_inode(rip); /* inode will be returned with put_inode */

[Page 995]

26380 26381 /* Scan the path component by component. */ 26382 while (TRUE) { 26383 /* Extract one component.
/ 26384 if ((new_name = get_name(path, string)) == (char) 0) { 26385 put_inode(rip); /* bad path in user space */
26386 return(NIL_INODE); 26387 } 26388 if (*new_name == '\0') { 26389 if ((rip->i_mode & I_TYPE) ==
I_DIRECTORY) { 26390 return(rip); /* normal exit */ 26391 } else { 26392 /* last file of path prefix is not a directory
/ 26393 put_inode(rip); 26394 err_code = ENOTDIR; 26395 return(NIL_INODE); 26396 } 26397 } 26398 26399 /
There is more path. Keep parsing. */ 26400 new_ip = advance(rip, string); 26401 put_inode(rip); /* rip either obsolete
or irrelevant */ 26402 if (new_ip == NIL_INODE) return(NIL_INODE); 26403 26404 /* The call to advance()
succeeded. Fetch next component. */ 26405 path = new_name; 26406 rip = new_ip; 26407 } 26408 } 26410
/*===* 26411 *
get_name * 26412
===/ 26413
PRIVATE char *get_name(old_name, string) 26414 char *old_name; /* path name to parse */ 26415 char
string[NAME_MAX]; /* component extracted from 'old_name' */ 26416 { 26417 /* Given a pointer to a path name in
fs space, 'old_name', copy the next 26418 * component to 'string' and pad with zeros. A pointer to that part of 26419 *
the name as yet unparsed is returned. Roughly speaking, 26420 * 'get_name' = 'old_name' - 'string'. 26421 * 26422 *
This routine follows the standard convention that /usr/ast, /usr//ast, 26423 * //usr///ast and /usr/ast/ are all equivalent.
26424 */ 26425 26426 register int c; 26427 register char *np, *rnp; 26428 26429 np = string; /* 'np' points to current
position */ 26430 rnp = old_name; /* 'rnp' points to unparsed string */ 26431 while ((c = *rnp) == '/') rnp++; /* skip
leading slashes */ 26432 26433 /* Copy the unparsed path, 'old_name', to the array, 'string'. */ 26434 while (rnp <
&old_name[PATH_MAX] && c != '/' && c != '\0') { 26435 if (np < &string[NAME_MAX]) *np++ = c; 26436 c =
++rnp; / advance to next character */ 26437 } 26438 26439 /* To make /usr/ast/ equivalent to /usr/ast, skip trailing
slashes. */

[Page 996]

26440 while (c == '/' && rnp < &old_name[PATH_MAX]) c = *++rnp; 26441 26442 if (np < &string[NAME_MAX])
np = '\0'; / Terminate string */ 26443 26444 if (rnp >= &old_name[PATH_MAX]) { 26445 err_code =
ENAMETOOLONG; 26446 return((char *) 0); 26447 } 26448 return(rnp); 26449 } 26451
/*===* 26452 *
advance * 26453
===/ 26454
PUBLIC struct inode *advance(dirp, string) 26455 struct inode *dirp; /* inode for directory to be searched */ 26456
char string[NAME_MAX]; /* component name to look for */ 26457 { 26458 /* Given a directory and a component of
a path, look up the component in 26459 * the directory, find the inode, open it, and return a pointer to its inode 26460

180

180

* slot. If it can't be done, return NIL_INODE. 26461 */ 26462 26463 register struct inode *rip; 26464 struct inode
*rip2; 26465 register struct super_block *sp; 26466 int r, inumb; 26467 dev_t mnt_dev; 26468 ino_t numb; 26469
26470 /* If 'string' is empty, yield same inode straight away. */ 26471 if (string[0] == '\0') {
return(get_inode(dirp->i_dev, (int) dirp->i_num)); } 26472 26473 /* Check for NIL_INODE. */ 26474 if (dirp ==
NIL_INODE) { return(NIL_INODE); } 26475 26476 /* If 'string' is not present in the directory, signal error. */ 26477
if ((r = search_dir(dirp, string, &numb, LOOK_UP)) != OK) { 26478 err_code = r; 26479 return(NIL_INODE); 26480
} 26481 26482 /* Don't go beyond the current root directory, unless the string is dot2. */ 26483 if (dirp ==
fp->fp_rootdir && strcmp(string, "..") == 0 && string != dot2) 26484 return(get_inode(dirp->i_dev, (int)
dirp->i_num)); 26485 26486 /* The component has been found in the directory. Get inode. */ 26487 if ((rip =
get_inode(dirp->i_dev, (int) numb)) == NIL_INODE) { 26488 return(NIL_INODE); 26489 } 26490 26491 if
(rip->i_num == ROOT_INODE) 26492 if (dirp->i_num == ROOT_INODE) { 26493 if (string[1] == '.') { 26494 for
(sp = &super_block[1]; sp < &super_block[NR_SUPERS]; sp++){ 26495 if (sp->s_dev == rip->i_dev) { 26496 /*
Release the root inode. Replace by the 26497 * inode mounted on. 26498 */ 26499 put_inode(rip);

[Page 997]

26500 mnt_dev = sp->s_imount->i_dev; 26501 inumb = (int) sp->s_imount->i_num; 26502 rip2 = get_inode(mnt_dev,
inumb); 26503 rip = advance(rip2, string); 26504 put_inode(rip2); 26505 break; 26506 } 26507 } 26508 } 26509 }
26510 if (rip == NIL_INODE) return(NIL_INODE); 26511 26512 /* See if the inode is mounted on. If so, switch to
root directory of the 26513 * mounted file system. The super_block provides the linkage between the 26514 * inode
mounted on and the root directory of the mounted file system. 26515 */ 26516 while (rip != NIL_INODE &&
rip->i_mount == I_MOUNT) { 26517 /* The inode is indeed mounted on. */ 26518 for (sp = &super_block[0]; sp <
&super_block[NR_SUPERS]; sp++) { 26519 if (sp->s_imount == rip) { 26520 /* Release the inode mounted on.
Replace by the 26521 * inode of the root inode of the mounted device. 26522 */ 26523 put_inode(rip); 26524 rip =
get_inode(sp->s_dev, ROOT_INODE); 26525 break; 26526 } 26527 } 26528 } 26529 return(rip); /* return pointer to
inode's component */ 26530 } 26532
/*===* 26533 *
search_dir * 26534
===/ 26535
PUBLIC int search_dir(ldir_ptr, string, numb, flag) 26536 register struct inode *ldir_ptr; /* ptr to inode for dir to
search */ 26537 char string[NAME_MAX]; /* component to search for */ 26538 ino_t *numb; /* pointer to inode
number */ 26539 int flag; /* LOOK_UP, ENTER, DELETE or IS_EMPTY */ 26540 { 26541 /* This function searches
the directory whose inode is pointed to by 'ldip': 26542 * if (flag == ENTER) enter 'string' in the directory with inode #
'*numb'; 26543 * if (flag == DELETE) delete 'string' from the directory; 26544 * if (flag == LOOK_UP) search for
'string' and return inode # in 'numb'; 26545 * if (flag == IS_EMPTY) return OK if only . and .. in dir else
ENOTEMPTY; 26546 * 26547 * if 'string' is dot1 or dot2, no access permissions are checked. 26548 */ 26549 26550
register struct direct *dp = NULL; 26551 register struct buf *bp = NULL; 26552 int i, r, e_hit, t, match; 26553 mode_t
bits; 26554 off_t pos; 26555 unsigned new_slots, old_slots; 26556 block_t b; 26557 struct super_block *sp; 26558 int
extended = 0; 26559

[Page 998]

26560 /* If 'ldir_ptr' is not a pointer to a dir inode, error. */ 26561 if ((ldir_ptr->i_mode & I_TYPE) !=
I_DIRECTORY) return(ENOTDIR); 26562 26563 r = OK; 26564 26565 if (flag != IS_EMPTY) { 26566 bits = (flag
== LOOK_UP ? X_BIT : W_BIT | X_BIT); 26567 26568 if (string == dot1 || string == dot2) { 26569 if (flag !=
LOOK_UP) r = read_only(ldir_ptr); 26570 /* only a writable device is required. */ 26571 } 26572 else r =
forbidden(ldir_ptr, bits); /* check access permissions */ 26573 } 26574 if (r != OK) return(r); 26575 26576 /* Step
through the directory one block at a time. */ 26577 old_slots = (unsigned) (ldir_ptr->i_size/DIR_ENTRY_SIZE);
26578 new_slots = 0; 26579 e_hit = FALSE; 26580 match = 0; /* set when a string match occurs */ 26581 26582 for
(pos = 0; pos < ldir_ptr->i_size; pos += ldir_ptr->i_sp->s_block_size) { 26583 b = read_map(ldir_ptr, pos); /* get
block number */ 26584 26585 /* Since directories don't have holes, 'b' cannot be NO_BLOCK. */ 26586 bp =
get_block(ldir_ptr->i_dev, b, NORMAL); /* get a dir block */ 26587 26588 if (bp == NO_BLOCK) 26589
panic(__FILE__,"get_block returned NO_BLOCK", NO_NUM); 26590 26591 /* Search a directory block. */ 26592
for (dp = &bp->b_dir[0]; 26593 dp < &bp->b_dir[NR_DIR_ENTRIES(ldir_ptr->i_sp->s_block_size)]; 26594 dp++) {

181

181

26595 if (++new_slots > old_slots) { /* not found, but room left */ 26596 if (flag == ENTER) e_hit = TRUE; 26597
break; 26598 } 26599 26600 /* Match occurs if string found. */ 26601 if (flag != ENTER && dp->d_ino != 0) { 26602
if (flag == IS_EMPTY) { 26603 /* If this test succeeds, dir is not empty. */ 26604 if (strcmp(dp->d_name, ".") != 0
&& 26605 strcmp(dp->d_name, "..") != 0) match = 1; 26606 } else { 26607 if (strncmp(dp->d_name, string,
NAME_MAX) == 0) { 26608 match = 1; 26609 } 26610 } 26611 } 26612 26613 if (match) { 26614 /* LOOK_UP or
DELETE found what it wanted. */ 26615 r = OK; 26616 if (flag == IS_EMPTY) r = ENOTEMPTY; 26617 else if
(flag == DELETE) { 26618 /* Save d_ino for recovery. */ 26619 t = NAME_MAX - sizeof(ino_t);

[Page 999]

26620 *((ino_t *) &dp->d_name[t]) = dp->d_ino; 26621 dp->d_ino = 0; /* erase entry */ 26622 bp->b_dirt = DIRTY;
26623 ldir_ptr->i_update |= CTIME | MTIME; 26624 ldir_ptr->i_dirt = DIRTY; 26625 } else { 26626 sp =
ldir_ptr->i_sp; /* 'flag' is LOOK_UP */ 26627 *numb = conv4(sp->s_native, (int) dp->d_ino); 26628 } 26629
put_block(bp, DIRECTORY_BLOCK); 26630 return(r); 26631 } 26632 26633 /* Check for free slot for the benefit of
ENTER. */ 26634 if (flag == ENTER && dp->d_ino == 0) { 26635 e_hit = TRUE; /* we found a free slot */ 26636
break; 26637 } 26638 } 26639 26640 /* The whole block has been searched or ENTER has a free slot. */ 26641 if
(e_hit) break; /* e_hit set if ENTER can be performed now */ 26642 put_block(bp, DIRECTORY_BLOCK); /*
otherwise, continue searching dir */ 26643 } 26644 26645 /* The whole directory has now been searched. */ 26646 if
(flag != ENTER) { 26647 return(flag == IS_EMPTY ? OK : ENOENT); 26648 } 26649 26650 /* This call is for
ENTER. If no free slot has been found so far, try to 26651 * extend directory. 26652 */ 26653 if (e_hit == FALSE) {
/* directory is full and no room left in last block */ 26654 new_slots++; /* increase directory size by 1 entry */ 26655
if (new_slots == 0) return(EFBIG); /* dir size limited by slot count */ 26656 if ((bp = new_block(ldir_ptr,
ldir_ptr->i_size)) == NIL_BUF) 26657 return(err_code); 26658 dp = &bp->b_dir[0]; 26659 extended = 1; 26660 }
26661 26662 /* 'bp' now points to a directory block with space. 'dp' points to slot. */ 26663 (void)
memset(dp->d_name, 0, (size_t) NAME_MAX); /* clear entry */ 26664 for (i = 0; string[i] && i < NAME_MAX;
i++) dp->d_name[i] = string[i]; 26665 sp = ldir_ptr->i_sp; 26666 dp->d_ino = conv4(sp->s_native, (int) *numb);
26667 bp->b_dirt = DIRTY; 26668 put_block(bp, DIRECTORY_BLOCK); 26669 ldir_ptr->i_update |= CTIME |
MTIME; /* mark mtime for update later */ 26670 ldir_ptr->i_dirt = DIRTY; 26671 if (new_slots > old_slots) { 26672
ldir_ptr->i_size = (off_t) new_slots * DIR_ENTRY_SIZE; 26673 /* Send the change to disk if the directory is
extended. */ 26674 if (extended) rw_inode(ldir_ptr, WRITING); 26675 } 26676 return(OK); 26677 }

[Page 1000]

++
servers/fs/mount.c
++
26700 /* This file performs the MOUNT and UMOUNT system calls. 26701 * 26702 * The entry points into this file
are 26703 * do_mount: perform the MOUNT system call 26704 * do_umount: perform the UMOUNT system call
26705 */ 26706 26707 #include "fs.h" 26708 #include <fcntl.h> 26709 #include <minix/com.h> 26710 #include
<sys/stat.h> 26711 #include "buf.h" 26712 #include "file.h" 26713 #include "fproc.h" 26714 #include "inode.h" 26715
#include "param.h" 26716 #include "super.h" 26717 26718 FORWARD _PROTOTYPE(dev_t name_to_dev, (char
*path)); 26719 26720
/*===* 26721 *
do_mount * 26722
===/ 26723
PUBLIC int do_mount() 26724 { 26725 /* Perform the mount(name, mfile, rd_only) system call. */ 26726 26727
register struct inode *rip, *root_ip; 26728 struct super_block *xp, *sp; 26729 dev_t dev; 26730 mode_t bits; 26731 int
rdir, mdir; /* TRUE iff {root|mount} file is dir */ 26732 int r, found; 26733 26734 /* Only the super-user may do
MOUNT. */ 26735 if (!super_user) return(EPERM); 26736 26737 /* If 'name' is not for a block special file, return
error. */ 26738 if (fetch_name(m_in.name1, m_in.name1_length, M1) != OK) return(err_code); 26739 if ((dev =
name_to_dev(user_path)) == NO_DEV) return(err_code); 26740 26741 /* Scan super block table to see if dev already
mounted & find a free slot.*/ 26742 sp = NIL_SUPER; 26743 found = FALSE; 26744 for (xp = &super_block[0]; xp
< &super_block[NR_SUPERS]; xp++) { 26745 if (xp->s_dev == dev) found = TRUE; /* is it mounted already? */
26746 if (xp->s_dev == NO_DEV) sp = xp; /* record free slot */ 26747 } 26748 if (found) return(EBUSY); /* already

182

182

mounted */ 26749 if (sp == NIL_SUPER) return(ENFILE); /* no super block available */ 26750 26751 /* Open the
device the file system lives on. */ 26752 if (dev_open(dev, who, m_in.rd_only ? R_BIT : (R_BIT|W_BIT)) != OK)
26753 return(EINVAL); 26754

[Page 1001]

26755 /* Make the cache forget about blocks it has open on the filesystem */ 26756 (void) do_sync(); 26757
invalidate(dev); 26758 26759 /* Fill in the super block. */ 26760 sp->s_dev = dev; /* read_super() needs to know
which dev */ 26761 r = read_super(sp); 26762 26763 /* Is it recognized as a Minix filesystem? */ 26764 if (r != OK) {
26765 dev_close(dev); 26766 sp->s_dev = NO_DEV; 26767 return(r); 26768 } 26769 26770 /* Now get the inode of
the file to be mounted on. */ 26771 if (fetch_name(m_in.name2, m_in.name2_length, M1) != OK) { 26772
dev_close(dev); 26773 sp->s_dev = NO_DEV; 26774 return(err_code); 26775 } 26776 if ((rip = eat_path(user_path))
== NIL_INODE) { 26777 dev_close(dev); 26778 sp->s_dev = NO_DEV; 26779 return(err_code); 26780 } 26781
26782 /* It may not be busy. */ 26783 r = OK; 26784 if (rip->i_count > 1) r = EBUSY; 26785 26786 /* It may not be
special. */ 26787 bits = rip->i_mode & I_TYPE; 26788 if (bits == I_BLOCK_SPECIAL || bits ==
I_CHAR_SPECIAL) r = ENOTDIR; 26789 26790 /* Get the root inode of the mounted file system. */ 26791 root_ip =
NIL_INODE; /* if 'r' not OK, make sure this is defined */ 26792 if (r == OK) { 26793 if ((root_ip = get_inode(dev,
ROOT_INODE)) == NIL_INODE) r = err_code; 26794 } 26795 if (root_ip != NIL_INODE && root_ip->i_mode ==
0) { 26796 r = EINVAL; 26797 } 26798 26799 /* File types of 'rip' and 'root_ip' may not conflict. */ 26800 if (r ==
OK) { 26801 mdir = ((rip->i_mode & I_TYPE) == I_DIRECTORY); /* TRUE iff dir */ 26802 rdir =
((root_ip->i_mode & I_TYPE) == I_DIRECTORY); 26803 if (!mdir && rdir) r = EISDIR; 26804 } 26805 26806 /* If
error, return the super block and both inodes; release the maps. */ 26807 if (r != OK) { 26808 put_inode(rip); 26809
put_inode(root_ip); 26810 (void) do_sync(); 26811 invalidate(dev); 26812 dev_close(dev); 26813 sp->s_dev =
NO_DEV; 26814 return(r);

[Page 1002]

26815 } 26816 26817 /* Nothing else can go wrong. Perform the mount. */ 26818 rip->i_mount = I_MOUNT; /* this
bit says the inode is mounted on */ 26819 sp->s_imount = rip; 26820 sp->s_isup = root_ip; 26821 sp->s_rd_only =
m_in.rd_only; 26822 return(OK); 26823 } 26825
/*===* 26826 *
do_umount * 26827
===/ 26828
PUBLIC int do_umount() 26829 { 26830 /* Perform the umount(name) system call. */ 26831 dev_t dev; 26832 26833
/* Only the super-user may do UMOUNT. */ 26834 if (!super_user) return(EPERM); 26835 26836 /* If 'name' is not
for a block special file, return error. */ 26837 if (fetch_name(m_in.name, m_in.name_length, M3) != OK)
return(err_code); 26838 if ((dev = name_to_dev(user_path)) == NO_DEV) return(err_code); 26839 26840
return(unmount(dev)); 26841 } 26843
/*===* 26844 *
unmount * 26845
===/ 26846
PUBLIC int unmount(dev) 26847 Dev_t dev; 26848 { 26849 /* Unmount a file system by device number. */ 26850
register struct inode *rip; 26851 struct super_block *sp, *sp1; 26852 int count; 26853 26854 /* See if the mounted
device is busy. Only 1 inode using it should be 26855 * open -- the root inode -- and that inode only 1 time. 26856 */
26857 count = 0; 26858 for (rip = &inode[0]; rip< &inode[NR_INODES]; rip++) 26859 if (rip->i_count > 0 &&
rip->i_dev == dev) count += rip->i_count; 26860 if (count > 1) return(EBUSY); /* can't umount a busy file system */
26861 26862 /* Find the super block. */ 26863 sp = NIL_SUPER; 26864 for (sp1 = &super_block[0]; sp1 <
&super_block[NR_SUPERS]; sp1++) { 26865 if (sp1->s_dev == dev) { 26866 sp = sp1; 26867 break; 26868 } 26869
} 26870 26871 /* Sync the disk, and invalidate cache. */ 26872 (void) do_sync(); /* force any cached blocks out of
memory */ 26873 invalidate(dev); /* invalidate cache entries for this dev */ 26874 if (sp == NIL_SUPER) {

[Page 1003]

183

183

26875 return(EINVAL); 26876 } 26877 26878 /* Close the device the file system lives on. */ 26879 dev_close(dev);
26880 26881 /* Finish off the unmount. */ 26882 sp->s_imount->i_mount = NO_MOUNT; /* inode returns to normal
/ 26883 put_inode(sp->s_imount); / release the inode mounted on */ 26884 put_inode(sp->s_isup); /* release the
root inode of the mounted fs */ 26885 sp->s_imount = NIL_INODE; 26886 sp->s_dev = NO_DEV; 26887 return(OK);
26888 } 26890
/*===* 26891 *
name_to_dev * 26892
===/ 26893
PRIVATE dev_t name_to_dev(path) 26894 char *path; /* pointer to path name */ 26895 { 26896 /* Convert the block
special file 'path' to a device number. If 'path' 26897 * is not a block special file, return error code in 'err_code'. 26898
*/ 26899 26900 register struct inode *rip; 26901 register dev_t dev; 26902 26903 /* If 'path' can't be opened, give up
immediately. */ 26904 if ((rip = eat_path(path)) == NIL_INODE) return(NO_DEV); 26905 26906 /* If 'path' is not a
block special file, return error. */ 26907 if ((rip->i_mode & I_TYPE) != I_BLOCK_SPECIAL) { 26908 err_code =
ENOTBLK; 26909 put_inode(rip); 26910 return(NO_DEV); 26911 } 26912 26913 /* Extract the device number. */
26914 dev = (dev_t) rip->i_zone[0]; 26915 put_inode(rip); 26916 return(dev); 26917 }
++
servers/fs/link.c
++
27000 /* This file handles the LINK and UNLINK system calls. It also deals with 27001 * deallocating the storage
used by a file when the last UNLINK is done to a 27002 * file and the blocks must be returned to the free block pool.
27003 * 27004 * The entry points into this file are 27005 * do_link: perform the LINK system call 27006 * do_unlink:
perform the UNLINK and RMDIR system calls 27007 * do_rename: perform the RENAME system call 27008 *
truncate: release all the blocks associated with an inode 27009 */

[Page 1004]

27010 27011 #include "fs.h" 27012 #include <sys/stat.h> 27013 #include <string.h> 27014 #include <minix/com.h>
27015 #include <minix/callnr.h> 27016 #include "buf.h" 27017 #include "file.h" 27018 #include "fproc.h" 27019
#include "inode.h" 27020 #include "param.h" 27021 #include "super.h" 27022 27023 #define SAME 1000 27024
27025 FORWARD _PROTOTYPE(int remove_dir, (struct inode *rldirp, struct inode *rip, 27026 char
dir_name[NAME_MAX])); 27027 27028 FORWARD _PROTOTYPE(int unlink_file, (struct inode *dirp, struct
inode *rip, 27029 char file_name[NAME_MAX])); 27030 27031
/*===* 27032 *
do_link * 27033
===/ 27034
PUBLIC int do_link() 27035 { 27036 /* Perform the link(name1, name2) system call. */ 27037 27038 register struct
inode *ip, *rip; 27039 register int r; 27040 char string[NAME_MAX]; 27041 struct inode *new_ip; 27042 27043 /*
See if 'name' (file to be linked) exists. */ 27044 if (fetch_name(m_in.name1, m_in.name1_length, M1) != OK)
return(err_code); 27045 if ((rip = eat_path(user_path)) == NIL_INODE) return(err_code); 27046 27047 /* Check to
see if the file has maximum number of links already. */ 27048 r = OK; 27049 if (rip->i_nlinks >=
(rip->i_sp->s_version == V1 ? CHAR_MAX : SHRT_MAX)) 27050 r = EMLINK; 27051 27052 /* Only super_user
may link to directories. */ 27053 if (r == OK) 27054 if ((rip->i_mode & I_TYPE) == I_DIRECTORY &&
!super_user) r = EPERM; 27055 27056 /* If error with 'name', return the inode. */ 27057 if (r != OK) { 27058
put_inode(rip); 27059 return(r); 27060 } 27061 27062 /* Does the final directory of 'name2' exist? */ 27063 if
(fetch_name(m_in.name2, m_in.name2_length, M1) != OK) { 27064 put_inode(rip); 27065 return(err_code); 27066 }
27067 if ((ip = last_dir(user_path, string)) == NIL_INODE) r = err_code; 27068 27069 /* If 'name2' exists in full
(even if no space) set 'r' to error. */

[Page 1005]

27070 if (r == OK) { 27071 if ((new_ip = advance(ip, string)) == NIL_INODE) { 27072 r = err_code; 27073 if (r ==
ENOENT) r = OK; 27074 } else { 27075 put_inode(new_ip); 27076 r = EEXIST; 27077 } 27078 } 27079 27080 /*
Check for links across devices. */ 27081 if (r == OK) 27082 if (rip->i_dev != ip->i_dev) r = EXDEV; 27083 27084 /*
Try to link. */ 27085 if (r == OK) 27086 r = search_dir(ip, string, &rip->i_num, ENTER); 27087 27088 /* If success,

184

184

register the linking. */ 27089 if (r == OK) { 27090 rip->i_nlinks++; 27091 rip->i_update |= CTIME; 27092 rip->i_dirt
= DIRTY; 27093 } 27094 27095 /* Done. Release both inodes. */ 27096 put_inode(rip); 27097 put_inode(ip); 27098
return(r); 27099 } 27101
/*===* 27102 *
do_unlink * 27103
===/ 27104
PUBLIC int do_unlink() 27105 { 27106 /* Perform the unlink(name) or rmdir(name) system call. The code for these
two 27107 * is almost the same. They differ only in some condition testing. Unlink() 27108 * may be used by the
superuser to do dangerous things; rmdir() may not. 27109 */ 27110 27111 register struct inode *rip; 27112 struct inode
rldirp; 27113 int r; 27114 char string[NAME_MAX]; 27115 27116 / Get the last directory in the path. */ 27117 if
(fetch_name(m_in.name, m_in.name_length, M3) != OK) return(err_code); 27118 if ((rldirp = last_dir(user_path,
string)) == NIL_INODE) 27119 return(err_code); 27120 27121 /* The last directory exists. Does the file also exist? */
27122 r = OK; 27123 if ((rip = advance(rldirp, string)) == NIL_INODE) r = err_code; 27124 27125 /* If error, return
inode. */ 27126 if (r != OK) { 27127 put_inode(rldirp); 27128 return(r); 27129 }

[Page 1006]

27130 27131 /* Do not remove a mount point. */ 27132 if (rip->i_num == ROOT_INODE) { 27133 put_inode(rldirp);
27134 put_inode(rip); 27135 return(EBUSY); 27136 } 27137 27138 /* Now test if the call is allowed, separately for
unlink() and rmdir(). */ 27139 if (call_nr == UNLINK) { 27140 /* Only the su may unlink directories, but the su can
unlink any dir.*/ 27141 if ((rip->i_mode & I_TYPE) == I_DIRECTORY && !super_user) r = EPERM; 27142 27143
/* Don't unlink a file if it is the root of a mounted file system. */ 27144 if (rip->i_num == ROOT_INODE) r =
EBUSY; 27145 27146 /* Actually try to unlink the file; fails if parent is mode 0 etc. */ 27147 if (r == OK) r =
unlink_file(rldirp, rip, string); 27148 27149 } else { 27150 r = remove_dir(rldirp, rip, string); /* call is RMDIR */
27151 } 27152 27153 /* If unlink was possible, it has been done, otherwise it has not. */ 27154 put_inode(rip); 27155
put_inode(rldirp); 27156 return(r); 27157 } 27159
/*===* 27160 *
do_rename * 27161
===/ 27162
PUBLIC int do_rename() 27163 { 27164 /* Perform the rename(name1, name2) system call. */ 27165 27166 struct
inode *old_dirp, *old_ip; /* ptrs to old dir, file inodes */ 27167 struct inode *new_dirp, *new_ip; /* ptrs to new dir,
file inodes */ 27168 struct inode *new_superdirp, *next_new_superdirp; 27169 int r = OK; /* error flag; initially no
error */ 27170 int odir, ndir; /* TRUE iff {old|new} file is dir */ 27171 int same_pdir; /* TRUE iff parent dirs are the
same */ 27172 char old_name[NAME_MAX], new_name[NAME_MAX]; 27173 ino_t numb; 27174 int r1; 27175
27176 /* See if 'name1' (existing file) exists. Get dir and file inodes. */ 27177 if (fetch_name(m_in.name1,
m_in.name1_length, M1) != OK) return(err_code); 27178 if ((old_dirp = last_dir(user_path,
old_name))==NIL_INODE) return(err_code); 27179 27180 if ((old_ip = advance(old_dirp, old_name)) ==
NIL_INODE) r = err_code; 27181 27182 /* See if 'name2' (new name) exists. Get dir and file inodes. */ 27183 if
(fetch_name(m_in.name2, m_in.name2_length, M1) != OK) r = err_code; 27184 if ((new_dirp = last_dir(user_path,
new_name)) == NIL_INODE) r = err_code; 27185 new_ip = advance(new_dirp, new_name); /* not required to exist
/ 27186 27187 if (old_ip != NIL_INODE) 27188 odir = ((old_ip->i_mode & I_TYPE) == I_DIRECTORY); / TRUE
iff dir */ 27189

[Page 1007]

27190 /* If it is ok, check for a variety of possible errors. */ 27191 if (r == OK) { 27192 same_pdir = (old_dirp ==
new_dirp); 27193 27194 /* The old inode must not be a superdirectory of the new last dir. */ 27195 if (odir &&
!same_pdir) { 27196 dup_inode(new_superdirp = new_dirp); 27197 while (TRUE) { /* may hang in a file system loop
*/ 27198 if (new_superdirp == old_ip) { 27199 r = EINVAL; 27200 break; 27201 } 27202 next_new_superdirp =
advance(new_superdirp, dot2); 27203 put_inode(new_superdirp); 27204 if (next_new_superdirp == new_superdirp)
27205 break; /* back at system root directory */ 27206 new_superdirp = next_new_superdirp; 27207 if (new_superdirp
== NIL_INODE) { 27208 /* Missing ".." entry. Assume the worst. */ 27209 r = EINVAL; 27210 break; 27211 }
27212 } 27213 put_inode(new_superdirp); 27214 } 27215 27216 /* The old or new name must not be . or .. */ 27217 if
(strcmp(old_name, ".")==0 || strcmp(old_name, "..")==0 || 27218 strcmp(new_name, ".")==0 || strcmp(new_name,

185

185

"..")==0) r = EINVAL; 27219 27220 /* Both parent directories must be on the same device. */ 27221 if
(old_dirp->i_dev != new_dirp->i_dev) r = EXDEV; 27222 27223 /* Parent dirs must be writable, searchable and on a
writable device */ 27224 if ((r1 = forbidden(old_dirp, W_BIT | X_BIT)) != OK || 27225 (r1 = forbidden(new_dirp,
W_BIT | X_BIT)) != OK) r = r1; 27226 27227 /* Some tests apply only if the new path exists. */ 27228 if (new_ip ==
NIL_INODE) { 27229 /* don't rename a file with a file system mounted on it. */ 27230 if (old_ip->i_dev !=
old_dirp->i_dev) r = EXDEV; 27231 if (odir && new_dirp->i_nlinks >= 27232 (new_dirp->i_sp->s_version == V1 ?
CHAR_MAX : SHRT_MAX) && 27233 !same_pdir && r == OK) r = EMLINK; 27234 } else { 27235 if (old_ip ==
new_ip) r = SAME; /* old=new */ 27236 27237 /* has the old file or new file a file system mounted on it? */ 27238 if
(old_ip->i_dev != new_ip->i_dev) r = EXDEV; 27239 27240 ndir = ((new_ip->i_mode & I_TYPE) ==
I_DIRECTORY); /* dir ? */ 27241 if (odir == TRUE && ndir == FALSE) r = ENOTDIR; 27242 if (odir == FALSE
&& ndir == TRUE) r = EISDIR; 27243 } 27244 } 27245 27246 /* If a process has another root directory than the
system root, we might 27247 * "accidently" be moving it's working directory to a place where it's 27248 * root
directory isn't a super directory of it anymore. This can make 27249 * the function chroot useless. If chroot will be
used often we should

[Page 1008]

27250 * probably check for it here. 27251 */ 27252 27253 /* The rename will probably work. Only two things can go
wrong now: 27254 * 1. being unable to remove the new file. (when new file already exists) 27255 * 2. being unable to
make the new directory entry. (new file doesn't exists) 27256 * [directory has to grow by one block and cannot because
the disk 27257 * is completely full]. 27258 */ 27259 if (r == OK) { 27260 if (new_ip != NIL_INODE) { 27261 /*
There is already an entry for 'new'. Try to remove it. */ 27262 if (odir) 27263 r = remove_dir(new_dirp, new_ip,
new_name); 27264 else 27265 r = unlink_file(new_dirp, new_ip, new_name); 27266 } 27267 /* if r is OK, the rename
will succeed, while there is now an 27268 * unused entry in the new parent directory. 27269 */ 27270 } 27271 27272
if (r == OK) { 27273 /* If the new name will be in the same parent directory as the old one, 27274 * first remove the
old name to free an entry for the new name, 27275 * otherwise first try to create the new name entry to make sure
27276 * the rename will succeed. 27277 */ 27278 numb = old_ip->i_num; /* inode number of old file */ 27279 27280
if (same_pdir) { 27281 r = search_dir(old_dirp, old_name, (ino_t *) 0, DELETE); 27282 /* shouldn't go wrong. */
27283 if (r==OK) (void) search_dir(old_dirp, new_name, &numb, ENTER); 27284 } else { 27285 r =
search_dir(new_dirp, new_name, &numb, ENTER); 27286 if (r == OK) 27287 (void) search_dir(old_dirp, old_name,
(ino_t *) 0, DELETE); 27288 } 27289 } 27290 /* If r is OK, the ctime and mtime of old_dirp and new_dirp have been
marked 27291 * for update in search_dir. 27292 */ 27293 27294 if (r == OK && odir && !same_pdir) { 27295 /*
Update the .. entry in the directory (still points to old_dirp). */ 27296 numb = new_dirp->i_num; 27297 (void)
unlink_file(old_ip, NIL_INODE, dot2); 27298 if (search_dir(old_ip, dot2, &numb, ENTER) == OK) { 27299 /* New
link created. */ 27300 new_dirp->i_nlinks++; 27301 new_dirp->i_dirt = DIRTY; 27302 } 27303 } 27304 27305 /*
Release the inodes. */ 27306 put_inode(old_dirp); 27307 put_inode(old_ip); 27308 put_inode(new_dirp); 27309
put_inode(new_ip);

[Page 1009]

27310 return(r == SAME ? OK : r); 27311 } 27313
/*===* 27314 *
truncate * 27315
===/ 27316
PUBLIC void truncate(rip) 27317 register struct inode *rip; /* pointer to inode to be truncated */ 27318 { 27319 /*
Remove all the zones from the inode 'rip' and mark it dirty. */ 27320 27321 register block_t b; 27322 zone_t z,
zone_size, z1; 27323 off_t position; 27324 int i, scale, file_type, waspipe, single, nr_indirects; 27325 struct buf *bp;
27326 dev_t dev; 27327 27328 file_type = rip->i_mode & I_TYPE; /* check to see if file is special */ 27329 if
(file_type == I_CHAR_SPECIAL || file_type == I_BLOCK_SPECIAL) return; 27330 dev = rip->i_dev; /* device on
which inode resides */ 27331 scale = rip->i_sp->s_log_zone_size; 27332 zone_size = (zone_t)
rip->i_sp->s_block_size << scale; 27333 nr_indirects = rip->i_nindirs; 27334 27335 /* Pipes can shrink, so adjust size
to make sure all zones are removed. */ 27336 waspipe = rip->i_pipe == I_PIPE; /* TRUE is this was a pipe */ 27337 if
(waspipe) rip->i_size = PIPE_SIZE(rip->i_sp->s_block_size); 27338 27339 /* Step through the file a zone at a time,
finding and freeing the zones. */ 27340 for (position = 0; position < rip->i_size; position += zone_size) { 27341 if ((b

186

186

= read_map(rip, position)) != NO_BLOCK) { 27342 z = (zone_t) b >> scale; 27343 free_zone(dev, z); 27344 } 27345
} 27346 27347 /* All the data zones have been freed. Now free the indirect zones. */ 27348 rip->i_dirt = DIRTY;
27349 if (waspipe) { 27350 wipe_inode(rip); /* clear out inode for pipes */ 27351 return; /* indirect slots contain file
positions */ 27352 } 27353 single = rip->i_ndzones; 27354 free_zone(dev, rip->i_zone[single]); /* single indirect zone
/ 27355 if ((z = rip->i_zone[single+1]) != NO_ZONE) { 27356 / Free all the single indirect zones pointed to by the
double. */ 27357 b = (block_t) z << scale; 27358 bp = get_block(dev, b, NORMAL); /* get double indirect zone */
27359 for (i = 0; i < nr_indirects; i++) { 27360 z1 = rd_indir(bp, i); 27361 free_zone(dev, z1); 27362 } 27363 27364 /*
Now free the double indirect zone itself. */ 27365 put_block(bp, INDIRECT_BLOCK); 27366 free_zone(dev, z);
27367 } 27368 27369 /* Leave zone numbers for de(1) to recover file after an unlink(2). */

[Page 1010]

27370 } 27372
/*===* 27373 *
remove_dir * 27374
===/ 27375
PRIVATE int remove_dir(rldirp, rip, dir_name) 27376 struct inode *rldirp; /* parent directory */ 27377 struct inode
rip; / directory to be removed */ 27378 char dir_name[NAME_MAX]; /* name of directory to be removed */ 27379
{ 27380 /* A directory file has to be removed. Five conditions have to met: 27381 * - The file must be a directory
27382 * - The directory must be empty (except for . and ..) 27383 * - The final component of the path must not be . or
.. 27384 * - The directory must not be the root of a mounted file system 27385 * - The directory must not be anybody's
root/working directory 27386 */ 27387 27388 int r; 27389 register struct fproc *rfp; 27390 27391 /* search_dir checks
that rip is a directory too. */ 27392 if ((r = search_dir(rip, "", (ino_t *) 0, IS_EMPTY)) != OK) return r; 27393 27394 if
(strcmp(dir_name, ".") == 0 || strcmp(dir_name, "..") == 0)return(EINVAL); 27395 if (rip->i_num == ROOT_INODE)
return(EBUSY); /* can't remove 'root' */ 27396 27397 for (rfp = &fproc[INIT_PROC_NR + 1]; rfp <
&fproc[NR_PROCS]; rfp++) 27398 if (rfp->fp_workdir == rip || rfp->fp_rootdir == rip) return(EBUSY); 27399 /*
can't remove anybody's working dir */ 27400 27401 /* Actually try to unlink the file; fails if parent is mode 0 etc. */
27402 if ((r = unlink_file(rldirp, rip, dir_name)) != OK) return r; 27403 27404 /* Unlink . and .. from the dir. The
super user can link and unlink any dir, 27405 * so don't make too many assumptions about them. 27406 */ 27407
(void) unlink_file(rip, NIL_INODE, dot1); 27408 (void) unlink_file(rip, NIL_INODE, dot2); 27409 return(OK);
27410 } 27412
/*===* 27413 *
unlink_file * 27414
===/ 27415
PRIVATE int unlink_file(dirp, rip, file_name) 27416 struct inode *dirp; /* parent directory of file */ 27417 struct
inode *rip; /* inode of file, may be NIL_INODE too. */ 27418 char file_name[NAME_MAX]; /* name of file to be
removed */ 27419 { 27420 /* Unlink 'file_name'; rip must be the inode of 'file_name' or NIL_INODE. */ 27421 27422
ino_t numb; /* inode number */ 27423 int r; 27424 27425 /* If rip is not NIL_INODE, it is used to get faster access to
the inode. */ 27426 if (rip == NIL_INODE) { 27427 /* Search for file in directory and try to get its inode. */ 27428
err_code = search_dir(dirp, file_name, &numb, LOOK_UP); 27429 if (err_code == OK) rip = get_inode(dirp->i_dev,
(int) numb);

[Page 1011]

27430 if (err_code != OK || rip == NIL_INODE) return(err_code); 27431 } else { 27432 dup_inode(rip); /* inode will
be returned with put_inode */ 27433 } 27434 27435 r = search_dir(dirp, file_name, (ino_t *) 0, DELETE); 27436
27437 if (r == OK) { 27438 rip->i_nlinks--; /* entry deleted from parent's dir */ 27439 rip->i_update |= CTIME;
27440 rip->i_dirt = DIRTY; 27441 } 27442 27443 put_inode(rip); 27444 return(r); 27445 }
++
servers/fs/stadir.c
++
27500 /* This file contains the code for performing four system calls relating to 27501 * status and directories. 27502
* 27503 * The entry points into this file are 27504 * do_chdir: perform the CHDIR system call 27505 * do_chroot:
perform the CHROOT system call 27506 * do_stat: perform the STAT system call 27507 * do_fstat: perform the

187

187

FSTAT system call 27508 * do_fstatfs: perform the FSTATFS system call 27509 */ 27510 27511 #include "fs.h"
27512 #include <sys/stat.h> 27513 #include <sys/statfs.h> 27514 #include <minix/com.h> 27515 #include "file.h"
27516 #include "fproc.h" 27517 #include "inode.h" 27518 #include "param.h" 27519 #include "super.h" 27520 27521
FORWARD _PROTOTYPE(int change, (struct inode **iip, char *name_ptr, int len)); 27522 FORWARD
_PROTOTYPE(int change_into, (struct inode **iip, struct inode *ip)); 27523 FORWARD _PROTOTYPE(int
stat_inode, (struct inode *rip, struct filp *fil_ptr, 27524 char *user_addr)); 27525 27526
/*===* 27527 *
do_fchdir * 27528
===/ 27529
PUBLIC int do_fchdir() 27530 { 27531 /* Change directory on already-opened fd. */ 27532 struct filp *rfilp; 27533
27534 /* Is the file descriptor valid? */

[Page 1012]

27535 if ((rfilp = get_filp(m_in.fd)) == NIL_FILP) return(err_code); 27536 return change_into(&fp->fp_workdir,
rfilp->filp_ino); 27537 } 27539
/*===* 27540 *
do_chdir * 27541
===/ 27542
PUBLIC int do_chdir() 27543 { 27544 /* Change directory. This function is also called by MM to simulate a chdir
27545 * in order to do EXEC, etc. It also changes the root directory, the uids and 27546 * gids, and the umask. 27547
*/ 27548 27549 int r; 27550 register struct fproc *rfp; 27551 27552 if (who == PM_PROC_NR) { 27553 rfp =
&fproc[m_in.slot1]; 27554 put_inode(fp->fp_rootdir); 27555 dup_inode(fp->fp_rootdir = rfp->fp_rootdir); 27556
put_inode(fp->fp_workdir); 27557 dup_inode(fp->fp_workdir = rfp->fp_workdir); 27558 27559 /* MM uses access()
to check permissions. To make this work, pretend 27560 * that the user's real ids are the same as the user's effective
ids. 27561 * FS calls other than access() do not use the real ids, so are not 27562 * affected. 27563 */ 27564
fp->fp_realuid = 27565 fp->fp_effuid = rfp->fp_effuid; 27566 fp->fp_realgid = 27567 fp->fp_effgid = rfp->fp_effgid;
27568 fp->fp_umask = rfp->fp_umask; 27569 return(OK); 27570 } 27571 27572 /* Perform the chdir(name) system
call. */ 27573 r = change(&fp->fp_workdir, m_in.name, m_in.name_length); 27574 return(r); 27575 } 27577
/*===* 27578 *
do_chroot * 27579
===/ 27580
PUBLIC int do_chroot() 27581 { 27582 /* Perform the chroot(name) system call. */ 27583 27584 register int r; 27585
27586 if (!super_user) return(EPERM); /* only su may chroot() */ 27587 r = change(&fp->fp_rootdir, m_in.name,
m_in.name_length); 27588 return(r); 27589 }

[Page 1013]

27591 /*===*
27592 * change * 27593
===/ 27594
PRIVATE int change(iip, name_ptr, len) 27595 struct inode **iip; /* pointer to the inode pointer for the dir */ 27596
char *name_ptr; /* pointer to the directory name to change to */ 27597 int len; /* length of the directory name string */
27598 { 27599 /* Do the actual work for chdir() and chroot(). */ 27600 struct inode *rip; 27601 27602 /* Try to open
the new directory. */ 27603 if (fetch_name(name_ptr, len, M3) != OK) return(err_code); 27604 if ((rip =
eat_path(user_path)) == NIL_INODE) return(err_code); 27605 return change_into(iip, rip); 27606 } 27608
/*===* 27609 *
change_into * 27610
===/ 27611
PRIVATE int change_into(iip, rip) 27612 struct inode **iip; /* pointer to the inode pointer for the dir */ 27613 struct
inode *rip; /* this is what the inode has to become */ 27614 { 27615 register int r; 27616 27617 /* It must be a
directory and also be searchable. */ 27618 if ((rip->i_mode & I_TYPE) != I_DIRECTORY) 27619 r = ENOTDIR;
27620 else 27621 r = forbidden(rip, X_BIT); /* check if dir is searchable */ 27622 27623 /* If error, return inode. */
27624 if (r != OK) { 27625 put_inode(rip); 27626 return(r); 27627 } 27628 27629 /* Everything is OK. Make the

188

188

change. */ 27630 put_inode(*iip); /* release the old directory */ 27631 *iip = rip; /* acquire the new one */ 27632
return(OK); 27633 } 27635
/*===* 27636 *
do_stat * 27637
===/ 27638
PUBLIC int do_stat() 27639 { 27640 /* Perform the stat(name, buf) system call. */ 27641 27642 register struct inode
rip; 27643 register int r; 27644 27645 / Both stat() and fstat() use the same routine to do the real work. That 27646 *
routine expects an inode, so acquire it temporarily. 27647 */ 27648 if (fetch_name(m_in.name1, m_in.name1_length,
M1) != OK) return(err_code); 27649 if ((rip = eat_path(user_path)) == NIL_INODE) return(err_code); 27650 r =
stat_inode(rip, NIL_FILP, m_in.name2); /* actually do the work.*/

[Page 1014]

27651 put_inode(rip); /* release the inode */ 27652 return(r); 27653 } 27655
/*===* 27656 *
do_fstat * 27657
===/ 27658
PUBLIC int do_fstat() 27659 { 27660 /* Perform the fstat(fd, buf) system call. */ 27661 27662 register struct filp
rfilp; 27663 27664 / Is the file descriptor valid? */ 27665 if ((rfilp = get_filp(m_in.fd)) == NIL_FILP)
return(err_code); 27666 27667 return(stat_inode(rfilp->filp_ino, rfilp, m_in.buffer)); 27668 } 27670
/*===* 27671 *
stat_inode * 27672
===/ 27673
PRIVATE int stat_inode(rip, fil_ptr, user_addr) 27674 register struct inode *rip; /* pointer to inode to stat */ 27675
struct filp *fil_ptr; /* filp pointer, supplied by 'fstat' */ 27676 char *user_addr; /* user space address where stat buf
goes */ 27677 { 27678 /* Common code for stat and fstat system calls. */ 27679 27680 struct stat statbuf; 27681
mode_t mo; 27682 int r, s; 27683 27684 /* Update the atime, ctime, and mtime fields in the inode, if need be. */ 27685
if (rip->i_update) update_times(rip); 27686 27687 /* Fill in the statbuf struct. */ 27688 mo = rip->i_mode & I_TYPE;
27689 27690 /* true iff special */ 27691 s = (mo == I_CHAR_SPECIAL || mo == I_BLOCK_SPECIAL); 27692
27693 statbuf.st_dev = rip->i_dev; 27694 statbuf.st_ino = rip->i_num; 27695 statbuf.st_mode = rip->i_mode; 27696
statbuf.st_nlink = rip->i_nlinks; 27697 statbuf.st_uid = rip->i_uid; 27698 statbuf.st_gid = rip->i_gid; 27699
statbuf.st_rdev = (dev_t) (s ? rip->i_zone[0] : NO_DEV); 27700 statbuf.st_size = rip->i_size; 27701 27702 if
(rip->i_pipe == I_PIPE) { 27703 statbuf.st_mode &= ~I_REGULAR; /* wipe out I_REGULAR bit for pipes */ 27704
if (fil_ptr != NIL_FILP && fil_ptr->filp_mode & R_BIT) 27705 statbuf.st_size -= fil_ptr->filp_pos; 27706 } 27707
27708 statbuf.st_atime = rip->i_atime; 27709 statbuf.st_mtime = rip->i_mtime; 27710 statbuf.st_ctime = rip->i_ctime;

[Page 1015]

27711 27712 /* Copy the struct to user space. */ 27713 r = sys_datacopy(FS_PROC_NR, (vir_bytes) &statbuf, 27714
who, (vir_bytes) user_addr, (phys_bytes) sizeof(statbuf)); 27715 return(r); 27716 } 27718
/*===* 27719 *
do_fstatfs * 27720
===/ 27721
PUBLIC int do_fstatfs() 27722 { 27723 /* Perform the fstatfs(fd, buf) system call. */ 27724 struct statfs st; 27725
register struct filp *rfilp; 27726 int r; 27727 27728 /* Is the file descriptor valid? */ 27729 if ((rfilp =
get_filp(m_in.fd)) == NIL_FILP) return(err_code); 27730 27731 st.f_bsize = rfilp->filp_ino->i_sp->s_block_size;
27732 27733 r = sys_datacopy(FS_PROC_NR, (vir_bytes) &st, 27734 who, (vir_bytes) m_in.buffer, (phys_bytes)
sizeof(st)); 27735 27736 return(r); 27737 }
++
servers/fs/protect.c
++
27800 /* This file deals with protection in the file system. It contains the code 27801 * for four system calls that relate
to protection. 27802 * 27803 * The entry points into this file are 27804 * do_chmod: perform the CHMOD system call

189

189

27805 * do_chown: perform the CHOWN system call 27806 * do_umask: perform the UMASK system call 27807 *
do_access: perform the ACCESS system call 27808 * forbidden: check to see if a given access is allowed on a given
inode 27809 */ 27810 27811 #include "fs.h" 27812 #include <unistd.h> 27813 #include <minix/callnr.h> 27814
#include "buf.h" 27815 #include "file.h" 27816 #include "fproc.h" 27817 #include "inode.h" 27818 #include "param.h"
27819 #include "super.h" 27820

[Page 1016]

27821 /*===*
27822 * do_chmod * 27823
===/ 27824
PUBLIC int do_chmod() 27825 { 27826 /* Perform the chmod(name, mode) system call. */ 27827 27828 register
struct inode *rip; 27829 register int r; 27830 27831 /* Temporarily open the file. */ 27832 if (fetch_name(m_in.name,
m_in.name_length, M3) != OK) return(err_code); 27833 if ((rip = eat_path(user_path)) == NIL_INODE)
return(err_code); 27834 27835 /* Only the owner or the super_user may change the mode of a file. 27836 * No one
may change the mode of a file on a read-only file system. 27837 */ 27838 if (rip->i_uid != fp->fp_effuid &&
!super_user) 27839 r = EPERM; 27840 else 27841 r = read_only(rip); 27842 27843 /* If error, return inode. */ 27844
if (r != OK) { 27845 put_inode(rip); 27846 return(r); 27847 } 27848 27849 /* Now make the change. Clear setgid bit if
file is not in caller's grp */ 27850 rip->i_mode = (rip->i_mode & ~ALL_MODES) | (m_in.mode & ALL_MODES);
27851 if (!super_user && rip->i_gid != fp->fp_effgid)rip->i_mode &= ~I_SET_GID_BIT; 27852 rip->i_update |=
CTIME; 27853 rip->i_dirt = DIRTY; 27854 27855 put_inode(rip); 27856 return(OK); 27857 } 27859
/*===* 27860 *
do_chown * 27861
===/ 27862
PUBLIC int do_chown() 27863 { 27864 /* Perform the chown(name, owner, group) system call. */ 27865 27866
register struct inode *rip; 27867 register int r; 27868 27869 /* Temporarily open the file. */ 27870 if
(fetch_name(m_in.name1, m_in.name1_length, M1) != OK) return(err_code); 27871 if ((rip = eat_path(user_path))
== NIL_INODE) return(err_code); 27872 27873 /* Not permitted to change the owner of a file on a read-only file sys.
/ 27874 r = read_only(rip); 27875 if (r == OK) { 27876 / FS is R/W. Whether call is allowed depends on ownership,
etc. */ 27877 if (super_user) { 27878 /* The super user can do anything. */ 27879 rip->i_uid = m_in.owner; /* others
later */ 27880 } else {

[Page 1017]

27881 /* Regular users can only change groups of their own files. */ 27882 if (rip->i_uid != fp->fp_effuid) r =
EPERM; 27883 if (rip->i_uid != m_in.owner) r = EPERM; /* no giving away */ 27884 if (fp->fp_effgid !=
m_in.group) r = EPERM; 27885 } 27886 } 27887 if (r == OK) { 27888 rip->i_gid = m_in.group; 27889 rip->i_mode
&= ~(I_SET_UID_BIT | I_SET_GID_BIT); 27890 rip->i_update |= CTIME; 27891 rip->i_dirt = DIRTY; 27892 }
27893 27894 put_inode(rip); 27895 return(r); 27896 } 27898
/*===* 27899 *
do_umask * 27900
===/ 27901
PUBLIC int do_umask() 27902 { 27903 /* Perform the umask(co_mode) system call. */ 27904 register mode_t r;
27905 27906 r = ~fp->fp_umask; /* set 'r' to complement of old mask */ 27907 fp->fp_umask = ~(m_in.co_mode &
RWX_MODES); 27908 return(r); /* return complement of old mask */ 27909 } 27911
/*===* 27912 *
do_access * 27913
===/ 27914
PUBLIC int do_access() 27915 { 27916 /* Perform the access(name, mode) system call. */ 27917 27918 struct inode
rip; 27919 register int r; 27920 27921 / First check to see if the mode is correct. */ 27922 if ((m_in.mode &
~(R_OK | W_OK | X_OK)) != 0 && m_in.mode != F_OK) 27923 return(EINVAL); 27924 27925 /* Temporarily
open the file whose access is to be checked. */ 27926 if (fetch_name(m_in.name, m_in.name_length, M3) != OK)
return(err_code); 27927 if ((rip = eat_path(user_path)) == NIL_INODE) return(err_code); 27928 27929 /* Now check
the permissions. */ 27930 r = forbidden(rip, (mode_t) m_in.mode); 27931 put_inode(rip); 27932 return(r); 27933 }

190

190

27935 /*===*
27936 * forbidden * 27937
===/ 27938
PUBLIC int forbidden(register struct inode *rip, mode_t access_desired) 27939 { 27940 /* Given a pointer to an
inode, 'rip', and the access desired, determine

[Page 1018]

27941 * if the access is allowed, and if not why not. The routine looks up the 27942 * caller's uid in the 'fproc' table. If
access is allowed, OK is returned 27943 * if it is forbidden, EACCES is returned. 27944 */ 27945 27946 register struct
inode *old_rip = rip; 27947 register struct super_block *sp; 27948 register mode_t bits, perm_bits; 27949 int r, shift,
test_uid, test_gid, type; 27950 27951 if (rip->i_mount == I_MOUNT) /* The inode is mounted on. */ 27952 for (sp =
&super_block[1]; sp < &super_block[NR_SUPERS]; sp++) 27953 if (sp->s_imount == rip) { 27954 rip =
get_inode(sp->s_dev, ROOT_INODE); 27955 break; 27956 } /* if */ 27957 27958 /* Isolate the relevant rwx bits
from the mode. */ 27959 bits = rip->i_mode; 27960 test_uid = (call_nr == ACCESS ? fp->fp_realuid : fp->fp_effuid);
27961 test_gid = (call_nr == ACCESS ? fp->fp_realgid : fp->fp_effgid); 27962 if (test_uid == SU_UID) { 27963 /*
Grant read and write permission. Grant search permission for 27964 * directories. Grant execute permission (for
non-directories) if 27965 * and only if one of the 'X' bits is set. 27966 */ 27967 if ((bits & I_TYPE) ==
I_DIRECTORY || 27968 bits & ((X_BIT << 6) | (X_BIT << 3) | X_BIT)) 27969 perm_bits = R_BIT | W_BIT |
X_BIT; 27970 else 27971 perm_bits = R_BIT | W_BIT; 27972 } else { 27973 if (test_uid == rip->i_uid) shift = 6; /*
owner */ 27974 else if (test_gid == rip->i_gid) shift = 3; /* group */ 27975 else shift = 0; /* other */ 27976 perm_bits
= (bits >> shift) & (R_BIT | W_BIT | X_BIT); 27977 } 27978 27979 /* If access desired is not a subset of what is
allowed, it is refused. */ 27980 r = OK; 27981 if ((perm_bits | access_desired) != perm_bits) r = EACCES; 27982
27983 /* Check to see if someone is trying to write on a file system that is 27984 * mounted read-only. 27985 */ 27986
type = rip->i_mode & I_TYPE; 27987 if (r == OK) 27988 if (access_desired & W_BIT) 27989 r = read_only(rip);
27990 27991 if (rip != old_rip) put_inode(rip); 27992 27993 return(r); 27994 } 27996
/*===* 27997 *
read_only * 27998
===/ 27999
PUBLIC int read_only(ip) 28000 struct inode *ip; /* ptr to inode whose file sys is to be cked */

[Page 1019]

28001 { 28002 /* Check to see if the file system on which the inode 'ip' resides is mounted 28003 * read only. If so,
return EROFS, else return OK. 28004 */ 28005 28006 register struct super_block *sp; 28007 28008 sp = ip->i_sp;
28009 return(sp->s_rd_only ? EROFS : OK); 28010 }
++
servers/fs/dmap.c
++
28100 /* This file contains the table with device <-> driver mappings. It also 28101 * contains some routines to
dynamically add and/ or remove device drivers 28102 * or change mappings. 28103 */ 28104 28105 #include "fs.h"
28106 #include "fproc.h" 28107 #include <string.h> 28108 #include <stdlib.h> 28109 #include <ctype.h> 28110
#include <unistd.h> 28111 #include <minix/com.h> 28112 #include "param.h" 28113 28114 /* Some devices may or
may not be there in the next table. */ 28115 #define DT(enable, opcl, io, driver, flags) \ 28116 {
(enable?(opcl):no_dev), (enable?(io):0), \ 28117 (enable?(driver):0), (flags) }, 28118 #define NC(x) (NR_CTRLRS >=
(x)) 28119 28120 /* The order of the entries here determines the mapping between major device 28121 * numbers and
tasks. The first entry (major device 0) is not used. The 28122 * next entry is major device 1, etc. Character and block
devices can be 28123 * intermixed at random. The ordering determines the device numbers in /dev/. 28124 * Note that
FS knows the device number of /dev/ram/ to load the RAM disk. 28125 * Also note that the major device numbers
used in /dev/ are NOT the same as 28126 * the process numbers of the device drivers. 28127 */ 28128 /* 28129 Driver
enabled Open/Cls I/O Driver # Flags Device File 28130 -------------- -------- ------ ----------- ----- ------ ---- 28131 */
28132 struct dmap dmap[NR_DEVICES]; /* actual map */ 28133 PRIVATE struct dmap init_dmap[] = { 28134 DT(1,
no_dev, 0, 0, 0) /* 0 = not used */ 28135 DT(1, gen_opcl, gen_io, MEM_PROC_NR, 0) /* 1 = /dev/mem */ 28136
DT(0, no_dev, 0, 0, DMAP_MUTABLE) /* 2 = /dev/fd0 */ 28137 DT(0, no_dev, 0, 0, DMAP_MUTABLE) /* 3 =

191

191

/dev/c0 */ 28138 DT(1, tty_opcl, gen_io, TTY_PROC_NR, 0) /* 4 = /dev/tty00 */ 28139 DT(1, ctty_opcl,ctty_io,
TTY_PROC_NR, 0) /* 5 = /dev/tty */ 28140 DT(0, no_dev, 0, NONE, DMAP_MUTABLE) /* 6 = /dev/lp */ 28141
DT(1, no_dev, 0, 0, DMAP_MUTABLE) /* 7 = /dev/ip */ 28142 DT(0, no_dev, 0, NONE, DMAP_MUTABLE) /* 8
= /dev/c1 */ 28143 DT(0, 0, 0, 0, DMAP_MUTABLE) /* 9 = not used */ 28144 DT(0, no_dev, 0, 0,
DMAP_MUTABLE) /*10 = /dev/c2 */

[Page 1020]

28145 DT(0, 0, 0, 0, DMAP_MUTABLE) /*11 = not used */ 28146 DT(0, no_dev, 0, NONE, DMAP_MUTABLE)
/*12 = /dev/c3 */ 28147 DT(0, no_dev, 0, NONE, DMAP_MUTABLE) /*13 = /dev/audio */ 28148 DT(0, no_dev, 0,
NONE, DMAP_MUTABLE) /*14 = /dev/mixer */ 28149 DT(1, gen_opcl, gen_io, LOG_PROC_NR, 0) /*15 =
/dev/klog */ 28150 DT(0, no_dev, 0, NONE, DMAP_MUTABLE) /*16 = /dev/random*/ 28151 DT(0, no_dev, 0,
NONE, DMAP_MUTABLE) /*17 = /dev/cmos */ 28152 }; 28153 28154
/*===* 28155 *
do_devctl * 28156
===/ 28157
PUBLIC int do_devctl() 28158 { 28159 int result; 28160 28161 switch(m_in.ctl_req) { 28162 case DEV_MAP: 28163
/* Try to update device mapping. */ 28164 result = map_driver(m_in.dev_nr, m_in.driver_nr, m_in.dev_style); 28165
break; 28166 case DEV_UNMAP: 28167 result = ENOSYS; 28168 break; 28169 default: 28170 result = EINVAL;
28171 } 28172 return(result); 28173 } 28175
/*===* 28176 *
map_driver * 28177
===/ 28178
PUBLIC int map_driver(major, proc_nr, style) 28179 int major; /* major number of the device */ 28180 int proc_nr; /*
process number of the driver */ 28181 int style; /* style of the device */ 28182 { 28183 /* Set a new device driver
mapping in the dmap table. Given that correct 28184 * arguments are given, this only works if the entry is mutable and
the 28185 * current driver is not busy. 28186 * Normal error codes are returned so that this function can be used from
28187 * a system call that tries to dynamically install a new driver. 28188 */ 28189 struct dmap *dp; 28190 28191 /*
Get pointer to device entry in the dmap table. */ 28192 if (major >= NR_DEVICES) return(ENODEV); 28193 dp =
&dmap[major]; 28194 28195 /* See if updating the entry is allowed. */ 28196 if (! (dp->dmap_flags &
DMAP_MUTABLE)) return(EPERM); 28197 if (dp->dmap_flags & DMAP_BUSY) return(EBUSY); 28198 28199 /*
Check process number of new driver. */ 28200 if (! isokprocnr(proc_nr)) return(EINVAL); 28201 28202 /* Try to
update the entry. */ 28203 switch (style) { 28204 case STYLE_DEV: dp->dmap_opcl = gen_opcl; break;

[Page 1021]

28205 case STYLE_TTY: dp->dmap_opcl = tty_opcl; break; 28206 case STYLE_CLONE: dp->dmap_opcl =
clone_opcl; break; 28207 default: return(EINVAL); 28208 } 28209 dp->dmap_io = gen_io; 28210 dp->dmap_driver =
proc_nr; 28211 return(OK); 28212 } 28214
/*===* 28215 *
build_dmap * 28216
===/ 28217
PUBLIC void build_dmap() 28218 { 28219 /* Initialize the table with all device <-> driver mappings. Then, map
28220 * the boot driver to a controller and update the dmap table to that 28221 * selection. The boot driver and the
controller it handles are set at 28222 * the boot monitor. 28223 */ 28224 char driver[16]; 28225 char *controller =
"c##"; 28226 int nr, major = -1; 28227 int i,s; 28228 struct dmap *dp; 28229 28230 /* Build table with device <->
driver mappings. */ 28231 for (i=0; i<NR_DEVICES; i++) { 28232 dp = &dmap[i]; 28233 if (i <
sizeof(init_dmap)/sizeof(struct dmap) && 28234 init_dmap[i].dmap_opcl != no_dev) { /* a preset driver */ 28235
dp->dmap_opcl = init_dmap[i].dmap_opcl; 28236 dp->dmap_io = init_dmap[i].dmap_io; 28237 dp->dmap_driver =
init_dmap[i].dmap_driver; 28238 dp->dmap_flags = init_dmap[i].dmap_flags; 28239 } else { /* no default */ 28240
dp->dmap_opcl = no_dev; 28241 dp->dmap_io = 0; 28242 dp->dmap_driver = 0; 28243 dp->dmap_flags =
DMAP_MUTABLE; 28244 } 28245 } 28246 28247 /* Get settings of 'controller' and 'driver' at the boot monitor. */
28248 if ((s = env_get_param("label", driver, sizeof(driver))) != OK) 28249 panic(__FILE__,"couldn't get boot
monitor parameter 'driver'", s); 28250 if ((s = env_get_param("controller", controller, sizeof(controller))) != OK)

192

192

28251 panic(__FILE__,"couldn't get boot monitor parameter 'controller'", s); 28252 28253 /* Determine major number
to map driver onto. */ 28254 if (controller[0] == 'f' && controller[1] == 'd') { 28255 major = FLOPPY_MAJOR;
28256 } 28257 else if (controller[0] == 'c' && isdigit(controller[1])) { 28258 if ((nr = (unsigned) atoi(&controller[1]))
> NR_CTRLRS) 28259 panic(__FILE__,"monitor 'controller' maximum 'c#' is", NR_CTRLRS); 28260 major =
CTRLR(nr); 28261 } 28262 else { 28263 panic(__FILE__,"monitor 'controller' syntax is 'c#' of 'fd'", NO_NUM);
28264 }

[Page 1022]

28265 28266 /* Now try to set the actual mapping and report to the user. */ 28267 if ((s=map_driver(major,
DRVR_PROC_NR, STYLE_DEV)) != OK) 28268 panic(__FILE__,"map_driver failed",s); 28269 printf("Boot
medium driver: %s driver mapped onto controller %s.\n", 28270 driver, controller); 28271 }
++
servers/fs/device.c
++
28300 /* When a needed block is not in the cache, it must be fetched from the disk. 28301 * Special character files also
require I/O. The routines for these are here. 28302 * 28303 * The entry points in this file are: 28304 * dev_open: FS
opens a device 28305 * dev_close: FS closes a device 28306 * dev_io: FS does a read or write on a device 28307 *
dev_status: FS processes callback request alert 28308 * gen_opcl: generic call to a task to perform an open/close
28309 * gen_io: generic call to a task to perform an I/O operation 28310 * no_dev: open/close processing for devices
that don't exist 28311 * tty_opcl: perform tty-specific processing for open/close 28312 * ctty_opcl: perform
controlling-tty-specific processing for open/close 28313 * ctty_io: perform controlling-tty-specific processing for I/O
28314 * do_ioctl: perform the IOCTL system call 28315 * do_setsid: perform the SETSID system call (FS side) 28316
*/ 28317 28318 #include "fs.h" 28319 #include <fcntl.h> 28320 #include <minix/callnr.h> 28321 #include
<minix/com.h> 28322 #include "file.h" 28323 #include "fproc.h" 28324 #include "inode.h" 28325 #include "param.h"
28326 28327 #define ELEMENTS(a) (sizeof(a)/sizeof((a)[0])) 28328 28329 extern int dmap_size; 28330 28331
/*===* 28332 *
dev_open * 28333
===/ 28334
PUBLIC int dev_open(dev, proc, flags) 28335 dev_t dev; /* device to open */ 28336 int proc; /* process to open for */
28337 int flags; /* mode bits and flags */ 28338 { 28339 int major, r; 28340 struct dmap *dp; 28341 28342 /*
Determine the major device number call the device class specific 28343 * open/close routine. (This is the only routine
that must check the 28344 * device number for being in range. All others can trust this check.)

[Page 1023]

28345 */ 28346 major = (dev >> MAJOR) & BYTE; 28347 if (major >= NR_DEVICES) major = 0; 28348 dp =
&dmap[major]; 28349 r = (*dp->dmap_opcl)(DEV_OPEN, dev, proc, flags); 28350 if (r == SUSPEND)
panic(__FILE__,"suspend on open from", dp->dmap_driver); 28351 return(r); 28352 } 28354
/*===* 28355 *
dev_close * 28356
===/ 28357
PUBLIC void dev_close(dev) 28358 dev_t dev; /* device to close */ 28359 { 28360 (void) (*dmap[(dev >> MAJOR)
& BYTE].dmap_opcl)(DEV_CLOSE, dev, 0, 0); 28361 } 28363
/*===* 28364 *
dev_status * 28365
===/ 28366
PUBLIC void dev_status(message *m) 28367 { 28368 message st; 28369 int d, get_more = 1; 28370 28371 for(d = 0;
d < NR_DEVICES; d++) 28372 if (dmap[d].dmap_driver == m->m_source) 28373 break; 28374 28375 if (d >=
NR_DEVICES) 28376 return; 28377 28378 do { 28379 int r; 28380 st.m_type = DEV_STATUS; 28381 if
((r=sendrec(m->m_source, &st)) != OK) 28382 panic(__FILE__,"couldn't sendrec for DEV_STATUS", r); 28383
28384 switch(st.m_type) { 28385 case DEV_REVIVE: 28386 revive(st.REP_PROC_NR, st.REP_STATUS); 28387
break; 28388 case DEV_IO_READY: 28389 select_notified(d, st.DEV_MINOR, st.DEV_SEL_OPS); 28390 break;
28391 default: 28392 printf("FS: unrecognized rep %d to DEV_STATUS\n",st.m_type); 28393 /* Fall through. */

193

193

28394 case DEV_NO_STATUS: 28395 get_more = 0; 28396 break; 28397 } 28398 } while(get_more); 28399 28400
return; 28401 }

[Page 1024]

28403 /*===*
28404 * dev_io * 28405
===/ 28406
PUBLIC int dev_io(op, dev, proc, buf, pos, bytes, flags) 28407 int op; /* DEV_READ, DEV_WRITE, DEV_IOCTL,
etc. */ 28408 dev_t dev; /* major-minor device number */ 28409 int proc; /* in whose address space is buf? */ 28410
void *buf; /* virtual address of the buffer */ 28411 off_t pos; /* byte position */ 28412 int bytes; /* how many bytes to
transfer */ 28413 int flags; /* special flags, like O_NONBLOCK */ 28414 { 28415 /* Read or write from a device. The
parameter 'dev' tells which one. */ 28416 struct dmap *dp; 28417 message dev_mess; 28418 28419 /* Determine task
dmap. */ 28420 dp = &dmap[(dev >> MAJOR) & BYTE]; 28421 28422 /* Set up the message passed to task. */ 28423
dev_mess.m_type = op; 28424 dev_mess.DEVICE = (dev >> MINOR) & BYTE; 28425 dev_mess.POSITION = pos;
28426 dev_mess.PROC_NR = proc; 28427 dev_mess.ADDRESS = buf; 28428 dev_mess.COUNT = bytes; 28429
dev_mess.TTY_FLAGS = flags; 28430 28431 /* Call the task. */ 28432 (*dp->dmap_io)(dp->dmap_driver,
&dev_mess); 28433 28434 /* Task has completed. See if call completed. */ 28435 if (dev_mess.REP_STATUS ==
SUSPEND) { 28436 if (flags & O_NONBLOCK) { 28437 /* Not supposed to block. */ 28438 dev_mess.m_type =
CANCEL; 28439 dev_mess.PROC_NR = proc; 28440 dev_mess.DEVICE = (dev >> MINOR) & BYTE; 28441
(*dp->dmap_io)(dp->dmap_driver, &dev_mess); 28442 if (dev_mess.REP_STATUS == EINTR)
dev_mess.REP_STATUS = EAGAIN; 28443 } else { 28444 /* Suspend user. */ 28445 suspend(dp->dmap_driver);
28446 return(SUSPEND); 28447 } 28448 } 28449 return(dev_mess.REP_STATUS); 28450 } 28452
/*===* 28453 *
gen_opcl * 28454
===/ 28455
PUBLIC int gen_opcl(op, dev, proc, flags) 28456 int op; /* operation, DEV_OPEN or DEV_CLOSE */ 28457 dev_t
dev; /* device to open or close */ 28458 int proc; /* process to open/close for */ 28459 int flags; /* mode bits and flags
/ 28460 { 28461 / Called from the dmap struct in table.c on opens & closes of special files.*/ 28462 struct dmap
*dp;

[Page 1025]

28463 message dev_mess; 28464 28465 /* Determine task dmap. */ 28466 dp = &dmap[(dev >> MAJOR) & BYTE];
28467 28468 dev_mess.m_type = op; 28469 dev_mess.DEVICE = (dev >> MINOR) & BYTE; 28470
dev_mess.PROC_NR = proc; 28471 dev_mess.COUNT = flags; 28472 28473 /* Call the task. */ 28474
(*dp->dmap_io)(dp->dmap_driver, &dev_mess); 28475 28476 return(dev_mess.REP_STATUS); 28477 } 28479
/*===* 28480 *
tty_opcl * 28481
===/ 28482
PUBLIC int tty_opcl(op, dev, proc, flags) 28483 int op; /* operation, DEV_OPEN or DEV_CLOSE */ 28484 dev_t
dev; /* device to open or close */ 28485 int proc; /* process to open/close for */ 28486 int flags; /* mode bits and flags
/ 28487 { 28488 / This procedure is called from the dmap struct on tty open/close. */ 28489 28490 int r; 28491
register struct fproc *rfp; 28492 28493 /* Add O_NOCTTY to the flags if this process is not a session leader, or 28494
* if it already has a controlling tty, or if it is someone elses 28495 * controlling tty. 28496 */ 28497 if (!fp->fp_sesldr ||
fp->fp_tty != 0) { 28498 flags |= O_NOCTTY; 28499 } else { 28500 for (rfp = &fproc[0]; rfp < &fproc[NR_PROCS];
rfp++) { 28501 if (rfp->fp_tty == dev) flags |= O_NOCTTY; 28502 } 28503 } 28504 28505 r = gen_opcl(op, dev,
proc, flags); 28506 28507 /* Did this call make the tty the controlling tty? */ 28508 if (r == 1) { 28509 fp->fp_tty =
dev; 28510 r = OK; 28511 } 28512 return(r); 28513 } 28515
/*===* 28516 *
ctty_opcl * 28517
===/ 28518
PUBLIC int ctty_opcl(op, dev, proc, flags) 28519 int op; /* operation, DEV_OPEN or DEV_CLOSE */ 28520 dev_t
dev; /* device to open or close */ 28521 int proc; /* process to open/close for */ 28522 int flags; /* mode bits and flags

194

194

*/

[Page 1026]

28523 { 28524 /* This procedure is called from the dmap struct in table.c on opening/closing 28525 * /dev/tty, the
magic device that translates to the controlling tty. 28526 */ 28527 28528 return(fp->fp_tty == 0 ? ENXIO : OK);
28529 } 28531
/*===* 28532 *
do_setsid * 28533
===/ 28534
PUBLIC int do_setsid() 28535 { 28536 /* Perform the FS side of the SETSID call, i.e. get rid of the controlling 28537
* terminal of a process, and make the process a session leader. 28538 */ 28539 register struct fproc *rfp; 28540 28541
/* Only MM may do the SETSID call directly. */ 28542 if (who != PM_PROC_NR) return(ENOSYS); 28543 28544 /*
Make the process a session leader with no controlling tty. */ 28545 rfp = &fproc[m_in.slot1]; 28546 rfp->fp_sesldr =
TRUE; 28547 rfp->fp_tty = 0; 28548 return(OK); 28549 } 28551
/*===* 28552 *
do_ioctl * 28553
===/ 28554
PUBLIC int do_ioctl() 28555 { 28556 /* Perform the ioctl(ls_fd, request, argx) system call (uses m2 fmt). */ 28557
28558 struct filp *f; 28559 register struct inode *rip; 28560 dev_t dev; 28561 28562 if ((f = get_filp(m_in.ls_fd)) ==
NIL_FILP) return(err_code); 28563 rip = f->filp_ino; /* get inode pointer */ 28564 if ((rip->i_mode & I_TYPE) !=
I_CHAR_SPECIAL 28565 && (rip->i_mode & I_TYPE) != I_BLOCK_SPECIAL) return(ENOTTY); 28566 dev =
(dev_t) rip->i_zone[0]; 28567 28568 return(dev_io(DEV_IOCTL, dev, who, m_in.ADDRESS, 0L, 28569
m_in.REQUEST, f->filp_flags)); 28570 } 28572
/*===* 28573 *
gen_io * 28574
===/ 28575
PUBLIC void gen_io(task_nr, mess_ptr) 28576 int task_nr; /* which task to call */ 28577 message *mess_ptr; /*
pointer to message for task */ 28578 { 28579 /* All file system I/O ultimately comes down to I/O on major/minor
device 28580 * pairs. These lead to calls on the following routines via the dmap table. 28581 */ 28582

[Page 1027]

28583 int r, proc_nr; 28584 message local_m; 28585 28586 proc_nr = mess_ptr->PROC_NR; 28587 if (!
isokprocnr(proc_nr)) { 28588 printf("FS: warning, got illegal process number (%d) from %d\n", 28589
mess_ptr->PROC_NR, mess_ptr->m_source); 28590 return; 28591 } 28592 28593 while ((r = sendrec(task_nr,
mess_ptr)) == ELOCKED) { 28594 /* sendrec() failed to avoid deadlock. The task 'task_nr' is 28595 * trying to send a
REVIVE message for an earlier request. 28596 * Handle it and go try again. 28597 */ 28598 if ((r = receive(task_nr,
&local_m)) != OK) { 28599 break; 28600 } 28601 28602 /* If we're trying to send a cancel message to a task which
has just 28603 * sent a completion reply, ignore the reply and abort the cancel 28604 * request. The caller will do the
revive for the process. 28605 */ 28606 if (mess_ptr->m_type == CANCEL && local_m.REP_PROC_NR == proc_nr)
{ 28607 return; 28608 } 28609 28610 /* Otherwise it should be a REVIVE. */ 28611 if (local_m.m_type != REVIVE)
{ 28612 printf(28613 "fs: strange device reply from %d, type = %d, proc = %d (1)\n", 28614 local_m.m_source,
28615 local_m.m_type, local_m.REP_PROC_NR); 28616 continue; 28617 } 28618 28619
revive(local_m.REP_PROC_NR, local_m.REP_STATUS); 28620 } 28621 28622 /* The message received may be a
reply to this call, or a REVIVE for some 28623 * other process. 28624 */ 28625 for (;;) { 28626 if (r != OK) { 28627 if
(r == EDEADDST) return; /* give up */ 28628 else panic(__FILE__,"call_task: can't send/receive", r); 28629 } 28630
28631 /* Did the process we did the sendrec() for get a result? */ 28632 if (mess_ptr->REP_PROC_NR == proc_nr) {
28633 break; 28634 } else if (mess_ptr->m_type == REVIVE) { 28635 /* Otherwise it should be a REVIVE. */ 28636
revive(mess_ptr->REP_PROC_NR, mess_ptr->REP_STATUS); 28637 } else { 28638 printf(28639 "fs: strange
device reply from %d, type = %d, proc = %d (2)\n", 28640 mess_ptr->m_source, 28641 mess_ptr->m_type,
mess_ptr->REP_PROC_NR); 28642 return;

[Page 1028]

195

195

28643 } 28644 28645 r = receive(task_nr, mess_ptr); 28646 } 28647 } 28649
/*===* 28650 *
ctty_io * 28651
===/ 28652
PUBLIC void ctty_io(task_nr, mess_ptr) 28653 int task_nr; /* not used - for compatibility with dmap_t */ 28654
message *mess_ptr; /* pointer to message for task */ 28655 { 28656 /* This routine is only called for one device,
namely /dev/tty. Its job 28657 * is to change the message to use the controlling terminal, instead of the 28658 *
major/minor pair for /dev/tty itself. 28659 */ 28660 28661 struct dmap *dp; 28662 28663 if (fp->fp_tty == 0) { 28664
/* No controlling tty present anymore, return an I/O error. */ 28665 mess_ptr->REP_STATUS = EIO; 28666 } else {
28667 /* Substitute the controlling terminal device. */ 28668 dp = &dmap[(fp->fp_tty >> MAJOR) & BYTE]; 28669
mess_ptr->DEVICE = (fp->fp_tty >> MINOR) & BYTE; 28670 (*dp->dmap_io)(dp->dmap_driver, mess_ptr); 28671
} 28672 } 28674
/*===* 28675 *
no_dev * 28676
===/ 28677
PUBLIC int no_dev(op, dev, proc, flags) 28678 int op; /* operation, DEV_OPEN or DEV_CLOSE */ 28679 dev_t
dev; /* device to open or close */ 28680 int proc; /* process to open/close for */ 28681 int flags; /* mode bits and flags
/ 28682 { 28683 / Called when opening a nonexistent device. */ 28684 28685 return(ENODEV); 28686 } 28688
/*===* 28689 *
clone_opcl * 28690
===/ 28691
PUBLIC int clone_opcl(op, dev, proc, flags) 28692 int op; /* operation, DEV_OPEN or DEV_CLOSE */ 28693 dev_t
dev; /* device to open or close */ 28694 int proc; /* process to open/close for */ 28695 int flags; /* mode bits and flags
/ 28696 { 28697 / Some devices need special processing upon open. Such a device is "cloned", 28698 * i.e. on a
succesful open it is replaced by a new device with a new unique 28699 * minor device number. This new device
number identifies a new object (such 28700 * as a new network connection) that has been allocated within a task.
28701 */ 28702 struct dmap *dp;

[Page 1029]

28703 int minor; 28704 message dev_mess; 28705 28706 /* Determine task dmap. */ 28707 dp = &dmap[(dev >>
MAJOR) & BYTE]; 28708 minor = (dev >> MINOR) & BYTE; 28709 28710 dev_mess.m_type = op; 28711
dev_mess.DEVICE = minor; 28712 dev_mess.PROC_NR = proc; 28713 dev_mess.COUNT = flags; 28714 28715 /*
Call the task. */ 28716 (*dp->dmap_io)(dp->dmap_driver, &dev_mess); 28717 28718 if (op == DEV_OPEN &&
dev_mess.REP_STATUS >= 0) { 28719 if (dev_mess.REP_STATUS != minor) { 28720 /* A new minor device
number has been returned. Create a 28721 * temporary device file to hold it. 28722 */ 28723 struct inode *ip; 28724
28725 /* Device number of the new device. */ 28726 dev = (dev & ~(BYTE << MINOR)) | (dev_mess.REP_STATUS
<< MINOR); 28727 28728 ip = alloc_inode(root_dev, ALL_MODES | I_CHAR_SPECIAL); 28729 if (ip ==
NIL_INODE) { 28730 /* Oops, that didn't work. Undo open. */ 28731 (void) clone_opcl(DEV_CLOSE, dev, proc, 0);
28732 return(err_code); 28733 } 28734 ip->i_zone[0] = dev; 28735 28736 put_inode(fp->fp_filp[m_in.fd]->filp_ino);
28737 fp->fp_filp[m_in.fd]->filp_ino = ip; 28738 } 28739 dev_mess.REP_STATUS = OK; 28740 } 28741
return(dev_mess.REP_STATUS); 28742 }
++
servers/fs/time.c
++
28800 /* This file takes care of those system calls that deal with time. 28801 * 28802 * The entry points into this file
are 28803 * do_utime: perform the UTIME system call 28804 * do_stime: PM informs FS about STIME system call
28805 */ 28806 28807 #include "fs.h" 28808 #include <minix/callnr.h> 28809 #include <minix/com.h>

[Page 1030]

28810 #include "file.h" 28811 #include "fproc.h" 28812 #include "inode.h" 28813 #include "param.h" 28814 28815
/*===* 28816 *
do_utime * 28817

196

196

===/ 28818
PUBLIC int do_utime() 28819 { 28820 /* Perform the utime(name, timep) system call. */ 28821 28822 register struct
inode *rip; 28823 register int len, r; 28824 28825 /* Adjust for case of 'timep' being NULL; 28826 * utime_strlen then
holds the actual size: strlen(name)+1. 28827 */ 28828 len = m_in.utime_length; 28829 if (len == 0) len =
m_in.utime_strlen; 28830 28831 /* Temporarily open the file. */ 28832 if (fetch_name(m_in.utime_file, len, M1) !=
OK) return(err_code); 28833 if ((rip = eat_path(user_path)) == NIL_INODE) return(err_code); 28834 28835 /* Only
the owner of a file or the super_user can change its time. */ 28836 r = OK; 28837 if (rip->i_uid != fp->fp_effuid &&
!super_user) r = EPERM; 28838 if (m_in.utime_length == 0 && r != OK) r = forbidden(rip, W_BIT); 28839 if
(read_only(rip) != OK) r = EROFS; /* not even su can touch if R/O */ 28840 if (r == OK) { 28841 if
(m_in.utime_length == 0) { 28842 rip->i_atime = clock_time(); 28843 rip->i_mtime = rip->i_atime; 28844 } else {
28845 rip->i_atime = m_in.utime_actime; 28846 rip->i_mtime = m_in.utime_modtime; 28847 } 28848 rip->i_update
= CTIME; /* discard any stale ATIME and MTIME flags */ 28849 rip->i_dirt = DIRTY; 28850 } 28851 28852
put_inode(rip); 28853 return(r); 28854 } 28856
/*===* 28857 *
do_stime * 28858
===/ 28859
PUBLIC int do_stime() 28860 { 28861 /* Perform the stime(tp) system call. */ 28862 boottime = (long)
m_in.pm_stime; 28863 return(OK); 28864 }

197

197

198

198

[Page 1033]

Appendix C. Index to Files

Include directory

00000 include/ansi.h

00200 include/errno.h

00900 include/fcntl.h

00100 include/limits.h

00700 include/signal.h

00600 include/string.h

01000 include/termios.h

01300 include/timers.h

00400 include/unistd.h

04400 include/ibm/interrupt.h

04300 include/ibm/portio.h

04500 include/ibm/ports.h

03500 include/minix/callnr.h

03600 include/minix/com.h

02300 include/minix/config.h

02600 include/minix/const.h

04100 include/minix/devio.h

04200 include/minix/dmap.h

02200 include/minix/ioctl.h

03000 include/minix/ipc.h

02500 include/minix/sys_config.h

03200 include/minix/syslib.h

03400 include/minix/sysutil.h

1

1

02800 include/minix/type.h

01800 include/sys/dir.h

02100 include/sys/ioc_disk.h

02000 include/sys/ioctl.h

01600 include/sys/sigcontext.h

01700 include/sys/stat.h

01400 include/sys/types.h

01900 include/sys/wait.h

Drivers

10800 drivers/drivers.h

12100 drivers/at_wini/at_wini.c

12000 drivers/at_wini/at_wini.h

11000 drivers/libdriver/driver.c

10800 drivers/libdriver/driver.h

11400 drivers/libdriver/drvlib.c

10900 drivers/libdriver/drvlib.h

11600 drivers/memory/memory.c

15900 drivers/tty/console.c

15200 drivers/tty/keyboard.c

13600 drivers/tty/tty.c

13400 drivers/tty/tty.h

[Page 1034]

Kernel

10400 kernel/clock.c

04700 kernel/config.h

04800 kernel/const.h

08000 kernel/exception.c

2

2

05300 kernel/glo.h

08100 kernel/i8259.c

05400 kernel/ipc.h

04600 kernel/kernel.h

08700 kernel/klib.s

08800 kernel/klib386.s

07100 kernel/main.c

06200 kernel/mpx.s

06300 kernel/mpx386.s

05700 kernel/priv.h

07400 kernel/proc.c

05500 kernel/proc.h

08300 kernel/protect.c

05800 kernel/protect.h

05100 kernel/proto.h

05600 kernel/sconst.h

06900 kernel/start.c

09700 kernel/system.c

09600 kernel/system.h

10300 kernel/system/do_exec.c

10200 kernel/system/do_setalarm.c

06000 kernel/table.c

04900 kernel/type.h

09400 kernel/utility.c

File System

21600 servers/fs/buf.h

22400 servers/fs/cache.c

3

3

21000 servers/fs/const.h

28300 servers/fs/device.c

28100 servers/fs/dmap.c

21700 servers/fs/file.h

23700 servers/fs/filedes.c

21500 servers/fs/fproc.h

20900 servers/fs/fs.h

21400 servers/fs/glo.h

22900 servers/fs/inode.c

21900 servers/fs/inode.h

27000 servers/fs/link.c

23800 servers/fs/lock.c

21800 servers/fs/lock.h

24000 servers/fs/main.c

26700 servers/fs/mount.c

24500 servers/fs/open.c

22000 servers/fs/param.h

26300 servers/fs/path.c

25900 servers/fs/pipe.c

27800 servers/fs/protect.c

21200 servers/fs/proto.h

25000 servers/fs/read.c

27500 servers/fs/stadir.c

23300 servers/fs/super.c

22100 servers/fs/super.h

22200 servers/fs/table.c

28800 servers/fs/time.c

4

4

21100 servers/fs/type.h

25600 servers/fs/write.c

Process manager

19300 servers/pm/break.c

17100 servers/pm/const.h

18700 servers/pm/exec.c

18400 servers/pm/forkexit.c

20400 servers/pm/getset.c

17500 servers/pm/glo.h

18000 servers/pm/main.c

20500 servers/pm/misc.c

17600 servers/pm/mproc.h

17700 servers/pm/param.h

17000 servers/pm/pm.h

17300 servers/pm/proto.h

19500 servers/pm/signal.c

17800 servers/pm/table.c

20300 servers/pm/time.c

20200 servers/pm/timers.c

17200 servers/pm/type.h

5

5

6

6

[Page 1053]

About the Authors

Andrew S. Tanenbaum has an S.B. degree from M.I.T. and a Ph.D. from the University of California at
Berkeley. He is currently a Professor of Computer Science at the Vrije Universiteit in Amsterdam, The
Netherlands, where he heads the Computer Systems Group. Until stepping down in Jan. 2005, for 12 years he
had been Dean of the Advanced School for Computing and Imaging, an interuniversity graduate school doing
research on advanced parallel, distributed, and imaging systems.

In the past, he has done research on compilers, operating systems, networking, and local-area distributed
systems. His current research focuses primarily on computer security, especially in operating systems,
networks, and large wide-area distributed systems. Together, all these research projects have led to over 100
refereed papers in journals and conference proceedings and five books.

Prof. Tanenbaum has also produced a considerable volume of software. He was the principal architect of the
Amsterdam Compiler Kit, a widely-used toolkit for writing portable compilers, as well as of MINIX, a small
UNIX clone. This system provided the inspiration and base on which Linux was developed. Together with his
Ph.D. students and programmers, he helped design the Amoeba distributed operating system, a
high-performance microkernel-based local-area distributed operating system. After that he was one of the
designers of Globe, a wide-area distributed system intended to handle a billion users. All of this software is
now available for free via the Internet.

[Page 1054]

His Ph.D. students have gone on to greater glory after getting their degrees. He is very proud of them. In this
respect he resembles a mother hen.

Prof. Tanenbaum is a Fellow of the ACM, a Fellow of the the IEEE, and a member of the Royal Netherlands
Academy of Arts and Sciences. He is also winner of the 1994 ACM Karl V. Karlstrom Outstanding Educator
Award, winner of the 1997 ACM/SIGCSE Award for Outstanding Contributions to Computer Science
Education, and winner of the 2002 Texty award for excellence in textbooks. In 2004 he was named as one of
the five new Academy Professors by the Royal Academy. His home page on the World Wide Web can be
found at URL http://www.cs.vu.nl/~ast/.

Albert S. Woodhull has an S.B. degree from M.I.T. and a Ph.D. from the University of Washington. He
entered M.I.T. intending to become an electrical engineer, but he emerged as a biologist. He considers himself
a scientist with an appreciation of engineering. For more than 20 years he was a faculty member in the School
of Natural Science of Hampshire College in Amherst, Massachusetts. He has been a visiting faculty member
at several other colleges and universities. As a biologist using electronic instrumentation, he started working
with microcomputers when they became readily available. His instrumentation courses for science students
evolved into courses in computer interfacing and real-time programming.

Dr. Woodhull has always had strong interests in teaching and in the role of science and technology in
development. Before entering graduate school he taught high school science for two years in Nigeria. He also
spent several sabbaticals teaching computer science in Nicaragua, at the Universidad Nacional de Ingenieria
and the Universidad Nacional Autonoma de Nicaragua

He is interested in computers as electronic systems, and in interactions of computers with other electronic
systems. He particularly enjoys teaching in the areas of computer architecture, assembly language
programming, operating systems, and computer communications. He has worked as a consultant in the

1

1

http://www.cs.vu.nl/~ast/

development of electronic instrumentation and related software, and as a computer system administrator.

He has many nonacademic interests, including various outdoor sports, amateur radio, and reading. He enjoys
travelling and trying to make himself understood in languages other than his native English. He is a user and
advocate of MINIX. He operates a Web server that runs MINIX and provides support for MINIX users. His
personal home page is located there. You can find it at URL http://minix1.hampshire.edu/asw/.

2

2

http://minix1.hampshire.edu/asw/

[Page InsideBackCover]

About the MINIX 3 CD

System Requirements

Hardware

Software

Installation

Product Support

1

1

2

2

[Page InsideBackCover (continued)]

System Requirements

Below is a list of Minimum System Requirements to install the software supplied on this CD.

1

1

2

2

[Page InsideBackCover (continued)]

Hardware

MINIX 3 OS requires the following hardware:

PC with a Pentium or compatible processor•
16 Mb or more of RAM•
200 Mb of free disk space•
IDE CD-ROM driver•
IDE hard disk•

NOT SUPPORTED: Serial ATA, USB, and SCSI disks are not supported. For alternative configurations, visit
http://www.minix3.org

1

1

http://www.minix3.org

2

2

[Page InsideBackCover (continued)]

Software

MINIX 3 OS is an operating system. If you wish to retain your existing operating system and data
(recommended) and create a dual-boot machine, you will need to partition your hard drive. You may use one
of the following:

Partition Magic (http://www.powerquest.com/partitionmagic)

or

•

The Partition Resizer (http://www.zeleps.com)

or

•

Follow the instructions at http://www.minix3.org/partitions.html•

1

1

http://www.powerquest.com/partitionmagic
http://www.zeleps.com
http://www.minix3.org/partitions.html

2

2

[Page InsideBackCover (continued)]

Installation

Installation can be completed without a live internet connection, but some advanced documentation is only
available online at http://www.minix3.org. Complete installation instructions are supplied on the CD in Adobe
Acrobat PDF format.

1

1

http://www.minix3.org

2

2

[Page InsideBackCover (continued)]

Product Support

For further technical information about the MINIX software on this CD, visit the official MINIX website at
http://www.minix3.org

1

1

http://www.minix3.org

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 #define
 #if 2nd
 #ifdef 2nd 3rd
 1401 2nd
 360
 6502
 6600
 7094 2nd 3rd
 8086

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 Absolute path name
 Access control list
 Access matrix
 Acknowledgement
ACL [See Access Control List]
 Active partition
 Ada
 Adapter, device 2nd
Address

 physical
 virtual

 Address space
 Admission scheduler
 Adversary
 Advisory file locking 2nd
 Aging algorithm 2nd
 Aiken, Howard
 Alarm signal 2nd

 implementation in MINIX 3
 Alias
 Allocation, local versus global
 Amoeba
 ANSI C
 ANSI terminal escape sequence
 Aperiodic real time system
 Apple 2nd 3rd
 Architecture, computer
 Argc
 Argv
 Assembly language
 Associative memory
 Asynchronous input/output
 Atomic action
 Attribute, file
 Authentication 2nd
 Avoidance of deadlock

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 Babbage, Charles
 Backup, file system
 Bad block
 Banker's algorithm 2nd
 Base register
 Basic input/output system
 Batch scheduling
 Batch system
 Berkeley software distribution
 Best-fit algorithm
Bibliography

 alphabetical
 suggested readings

 Big-endian machine
 Binary semaphore
BIOS [See Basic Input/Output System]
 Bitmap 2nd 3rd 4th 5th 6th 7th 8th 9th
 Block
 Block cache 2nd
 Block device 2nd
 Block read ahead
 Block size 2nd
 Block special file 2nd 3rd 4th 5th 6th 7th
 Block started by symbol 2nd 3rd 4th
 Boot block 2nd 3rd
 Boot disk
 Boot image 2nd 3rd 4th
 Boot monitor 2nd 3rd
 Boot parameter 2nd
 Bootstrap
 Bootstrapping MINIX 3
 Bounded buffer
BSD [See Berkeley Software Distribution]
BSS [See Block Started by Symbol]
 Buffer cache
 Buffering 2nd
 Busy waiting 2nd
 Byron, Lord
 Byte order

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 C language 2nd 3rd 4th 5th 6th 7th
 C run-time start-off
 C-list
 C-threads
 Cache, file system
 Call gate
 Canonical mode 2nd
 Capability
 Capability list
 Catching signals, MINIX 3
 Cats, identification method used
 Cbreak mode 2nd
 CDC 6600
 Challenge-response authentication
 Channel, covert
 Character device 2nd
 Character special file 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 Checkerboarding
 Child process
 Circular wait condition
 Classical IPC problems

 dining philosophers
 readers and writers

 Cleaner
 Click 2nd
 Client process
 Client-server system
 Clock
 Clock algorithm
 Clock driver, MINIX 3
 Clock hardware
 Clock interrupt handler, MINIX 3
 Clock page replacement algorithm
 Clock software
 Clock task

 MINIX 3
 Clock tick
 Clock ticks, lost 2nd 3rd
CMS [See Conversational Monitor System]
 Code page
 Combined I and D space 2nd 3rd 4th 5th
 Command interpreter
 Compaction
 Compatible time sharing system 2nd
 Compute-bound process 2nd

1

1

 Condition variable
 Conditional compilation
 Confinement problem
 Consistency, file system
 Context switch 2nd
 Contiguous file allocation
 Control sequence introducer
 Controller, device
 Conversational monitor system
 Cooked mode 2nd
 Cookie
 Core dump
 Core image
 Covert channel
 CP/M
 CPU scheduler
 CPU utilization
 Critical region
 Critical section
 CRT monitor
CRTSO [See C Run Time Start Off]
 Crystal oscillator
CTSS [See Compatible Time Sharing System]
 Current directory

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 D space 2nd 3rd 4th
 Daemon 2nd 3rd
 Data confidentiality
 Data integrity
 Data loss, accidental
 Data segment
DDOS attack [See Distributed Denial Of Service attack]
 Deadlock 2nd

 banker's algorithm 2nd
 condition
 definition
 detection and recovery
 ostrich algorithm
 resource
 safe state

 Deadlock avoidance
 Deadlock handling, MINIX 3
 Deadlock modeling
 Deadlock prevention
Deadly embrace [See Deadlock]
 Debug dump
 Dedicated device
 Degree of multiprogramming
 Dekker's algorithm
 Demand paging
 Denial of service attack
 Descriptor table
 Design principles, security
 Detection, deadlock
 Device controller
 Device driver 2nd 3rd 4th

 MINIX 3 2nd 3rd 4th
 Device independence
 Device register
 Device-independent I/O, MINIX 3
 Dining philosophers problem
 Direct memory access
 Directory 2nd 3rd

 hierarchical
 implementation
 NTFS
 UNIX
 Windows 2nd

 Directory management
 Directory operation

1

1

 Dirty bit
 Disk

 floppy 2nd 3rd
 hard

 Disk arm scheduling
 Disk block size
 Disk block, managing free blocks
 Disk hardware
 Disk operating system
 Disk optimization
 Disk partition
 Disk software
 Disk space management
Diskette [See floppy disk]
 Diskless workstation
 Display driver, MINIX 3
 Display software
 Distributed denial of service attack
 Distributed operating system
 Distributed shared memory
 Distributed system
DMA [See Direct Memory Access]
 Domain, protection
DOS [See Disk Operating System]
DOS attack [See Denial of Service attack]
 Double indirect block
Dump

 incremental
 logical
 physical

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

ECC [See Error-Correcting Code]
 Echoing
 Eckert, J. Presper
EIDE [See Extended IDE disk]
 Elevator algorithm
 Engelbart, Douglas
 Error handling 2nd
 Error reporting
 Error-correcting code 2nd
 Escape character
 Escape sequence
 Exception 2nd
 Executable script
 Exokernel
 Extended IDE disk
 Extended key prefix
 Extended machine
 Extended partition 2nd
 External fragmentation

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 Fair-share scheduling
FAT [See File Allocation Table]
 Feature test macro 2nd
FIFO [See First-In First-Out algorithm]
 File 2nd

 block special 2nd 3rd 4th 5th 6th 7th
 character special 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 executable 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 regular 2nd 3rd 4th

 File access
File allocation

 contiguous
 linked-list

 File allocation table
 File attribute
 File backup
 File descriptor 2nd
 File extension
 File locking, advisory
 File management
 File naming
 File operation
 File position
 File server
 File structure
 File system 2nd

 bitmaps
 cache
 consistency
 directories 2nd
 disk space management
 implementation
 layout
 log-structured
 MINIX 3
 performance
 read ahead
 reliability
 root 2nd 3rd 4th 5th 6th

 File transfer protocol
 File type
 Filler character
 Finger-length identification
 Fingerprint identification
 Firmware 2nd

1

1

 First generation computer
 First-come first-served scheduling
 First-fit algorithm
 First-in first-out page replacement
 Fixed partitions
 Flat panel display
 Floppy disk 2nd 3rd 4th 5th 6th
 Floppy disk driver, MINIX 3
 Folder
 FORTRAN
Fragmentation

 external
 internal

 Free block
 Free memory table
FS [See File System]
FTP [See File Transfer Protocol]
 Function key 2nd 3rd 4th 5th
 Function prototype
 Fungible resource

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

GDT [See Global Descriptor Table]
 GE-645
 Generic right
GID [See Group IDentification]
 Glass tty
 Global allocation
 Global descriptor table
 Global page allocation algorithms
 Graphical user interface
 Group
 Group identification
 Guaranteed scheduling
GUI [See Graphical User Interface]

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 Handler, interrupt 2nd 3rd 4th 5th 6th 7th
 Handler, signal 2nd 3rd 4th 5th 6th 7th 8th 9th
 Hard disk driver, MINIX 3
 Hard link 2nd
 Hard real time
 Hardware scrolling
 Header file, MINIX 3
 Header files, POSIX
 Hierarchical directories
 History of operating systems

 first generation
 MINIX
 second generation
 third generation

 Hold and wait condition 2nd
 Hole list, MINIX 3
 Hole table 2nd
HTTP [See HyperText Transfer Protocol]
 Hypertext transfer protocol

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 I space 2nd 3rd 4th
 I-node 2nd
I/O [See Input/Output]
 I/O adapter
 I/O bound process 2nd 3rd 4th
 I/O channel
 I/O device
 I/O device controller
 I/O in MINIX 3

 block device
 disk
 display 2nd
 keyboard 2nd
 overview
 RAM disk
 terminal driver

 I/O port
 I/O protection level
 I/O software
 IBM 1401 2nd
 IBM 360
 IBM 7094 2nd 3rd
 IBM PC 2nd
 IBM System/360
IDE [See Integrated Drive Electronics]
 Idle task
IDT [See Interrupt Descriptor Table]
 Immediate file 2nd
 Include file, MINIX 3
 Incremental dump
 Indirect block
 Inet server
 Information server 2nd 3rd
 Init process 2nd 3rd 4th 5th 6th
 Initial program loader
Initialization

 MINIX file system 2nd
 MINIX kernel
 MINIX process manager

 Initialized variable
 Input/Output

 block size
 buffering
 clock
 controller

1

1

 daemon
 dedicated device
 device
 disk
 DMA
 error reporting
 memory-mapped
 RAM disk
 software
 spooled
 terminal
 user-space

 Input/Output software, device independent
 Instruction set architecture
 Integrated drive electronics
 Intel 8086
 Intelligent terminal
 Interactive scheduling
 Internal fragmentation
 Interprocess communication 2nd 3rd

 busy waiting
 critical section
 dining philosophers
 message passing
 MINIX 3 2nd
 monitor
 mutex
 mutual exclusion
 Peterson's algorithm
 producer-consumer 2nd
 race condition
 readers and writers
 semaphore
 sleep and wakeup
 spooler directory

 Interrupt
 Interrupt descriptor table 2nd 3rd
 Interrupt handler 2nd

 MINIX 3
 Interrupt request
 Interrupt vector 2nd 3rd 4th 5th 6th
 Intruder
 Inverted page table
IOPL [See I/O Protection Level]
IPC [See InterProcess Communication]
 IPC primitive
IPL [See Initial Program Loader]
IRQ [See Interrupt ReQuest]
IS [See Information Server]
ISA [See Instruction Set Architecture]

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 Java virtual machine
 Job
 Job control 2nd
 Jobs, Steven
JVM [See Java Virtual Machine]

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

K&R C [See Kernighan &, Ritchie C]
 Kernel 2nd
 Kernel call 2nd 3rd 4th
 Kernel mode 2nd
 Kernighan & Ritchie C 2nd 3rd 4th
 Key logger
 Keyboard driver, MINIX 3
 Keyboard input, MINIX 3
 Keyboard software
 Keymap 2nd

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

LAN [See Local Area Network]
 Layered operating system
LBA [See Logical Block Addressing]
 LBA48 disk addressing
LDT [See Local Descriptor Table]
 Least recently used algorithm
LFS [See Log-Structured File System]
 Lightweight process
 Limit register
 Linear address
 Linear block addressing
 Link, file
 Link, hard
 Link, symbolic
 Linked list file allocation
 Linux
 Little-endian machine
 Load control
 Loadable fonts
 Loadable keymaps
 Local allocation
 Local area network
 Local descriptor table 2nd
 Local label
 Local page allocation algorithms
 Locality of reference 2nd
 Lock file
 Lock variable
 Log-structured file system
 Logic bomb
 Logical block addressing 2nd
 Logical dump
 Logical partition
 Lord Byron
 Lottery scheduling
 Lovelace, Ada
LRU [See Least Recently Used algorithm]

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 Mac OS X
 Machine language
 Magic number 2nd 3rd 4th
 Mailbox
 Mainframe
 Major device number
 Makefile
 Malware

 key logger
 logic bomb
 spyware
 Trojan horse
 virus
 worm

 Master boot record 2nd
 Master file table 2nd 3rd
 Masterboot 2nd
 Mauchley, John
MBR [See Master Boot Record]
 Mechanism
 Mechanism versus policy 2nd
 Memory compaction
 Memory hierarchy
 Memory management

 basic
 best-fit algorithm
 bitmaps
 design issues
 first-fit algorithm
 linked lists
 next-fit algorithm
 page replacement
 quick-fit algorithm
 segmentation
 swapping
 virtual memory
 worst-fit algorithm

 Memory management unit
 Memory manager
 Memory scheduler
 Memory-mapped input/output
 Memory-mapped terminal
 Message passing

 MINIX 3
 Message primitive

1

1

 Message-passing interface
 Metadata 2nd
MFT [See Multiprogramming with Fixed Tasks] [See Multiprogramming with Fixed Tasks] [See Master File
Table]
 Microarchitecture level
 Microcomputer
 Microprocessor
 Microprogram
 Microsoft 2nd
 Middleware
MINIX 3

 alarms and timers
 bitmaps
 block cache
 block device
 block device drivers
 boot block 2nd 3rd
 boot monitor 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 boot parameters 2nd 3rd 4th 5th 6th 7th 8th 9th
 bootstrapping
 catching a signal
 clock driver implementation
 clock interrupt handler
 clock services
 clock task
 compiling and running
 core dump 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 data structures
 deadlock handling
 debugging dump 2nd
 DEV_CANCEL request 2nd
 DEV_CLOSE request 2nd 3rd 4th
 DEV_GATHER request 2nd 3rd 4th
 DEV_IO_READY
 DEV_IOCTL request 2nd 3rd 4th 5th
 DEV_MAP
 DEV_NO_STATUS
 DEV_OPEN request 2nd 3rd 4th
 DEV_READ request 2nd 3rd 4th 5th
 DEV_REVIVE
 DEV_SCATTER request 2nd 3rd 4th
 DEV_SELECT request 2nd
 DEV_UNMAP
 DEV_WRITE request 2nd 3rd 4th
 device driver
 device-independent I/O
 device-independent terminal driver
 directories and paths
 implementation

 disks
 display driver
 driver library
 escape sequence 2nd 3rd 4th 5th 6th 7th 8th
 EXTERN definition 2nd 3rd 4th

2

2

 file descriptor 2nd
 file locking 2nd
 file operations
 file position 2nd 3rd 4th 5th 6th
 file system
 block management
 header files
 implementation
 initialization
 main program
 overview
 table management

 file system header
 file system layout
 floppy disk driver 2nd 3rd 4th 5th
 hard disk driver
 hardware-dependent kernel support
 header files
 history
 hole list
 i-node management
 i-nodes
 I/O
 I/O, overview
 implementation of process management

 implementation,
 clock driver
 file system
 hard disk driver
 memory driver
 process manager
 processes
 system task
 terminal driver

 initialization 2nd
 initialized variables 2nd
 internal structure
 interprocess communication 2nd
 interrupt handling 2nd
 keyboard driver
 keyboard input
 loadable fonts
 loadable keymaps
 magic number 2nd 3rd 4th 5th 6th 7th
 memory layout

 memory management
 implementation
 overview

 memory management utilities
 message
 message handling
 millisecond timing
 notification 2nd

 overview

3

3

 clock driver
 file system
 hard disk driver
 memory driver
 process manager
 processes
 system task
 terminal driver

 overview of processes
 path name processing 2nd
 pipes and special files 2nd
 PM data structures
 process manager
 data structures
 header files
 implementation
 initialization
 main program
 overview

 process scheduling
 processes in memory
 RAM disk
 reincarnation server
 scheduling
 shared text 2nd
 signal
 signal handling 2nd
 source code organization
 special files 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 startup
 superblock management
 synchronous alarm 2nd 3rd 4th 5th 6th 7th
 system initialization
 system library
 system task
 tasks 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 terminal data structure 2nd
 terminal driver
 terminal output
 termios structure 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 time management
 timer implementation
 user-level I/O software
 user-space timers
 utilities
 watchdog timer
 zombies 2nd 3rd 4th 5th

MINIX 3 files
 /boot/image 2nd
 /dev/boot 2nd 3rd
 /dev/console 2nd 3rd
 /dev/fd0 2nd
 /dev/klog
 /dev/kmem 2nd 3rd

4

4

 /dev/log
 /dev/mem 2nd 3rd 4th 5th
 /dev/null 2nd 3rd 4th 5th 6th
 /dev/pc0
 /dev/ram 2nd 3rd 4th 5th 6th
 /dev/tty
 /dev/ttyc1
 /dev/zero 2nd 3rd 4th 5th
 /etc/passwd
 /etc/rc 2nd 3rd 4th 5th
 /etc/termcap
 /etc/ttytab 2nd
 /sbin/floppy
 /usr/adm/wtmp
 /usr/bin/getty
 /usr/bin/login
 /usr/bin/stty
 /usr/lib/i386/libsysutil.a
 /usr/spool/locks/
 drivers/tty/vidcopy.s
 init 2nd 3rd 4th 5th
 keymap.src
 src/drivers/log/
 src/servers/inet/
 src/servers/is/
 src/servers/rs/
 std.src
 us-std.src

MINIX 3 kernel calls
 notify 2nd 3rd 4th 5th 6th 7th
 receive 2nd 3rd
 revive
 send 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 sendrec 2nd 3rd 4th 5th 6th
 sys_abort
 sys_copy
 sys_datacopy 2nd 3rd
 sys_exit 2nd
 sys_fork
 sys_getimage
 sys_getinfo 2nd 3rd
 sys_getkinfo
 sys_getkmessages
 sys_getmachine 2nd
 sys_insw
 sys_irqctl
 sys_irqenable 2nd 3rd
 sys_irqsetpolicy 2nd
 sys_kill 2nd
 sys_memset
 sys_newmap
 sys_physcopy
 sys_privctl
 sys_segctl

5

5

 sys_setalarm 2nd 3rd 4th
 sys_sigsend
 sys_times
 sys_vircopy 2nd
 sys_voutb 2nd

MINIX 3 POSIX system calls
 access 2nd
 alarm 2nd 3rd 4th 5th 6th 7th
 brk 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 chdir 2nd 3rd
 chmod
 chown
 chroot 2nd 3rd
 close 2nd 3rd 4th 5th
 closedir
 creat 2nd 3rd 4th 5th
 dup
 dup2
 exec 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 execve
 exit 2nd 3rd 4th 5th 6th 7th
 fchdir
 fcntl 2nd 3rd
 fork 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
 fstat 2nd 3rd 4th
 get_time
 getgid 2nd 3rd
 getpgrp 2nd
 getpid 2nd 3rd
 getprocnr
 getsetpriority
 getsysinfo
 getuid 2nd 3rd
 ioctl 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 kill 2nd 3rd 4th 5th 6th
 link
 lock
 lseek 2nd 3rd
 mkdir
 mknod
 mount 2nd 3rd 4th 5th
 open 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 opendir
 pause 2nd 3rd 4th 5th
 pipe
 ptrace 2nd 3rd 4th
 read 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd
 readdir
 reboot 2nd 3rd
 rename 2nd 3rd 4th
 rmdir
 sbrk 2nd
 seek 2nd
 select 2nd 3rd 4th 5th 6th 7th 8th

6

6

 setgid 2nd
 setpriority
 setsid 2nd 3rd
 setuid 2nd
 sigaction 2nd 3rd 4th 5th
 sigalrm
 sigint
 sigkill
 signal 2nd
 sigpending 2nd
 sigpipe
 sigprocmask 2nd 3rd
 sigreturn 2nd 3rd 4th 5th 6th 7th
 sigsuspend 2nd 3rd 4th
 sleep 2nd
 stat 2nd 3rd 4th
 stime 2nd 3rd 4th
 sync 2nd 3rd 4th 5th 6th
 time 2nd 3rd
 times 2nd 3rd 4th
 umask
 umount 2nd
 unlink 2nd 3rd 4th
 unpause
 utime 2nd
 wait 2nd 3rd 4th 5th 6th 7th
 waitpid 2nd 3rd
 wakeup 2nd
 write 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

MINIX 3 source files
 8259.c
 a.out.h
 alloc.c 2nd
 ansi.h 2nd
 at_wini.c 2nd 3rd
 bios.h 2nd
 bitmap.h
 break.c
 brksize.s
 buf.h
 cache.c
 callnr.h
 cdprobe.c 2nd
 chmem
 clock.c
 cmos.h
 com.h 2nd
 config.h 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 console.c 2nd 3rd
 const.h 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 cpu.h
 crtso.s
 device.c 2nd 3rd
 devio.h 2nd

7

7

 dir.h 2nd
 diskparm.h
 dmap.c 2nd
 dmap.h 2nd
 do_exec.c 2nd 3rd
 do_irqctl.c
 do_setalarm.c
 driver.c 2nd 3rd 4th 5th
 driver.h 2nd
 drvlib.c 2nd 3rd
 drvlib.h
 errno.h
 exception.c 2nd
 exec.c
 fcntl.h 2nd 3rd
 file.c
 file.h
 filedes.c
 forkexit.c
 fproc.h
 fs.h 2nd
 getset.c
 glo.h 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 i8259.c 2nd
 inode.h
 installboot 2nd
 int86.h
 interrupt.h
 ioc_disk.h
 ioctl.h
 ipc.h 2nd 3rd
 is
 kernel.h 2nd 3rd 4th 5th 6th
 keyboard.c 2nd 3rd 4th 5th
 keymap.h 2nd 3rd
 klib.s
 klib386.s 2nd 3rd
 limits.h 2nd
 link.c
 lock.c
 lock.h
 log 2nd
 main.c 2nd 3rd 4th 5th 6th 7th
 memory.c 2nd
 memory.h
 misc.c 2nd 3rd 4th
 mount.c
 mproc.h 2nd
 mpx.s 2nd
 mpx386.s 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 mpx88.s
 open.c 2nd
 param.h 2nd
 partition.h 2nd

8

8

 path.c 2nd
 pipe.c 2nd
 pm.h 2nd 3rd
 portio.h
 ports.h
 priv.h 2nd
 proc.c 2nd 3rd
 proc.h 2nd 3rd 4th
 prog.c
 protect.c 2nd 3rd
 protect.h 2nd
 proto.h 2nd 3rd 4th
 ptrace.h
 pty.c
 read.c 2nd 3rd
 resource.h
 sconst.h 2nd
 select.c
 select.h 2nd
 setalarm.c
 sigcontext.h
 signal.c
 signal.h 2nd 3rd
 stadir.c
 start.c 2nd 3rd 4th
 stat.h 2nd
 statfs.h
 stddef.h
 stdio.h
 stdlib.h
 string.h
 super.c
 super.h
 svrctl.h
 sys_config.h 2nd 3rd
 syslib.h 2nd 3rd
 system.c 2nd
 system.h 2nd 3rd
 sysutil.h
 table.c 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 termios.h 2nd 3rd 4th 5th
 time.c 2nd
 timers.c 2nd
 timers.h 2nd
 trace.c
 tty.c 2nd 3rd
 tty.h 2nd
 ttytab
 type.h 2nd 3rd 4th 5th 6th 7th 8th 9th
 types.h
 u64.h
 unistd.h 2nd
 utility.c 2nd 3rd
 wait.h

9

9

 write.c
 Minor device 2nd
 Missing block
 Mkfs command 2nd
MMU [See Memory Management Unit]
 Mode 2nd 3rd 4th 5th 6th 7th 8th
 Modified bit 2nd
 Monitor 2nd
 Monolithic operating system
 Monoprogramming
 MOSTEK 6502
Motherboard [See Parentboard]
 Motif
 Motorola 68000 2nd
 Mounted file system
MPI [See Message Passing Interface]
 MS-DOS
 MULTICS
 Multilevel page table
 Multiple queue scheduling
 Multiprocessor
 Multiprogramming 2nd 3rd
 Multiprogramming with fixed tasks
 Murphy's law
 Mutex
 Mutual exclusion 2nd 3rd

10

10

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 NEC PD 765 chip
 Network operating system
 Network server
 New technology file system 2nd

 directory
 Next-fit algorithm
NFU [See Not Frequently Used algorithm]
 Noncanonical mode 2nd
 Nonpreemptable resource
 Nonpreemptive scheduling
 Nonresident attribute
 Not frequently used algorithm
 Not recently used algorithm
 Notification message
 Notification, MINIX 3 2nd
NRU algorithm [See Not Recently Used algorithm]
NTFS [See New Technology File System]
 Null pointer 2nd 3rd

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 Object
 Off-line printing
 One-shot mode
 One-time password
 Open source
 Operating system

 as extended machine
 as resource manager
 characteristics
 client-server
 file systems
 history
 input/output
 layered
 memory management
 processes
 structure
 virtual machine

 Operating system concepts
 Optimal page replacement
 OS/360 2nd 3rd
 Ostrich algorithm
 Overlapped seek
 Overlays

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 P-threads
 Page directory
 Page fault
 Page fault frequency algorithm
 Page frame
 Page replacement algorithm

 aging
 clock
 first-in, first-out
 global
 least recently used
 local
 not recently used
 optimal
 page fault frequency
 second chance
 WSclock

 Page size
 Page table 2nd

 inverted
 multilevel

 Page table structure
 Page, virtual memory
 Paging

 design issues
 Pentium

 Parentboard 2nd 3rd 4th 5th 6th
 Partition 2nd
 Partition table
 Password

 challenge-response
 one-time
 salted

 Path name 2nd
 PDP-1
 PDP-11
 PDP-7
 Penetration team
 Pentium, paging
 Pentium, virtual memory
 Performance, file system
 Periodic real time system
Permission bits [See mode]
 Peterson's solution
PFF [See Page Fault Frequency algorithm]

1

1

 Physical address
 Physical dump
 Physical identification
 PID
 Pipe
 Pixel
 Plug 'n Play
 Plug-in, browser
PM [See Process Manager]
 Policy
 Policy versus mechanism 2nd
 Polling
Ports, I/O [See I/O ports]
 POSIX

 header files
 Preamble, disk block
 Preemptable resource
 Preemptive scheduling
 Prepaging
 Preprocessor, C 2nd 3rd 4th 5th
 Present/absent bit
 Prevention of deadlock
 Primary partition
 Primitive, message 2nd 3rd 4th 5th 6th 7th 8th 9th
 Principal
 Principle of least privilege
 Printer daemon
 Priority inversion
 Priority scheduling
 Privacy
 PRIVATE 2nd 3rd
 Privilege level
 Process 2nd
 Process control block
 Process creation
 Process hierarchy
 Process implementation

 MINIX 3
 Process management

 MINIX 3
 Process manager 2nd

 data structures
 header files
 implementation
 initialization
 main program
 overview

 Process model
 Process scheduling

 MINIX 3 2nd
 Process state
 Process switch
 Process table 2nd
 Process termination

2

2

 Processor status word
 Producer-consumer problem
 Prompt
 Proportionality
 Protected mode
 Protection
 Protection domain
 Protection mechanism 2nd
 Pseudo terminal 2nd
 Pseudoparallelism
 PSW
 PUBLIC 2nd 3rd 4th 5th 6th 7th

3

3

4

4

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 Quantum
Queue(s)

 character input 2nd 3rd 4th 5th
 input 2nd
 multilevel in MINIX 2nd 3rd 4th 5th 6th 7th 8th
 multiple
 process
 send 2nd
 timer

 Quickfit algorithm

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 Race condition
RAID [See Redundant Array of Inexpensive Disks]
 RAM disk 2nd
 Random access file
 Raw mode 2nd
 Read Only Memory
 Readers-and-writers problem
 Real time system 2nd
 Real-time scheduling
 Recycle bin
 Redundant array of inexpensive disks
 Reference monitor
 Referenced bit
 Regular file
 Reincarnation server 2nd 3rd
 Relative path name
 Reliability, file system
 Relocation, memory
 Rendezvous
 Reserved suffix
 Resource

 fungible 2nd
 nonpreemptable
 preemptable

 Resource deadlock
 Resource manager
 Resource trajectory
 Response time
Right

 capability
 generic 2nd

 RISC 2nd 3rd
 Role
ROM [See Read Only Memory]
 Root directory
 Root file system
 Round-robin scheduling
RS [See Reincarnation Server]
 RS232 terminal
 Run-to-completion scheduling
 RWX bits 2nd [See also mode]

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 Safe state
 Salted password
SATA [See Serial AT Attachment]
 Scan code
 Schedulable system
 Scheduler
Scheduling

 batch system
 categories of algorithms
 fair-share
 first-come first-served
 goals
 guaranteed
 interactive system
 lottery
 MINIX 3
 multiple queue
 nonpreemptive 2nd
 policy vs. mechanism
 preemptive 2nd 3rd 4th
 priority
 process
 real-time system
 round-robin
 shortest job first
 shortest process next
 shortest remaining time next
 thread
 three level
 XDS 2nd

 Scheduling algorithm
 Scheduling mechanism
 Scheduling policy
 Scrolling
 SCSI 2nd
 Second chance paging algorithm
 Second generation computer
 Security

 access control list
 capability
 design principles
 physical identification
 protection mechanisms 2nd 3rd 4th 5th
 viruses
 worms

1

1

 Security attack
 Security flaws
 Security threat
 Segment

 data 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 descriptor table
 Intel versus MINIX 2nd
 memory
 register
 stack 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 text 2nd 3rd 4th 5th 6th 7th 8th 9th

 Segmentation
 Segmentation, implementation

 Pentium
 Semaphore
 Separate I and D space
 Sequential access file
 Sequential process
 Serial AT Attachment
 Serial line
 Server 2nd
 Service

 MINIX 3
 Session leader
 SETUID bit 2nd 3rd 4th 5th 6th 7th 8th
 Shared library
 Shared text 2nd

 MINIX 3
 Shebang
 Shell 2nd
 Shortcut
 Shortest job first scheduling
 Shortest process next scheduling
 Shortest remaining time next scheduling
 Shortest seek first algorithm
 Signal 2nd 3rd
 Signal handler
 Signal handling, MINIX 3
 Signals, implementation in MINIX 3
 Single large expensive disk
SLED [See Single Large Expensive Disk]
 Sleep and wakeup
 Sleep primitive
 Soft real time
 Software interrupt
 Software scrolling
 Source code organization, MINIX 3
 Sparse file
 Special file
 Spin lock
 Spooling 2nd
 Spooling directory 2nd
 Spyware
 Square-wave mode

2

2

SSF [See Shortest Seek First algorithm]
 Stack segment
Standard C [See ANSI C]
 Standard input
 Standard output
 Starvation
 State
 Static
 Status bit
 Strict alternation
 Striping, disk
 Strobed register
 Stty command 2nd 3rd
 Subject
 Subpartition table 2nd 3rd 4th
 Superblock 2nd
 Superuser
 Supervisor call
 Supervisor mode
 Swapping
 Symbolic link
 Synchronization
 Synchronous alarm
 Synchronous input/output
 System availability
 System call 2nd 3rd

 directory management
 file management
 process management
 signaling

System image [See Boot image]
 System library, MINIX 3
 System notification message
 System process
 System task, MINIX 3 2nd
 System V

3

3

4

4

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 Tagged architecture
 Task
 Task state segment 2nd
 Terminal driver, MINIX 3
 Terminal hardware
 Terminal input, MINIX 3
 Terminal mode
 Terminal output, MINIX 3
 Terminal software
 Termios structure 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 Text segment
 Third generation computer
 Thompson, Ken
 Thrashing
 Threads

 C-threads
 P-threads

 Threat, security
 Three-level scheduling
 Throughput
 Tiger team
 Timer

 user-space in MINIX 3
 Timers, implementation in MINIX 3
 Timesharing
TLB [See Translation Lookaside Buffer]
 Track-at-a-time caching
 Translation lookaside buffer
 Trap 2nd
 Trapdoor
 Triple indirect block
 Trojan horse
 TSL instruction
TSS [See Task State Segment]
 Turnaround time
 Two-phase locking

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

UART [See Universal Asynchronous Receiver Transmitter]
UID [See User IDentification]
 Uniform interface, input/output device
 Uniform naming
 Universal asynchronous receiver transmitter
 Universal coordinated time
UNIX

 beginning of time
 boot block
 deadlock
 device driver
 device numbers
 directories 2nd
 error reporting
 file system 2nd
 file system caching
 file system consistency
 files
 history
 i-nodes
 interprocess communication
 link system call
 mounted file systems
 paging
 passwords
 process structure
 processes 2nd
 scripts
 signals 2nd
 structure
 terminal I/O
 threads

 User authentication
 User identification
 User mode 2nd
 User-friendliness
 User-level I/O software, MINIX 3
UTC [See Universal Coordinated Time]

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

Vector
 I/O request 2nd 3rd 4th
 interrupt

 Video controller
 Video RAM
 Virtual address
 Virtual address space
 Virtual console
 Virtual machine 2nd 3rd
 Virtual machine monitor
 Virtual memory 2nd

 design issues
 page replacement algorithms
 paging
 Pentium
 segmentation
 working set model

 Virtual memory interface
 Virus
 VM/370
 Volume boot code
 Von Neumann, John

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 Wakeup primitive
 Wakeup waiting bit
 Watchdog timer

 MINIX 3
 Wildcard
 Windows 2nd 3rd 4th 5th 6th 7th 8th
 Windows 2000 2nd
 Windows 98 2nd 3rd
 Windows NT 2nd
 Windows XP 2nd 3rd 4th
 Working directory 2nd
 Working set model
 Workstation
 Worm
 Worst-fit algorithm
 Write-through cache
 WSclock algorithm
 WSclock page replacement algorithm

1

1

2

2

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Z]

 XDS 2nd
 XWindow system

1

1

2

2

1

1

2

2

	Operating Systems Design and Implementation, Third Edition
	Table of Contents
	Copyright
	Preface
	Chapter 1. Introduction
	Section 1.1. What Is an Operating System?
	Section 1.2. History of Operating Systems
	Section 1.3. Operating System Concepts
	Section 1.4. System Calls
	Section 1.5. Operating System Structure
	Section 1.6. Outline of the Rest of This Book
	Section 1.7. Summary
	Problems
	Chapter 2. Processes
	Section 2.1. Introduction to Processes
	Section 2.2. Interprocess Communication
	Section 2.3. Classical IPC Problems
	Section 2.4. Scheduling
	Section 2.5. Overview of Processes in MINIX 3
	Section 2.6. Implementation of Processes in MINIX 3
	Section 2.7. The System Task in MINIX 3
	Section 2.8. The Clock Task in MINIX 3
	Section 2.9. Summary
	Problems
	Chapter 3. Input/Output
	Section 3.1. Principles of I/O Hardware
	Section 3.2. Principles of I/O Software
	Section 3.3. Deadlocks
	Section 3.4. Overview of I/O in MINIX 3
	Section 3.5. Block Devices in MINIX 3
	Section 3.6. RAM Disks
	Section 3.7. Disks
	Section 3.8. Terminals
	Section 3.9. Summary
	Problems
	Chapter 4. Memory Management
	Section 4.1. Basic Memory Management
	Section 4.2. Swapping
	Section 4.3. Virtual Memory
	Section 4.4. Page Replacement Algorithms
	Section 4.5. Design Issues for Paging Systems
	Section 4.6. Segmentation
	Section 4.7. Overview of the MINIX 3 Process Manager
	Section 4.8. Implementation of the MINIX 3 Process Manager
	Section 4.9. Summary
	Problems
	Chapter 5. File Systems
	Section 5.1. Files
	Section 5.2. Directories
	Section 5.3. File System Implementation
	Section 5.4. Security
	Section 5.5. Protection Mechanisms
	Section 5.6. Overview of the MINIX 3 File System
	Section 5.7. Implementation of the MINIX 3 File System
	Section 5.8. Summary
	Problems
	Chapter 6. Reading List and Bibliography
	Section 6.1. Suggestions for Further Reading
	Section 6.2. Alphabetical Bibliography
	Appendix A. Installing MINIX 3
	Section A.1. Preparation
	Section A.2. Booting
	Section A.3. Installing to the Hard Disk
	Section A.4. Testing
	Section A.5. Using a Simulator
	Appendix B. The MINIX Source Code
	Appendix C. Index to Files
	About the Authors
	About the MINIX 3 CD
	System Requirements
	Hardware
	Software
	Installation
	Product Support
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	temp0101.html

